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Abstract

Pre-trained language models (PLMs) have demonstrated a remarkable ability to encode
factual knowledge. However, the mechanisms underlying how this knowledge is stored and
retrieved remain poorly understood, with important implications for AI interpretability and
safety. In this paper, we disentangle the multifaceted nature of knowledge: successfully com-
pleting a knowledge retrieval task (e.g., “The capital of France is __”) involves mastering
underlying concepts (e.g., France, Paris), relationships between these concepts (e.g., capital
of ) and the structure of prompts, including the language of the query. We propose to dis-
entangle these distinct aspects of knowledge and apply this typology to offer a critical view
of neuron-level knowledge attribution techniques. For concreteness, we focus on Dai et al.’s
(2022) Knowledge Neurons (KNs) across multiple PLMs (BERT, OPT, Llama and Gemma),
testing 10 natural languages and additional unnatural languages (e.g. Autoprompt). Our
key contributions are twofold: (i) we show that KNs come in different flavors, some indeed
encoding entity level concepts, some having a much less transparent, more polysemantic
role , and (ii) we address the problem of cross-linguistic knowledge sharing at the neuron
level, more specifically we uncover an unprecedented overlap in KNs across up to all of the
10 languages we tested, pointing to the existence of a partially unified, language-agnostic
retrieval system. To do so, we introduce and release the Multi-ParaRel dataset, an extension
of ParaRel, featuring prompts and paraphrases for cloze-style knowledge retrieval tasks in
parallel over 10 languages.

1 Introduction

Recent advances in Large Language Models (LLMs) have led to models trained on vast and diverse linguistic
datasets drawn from across the Internet, incorporating numerous languages simultaneously (Scao et al., 2023;
Touvron et al., 2023; Achiam et al., 2024). However, these languages are not evenly represented, and per-
formance on low-resource languages often depends on cross-linguistic transfer from high-resource languages
(Pires et al., 2019; Lample & Conneau, 2019; Conneau et al., 2020a; Huang et al., 2021). Whether LLMs
can develop common, language-agnostic representations that enable such zero-shot transfer remains an open
question in the literature (Singh et al., 2019; Kudugunta et al., 2019; Kassner et al., 2021). Kervadec et al.
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(a) (b)

Figure 1: The Knowledge Neurons (KNs) hypothesis connects LLM success on a fill-in-the-blank cloze task
(e.g. The capital of France is) to the activation of a small set of neurons. (a) The same neurons can be
selected (green) in response to a single task, thereby qualifying as concept neurons (about e.g., Paris) or
in response to a range of tasks all concerning a certain relations between concepts, thereby qualifying as
relational neurons (e.g., capital of is a relation between France and Paris, between England and London,
etc.). (b) In multilingual LLMs, concept and relational neurons may be selected specifically for a language
or across languages.

(2023) extended this investigation to machine-generated languages, revealing that different representations
can emerge, suggesting multiple ways knowledge may be encoded in LLMs.

Understanding how Pre-trained Language Models (PLMs) store and retrieve knowledge is essential for en-
hancing interpretability and safety in AI systems. Many recent studies have sought to localize and attribute
specific knowledge to individual neurons within these models (Dai et al., 2022; Meng et al., 2022; 2023).
These methods often attempt to identify neurons whose activations are critical for making accurate pre-
dictions. Typically, they focus on neurons in intermediate layers of Feed-Forward Networks (FFNs) within
transformer architectures (Geva et al., 2021). These approaches face strong limitations, as highlighted in
recent critiques (Hase et al., 2023; Niu et al., 2023; Huang et al., 2023).

In this work, we offer a novel perspective by refining the concept of "knowledge" itself. To correctly complete
a prompt like The capital of France is, a model must process multiple layers of information: sensitivity to the
specific concept France, retrieval of the target concept Paris, and understanding the relational context capital
of. We introduce a method to distinguish these subtypes of knowledge—conceptual and relational—that is
compatible with any knowledge attribution technique. We apply this method to the Knowledge Neurons
(KNs) framework introduced by Dai et al. (2022), to provide a critical view on such a method and extend it
to investigate how knowledge is shared across languages in PLMs (Figure 1).

Our contributions are:

• We propose a finer-grained typology of knowledge, providing a critical perspective on neuron-level
attribution methods like the Knowledge Neuron hypothesis, in particular its expectation of monose-
manticity.

• We analyze through this prism multiple PLMs (BERT, mBERT, OPT, Llama 2, and Gemma 2),
revealing that a substantial number of ‘Knowledge Neurons’ exhibit polysemantic behavior, while
others are specifically responsive to individual concepts or relations.

• We release Multi-ParaRel, a multilingual version of the ParaRel dataset (Elazar et al., 2021a),
which includes 10 languages and is compatible with autoregressive models. The dataset is available
here1.

• We examine the extent to which knowledge representations are shared across languages at the level
of individual neural units and demonstrate that LLMs store knowledge in similar neurons across
10 languages, and even in machine-generated languages (AutoPrompt), suggesting a shared cross-
linguistic mechanism for knowledge retrieval.

