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ABSTRACT

Diffusion-based text-to-image (T2I) models have advanced high-fidelity content
generation, but their inability to maintain subject consistency—preserving a tar-
get’s identity and visual attributes across diverse scenes—hampers real-world ap-
plications. Existing solutions face critical limitations: training-based methods rely
on heavy computation and large datasets; training-free approaches, while avoid-
ing retraining, demand excessive memory or complex auxiliary modules. In this
paper, we first reveal a key property overlooked in prior works that the identity-
relevant signals, termed Identity-Preserving Embeddings (IPemb), are implicitly
encoded in textual embeddings of frame prompts. To address the consistent T2I
generation with the IPemb embedding, we propose Boost Identity-Preserving Em-
bedding (BIPE), a training-free yet plug-and-play framework that explicitly ex-
tracts and enhances the IPemb. Its core innovations are two complementary tech-
niques: Adaptive Singular-Value Rescaling (adaSVR) and Union Key (UniK).
adaSVR applies singular-value decomposition to the joint embedding matrix of
all frame prompts, amplifying identity-centric components (dominant matrix fea-
tures) while suppressing frame-specific noise; crucially, it is integrated into every
text encoder transformer layer to prevent IPemb dilution during non-linear fea-
ture transformations. UniK further reinforces consistency by concatenating cross-
attention keys from all frame prompts (not just the current one), aligning the T2I
backbone’s image-text attention across the entire generation sequence. Experi-
ments on the ConsiStory+ benchmark demonstrate BIPE outperforms state-of-
the-art methods in both qualitative and quantitative metrics. To address the gap
in evaluating a broader range of scenarios with diversified prompt templates, we
introduce DiverStory, which confirm the scalability of BIPE.

1 INTRODUCTION

In recent years, diffusion models (Song et al., 2020; Ho & Salimans, 2022) have driven remarkable
advancements in the fidelity and diversity of text-conditioned generated content, spanning both static
images (Ramesh et al., 2022; Saharia et al., 2022; Rombach et al., 2022) and dynamic videos (Kong
et al., 2024; Blattmann et al., 2023; Wan et al., 2025). These large diffusion-based generative models
demonstrate the capacity to render a broad spectrum of subjects within varied scene contexts under-
pinned by textual prompts. For text-to-image (T2I) diffusion models, the ability to preserve subject
consistency—i.e., maintaining a target subject’s core identity and visual attributes across diverse
scene settings is a critical prerequisite for real-world applications. That includes animation synthe-
sis (Hu, 2024; Guo et al., 2024), visual storytelling (Yang et al., 2024; Gong et al., 2023; Cheng
et al., 2024), and text-to-video generation (Khachatryan et al., 2023; Blattmann et al., 2023), where
narrative coherence relies on unbroken subject continuity. Despite these broader advancements in
T2I generation, sustaining consistent subject identity and appearance across varying prompts and
scene manipulations remains an unresolved challenge for existing diffusion-based frameworks.

A dominant paradigm of recent consistent T2I generation works relies on data- and computation-
intensive training: this includes methods that train on large datasets to cluster subject identities
(Avrahami et al., 2023) or learn large-scale mapping encoders to anchor subject features (Gal et al.,
2023b; Ruiz et al., 2024). A critical drawback of such training-based strategies is their suscepti-
bility to language drift (Heng & Soh, 2024; Wu et al., 2024; Huang et al., 2024), alongside their
high resource overhead. To mitigate training costs, several training-free methods have achieved
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promising subject consistency by exploiting shared internal activations within pre-trained T2I dif-
fusion models (Tewel et al., 2024a; Zhou et al., 2024). While avoiding explicit retraining, they
often demand extensive memory to store and manipulate intermediate activations, or rely on com-
plex auxiliary modules to enforce consistency—limiting their scalability to real-world scenarios. A
more recent contribution, 1Prompt1Story (Liu et al., 2025), addresses subject identity consistency
by capitalizing on the context consistency inherent to language models. Specifically, their approach
concatenates textual descriptions for all target frames into a single cohesive paragraph. During the
generation of each individual frame, it dynamically adjusts the influence of descriptions from other
frames—strengthening or weakening their impact based on the current frame’s specific require-
ments. This method implicitly preserves subject identity consistency: it ensures shared access to the
core subject’s identity information across the entire sequence of generated frames. Our key obser-
vation is that, in text-to-image generation, cross-frame stable subject identity information is already
implicitly encoded in the aggregated textual embeddings of the full frame-prompt sequence; how-
ever, existing methods do not explicitly model or reinforce this stable component. Instead of forcing
all textual descriptions into a single context, we can directly search in the sequence-level embedding
space for directions that are consistently present across frames and tightly related to subject iden-
tity. We refer to this previously overlooked, subject-centric stable signal as the identity-preserving
embedding (IPemb), and treat it as an explicit intermediate representation for cross-frame consistent
subject modeling.

In this work, we propose Boost Identity-Preserving Embedding (BIPE), which explicitly extracts
and enhances IPemb from sequence-level text embeddings to strengthen subject consistency in nar-
ratives without modifying the underlying generative backbone. The core technique of BIPE is adap-
tive singular-value rescaling (adaSVR). We first apply singular value decomposition (SVD) to the
joint embedding matrix formed by all frame-wise text embeddings, decomposing the sequence-level
representation into a set of orthogonal “semantic directions.” We then adaptively rescale the singu-
lar values to amplify directions that remain stable across frames and correspond to subject identity,
while suppressing perturbation components that mainly capture frame-specific details. The recon-
structed embeddings are used as new conditioning inputs for image generation, providing an explic-
itly enhanced and consistent identity basis for the same subject across the entire frame sequence.
Notably, pre-trained text encoders rely on extensive non-linear operations that can distort or dilute
identity representations during embedding extraction. To mitigate this, we integrate adaSVR oper-
ator into each transformer layer of the text encoder. This per-layer operation ensures that identity
consistency is preserved throughout the entire textual embedding process, rather than only at the final
output—preventing the gradual loss of IPemb during feature transformation. To further capitalize on
the IPemb-augmented textual embeddings, we introduce a Union Key (UniK) technique, designed
to enhance cross-frame consistency in the T2I model backbone. UniK leverages the cross-attention
keys derived from the textual embeddings of all frame prompts (not just the current frame). By
concatenating these frame-specific keys into an union key, we align the image-text cross-attention
mechanism across the entire sequence of generated frames. This cross-frame attention alignment
reinforces the propagation of identity signals across frames, thereby further enhancing the model’s
subject identity preservation performance.

