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xMINT: A Multimodal Integration Transformer for Xenium Gene Imputation
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Abstract
Xenium provides multimodal data with pathol-
ogy images and corresponding spatial gene ex-
pressions to enhance biomedical studies. How-
ever, its limited ability to sequence only around
500 genes introduces complexity in panel design
and restricts its capacity for exploration analy-
sis. To address this challenge, some methods
are developed to impute genes based on external
single-cell RNA sequencing (scRNA-seq) data;
however, they have neglected the rich cellular
morphology and location information available
in the Xenium pathology images. We introduce
xMINT (Multimodal Integration Transformer for
Xenium), a novel gene imputation method utiliz-
ing both gene expression profiles and correspond-
ing pathology images to enhance imputation ac-
curacy for Xenium data. xMINT is small and
efficient; yet it has a superior imputation accuracy
compared to competing methods.

1. Introduction
Spatial transcriptomics technologies have revolutionized
biological studies by providing spatially resolved gene ex-
pression data (Marx, 2021). Xenium, a commercial high-
resolution spatial transcriptomics technology by 10x Ge-
nomics, is among the most popular ones. In Xenium,
imaging-based sequencing precisely localize each RNA
molecule, while paired high-resolution Hematoxylin and
Eosin (H&E) Whole Slide Imaging (WSI) provides further
morphology information. However, Xenium can only se-
quence around 500 genes, imposing challenges on panel
design and limit its capacity for downstream exploratory
analysis.

To address this issue, researchers have developed several
methods for imputing the missing genes in the Xenium
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panel. Current methods utilize external single-cell RNA
sequencing (scRNA-seq) data (Lopez et al., 2019; Stuart
et al., 2019; Abdelaal et al., 2020), establishing a joint em-
bedding space between Xenium and scRNA-seq data to
facilitate imputation. For instance, Seurat employs Canon-
ical Correlation Analysis (CCA), gimVI leverages a deep
generative model, and SpaGE adopts a domain adaptation
approach called PRECISE to identify the joint space. How-
ever, scRNA-seq and Xenium use different technologies,
which may introduce discrepancies in gene transcript levels.
Efforts to reduce the discrepancies typically involve batch
correction, which may weaken signal-to-noise ratios and
reduce imputation accuracy. Besides, these methods have
not utilized the cell morphology and location information
from pathology images available for Xenium data, which
could provide additional clues about cell types and states.

Pathological imaging has long been fundamental to biolog-
ical studies, primarily through the examination of tissue
sections based on their visual characteristics. Recent stud-
ies have identified relationships between pathology image
features and spatial gene expressions, suggesting that image
data can enhance gene expression imputation. For exam-
ple, ImageCCA explores the relationship between image
features and high-dimensional genomic markers (Ash et al.,
2021), and iSTAR leverages image information to improve
gene expression resolution in low-resolution spatial tran-
scriptomics (ST) data, achieving a resolution close to the
single-cell level (Zhang et al., 2024).

Recognizing the potential contribution of pathology images
in enhancing gene imputation, we propose a new multimodal
gene imputation method, xMINT. Our new method utilizes
one Xenium dataset (the origin dataset) with coupled high-
resolution gene expression data and pathology images, to
impute some missing genes in another Xenium dataset (the
target dataset). These two Xenium panels contain shared
genes and unique genes. xMINT adopts Transformer-based
models, which have shown great success in integrating mul-
tiple data modalities (Xie et al., 2023; Xu et al., 2023).
xMINT first constructs sequences using the gene expres-
sion data and pathology images, then uses a multimodal
Transformer to integrate the two data modalities for gene
imputation. Our experiments show that xMINT outperforms
the existing scRNA-seq-based methods in gene imputation
accuracy.
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xMINT for Xenium Gene Imputation

2. Methods
2.1. Data sequentizer and notations

Xenium data contain rich multimodal information. Here,
we introduce the data modalities used as inputs for xMINT.
Specifically, we construct sequences of cells in local regions,
which contain both gene expression data and pathology
images.

First, we divide the WSI into small regions with 1024 ×
1024 pixels, each containing approximately 1000 to 10,000
cells. The ith regional image is denoted by Ri. The number
of cells in local region i is denoted by Ni. We order Ni

cells into a long sequence according to their cell ID in the
data. The distances between cell IDs partially reflect their
spational locations but the relationship is not completely
monotone. Then we repeat this long sequence B = 5 times
to further expand the long sequence to contain NiB cells.
Then, we sequentially segment this long sequence into K-
cell short sequence (K = 1024). Thus, the total number
of short sequences for each local region is Si =

⌊
Ni×B

K

⌋
.

Each cell ID sequence is denoted by Indi,j , where j ∈ [Si].