1The dataset is available at https://github.com/GpNico/multi-pararel
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2 Related Work

Multilingual Language Models The paradigm of Neural Machine Translation (NMT) has undergone a
significant shift. Traditional approaches that relied on parallel corpora—or even synthetic data built from
unaligned monolingual corpora (Sennrich et al., 2016; Lample et al., 2018; Artetxe et al., 2018)—are no
longer the dominant standard. Instead, recent Large Language Models (LLMs) (Radford et al., 2019; Brown
et al., 2020; Touvron et al., 2023; Achiam et al., 2024), trained on massive multilingual corpora scraped
from the web, have become de facto multilingual systems. These models demonstrate strong cross-linguistic
capabilities across a wide range of tasks (Devlin et al., 2019; Lample & Conneau, 2019; Conneau et al.,
2020a; Liu et al., 2020; Xue et al., 2021; Scao et al., 2023; Vilar et al., 2023; Peng et al., 2023; Hendy et al.,
2023; Bawden & Yvon, 2023).

Understanding how multilingual LLMs acquire and represent linguistic knowledge is critical to identifying
their limitations and potential risks (Garcia et al., 2021; Raunak et al., 2021; Akhbardeh et al., 2021; Bapna
et al., 2022). For instance, Guerreiro et al. (2023) explores how hallucinations affect translation quality
in such systems. Yuemei et al. (2024) provides a comprehensive survey of multilingual LLMs (MLLMs),
highlighting prevalent biases.

One core challenge is understanding how cross-linguistic capabilities emerge. Prior work has shown evidence
of shared multilingual knowledge within models (Aharoni et al., 2019; Arivazhagan et al., 2019; Conneau
et al., 2020b; K et al., 2020; Ri & Tsuruoka, 2022; Deshpande et al., 2022; Liu & Niehues, 2022; Choenni et al.,
2023; Rajaee & Monz, 2024; Chua et al., 2025), though some findings are mixed. For example, Kudugunta
et al. (2019) uses Singular Value Canonical Correlation Analysis to show that language representations in
a NMT model are similar—particularly among related languages. Meanwhile, Singh et al. (2019) notes
that mBERT tends to cluster representations by language, suggesting language separation despite shared
architecture.

This is the context for our work. While shared cross-linguistic knowledge has been observed, we push this
further by examining it at the neuron level. Most relevant to our approach, Chen et al. (2024) recently
analyzed neuron overlap between English and Chinese. We extend this line of inquiry by comparing neuron
activations across ten natural languages simultaneously. This broader comparison is essential. Pairwise
analyses leave open the question of whether shared neurons generalize beyond specific language pairs. Overlap
between two languages—especially if one is dominant (e.g., English)—might result from coincidental or
biased patterns. But consistent sharing across ten diverse languages indicates a more robust, symmetrical
multilingual encoding. Finally, we introduce a comparison with an ‘unnatural language’ (Shin et al., 2020),
testing whether access to knowledge can be decoupled from linguistic form. These prompts are not human-
interpretable and have been shown to elicit qualitatively different processing in LLMs (Kervadec et al., 2023),
making them a stress test for the generality of shared representations. In fact, such an inclusive approach
to training data is now even vindicated beyond languages, using non-linguistic sounds for training in speech
(see Poli et al. (2024)), or even using several species at once for bioacoustics (e.g., Robinson et al. (2025)).

Knowledge in LLMs LLMs acquire knowledge by training on extensive corpora (Petroni et al., 2019;
Roberts et al., 2020; Safavi & Koutra, 2021). The work by Petroni et al. (2019) introduced LAMA, a
dataset designed to evaluate BERT through a fill-in-the-blank cloze task (e.g., The capital of France is
[MASK].). Subsequent research has built upon LAMA (Jiang et al., 2021), highlighting the limitations of
LLMs as knowledge bases (Elazar et al., 2021b; AlKhamissi et al., 2022; Wang et al., 2023; 2024b), while
also attempting to enhance their performance (Wei et al., 2021; Petroni et al., 2020). Consequently, research
has emerged focusing on localizing and editing knowledge directly within the model (Radford et al., 2017;
Lakretz et al., 2019; Bau et al., 2020b; Sinitsin et al., 2020; Mitchell et al., 2021; 2022; De Cao et al., 2021;
Santurkar et al., 2021; De Cao et al., 2022; Bau et al., 2020a; Cohen et al., 2023).

In this context, knowledge attribution methods such as ROME (Meng et al., 2022) and MEMIT (Meng et al.,
2023) (both employing causal mediation techniques; Vig et al., 2020), along with Knowledge Neurons (Dai
et al., 2022) (utilizing an integrated gradient approach; Sundararajan et al., 2017), have been proposed. These
methods are predicated on the assumption that neurons within the intermediate layers of transformers’ Feed-
Forward Networks (FFNs) encode knowledge. However, we align with other studies (Hase et al., 2023; Niu
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et al., 2023; Huang et al., 2023; Chen et al., 2025) that suggest this assumption may be an oversimplification.
While certain neurons play a significant role in specific tasks (Lakretz et al., 2019; Manning et al., 2020;
Rogers et al., 2020; He et al., 2024), LLM neurons are not necessarily monosemantic; rather, they can serve
multiple functions depending on the context and task (Adly et al., 2024). Furthermore, their effectiveness
in altering knowledge is subjective and widely debated (Hase et al., 2023). Other works (Wang et al.,
2024a; Tang et al., 2024; Kojima et al., 2024) have identified multilingual neurons in LLMs; this paper
focuses specifically on knowledge-related neurons, offering a more precise analysis. We propose a knowledge-
attribution method-agnostic typology, illustrated with Dai et al.’s (2022) Knowledge Neurons. This approach
aims to provide a critical view on the Knowledge Neurons hypothesis while exploring what insights it can
offer regarding how knowledge is encoded in LLMs.