In the experiments, we compare our method BIPE on an existing consistent T2I generation bench-
mark as ConsiStory+ and compare it with several state-of-the-art methods (Zhou et al., 2024; Tewel
et al., 2024a; Liu et al., 2025). Both qualitative and quantitative performance demonstrate the effec-
tiveness of our method BIPE. And since the core mechanism of our method relies on manipulating
textual embeddings, it avoids the scalability limitations that plague prior approaches. More specif-
ically, BIPE exhibits two key practical advantages that address critical limitations of prior work:
inherent compatibility with long-story generation and robust performance across diverse prompt
templates based storytelling. To systematically validate these advantages and address the lack of
dedicated benchmarks in existing literature, we introduce DiverStory, the new benchmarks tailored
to evaluate consistency over extended or diverse template based prompt sequences with narrative
continuity. Experiments on these two benchmarks further corroborate the superiority of BIPE in
extreme storytelling cases. In summary, the main contributions of this paper are:

• To the best of our knowledge, we are the first to identify the existence of Identity-Preserving
Embedding (IPemb) and explicitly extract such IPemb embedding in our method BIPE to maintain
subject consistency in the consistent T2I generation. The extraction and application of IPemb is
totally training-free and plug-and-play, thus is independent of the architecture design.
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• To facilitate the extraction of the IPemb embedding, we further propose the adaSVR technique,
which adaptively augment the subject identity information as it is the dominant components across
the frame prompt embeddings. To further capitalize on the augmented IPemb textual embeddings,
we introduce a Union Key (UniK) technique, designed to enhance cross-frame consistency in the
T2I model backbone.

• Through extensive comparisons with existing consistent T2I generation approaches, we confirm
the effectiveness of BIPE in generating images that consistently maintain identity throughout the
existing ConsiStory+ benchmark.

• To address the limitation of overly templated prompt data in existing evaluation frameworks, we
propose the DiverStory benchmark, which uses more diverse, natural language-based prompts.
This benchmark offers a more comprehensive and realistic testing framework, highlighting com-
mon challenges and shortcomings in current methods.

2 RELATED WORK

T2I personalized generation. T2I personalization (Gal et al., 2023a; Voynov et al., 2023; Zeng
et al., 2024) aims to adapt a given model to generate images for a new concept by providing one or
a few images. As a result, the adaptation model can generate various renditions of the new concept.
One of the most representative methods is DreamBooth (Ruiz et al., 2023), where the pre-trained T2I
model learns to bind a modified unique identifier to a specific subject given a few images. Following
approaches (Kumari et al., 2023; Han et al., 2023) adhere to this pipeline and further improve the
quality of the generation. A key limitation of such methods is the cumbersome fine-tuning required
for each new subject. Recent advances in subject-driven image generation have shifted focus toward
training identity encoders on large-scale datasets. Methods like IP-Adapter (Ye et al., 2023) and
BLIP-Diffusion (Li et al., 2024a) employ an additional image encoder and novel layers to encode
a subject’s reference image, injecting this information into the diffusion model to enable subject-
driven generation without further fine-tuning for new concepts. For DiT-based models (Peebles &
Xie, 2023), Ominicontrol (Tan et al., 2024) has explored the inherent image reference capability
within transformers, demonstrating that the DiT itself can function as an image encoder for subject
reference. This research direction has been further advanced by subsequent works such as UNO (Wu
et al., 2025), InfiniteYou (Jiang et al., 2025), and XVerse (Chen et al., 2025), with these capabilities
and techniques now integrated into popular unified models (Deng et al., 2025; Ma et al., 2025).

Consistent T2I generation. Nowadays, there has been a research shift towards developing con-
sistent T2I generation approaches (Wang et al., 2024a; 2025; 2024b), which can be considered a
specialized form of T2I personalization. These methods mainly focus on generating human faces
that possess semantically similar attributes to the input images. They mainly take advantage of PEFT
techniques (Ryu, 2023; Kopiczko et al., 2024) or pre-training with large datasets (Ruiz et al., 2024;
Xiao et al., 2023) to learn the image encoder to be customized in the semantic space. For example,
PhotoMaker (Li et al., 2024c) enhances its ability to extract identity embeddings by fine-tuning part
of the transformer layers in the image encoder and merging the class and image embeddings. How-
ever, most consistent T2I generation methods (Akdemir & Yanardag, 2024; Wang et al., 2024a) still
require training the parameters of the T2I models, sacrificing compatibility with existing pre-trained
community models, or fail to ensure high face fidelity. Additionally, as most of these systems (Li
et al., 2024c; Ruiz et al., 2024) are designed specifically for human faces, they encounter limitations
when applied to non-human subjects. Even for the state-of-the-art approaches, including StoryDif-
fusion (Zhou et al., 2024) and ConsiStory (Tewel et al., 2024a), they either require time-consuming
iterative clustering or high memory demand in generation to achieve identity consistency. The most
related prior work is 1Prompt1Story (Liu et al., 2025), which was the first to explore context con-
sistency in language models. Its core approach concatenates all frame-specific prompts into a single
sequence, leveraging this aggregated context to maintain subject identity consistency. Nonetheless,
it overlooks a critical detail: identity-relevant embeddings are already inherently encoded within the
textual embeddings of the prompt sequence itself. Additionally, the prompt concatenation mecha-
nism faces practical limitations while being extended to long-story generation scenarios.