Using Indi,j as a baseline cell sequence, we define this
sequence’s corresponding gene expression sequences: the
shared gene sequence Shai,j and the imputed gene sequence
Impi,j . The shared gene sequence contains the expressions
of the genes shared by both Xenium datasets; the values are
ordered based on the cells in Indi,j , forming a K × |GSha|
feature matrix, where GSha represents the common gene set.
Similarly, the imputed gene sequence, which is a K×|GImp|
feature matrix, contains the expressions of the genes present
in the origin dataset but missing in the target dataset, and
thus need to be imputed.

One technical variation source in Xenium data is the cell
library size. To address this issue, we normalize the
gene expressions based on the library size. Because two
Xenium panels do not have the identify genes, to unify
both datasets, we use the following restricted-gene-set li-
brary sizes to normalize gene expressions. For cell c,
and ĝ ∈ GSha, the normalized gene expression is calcu-
lated as Xcĝ = Ycĝ/

∑
g∈GSha

Ycg , where Ycg represents the
UMI counts of gene g in cell c. Similarly, for ĝ ∈ GImp,
the normalized imputed gene expression is calculated as
Xcĝ = Ycĝ/

∑
g∈GImp

Ycg. These values are used to con-
struct the gene expression sequences Shai,j and Impi,j .

2.2. xMINT Framework

As shown in Figure 1, the xMINT framework employs
an Image Tokenizer and a Gene Transformer to create se-
quences from pathology images and gene expression data,
respectively. These sequences are then integrated using a
Transformer model, then the outputs are further processed
to impute missing gene expressions. The architecture com-

prises the following key steps.

2.2.1. CONSTRUCTING PATHOLOGY SEQUENCES

The single-cell-level image tokenization contains large re-
dundancy and is computationally expensive. Thus, we di-
vide each local region Ri into smaller patches, and use the
patch’s morphology features to represent all their contain-
ing cells’ morphology features. This approach substantially
reduces computational cost; yet still maintains high perfor-
mance in downstream tasks.

Specifically, the Image Tokenizer module uses a custom
ResNet architecture to process local region images Ri of
size 1024 × 1024 × 3. The ResNet architecture contains
three ResNet block layers. It extracts f feature maps without
altering the original width and height dimensions, resulting
in 1024 × 1024 × f feature maps. Then, the local region
feature maps are divided into 16 × 16 patches, which is
approxiamately single cell level. For any given cell in Indi,j ,
we find its residing patch and use the patch features after
max pooling to represent the cell’s morphology features (1×
f). These cells’ morphology features form the pathology
sequence, a K × f feature matrix.

2.2.2. CONTRUCTING GENE EXPRESSION SEQUENCES

The shared gene sequence Shai,j contains the normalized
gene expressions of the shared genes in both datasets. To
integrate local information in model training, we use a Gene
Transformer module to process the normalized shared
genes and output a K × f feature matrix.

2.2.3. INTEGRATING MULTIMODAL SEQUENCES AND
CONSTRUCTING FINAL OUTPUT

Next, in the Integrated Multimodal Transformer module,
we first integrate the outputs from the Image Tokenizer and
the Gene Transformer, both having dimensions of K × f .
By concatenating these two matrices along the feature di-
mension, we form a new multimodal sequence with dimen-
sions K × 2f . This sequence is input into the Integrated
Multimodal Transformer to capture interactions between
pathological and gene expression features. The output mul-
timodal sequence is a K × 2f matrix. Next, each token is
projected into a |GImp|-dimensional space for the imputation
task using a feed-forward neuro network.

Finally, for each cell, we record the gene imputation results
in all sequences containing this cell; the final imputated
gene expression is the average of the corresponding cell in
all sequences.

2.3. Model Parameters and Computation Time

xMINT includes the Gene Transformer, Integrated Multi-
modal Transformer, and an Image Tokenizer. Adjustable
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xMINT for Xenium Gene Imputation

Figure 1. Flowchart of xMINT: Initially, WSI is divided into local regions. Sequences are generated within each local region using
morphology features and RNA sequencing values. The image tokenizer uses local image data and cell coordinates to create a pathology
sequence, while shared gene expression data are used to generate an expression sequence. These two sequences are concatenated and
input into a multimodal transformer, which then outputs imputed gene sequences.

Table 1. xMINT Model Parameters and Computation Time

f EXP. HEAD LAYER PARAMETERS TIME (S)

256 4 4 4 16,799,760 1.03
256 8 8 8 53,564,432 1.09
128 4 4 4 4,338,064 0.56
128 8 8 8 13,545,360 0.60

parameters are embedding size (Emb.), forward expansion
factor (Exp.), number of attention heads (Head), and num-
ber of transformer layers (Layer) for the transformers, and
number of feature maps (Maps) for the Image Tokenizer. f
is a shared parameter across these three models, indicating
the complexity of the features. In the Gene Transformer,
Emb. = f , and in the Integrated Multimodal Transformer,
Emb. = 2f ; other settings in these two transformers are the
same. In the Image Tokenizer, Maps = f .