3 Methodological background

Knowledge The TREx dataset (Elsahar et al., 2018) is a collection of relational facts stored in triplets of
the form < h, r, t >, with r a relation and h and t entities entering in that relation. TREx exhibit 41 relations,
such as being the capital of, was born in, etc. Each full triplet can be referred to as an instantiation of its
own relation r.

Knowledge Localization Methods Geva et al. (2021) observed that a FFN can be seen as a Key-Value
memory system, similar to self-attention. To assess if and where knowledge could be stored in FFNs, Dai
et al. (2022) used a knowledge attribution method based on integrated gradients (see next paragraph for
details). They show that a fact (e.g., The capital of France is Paris) can be associated to a few neurons
(around 4), whose activations correlate with the probability of the model to fill in the elements of the fact
appropriately. Similarly, Meng et al. (2022) proposed Rank-One Model Editing (ROME), which uses causal
mediation to localize and edit knowledge in GPT, and Meng et al. (2023) introduced Mass-Editing Memory
in a Transformer (MEMIT), which edits facts at scale. All of these knowledge attribution methods have
their limitations; we apply our analysis to the Knowledge Neurons by way of illustration. Our approach is
applicable to all such methods.

Knowledge Neurons Dai et al. (2022) track Knowledge Neurons (KNs) during a fill-in-the-blank cloze
task (see also Petroni et al., 2019) based on TREx. Let w

(l)
i be the ith neuron of the intermediate layer of

the lth FFN. The knowledge score of a neuron w
(l)
i is calculated through the integrated gradient attribution

method (Sundararajan et al., 2017), KNs are then filtered through thresholds. First, they retain only
neurons with an attribution score greater than tkn × maxi,l Attrh,pr,t(w(l)

i ).This procedure is carried out for
each prompt associated with a fact < h, r, t >, and thus yields a set of candidate KNs per prompt. Let
us denote Nr the number of prompts for a given relation r. To get results robust to noise, and to factor
out signal associated to specific prompts rather than knowledge, they keep only neurons appearing in the
candidate neurons set of at least pkn ×Nr prompts. They propose thresholds of tkn = 0.2 (only keep neurons
scoring at least at 20% of the max attribution score) and pkn = 0.7 (only keep neurons appearing in at least
70% of the different prompts for a given relation).

4 Method

Datasets For relational facts, we used the TREx dataset (Elsahar et al., 2018), which comprises 41 relations
with approximately 1,000 facts per relation. For prompts, we employed the augmented version of ParaRel
provided by Kervadec et al. (2023). This version retains only prompts compatible with autoregressive models
and enriches the dataset with multiple paraphrases for each relation. In Section 6, we explore multilingual
models, which we tested on the multilingual variant of LAMA (Kassner et al., 2021) as well as on a new
multilingual version of ParaRel that we introduce. We refer to this new dataset as Multi-ParaRel.

The detailed methodology for creating Multi-ParaRel, along with a quality assessment, is provided in
Appendix A. Our dataset currently spans 10 languages: English, French, Spanish, Catalan, Danish, German,
Italian, Dutch, Portuguese, and Swedish. We also investigate an unnatural language: AutoPrompt. Following
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the same train, development, and test splits as Shin et al. (2020), we trained 10 different seeds of AutoPrompt
for each relation and each model. We also make these sets of prompts available.

Concept Neurons and Relation Neurons We propose a simple typology that refines the type of
knowledge attributed while answering fill-in-the-blank cloze tasks. For example, correctly answering the
question What is the capital of France? not only requires knowledge of the answer Paris, but also an
understanding of the relationship between France and Paris. We thus introduce a simple principle: a neuron
that is hypothesized to encode a specific concept, such as one about Paris, should not be also responsible for
encoding other concepts, and should therefore not be associated to other facts such as The capital of Spain
is Madrid. If a neuron consistently encodes the same relation across multiple instances, we refer to it as a
relational neuron, indicating that it is sensitive to a relation, such as capital of.

We thus define Relation Neurons as KNs that appear in at least tr × N instances of facts associated with
a particular relation, where N is the total number of facts, and tr is a predefined relational threshold. In
contrast, neurons that appear in less than tc × N of the facts, for some other threshold tc, are referred to
as Concept Neurons, as they are more likely to encode specific pieces of knowledge or information about
individual entities.

The aim is to test the robustness of this distinction by investigating the role of the thresholds tr and tc.
A ‘clean’ scenario that supports the Knowledge Neuron hypothesis and the idea of monosemanticity would
show that some concept neurons are found even for tC × N = 1 (very specific to a concept), and relational
neurons are found when tR × N = N (completely systematically present for a relation). Alternatively, softer
boundaries would suggest that these KNs play a more polysemantic and nuanced role, whereby knowledge
is partially distributed across different neurons on different occasions (e.g., the concept of Paris and Madrid
cannot be disentangled at the neuron level, or the relation capital of is not always encoded in the same way).