Storytelling. Story generation (Li et al., 2019; Maharana et al., 2021; Souček et al., 2025) is one of
the active research directions that is highly related to character consistency. Recent researches (Tao
et al., 2024; Wang et al., 2023; Zhang et al., 2025) have integrated the prominent pre-trained T2I dif-
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fusion models (Rombach et al., 2022) and the majority of these approaches require intense training
over story datasets. For example, Make-a-Story (Rahman et al., 2023) introduces a visual memory
module designed to capture and leverage contextual information throughout the story generation.

In this paper, our proposed BIPE diverges significantly from previous storytelling and consistent T2I
generation methods. We explore the inherent IPemb embedding in the text encoder instead of fine-
tuning large models or designing complex modules. Importantly, it is compatible with various T2I
generative models, since the properties of the text model are independent of the backbone designs.

3 METHODOLOGY

Consistent text-to-image (T2I) generation seeks to produce a sequence of images that depict the
same subject across diverse scenes, typically using prompts that keep the subject and style descrip-
tors similar while varying the scene descriptor (Zhou et al., 2024; Tewel et al., 2024b). Despite
similar subject descriptors, base models often exhibit identity drift: different scene contexts sys-
tematically shift the embeddings of the subject token and the padding token [EoT] during text
encoding—embeddings that together govern how the subject is realized in the image (Chen et al.,
2023a; Li et al., 2024b). In subsection 3.1, we analyze this phenomenon and show that, despite these
shifts, frame-wise text embeddings implicitly share an identity-preserving component (IPemb) that
captures the subject’s stable appearance. Building on this observation, we aim to explicitly recover
and enhance this shared component at inference time, so that all frames condition on a reinforced
and consistent identity signal rather than relying solely on per-frame context. To this end, we pro-
pose the Boost Identity-Preserving Embedding framework (BIPE), which operates directly in the
text-embedding space and consists of two complementary techniques. First, adaptive singular-value
rescaling (adaSVR, subsection 3.2) enhances the IPemb component within subject-related embed-
dings at every Transformer layer, reinforcing the shared identity representation while suppressing
frame-specific fluctuations. Second, Union Key (UniK, subsection 3.3) concatenates the key vectors
of selected tokens across prompts during cross-attention, which keeps the model’s attention an-
chored to the same subject while preventing direct information leakage between prompts. Because
BIPE modifies only text embeddings, the framework remains architecture-agnostic and requires nei-
ther extra data nor training. BIPE acts as a lightweight plug-and-play module that introduces only
modest computational cost and negligible memory overhead.

3.1 PRELIMINARIES

Diffusion Models. We employ SDXL (Podell et al., 2023) as the default instantiation of BIPE. Its
core component is a conditional U-Net ϵθ (parameters θ) for denoising. The training objective is:

LLDM = Ex∼pdata, ϵ∼N (0,I), t∼U1,...,T
[
; ∥ϵ− ϵθ(zt, t,C)∥22

]
, (1)

where z = E(x) is the latent produced by the VAE encoder E(·), t is the timestep, and C denotes the
text embeddings. SDXL uses CLIP as the text encoder τξ and computes C = τξ(P) ∈ RN×M×D

from a batch of prompts P = (P1, . . . ,PN ), where N , M , and D are the batch size, number of
tokens, and embedding dimension, respectively. For a given input, the denoiser ϵθ fuses image-
latent features with text features via cross-attention. Let fzt be the feature of zt at a cross-attention
block in ϵθ, and define queries by a projection ,Q = ℓQ(fzt). Keys and values are obtained from
the text embeddings via projections K = ℓK(C) and V = ℓV (C). Cross-attention is computed as:

A = softmax
(
QK⊤/

√
d
)
,

O = AV,
(2)

where d is the key/query dimension, A is the cross-attention map, and O is the block output.

Problem Setup. Consistent T2I methods compute text embeddings from a prompt set to guide
subject-consistent image generation. Given P = (P1, . . . ,PN ), we form C = [C1, . . . , CN ] with
Ci = τξ(Pi) for i ∈ 1, . . . , N . Prior work often assumes that prompts follow a single template—an
identical identity prefix plus a frame-specific scene description (e.g., [“A cat”, “in the tree”, . . . , “is
sleeping”]). We refer to such prompts as Consistent Prompts. In contrast, we consider a broader set-
ting in which prompts share only the same subject description while otherwise varying in sentence
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diag ǁ𝑠

Figure 1: Overall pipeline of our method BIPE. (Top) the adaSVR operator; (Bottom-Left) adaSVR
is applied at every self-attention layer of the text encoder, separately enhancing subject tokens and
[EoT] tokens; (Bottom-Right) during cross-attention, UniK shares keys for specific tokens across
frames while using values from the same frame. The white boxes denote the background scene
tokens are not used for the current frame generation.
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Figure 2: (Left) The leading right singular vector v0 concentrates attention on the subject region
across timesteps; (Right) By statistics on the ConsiStory+, we observe that the average masked
attentions of v0 still mainly focus on the subject region.

structure (e.g., [“A cat in the tree”, . . . , “Here is a cat sleeping”]); we term these Diverse Prompts.
Based on the characteristics of the task, we regard the i-th prompt’s embedding sequence as three
token types, Ci = [Csbj

i , CBG
i , CEoT

i ], where Csbj
i contains subject-descriptive tokens, CBG

i con-
tains scene-descriptive tokens, and CEoT

i contains padding-related tokens, including the start-of-text
[SoT], end-of-text [EoT], and other padding tokens. Accordingly, we collect all subject-related
tokens as Csbj = [Csbj

1 , Csbj
2 , . . . , Csbj

N ], i ∈ {1 . . . N} and analogously define CBG and CEoT .