Table 1 shows four different configurations, and the corre-
sponding parameters and computation time per batch with
4 sequences on a single RTX A6000. To generate analysis
results in this paper, we used f = 256, Head = 8, Exp. =
8, Layer = 4, with a computation time of 1.05 seconds per
batch.

3. Results
The study employs two Xenium human tonsil datasets from
10x Genomics website. Follicular lymphoid hyperplasia is
used for training, and reactive follicular hyperplasia is used
for testing.

To quantify the accuracy of gene imputation in terms of
spatial patterns, we define a metric to measure the similarity
between the spatial patterns of imputed and true gene values
for each gene. Specifically, we first partition the WSI into
128x128 pixel regions and calculate the mean true gene
expression values and the mean imputed gene values for
each region. Then, we calculate the Spearman correlation
between these two sets of mean values.

We first evaluate the robustness of xMINT with different
numbers of shared genes, ranging from 50 to 200 (Fig-
ure 2a). We use the first 50 to 200 genes in the Xenium
tonsil panel to ensure that when we add more genes, the
previous genes are kept in the training set, thus avoiding
performance changes due to randomness. We found that,
in general, xMINT’s performance is stable across different
numbers of shared genes. Increasing the number of shared
genes from 50 to 100 slightly improves the imputation ac-
curacy in visualization, but little improvement is observed
when the number of shared genes is further increased to
150 or 200. In fact, when the number of shared genes in-
creases from 100 to 150, we see a slight drop in median
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xMINT for Xenium Gene Imputation

Figure 2. Performance of xMINT. (a) Boxplots of Spearman correlations between xMINT predicted and true gene expressions using 50,
100, 150, and 200 shared genes. (b) Provides examples of xMINT results. (c) Shows the comparison with scRNA-based methods using
the same metrics. (d) Shows examples of comparison using 50 shared genes.

performance. This is probably due to some of the shared
genes may not be informative for imputation, or even intro-
duce noise. Figure 2b displays four example genes, IL7R,
UBE2C, SOX2, and SPIB: the spatial patterns of the imputed
gene expressions are very similar to the true gene expres-
sions, indicating that xMINT has successfully captured the
spatial patterns in gene expressions.

We compared the performance of xMINT with scRNA-
based methods, including gimVI, Seurat, and SpaGE. All
three methods used the same shared gene set as xMINT, and
an online tonsil scRNA-seq dataset for imputation (Massoni-
Badosa et al., 2024). The Spearman correlation of gimVI
does not increase with the number of shared genes, while
Seurat and SpaGE show a consistent increase in Spearman
correlation. However, xMINT outperforms all three meth-
ods across all numbers of shared genes (Figure 2c). Specifi-
cally, with the number of shared gene equal to 50, the spatial
patterns of xMINT predicted genes are more similar to the
true gene expressions than those of the other methods (Fig-
ure 2d). The results indicate that incorporating pathology
images can enhance gene imputation accuracy.

4. Discussion
4.1. Contribution

We propose xMINT, a new computational method to impute
the missing genes in Xenium data. xMINT utilizes both
pathology images and spatial gene expressions to impute
genes, thus outperforming methods that only use external
scRNA-seq data for imputation.

Although xMINT employs multiple Transformer modules,
the parameters in these Transformer models are quite afford-
able. See Section 2.3 for details. It can be trained on a single
RTX A6000 GPU within 36 hours (100 epochs), making it
cost-effective and time-efficient. Its architecture can be ex-
tended to larger Transformer models with more parameters,
which may further improve imputation accuracy. Yet, the
current slim model has already shown superior performance
compared to existing methods. This sheds light on using
small and affordable deep learning models to link pathology
images with genomic data.

4.2. Limitation

To impute genes in a Xenium sample, our model requires
another Xenium sample with the same tissue type. Since
Xenium is a new technology, not many samples are pub-
licly available, currently limiting the application scenarios.
However, as Xenium is one of the most popular spatial
transcriptomics technologies, we expect more samples to
be publicly available in the next two or three years. Many
large consortia funded by the National Institutes of Health
(NIH), such as TOPMed and HTAN (National Cancer Insti-
tute, 2024; National Heart, Lung, and Blood Institute, 2024),
have plans to collect and release massive Xenium samples
in the next few years. Thus, we expect xMINT to be widely
applicable in the near future.
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