Multilingual Knowledge Neurons Similarly, we ask whether knowledge is language-agnostic; for ex-
ample, humans do not need to relearn facts when acquiring a new language. Knowledge could be language-
dependent in LLMs however: if a fact is present from the English corpus but missing from a Spanish training
corpus, an LLM may be able to retrieve that knowledge when prompted in English but not when prompted
in Spanish. We employ the KNs framework to investigate the open question of whether a common language-
agnostic knowledge representation exists in multilingual models at the level of neurons.

We hypothesize that some KNs may be specific to one language, while others may be sensitive to prompts in
multiple languages. We thus analyze the number of languages across which such neurons are shared. We do so
by identifying KNs for relations in the ParaRel dataset across multiple languages, using the Multi-ParaRel
dataset, which was specifically created for this multilingual evaluation.

5 Monolingual Experiments: Tracking Concept and Relation Neurons

5.1 Experimental Settings

Models We studied BERT (Devlin et al., 2019), and more precisely bert-base-uncased and
bert-large-uncased, as it has been the reference model for evaluation on TREx since Petroni et al.
(2019). Having been trained on Wikipedia from which TREx is derived, their performance is very good
(P@1> 0.4). We also studied OPT (Zhang et al., 2022) in its 350 million-parameters version opt-350m and
6.7 billion-parameters version opt-6.7b, Llama 2 (Touvron et al., 2023) in its 7 billion-parameter version
Llama-2-7b-hf as well as Gemma 2 (Team et al., 2024) in its 9 billion parameters version gemma-2-9b. For
all these models we use the HuggingFace implementation. KNs computations were performed on NVIDIA
Tesla V100 GPUs for models with less than a billion parameters, and on NVIDIA Tesla A100 GPUs for
larger models. The computation took less than an hour per relation.

Template filtering Per model, we excluded prompts with less than 10% top-1 accuracy (that is, accuracy
of the most probable continuation). We then excluded relationships with less than 4 prompts left. Since all
actual answers were made of a single token, we also limit answers made of a single token. After this filtering,
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Llama-2-7b

(a)

(b)

Figure 2: Each panel corresponds to a relation (P108, P159, etc.). (a) Distribution of KNs based on
the number of instantiations (i.e. specific triplets, specific facts) within a relation for which a KN was
identified. A large number of neurons are identified as KN for a single instantiation, while a roughly similar
number of neurons are identified as KN for a continuously increasing number of instantiations within a
relation. (b) Average proportion of the KNs from a single instantiation which can be categorized as Concept,
Relation or neither, according to different thresholds (x-axis). The proportion of relational neurons is stable
across different thresholds, the proportion of concept neurons decreases with more demanding thresholds.

we obtained on average 15 prompts per relation for BERT and 8 prompts per relation for OPT (starting
from 18), confirming the higher accuracy of BERT at the task.

5.2 Tracking a Typology of Knowledge

Before classifying Knowledge Neurons (KNs) according to our typology, we first analyzed the distribution
of KNs based on the number of instantiations for which a KN was identified. Figure 2a illustrates the
results for four relations using the Llama-2-7b model (complete results are provided in Appendix B). A
qualitative analysis reveals two key findings: (i) many KNs appear in only one instantiation, indicating that
these neurons are task-specific and sensitive to a single concept; and (ii) there is a continuous range of KNs
sensitive to between 3 and N instantiations, suggesting a more nuanced role for these neurons that lies
between relational and conceptual.

The second observation challenges the simplistic interpretation of assigning neurons exclusively to concepts.
At the same time, it also demonstrates the presence of a significant number of neurons sensitive to enough
instantiations to hypothesize a more relational role in knowledge retrieval mechanisms.

Thus, we have identified potential candidates for the roles of both Concept Neurons and Relation Neu-
rons, as well as neurons that fall into an intermediate category. The natural question that arises is: what
is the proportion of each neuron type per instantiation, based on thresholds tr and tc? This information is
not directly inferable from Figure 2a, as neurons appearing consistently across instantiations are less visible
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Figure 3: Boosting experiments results for bert-base-uncased (left) and Llama-2-7b (right) for two couple
of thresholds tr = 0.6, tc = 0.4 (top) and tr = 0.8, tc = 0.2 (bottom). The lines corresponds to the ∆P@k
(resp. ∆CCP@k) for different k values ranging from 1 to 100. Thick lines represents the doubled activations
results and thin lines the nullified activations results. We also plotted the standrad error accross the evaluated
instantiations of the relations.

than neurons that appear uniquely in each instance.2 To address this, we computed the proportion of each
neuron type as a function of thresholds at the instantiation level (see Figure 2b). For simplicity, we used
symmetrical thresholds, setting tr = 1 − tc.

As expected, when the thresholds become more restrictive, the number of neurons with well-defined roles
decreases, giving way to neurons with less clearly defined functions across all relations. For the Llama-2-7b
model, we observe that the number of neurons classified as Relation Neurons remains more stable compared
to those classified as Concept Neurons. Furthermore, for a single instantiation, there are few KNs that
are exclusive to that instance: when tc < 0.1, the proportion of Concept Neurons is less than 0.2.