Identity-Preserving Embedding (IPemb). In consistent T2I image generation, frames with similar
subject descriptions often yield different subject identities. This largely stems from the text en-
coder’s self-attention conditioning tokens on scene context, which induces frame-dependent shifts
in the resulting text-conditioning embeddings. Meanwhile, the common subject descriptions have
been encoded in the text embeddings across frames. We therefore hypothesize that per-frame text
embeddings contain a shared subject-identity component that can induce consistent subject depic-
tion. To validate this hypothesis, we extract the first [EoT] token embedding from each frame
prompt—denoted CEoT

i [1]—and stack them row-wise to form X̄ ∈ RN×D. We then apply singu-
lar value decomposition1, X̄ = Ūdiag(s̄)V̄ ⊤, where s̄ = (s0, . . . , sk−1)

⊤, k = rank(X̄), and
V̄ = [v0, . . . ,vk−1] collects the right singular vectors.

1Previous methods regard self-attention as a data-dependent linear operator on the value vectors V (Bho-
janapalli et al., 2020; Wang et al., 2020; Geng et al., 2021; Chen et al., 2023b).
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The right singular vectors associated with larger singular values (in particular, the leading vector v0

linked to s0) capture shared linear patterns across frame embeddings; We use v0 as a probe token
and record its cross-attention maps with the image queries Q during denoising in the U-Net ϵθ. As
shown in Figure 2, the leading right singular vector v0 consistently concentrates attention on the
main subject across frames, indicating that directions associated with large singular values encode a
cross-frame identity-preserving embedding (IPemb).

3.2 ADAPTIVE SINGULAR-VALUE RESCALING

Inspired by our IPemb observation above, we need to strengthen the shared linear patterns across em-
beddings from different prompts. To achieve consistent T2I generation with such objective, we start
by defining the Adaptive Singular-Value Rescaling (adaSVR) operator (see Figure 1a). The operator
takes as input a matrix X ∈ Rn×D that collects a subset of text embeddings from the output of a
self-attention block at some layer in the text encoder, and returns their spectrally enhanced counter-
part. To start this operator, we first compute the SVD of X = Udiag(s)V ⊤. In this decomposition,
larger singular values correspond to singular vectors that capture the shared linear patterns in X ,
which should be emphasized. We apply an adaptive weighting to amplify such singular values:

w = exp

(
τ
s− µ(s)

σ(s)

)
,

ŝ = w ⊙ s

(3)

where µ(·) and σ(·) denote the mean and standard deviation of a vector, respectively; τ is a temper-
ature parameter that controls sensitivity to singular-value differences; and ⊙ denotes the Hadamard
(elementwise) product. This z-score–based weighting increases each singular value in proportion
to its standardized magnitude while mitigating variance-induced over-amplification. Exponential
weighting can over-amplify components of ŝ, substantially increasing the reconstruction energy of
X . To maintain scale stability, we apply energy-matching normalization as s̃ = ŝ · ∥s∥2

∥ŝ∥2
. Finally,

we reconstruct using the enhanced singular values, X̃ = Udiag(s̃)V ⊤, which serves as the output
of the adaSVR operator.

Figure 3: Using the same prompts,
we encode them with SDXL and
with our BIPE, then visualize
the resulting text embeddings via
PCA. The enhanced embeddings
exhibit a markedly tighter distribu-
tion in embedding space than the
original SDXL embeddings.

Applying adaSVR to the text encoder’s final output only is
insufficient due to extensive nonlinear operations within each
of the encoder layers. We therefore integrate adaSVR into ev-
ery self-attention layer and the encoder’s output layer (see Fig-
ure 1b). For each such layer, we construct as:

XEoT =

[
Csbj

CEoT

]
, Xsbj = Csbj , (4)

and then we apply the adaSVR operator to obtain X̃EoT =
adaSVR(XEoT ), X̃sbj = adaSVR(Xsbj). We then recover
C̃EoT from the padding rows of X̃EoT and set C̃sbj = X̃sbj ,
yielding the enhanced sequence C̃ = [C̃sbj , CBG, C̃EoT ]. At
the output layer only, we omit the normalization step within
adaSVR to further boost the subject signal while avoiding in-
stability during intermediate propagation.

We apply PCA visualization to the text embeddings in Figure 3
and observe that, relative to the original embeddings, the en-
hanced embeddings significantly exhibit a more compact dis-
tribution in embedding space. This approach naturally extends
to multi-subject generation: for each subject’s description, we
construct a separate subject-embedding matrix X̃sbj and enhance it independently, thereby preserv-
ing subject specificity while avoiding cross-subject and cross-attribute interference.

3.3 UNION KEY FOR CROSS-ATTENTION

To further enhance subject consistency, we introduce an attention-map-based consistency constraint,
Union Key (UniK). The core idea is intuitive: token embeddings that are semantically equivalent
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across prompts should induce the same attention distribution on the same image. For example,
consider the subject embeddings Csbj

i and Csbj
j from prompts i and j. If they denote the same

subject, then during generation of image j, replacing its subject token with Csbj
i should yield cross-

attention maps (with respect to the query Qj) that are consistent with those obtained using Csbj
j .

Inspired by this, we introduce Union Key (As shown in Figure 1c), which computes attention us-
ing keys aggregated across prompts while applying values from the current prompt to generate the
output. Specifically, for the i-th image, we define

K̃i = Concat(K̃sbj
0 , . . . , K̃sbj

n−1,KBG
i , K̃EoT

0 , . . . , K̃EoT
n−1 ),

Ṽi = Concat(Ṽsbj
i , . . . , Ṽsbj

i ,VBG
i , ṼEoT

i , . . . , ṼEoT
i ),

Õi = softmax(QiK̃⊤
i /

√
d)Ṽi

(5)

where Qi are the query projections for image i. Keys/values are obtained via linear projections from
the enhanced text embeddings:

K̃sbj
i = ℓK(C̃sbj

i ), KBG
i = ℓK(CBG

i ), K̃EoT
i = ℓK(C̃EoT

i ). (6)

Ṽsbj
i , VBG

i , and ṼEoT
i are defined similarly. Note that the key matrix K̃i is composed of subject

and EoT embeddings from all frame prompts while the scene description embedding is only from
the current frame KBG

i . This design is essentially equivalent to computing the attention maps of
semantically aligned tokens across different prompts relative to the i-th image and averaging them,
avoiding the introduction of external value vectors. By this means, we are forcing the diverse frames
to share similar cross-attentions by averaging operation, which is aligned with our intuitive idea as
demonstrated above. In practical applications, we assign a 1/N attention weight to extra K-V pairs
to prevent them from dominating the image generation process. Additionally, we use only a small
number of padding tokens here to keep computational costs under control. This UniK technique
applied along with IPemb extracted by the adaSVR operator generates consistent image frames.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Comparison Methods. We compare our BIPE with the following methods for consistent text-to-
image generation: BLIP-Diffusion (Li et al., 2022), Textual Inversion (Gal et al., 2023a), IP-Adapter
(Ye et al., 2023), PhotoMaker (Li et al., 2024c), ConsiStory (Tewel et al., 2024b), StoryDiffusion
(Zhou et al., 2024), and 1Prompt1Story (Liu et al., 2025). We follow the default settings reported in
their papers or open-source implementations and use 50 denoising steps for inference.

Benchmarks. Following prior work (Liu et al., 2025), we evaluate on the ConsiStory+. However,
existing benchmarks typically construct data with a single template (Consistent Prompts), forcing
all frames to share the same prefix. This introduces template bias and artificially lowers the diffi-
culty of consistent generation. To address this, we propose the DiverStory benchmark: it comprises
200 carefully curated prompt sets that maintain a common subject description and a similar visual
style while spanning diverse scenes; crucially, these prompts employ varied, natural-language for-
mulations (Diverse Prompts) rather than a single template. Compared with existing benchmarks,
DiverStory better reflects real user prompt distributions and reveals model consistency and robust-
ness across a wider range of scenarios.

Evaluation Metrics. To assess prompt–image alignment, we compute the average CLIPScore (Hes-
sel et al., 2021) between each generated image and its corresponding text prompt (CLIP-T) and re-
port VQAScore (Lin et al., 2024). For identity consistency, we measure inter-image similarity using
DreamSim (Fu et al., 2023) and CLIP-I (Hessel et al., 2021). Prior work shows that DreamSim
correlates well with human judgments of visual similarity, while CLIP-I is the cosine similarity be-
tween CLIP image embeddings. To reduce background confounds, following (Fu et al., 2023), we
remove image backgrounds with CarveKit (Selin, 2023) and replace them with random noise so that
the similarity metrics focus on subject identity.
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A cartoon-style image shows a 
black hair boy playing with a 
yellow fur puppy by the stream 
with a ball

The moment a boy with black hair 
is resting in the yard while holding 
a yellow fur puppy is captured in a 
cartoon-style image

The scene of a black hair boy and 
a yellow fur puppy sitting on the 
rocks of a cliff is recorded in a 
cartoon-style image

Figure 4: Qualitative results. We compare BIPE with several state-of-the-art methods. BIPE pre-
serves subject-identity consistency while producing images closely aligned with the text, including
background and fine-grained details. Notably, 1Prompt1Story relies on Consistent Prompts and does
not function properly under the Diverse Prompts setting.

Table 1: Quantitative comparison. The best and second best results are highlighted in bold and
underlined, respectively. Since 1Prompt1Story requires all prompts to share the same prefix, it
cannot be evaluated on DiverStory.

Dataset Method Train CLIP-T↑ VQA↑ CLIP-I↑ DreamSim↓ Memory
(GB)

Inference
Time (s)

ConsiStory+

BLIP-Diffusion ✓ 26.84 0.6972 85.32 0.2624 8.61 3.89
PhotoMaker ✓ 30.90 0.8075 83.08 0.3512 24.70 19.01
IP-Adapter ✓ 29.76 0.7378 91.31 0.1654 19.56 14.16

StoryDiffusion ✗ 31.32 0.8274 88.58 0.2266 35.11 34.89
ConsiStory ✗ 31.27 0.8297 87.12 0.2438 46.47 26.61

1Prompt1Story ✗ 30.11 0.7855 88.36 0.2153 18.81 23.51
BIPE (Ours) ✗ 31.44 0.8381 89.10 0.2053 17.16 20.12

DiverStory

BLIP-Diffusion ✓ 26.98 0.6500 84.90 0.2689 8.61 3.89
PhotoMaker ✓ 30.93 0.8024 79.56 0.4208 24.70 19.01
IP-Adapter ✓ 29.37 0.7019 89.10 0.2214 19.56 14.16

StoryDiffusion ✗ 31.18 0.8220 84.83 0.3093 35.11 34.89
ConsiStory ✗ 31.38 0.8219 84.42 0.3124 46.47 26.61

BIPE (Ours) ✗ 31.85 0.8360 85.04 0.2918 17.16 20.12

4.2 EXPERIMENTAL RESULTS

Qualitative Comparison. Figure 4 presents the main qualitative comparison results. Under both the
Consistent Prompts and our Diverse Prompts setups, BIPE delivers more balanced and stable per-
formance across key dimensions: subject identity preservation, frame-level text–image alignment,
and pose diversity. By contrast, other methods typically degrade in at least one of these aspects.
More specifically, BLIP-Diffusion(Li et al., 2022) suffers from severe quality degradation, Pho-
toMaker (Li et al., 2024c), StoryDiffusion (Zhou et al., 2024), and ConsiStory (Tewel et al., 2024b)
exhibit weak identity consistency, often introducing implausible artifacts and substantial confusion
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𝐴 𝐵 𝐶 𝐷 𝐵𝐼𝑃𝐸

Figure 5: Qualitative ablations.