We also examined the distribution of neuron types across the model’s layers but found no significant variation.
As observed by Dai et al. (2022), KNs are primarily concentrated in the final layers.

In summary, we have demonstrated the existence of neurons reacting specifically to a single concept within a
relation. We have also identified neurons that play a much broader role in such relations, with some reacting
to almost all instances of that relation. We attempt to verify this hypothesis through causal experiments
in the next section. Finally, some neurons are activated by a subset of the instantiations, carrying a much
less transparent type of knowledge. In principle, it could encode subtypes of relations, such as ‘capital of
a European country’, although we find this highly stipulative at the moment. In the next section, we will
focus on concept and relation neurons and evaluate their role through causal experiments.

5.3 Boosting Experiments

In this experiment, we investigate the effect of either doubling or nullifying the activation of KNs on model
predictions. Dai et al. (2022) conducted similar experiments, focusing on how manual changes to neuron acti-
vations influenced output probabilities. In contrast, we employ two more concrete impact metrics: precision
at rank k, denoted P@k, which measures the proportion of correct responses in the top k model predictions,
and correct category proportion at rank k, denoted CCP@k, which reflects the proportion of responses in
the correct category (e.g., capitals) within the top k predictions. The original metric of relative probabilities

2For example, if each instantiation contains 10 KNs, including 2 perfect conceptual neurons and 8 perfect relational neurons
(present in only 1 instantiation and all instantiations, respectively), Figure 2a would display a bar of 200 at the 1 abscissa and
a bar of 8 at the 100 abscissa, which would obscure the predominant role of Relation Neurons.

7



Published in Transactions on Machine Learning Research (05/2025)

change would not show specificity (e.g. unrelated tokens could be even more boosted). For this reason, we
report P@k and CCP@k. Effects here ensure that the boost to the correct answer overcomes any boost for
other answers. We also include a control experiment in Appendix B to better investigate specificity.

Our goal is to verify whether the behavior of the identified KNs aligns with our proposed typology. Specifi-
cally, we hypothesize that (i) there will be a marked increase (or decrease) in precision at rank k=1 when the
activations of Concept Neurons are doubled (or nullified), with the effect diminishing as k increases. Sim-
ilarly, we anticipate (ii) that the effect of Relation Neurons on P@k will be weaker than that of Concept
Neurons, as precision is primarily sensitive to the correct response. In contrast, for the CCP@k metric, we
expect (iii) that Relation Neurons will play a more significant role, as these neurons should be more likely
to favor the correct category (e.g., capitals), even if it does not boost the correct answer specifically. We
assess these effects for a range of thresholds tc and tr. Results for the bert-base-uncased and Llama-2-7b
models are shown in Figure 3 (see Appendix B for additional models and thresholds as well).

The figures show the delta in P@k and CCP@k for the predictions with altered (doubling or nulifying) vs
unaltered activations. The horizontal line at zero thus represents the baseline model performance. Of the
six models evaluated, all six display the expected effect (i) consistently across all thresholds: in short, the
top response is more accurate when the activations of concept neurons are increased. However, only two
models, Llama-2 and the Gemma-2, exhibit effect (ii). Additionally, four models, belonging to the BERT
and OPT families, align with expectation (iii). Overall, bert-large-uncased and gemma-2-9b adhere to all
three expected behaviors across all cases. This happens under restrictive thresholds however (tr = 0.9 and
tc = 0.1), and the four other tested models fail to match all of these expectations.

These mixed results show that classifying KNs into distinct and disentangled roles is not perfect, potentially
due to noise in our methods or in knowledge attribution methods in the first place. Yet, our experiments do
indicate that, for certain models, KNs exhibit specific behaviors and manipulating them leads to predictable
effects.

5.4 Discussion

As anticipated, these experiments underscore the complexity of the internal mechanisms within LLMs,
making it impractical to map a single, well-defined function to individual neurons. Many of the identified
KNs do not adhere to a clearly defined role and cannot be neatly categorized as encoding either concepts
or relations, even within a highly controlled environment like ParaRel. This is consistent across all the
models studied. We believe that the polysemantic nature of neurons prevents such precise delineation,
which also helps explain the knowledge editing limitations highlighted in prior research. However, contrary
to our initial expectations, certain KNs do appear to serve rather specific functions, and this has been
experimentally confirmed for some models in boosting experiments. Nonetheless, we observed significant
variation in behavior for the different models, which tends to demonstrate that the observed effects are
sometimes fragile. Hence, while the idea that knowledge would be represented entirely in mono-semantic
single neurons is unrealistic, the historically associated methods of, e.g., Knowledge Neurons nonetheless
detect transparent signal about how knowledge is encoded. KNs are thus a useful tool to pursue the study
of knowledge representation in multilingual models too, which we do in the next section.

6 Multilingual Experiments

When we learn a new language, we do not learn all facts about the world again, just new ways to express
them. That is, there is a central knowledge base, that we can prompt with several languages. In this section
we inquire if knowledge is shared across languages in multilingual models too and, if so, what knowledge.