Method
adaSVR
for Csbj

adaSVR
for CEoT UniK CLIP-T↑ VQA↑ CLIP-I↑ DreamSim↓

A ✓ ✗ ✗ 31.79 0.8460 86.55 0.2631
B ✗ ✓ ✗ 31.62 0.8321 88.68 0.2267
C ✓ ✓ ✗ 31.58 0.8335 88.80 0.2139
D ✗ ✗ ✓ 31.84 0.8466 86.11 0.2686

BIPE ✓ ✓ ✓ 31.44 0.8381 89.10 0.2053

Table 2: Quantitative ablations by removing each component.

W
an
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.2

W
an

 2
.2

 +
 B

IP
E

Figure 6: Additional applications. (Left) BIPE remains stable in long-form story generation, main-
taining subject identity across multiple images. (Right) Applied to state-of-the-art video generation
models (Wan2.2 IT2V-5B, (Wan et al., 2025)), BIPE preserves consistency across multiple videos.

in multi-subject scenes. While IP-Adapter better preserves subject identity, it frequently ignores
environmental and layout specifications in the text. 1Prompt1Story suffers from cross-scene con-
tamination and mode collapse, and its requirement for Consistent Prompts limits applicability to
more general textual inputs.

Quantitative Comparison. Table 1 reports quantitative comparisons with prior methods. On Con-
siStory+, BIPE attains the best text–image alignment, ranks second overall in identity consistency,
and is first among training-free methods. Although IP-Adapter achieves the strongest identity con-
sistency, its text alignment degrades markedly; StoryDiffusion and ConsiStory lag on identity met-
rics and incur 2–3× inference overhead; and 1Prompt1Story leaves room for improvement in align-
ment. Compared with other approaches, BIPE maintains strong performance with inference speed
close to the SDXL base model and does not rely on a specific prompt template, yielding broader
applicability. On DiverStory, the ranking mirrors ConsiStory+, but absolute scores drop across the
board (BLIP-Diffusion is an exception, albeit with noticeably degraded image quality), suggesting
that current consistency methods have not yet fully extracted context-invariant identity representa-
tions and still depend, to some extent, on fixed contextual structure. Decoupling identity features
from scene context remains important for future work.

Ablation Study. We assess component contributions via ablations, with qualitative and quantitative
results shown in Figure 5 and Figure 2, respectively. When adaSVR is applied only to the subject
description, the effect is limited due to the smaller number of subject-related tokens. However,
applying adaSVR to both the subject description and the [EoT] token yields a significant baseline
performance. Using UniK alone may lead to less interpretable results, as embeddings across frames
lack alignment. In contrast, adding the UniK module on top of adaSVR significantly improves
subject identity consistency while maintaining prompt alignment.

Additional Applications. Last but not the least, we extend BIPE to long-form stories (sequences
exceeding 50 images), where it continues to deliver strong, consistent results. Moreover, since BIPE
incurs negligible additional VRAM overhead, we further explore cross-video consistency genera-
tion—an application that has been nearly infeasible for prior methods (Figure 6).
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5 CONCLUSION

To address the consistency T2I generation, we introduce BIPE, which explicitly extracts and
enhances Identity-Preserving Embeddings (IPemb) through the adaptive singular-value rescaling
(adaSVR) technique and reinforces cross-frame alignment via the Union Key (UniK) mechanism.
Unlike prior approaches, BIPE operates in the training-free and plug-and-play manner, avoiding the
scalability and resource limitations of training-based or memory-intensive strategies. Evaluations
on existing benchmarks and our new DiverStory demonstrate the superior performance of BIPE in
preserving subject identity across extended narratives and diverse prompt templates. By leveraging
inherent identity signals in textual embeddings, this work advances T2I consistency and provides
robust benchmarks for future research.
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A APPENDIX: STATEMENTS

Limitations. This work targets training-free decoupling of subject and scene to achieve consistent
image generation, offering a flexible paradigm for artistic and design applications. However, our
method requires the full prompt sequence a priori and generates subject identity internally in a
prompt-driven manner; it does not currently accept an explicit user-specified identity (e.g., via a
reference image or external identity embedding). This constraint limits generality and extensibility.
Future work will explore reference-driven consistency to enhance the identity controllability.

Broader Impacts. By reinforcing the shared subject representation in text encodings, BIPE im-
proves subject consistency in text-to-image generation. This capability also poses risks: (i) it may
be used to synthesize deceptive or misleading images, exacerbating misinformation; and (ii) when
applied to public figures or copyright-/trademark-protected IP, it may raise privacy, copyright, and
broader intellectual-property compliance concerns.

Ethical Statement. We recognize the ethical risks associated with generative models, including
privacy leakage, data misuse, and the amplification or propagation of bias. All models and base
weights used in this work are publicly available, and our experiments comply with their licenses and
usage policies. We will release modified code and datasets to support reproducibility and external
review. We also note that consistency methods can be combined with other controllable generation
techniques and may be misused to synthesize misleading content (e.g., for disinformation). We
therefore advocate—and support—responsible use practices.

Reproducibility Statement. To facilitate replication, we will release the full source code and
scripts after peer review, including the implementation of BIPE, experimental configurations, data-
processing pipelines, and instructions for obtaining and constructing the DiverStory dataset. All
experiments were conducted on publicly available datasets. Detailed experimental settings are pro-
vided in the appendix.

LLM Usage Statement. We acknowledge the assistance of ChatGPT and Gemini for language pol-
ishing and improving clarity. All wording and factual content in the manuscript have been reviewed
and verified by the authors.

B APPENDIX: BENCHMARK

Existing benchmarks for consistency generation (e.g., ConsiStory+) are constructed from fixed-
template prompts. This design fails to reflect the diversity of natural language, introducing artificial
bias and limiting applicability in real-world interactions. To address this, we introduce the diversified
prompt dataset DiverStory. It contains approximately 200 prompt sets, each with 4–10 prompts,
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categorized into seven types—animals and plants, foods, humans, techniques, fairy tales, tools, and
vehicles—to ensure broad coverage. Furthermore, to evaluate consistency in more complex settings,
we include multi-subject prompt sets (about 25% of the dataset), with each set containing at least
two distinct subjects. This design broadens the benchmark’s scope and better reflects realistic user
scenarios.

Volunteers write each prompt set and annotate the subject description tokens. Other volunteers then
review these annotations. We subsequently perform a manual pass over the entire dataset to filter
and validate the prompts, ensuring a balanced and diverse distribution across different categories.
Finally, we assign each prompt set a corresponding category label, which gives the dataset a clear
structure and facilitates subsequent evaluation and extension.

C APPENDIX: EXPERIMENTS

Default settings. In BIPE, we set τ = 0.35 in Equation 3. During generation, all frames share the
same noise initialization. For UniK, we directly obtain the concatenated keys K̃ and values Ṽ from
the output of adaSVR. We construct an attention mask by assigning the columns corresponding to
the concatenated segment the value log

(
1
N

)
and all other columns the value 0, and add this mask to

the attention logits.

In all experiments, BIPE and all baselines use 50 inference steps; images are generated at 1024 ×
1024 resolution. For methods requiring a reference image, we generate the first frame with the
SDXL base model and use it as the reference for subsequent frames.

Qualitative Results. In this section, we present additional qualitative results to further validate the
effectiveness and efficiency of our proposed method BIPE. Figure 11 and Figure 12 provide addi-
tional qualitative comparisons against representative baseline methods. Our method, BIPE, consis-
tently delivers superior visual fidelity while maintaining rapid inference. Figure 13 and Figure 14
show additional storytelling generation with our method BIPE.

Seed Variety. Because our method leaves the diffusion model’s parameters unchanged, it preserves
the base model’s inherent ability to produce diverse appearances and backgrounds across random
seeds. Concretely, with a fixed input prompt, varying only the initial noise yields multiple samples:
across seeds, subject appearance and scene background differ; within a seed, frames in the sequence
maintain strong subject consistency and prompt–image alignment. Figure 7 shows examples.

On a windowsill sits a 
cat curled up with a 
wool ball, cartoon style, 
with warm sunlight 
spreading on its fur.

A cat creeps through a 
pile of white and 
yellow leaves, cartoon 
style, with tiny leaf 
pieces sticking to its 
paws.

A cat licks its paw by a 
milk bowl, cartoon 
style, with a few milk 
droplets on the floor 
beside it.

Figure 7: Seed variation. With fixed prompts, changing the random seed enables BIPE to generate
images with diverse backgrounds and details while preserving subject identity consistency.

Backbone Generalization. We adopt the SDXL model (Podell et al., 2023) as the default backbone
of BIPE. To demonstrate the broad compatibility of our method with different generative models,
we transfer BIPE to Stable Diffusion 3 (Esser et al., 2024) (SD3). This model uses a joint CLIP–T5
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Table 3: Quantitative results of BIPE implemented on SD3 on ConsiStory+. Since most subject-
consistent image generation methods are implemented on SDXL, we directly use the native SD3
results as the baseline.

Method CLIP-T↑ VQA↑ CLIP-I↑ DreamSim↓
SD3 31.16 0.8633 85.66 0.3043

SD3 + Ours 30.63 0.8549 88.61 0.2114

text encoder and employs MM-DiT as the denoising module. As shown in Table 3, BIPE performs
strongly on SD3. In particular, BIPE achieves the best text alignment and attains the second-best
subject consistency among training-free methods, only behind the result of BIPE on SDXL. We
attribute this second-best performance to the complex text-encoder architecture in SD3 and to the
semantic discrepancy between CLIP and T5. We hypothesize that BIPE can achieve optimal per-
formance by assigning separate τ values to CLIP and T5 and by introducing a carefully designed
fusion module.

C.1 ADDITIONAL ABLATIONS.

In this section, we conduct additional ablation studies. These experiments examine the sensitivity
of BIPE to the temperature parameter τ in adaSVR and the impact of enabling or disabling attention
layers. We also evaluate how the number of shared keys in UniK affects the performance of BIPE.
Finally, we analyze the computational efficiency of BIPE under different settings.

C.1.1 TEMPERATURE SENSITIVITY

As shown in Table 4, we report the effect of different temperatures on BIPE under the default set-
ting. Overall, as the temperature increases, text alignment monotonically decreases, while subject
consistency first decreases and then increases. When the temperature increases, the text embed-
dings become more consistent and gradually deviate from the standard distribution. With a small
temperature, more consistent embeddings improve subject consistency; with a large temperature,
embeddings that deviate too far from the distribution prevent the model from generating subject-
stable images. We balance this trade-off and choose τ = 0.35 as the default setting for the CLIP
text encoder.

Table 4: Performance of BIPE on ConsiStory+ under different temperatures τ . † denotes the default
temperature.

adaSVR
τ

Number of
UniK CLIP-T↑ VQA↑ CLIP-I↑ DreamSim↓

0.15

10

31.76 0.8523 87.99 0.2312
0.25 31.70 0.8512 88.50 0.2156
0.35† 31.44 0.8381 89.10 0.2053
0.45 30.93 0.8133 88.91 0.2071
0.55 30.04 0.7780 88.45 0.2154

C.1.2 ATTENTION LAYER CHOICES

In this section, we investigate how different attention layers in the CLIP text encoder affect BIPE.
Specifically, we disable the adaSVR enhancement operator for a subset of attention layers and ob-
serve the corresponding performance changes. In general, disabling any subset makes the text em-
beddings closer to the original CLIP encodings and thus reduces subject consistency. However,
attention layers closer to the output have a more pronounced impact than earlier attention layers.
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Table 5: In SDXL, the CLIP text encoder has 12 attention layers. We disable the adaSVR enhance-
ment in the first one-third, middle one-third, and last one-third of layers, respectively, and observe
the performance trends on ConsiStory+. The first row shows the default method without disabling
any layer.