6.1 Experimental Settings

Models For this experiment we studied bert-base-multilingual-uncased (Devlin et al., 2019) and
Llama-2-7b. We used a NVIDIA Tesla V100 GPU for BERT and NVIDIA Tesla A100 GPU for Llama 2,
both for about one hour per relation and per language.
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(a) (b) (c)

Figure 4: (a) Number of KNs shared by language pairs for Llama-2-7b. About a quarter of neurons
are shared between two languages. (b) Same for bert-base-multilingual-uncased. (c) Proportion of
shared KNs in a relation as a function of the number of languages in the intersection for Llama-2-7b and
bert-base-multilingual-uncased.

Multi-ParaRel We built and release a new dataset Multi-ParaRel, a multilingual version of ParaRel.
More details are given in Appendix A. Multi-ParaRel currently includes 10 languages: English, French,
Spanish, Catalan, Danish, German, Italian, Dutch, Portuguese and Swedish. We also offer a translation and
curation pipeline which makes it possible to add more paraphrases and more languages. It has an average of
17 prompts per relation and per language but this value varies (from 9 for German to 19 for English). Each
prompt is compatible with autoregressive models. After filtering for quality as above, we obtain on average
10 prompts per relation and language.

6.2 Knowledge Neurons are Shared Across Languages

Are KNs Bilingual? KNs were calculated separately for each relation and language. A KN is considered
shared between two languages if it appears as a KN in both languages for the same relation. We conducted
this pairwise analysis across all languages, thereby extending the findings of Chen et al. (2024) to encompass
10 languages.

The results are presented in Figures 4a and 4b. For the Llama-2-7b model, over a quarter of the neu-
rons are shared between any two languages, with this proportion increasing to approximately one-third for
bert-base-multilingual-uncased. This represents a significant degree of neuron sharing, especially when
considering that bert-base-uncased, for example, has more than 12 × 3, 072 = 36, 864 neurons in the inter-
mediate layers of its FFNs. To quantify this, note that among these 36, 864 neurons, only 1, 929 are identified
as KNs across all relations for English, and 2, 195 for French (roughly 5%). If KNs were randomly selected for
each language, we would expect around 100 shared neurons between them (5% overlap); however, in reality,
710 neurons are shared. A similar analysis for Llama-2-7b gives even more extreme results: by chance,
there should be 2 shared neurons, while in practice 189 are found. Moreover, these numbers represent a
lower bound, as some relations were excluded from the prompt filtering process for certain language pairs,
effectively reducing the shared KN count for those relations to zero. Thus, the data indicates significant
overlap of KNs across languages, suggesting a partially shared mechanism for knowledge retrieval across
different language pairs.

Are KNs Multilingual? Next, we examine how the number of shared KNs scales with the number of
languages in the intersection. Figure 4c shows these results for all relations, along with the average behavior.
Across all relations, we observe a consistent pattern: the number of shared neurons decays as a function of
the form (number of languages)−α, with a fitted α = 2.04 for Llama-2-7b. In comparison, if neurons were
shared at random, the expected behavior would follow ∝ pnumber of languages, where p is the probability of
a neuron being a KN (e.g. p = 0.05 for BERT). This demonstrates that KNs are more multilingual than
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Figure 5: Influence of typology on the average overlap coefficient calculated per language pair of Llama-2-7b
(left) and bert-base-multilingual-uncased (right).

chance, reinforcing the notion of a language-agnostic knowledge retrieval mechanism. Similar to the findings
in Section 5, we observe some but few neurons activated for all languages.

Are some neurons more Multilingual? Concept Neurons and Relation Neurons were computed
separately for each language and each model. Figure 5 displays the average pairwise overlap coefficient for
each neuron type, across various tr and tc thresholds, alongside with the pairwise overlap coefficient for
all KNs. The results reveal a significant difference in overlap between Concept Neurons and Relation
Neurons at all threshold levels. However, the direction of this difference varies depending on the model
and on the threshold. At the most demanding thresholds (those to the right selecting the purest types),
we observe that relational neurons appear to be more bilingual. Given the variability at other thresholds
(in particular for Llama, which is less performant than BERT in this task), we remain cautious about this
conclusion.

6.3 Multilingual Boosting Experiments

While knowledge neurons may be shared across languages, this does not guarantee that they serve the same
role in the two languages. A neuron active in both English and French for a given task may perform different
overall tasks depending on the language, that is, parallel activation does not equate to shared functionality.

In this section, we conduct a boosting experiment—similar to the one in Section 3—to assess whether neurons
shared across languages have a similar causal effect on the model’s output. Specifically, for a given language
pair, we identify the shared neurons and then either nullify or double their activations when the model
is prompted in each language. The goal is to determine whether these neurons are more sensitive to one
language more than the other.

Figure 6 presents the results for English and French. As expected, doubling the activation leads to higher
P@k and CCP@k scores, while nullifying it results in a decrease. Importantly, the magnitude of these effects
is similar across both languages. When activations are nullified, neither language shows a clear advantage.
Doubling the activations gives English a slight edge, particularly for lower values of k, but the difference
is minor relative to the overall effect. These findings suggest that the shared neurons exert a comparable
causal influence in both languages, indicating a similar functional role.

6.4 Knowledge Neurons are Shared Between Natural and Unnatural Languages

We have extended the analysis to non-natural languages, in order to deepen the work of Kervadec et al.
(2023) in the specific framework of KNs. More specifically, we calculated 10 seeds of Autoprompt (Shin
et al., 2020) for each model and each relation of ParaRel and the associated KNs. We then calculated the
overlap coefficient between the KNs calculated in this way and those calculated for English at the relationship
level. The results are presented in Table 1. This reveals a very large overlap for all models, going up to an
almost complete overlap (≥ 80%) for models other than BERT. In the same way that there were important
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Figure 6: Multilingual Boosting experiments results for bert-base-multilingual-uncased for English and
French.The lines corresponds to the ∆P@k (resp. ∆CCP@k) for different k values ranging from 1 to 100.
Thick lines represents the doubled activations results and thin lines the nullified activations results. We
also plotted the standrad error accross the evaluated instantiations of the relations. Here only shared KNs’
activations are modified.

overlaps across natural languages, this new result suggests a similar mechanism of knowledge retrieval even
between natural and non-natural languages. It is possible however that there exists a confound here because
both Autoprompt and KNs are gradient based.

Model bert-base bert-large opt-350m opt-6.7b Llama-2-7b

Avg. Overlap Coeff. 40% 32% 83% 87% 79%

Table 1: Average overlap coefficient of KNs sets computed at the relation level between English and Auto-
prompt.

7 Discussion and Limitations

Relying on KNs represents a limitation of our work. Their identification relies on an attribution method
based on gradient computations, as opposed to alternative approaches such as causal tracing. However, we
do not identify any obvious bias introduced by such a choice and we argue that our primary contribution
lies in the methodology itself. Importantly, the core of our analysis is agnostic to the specific technique used
to identify neurons, and could be applied to other attribution methods just as well. We plan such analysis
in future works.

Another possible limitation would be the use of threshold to identify Concept Neurons and Relation
Neurons. We argue that this is not the case. First, thresholds are applied after the identification of KNs,
not as part of their initial computation. Second, since the functional roles of individual neurons are unknown
a priori, we systematically explored a range of thresholds (see Figure 2a, 2b, 5, 12, 13 & 14). This exhaustive
approach is an integral part of the method, allowing us to analyze KN behavior across different sensitivity
levels. Importantly, we observed no significant variation in results across thresholds, which retroactively
supports the validity of the method.

Another limitation of our methodology is that the identification of neurons shared across languages for the
same relations and concepts does not guarantee that these neurons serve the same functional role. We explore
this issue in Section 6.3, where we present evidence suggesting that some shared neurons may indeed fulfill
similar functions. However, further investigation is required to systematically examine different intersections,
whether at the level of relations, concepts, responses, or prompt formats, in order to more precisely determine
these roles. Our approach provides a useful framework for refining such analyses and uncovering functionally
shared neurons across languages.
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Finally, the neurons identified in this study were discovered within a highly controlled setting, specifically
using the TREx dataset. As such, the identification of KNs, as well as the proposed categories of Concept
Neurons and Relation Neurons, may not directly translate to real-world scenarios in their current form.
We plan to explore ways of adapting this methodology to more naturalistic contexts in future work.

8 Conclusion

We introduced a typology for knowledge and applied it to the knowledge attribution method proposed by
Dai et al. (2022) to better classify and understand the behavior of Knowledge Neurons (KNs). Notably,
our method remains agnostic to the specific knowledge attribution technique used. Coherently with the
initial assumptions in the original work, we found that some of these neurons encode specific concepts, but
we also found many which do not and instead seem to exhibit a distributed role, where multiple neurons
share responsibility for encoding concepts within the same relation, or maybe encode the whole relation.
We hypothesize that this polysemantic nature of neurons contributes to the mixed success observed when
using KNs for knowledge editing tasks. Yet again, we were able to identify a subset of more specialized
neurons, which we categorized as either conceptual (sensitive to a single concept) or relational (sensitive
to relationships between concepts). And in some contexts their manual manipulations show the expected
effects on downstream tasks. We extended our analysis to multilingual models and found that a significant
number of KNs are shared across languages—both in pairwise comparisons and across all 10 languages tested.
This indicates the presence of a shared, language-agnostic knowledge base within multilingual models. To
facilitate this research, we created a multilingual dataset of facts and prompts, enriched with paraphrases in
10 languages. Our findings suggest that even a simple method like Knowledge Neurons can provide valuable
insights into the benefits of multilingual training.

Looking ahead, we aim to further explore how this shared knowledge can be leveraged to improve the
integration of new languages into existing multilingual models. Our results indicate that it may not be
necessary to relearn factual knowledge for each language, which could pave the way for more efficient training
strategies, particularly for low-resource languages. Instead of focusing on exhaustive coverage of world
knowledge, future efforts could prioritize data that highlights the unique syntactic and linguistic features of
these languages, thus optimizing resource use and improving model performance. Another possible research
direction involves examining how the mechanisms of factual knowledge develop throughout training, which
could shed light on the most advantageous stages to introduce or integrate external knowledge.
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A New dataset: Multi-ParaRel

Creation Procedure To build the Multi-ParaRel dataset, we used our augmented autoregressive version
of ParaRel and mLAMA. The goal is to translate a template such as The capital of [X] is [Y]. The problem
is that translators are confused by the presence of placeholders [X] and [Y], often resulting in translation
errors. To overcome the difficulty, we instantiated [X] and [Y], translated the whole sentence with these
specific instances, and replaced the instantiations back with placeholders. To do so, we used mLAMA, which
contains triplets for over 53 languages.

For example, consider the translation from English into French of the template:

The capital of [X] is [Y]

We use the English triplet <Great Britain, capital of, London> to obtain the sentence:

The capital of Great Britain is London

This sentence is then translated into French:

La capitale de la Grande Bretagne est Londres
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Figure 7: In mLAMA, the number of triplets available varies widely across the different languages.

Then using the French version of the original triplet (<la Grande Bretagne, capital of, Londres>), we can find
and replace the entity elements of the triplet with placeholders [X] and [Y], resulting in the new template:

La capitale de [X] est [Y]

With this overall idea, we can now provide more detail. First of all, such a protocol requires associated
triplets in mLAMA from one language to another. However, mLAMA has many more triplets in English
than in other languages (see Figure 7), and some triplets are language-specific and therefore cannot be
associated with triplets in other languages. We therefore looked into a common English-Target language
subset. Then, to avoid translation errors, problems linked to gendered determinants and redundancy (two
different templates in English but translated identically in the target language), we used a voting system.
Each template was translated 30 times, using 30 triplets. Each translation is assigned a score, which is the
number of times the template has been obtained out of the 30 triplets. The template with the highest score
is then retained, provided that (i) it is autoregressive, (ii) it has not already been selected and (iii) it is in
the top 5 translations.

As a translation model, we used Meta’s SeamlessM4T and, more specifically, the Huggingface implementa-
tion3. We used an NVIDIA Tesla V100 GPU for inference.

Statistics and Exemples Table 3 provides examples of translated templates from different languages and
relations. The average number of templates obtained per relationship for each language is:

Quality Analysis To judge the quality of our dataset, we asked a native speaker of French and a native
speaker of Spanish to rate the resulting templates in three categories: fluent, weird, ungrammatical. For
French 88% are correct, 7% weird and 5% are ungrammatical. For Spanish: 78% of sentences are fluent,
10% weird and 12% are ungrammatical. Although imperfect, Multi-ParaRel coupled with a less efficient
filtering of prompts gives very good results on mLAMA.

B Full Results

First we provide an overview of all the models behavior with respect to our expectations in Table 4. We
also add a control experiment for the BERT family where we conducted the same boosting experiments
but sampling KNs randomly within the relation for the Concept Neurons and across relations for Relation
Neurons. The goal of such a control is to test the specificity of identified KNs. Results are in Table 5. We
see that the effects are destroyed when looking at randomly selected KNs.

3https://huggingface.co/facebook/seamless-m4t-large
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Language Avg templates
Catalan 19
Danish 15
Dutch 17
English 19
French 14
German 9
Italian 19
Portuguese 19
Spanish 19
Swedish 16

Table 2: Language Values

Relation English Spanish French

P36 The capital of [X] is [Y] La capital de [X] es [Y] La capitale de [X] est [Y]

[X], which has the capital [Y] [X], que tiene la capital [Y] [X], dont la capitale est [Y]

P106 The occupation of [X] is [Y] La ocupación de [X] es [Y] La profession de [X] est [Y]

[X] works as [Y] [X] trabaja como [Y] [X] travaille comme [Y]

P1001 [X] counts as a legal term in [Y] [X] cuenta como término legal en [Y]. [X] est un terme légal en [Y]

[X] is a valid legal term in [Y] [X] es un término legal válido en [Y]. [X] est un terme juridique valide en [Y]

Table 3: Examples of templates from Multi-ParaRel

Model Expectation (i) Expectation (ii) Expectation (iii)

bert-base-uncased Yes No Yes
bert-large-uncased Yes Yes Yes
opt-350m Yes No Yes
opt-6.7b Yes No Yes
Llama-2-7b Yes Yes No
gemma-2-9b Yes Yes No

Table 4: Overview of boosting results for all models. Expectations are: (i) there will be a marked increase
(or decrease) in precision at rank k=1 when the activations of Concept Neurons are doubled (or nullified),
with the effect diminishing as k increases, (ii) the effect of Relation Neurons on P@k will be weaker
than that of Concept Neurons, as precision is primarily sensitive to the correct response, (iii) Relation
Neurons will play a more significant role, as these neurons should be more likely to favor the correct category
(e.g., capitals), even if it does not boost the correct answer specifically.

Model Expectation (i) Expectation (ii) Expectation (iii)

bert-base-uncased No No Yes but effect 10× smaller
bert-large-uncased No No No

Table 5: Overview of boosting results for the control experiment.

Second, we provide all graphs computed for all models and relations concerning the distinction between
concept and relation neurons. This corresponds to the results as presented in Section 5.2, Figure 2, also
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showing all relations each time. Second, we provide all graphs corresponding to the boosting experiments
(Section 5.3, Figure 3).
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(a)

(b)

Figure 8: bert-base-uncased
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(a)

(b)

Figure 9: opt-6.7b
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(a)

(b)

Figure 10: Llama-2-7b
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(a)

(b)

Figure 11: gemma-2-9b

28



Published in Transactions on Machine Learning Research (05/2025)

Figure 12: bert-large-uncased
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Figure 13: opt-6.7b

30



Published in Transactions on Machine Learning Research (05/2025)

Figure 14: gemma-2-9b
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