Close Layers adaSVR
τ

Number of
UniK CLIP-T↑ VQA↑ CLIP-I↑ DreamSim↓

✗

0.35 10

31.44 0.8381 89.10 0.2053
0-3 31.46 0.8380 89.10 0.2045
4-7 31.50 0.8396 89.02 0.2068

8-11 31.66 0.8449 88.38 0.2175

C.1.3 SHARED KEY NUMBER

In this subsection, we investigate how the number and weight of shared keys in UniK affect perfor-
mance. We vary the number of shared keys in the range [0, 77]; when the number of [EoT] tokens
is smaller than the target, we automatically select the maximum available number of [EoT] tokens.
Experiments on ConsiStory+ show that BIPE reaches optimal performance with only a small num-
ber of shared keys, and further increasing the number has little impact on performance (as show in
Table 6). This property guarantees the scalability of our method in long-story scenarios. We attribute
this behavior to the low-rank nature of [EoT] embeddings (Li et al., 2024b), where a small number
of [EoT] embeddings inject sufficient information. When the number of shared keys is 0, UniK
degenerates into sharing only the subject-description embeddings.

Table 6: Performance of BIPE with different numbers of shared keys on ConsiStory+. On SDXL,
only 5–10 shared [EoT] keys are sufficient to achieve optimal performance. † denotes the default
temperature.

adaSVR
τ

Number of
UniK CLIP-T↑ VQA↑ CLIP-I↑ DreamSim↓

0.35

0 31.45 0.8395 88.93 0.2086
5 31.43 0.8386 89.02 0.2053

10† 31.44 0.8381 89.10 0.2053
20 31.45 0.8390 89.05 0.2058
40 31.44 0.8388 89.07 0.2058
77 31.52 0.8387 89.10 0.2060

We further analyze how UniK affects performance when assigning different weights to shared
[EoT] keys in BIPE. Specifically, we assign weight ω to keys from the current frame and weight
1−ω
N−1 to keys shared from the other frames. When ω = 1

N , this configuration is equivalent to the
default setting; when ω = 1, the configuration is equivalent to using zero shared [EoT] keys.
As shown in Table 7, the resulting performance change behaves like an interpolation between the
default setting and the configuration without shared [EoT] keys.

Table 7: Performance of BIPE on ConsiStory+ with different weights ω for shared [EoT] keys.
BIPE achieves strong performance by simply setting ω = 1

N .

adaSVR
τ

Number of
UniK ω CLIP-T↑ VQA↑ CLIP-I↑ DreamSim↓

0.35 10

1
N 31.44 0.8381 89.10 0.2053

0.25 31.45 0.8387 89.08 0.2059
0.5 31.46 0.8379 89.00 0.2056

0.75 31.47 0.8384 88.87 0.2075
1.0 31.45 0.8398 88.88 0.2081

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C.1.4 COMPUTATIONAL EFFICIENCY

In this subsection, we discuss the computational cost of BIPE. Since adaSVR and UniK operate in the
text-encoding and denoising stages respectively, we load the CLIP and U-Net modules separately,
execute the two stages independently, and record the runtime and memory consumption to obtain
more accurate measurements.

We first compare the computational cost of BIPE and SDXL under different numbers of frames N
(see Figure 8). In this experiment, we fix the number of shared [EoT] keys to 10. Compared with
the SDXL backbone, adaSVR in the text-encoding stage adds about 0.2 seconds of extra encoding
time per prompt, which accounts for a very small fraction of the end-to-end generation time. In the
denoising stage, UniK increases the runtime by about 5%–20%, depending on N , and this over-
head grows slowly as the number of frames increases. In terms of memory usage, BIPE does not
introduce a noticeable increase at any stage and thus avoids out-of-memory failures. This efficiency
arises because adaSVR only constructs matrices with the same size as the text embeddings for en-
hancement, and UniK only stores a small number of additional text embeddings. Overall, BIPE
causes only minor computational overhead and does not impose a significant burden on users.

Figure 8: Computational cost of BIPE as the frame number N varies. (Top-Left) Comparison of
runtime between BIPE and SDXL in the text-encoding stage; as N increases, adaSVR requires
about 0.2 seconds of additional encoding time per prompt on average. (Bottom-Left) Comparison of
runtime between BIPE and SDXL in the denoising stage; as N increases, the extra time per frame
is about 0.7–3 seconds. (Right) BIPE introduces almost no additional memory consumption.

We also examine how different numbers of shared [EoT] keys affect the computational cost of
BIPE. As shown in Figure 9, increasing the number of shared [EoT] keys leads to a slow growth
in denoising time, while the peak memory usage remains almost unchanged. Even when sharing all
[EoT] keys, BIPE incurs only about 10% additional computation time compared with sharing only
a small number of [EoT] keys.

C.2 USER STUDY

To verify the consistency between quantitative metrics and visual quality, we conduct a user study.
In the questionnaire, we compare BIPE with ConsiStory (Tewel et al., 2024b), StoryDiffusion (Zhou
et al., 2024), and 1Prompt1Story (Liu et al., 2025). The questionnaire contains 18 prompt sets and
evaluates the four methods in terms of image quality, text alignment, and subject consistency. For
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Figure 9: In the denoising stage, inference time and memory usage with different numbers of shared
keys. In this experiment, we fix the number of frames at N = 5.

each question, participants choose the more appropriate set from two sets of generated images. We
collect 67 valid responses in total (Table 8, Figure 10). On average, more than 70% of participants
consider BIPE superior along multiple aspects, which supports the effectiveness of the proposed
approach.

Compare Methods Image quality
(win rate, %)

Text alignment
(win rate, %)

Subject consistency
(win rate, %)

BIPE \ ConsiStory 64.18 \ 35.82 61.94 \ 38.06 80.60 \ 19.40
BIPE \ StoryDiffusion 73.13 \ 26.87 70.89 \ 29.11 78.35 \ 21.65
BIPE \ 1Prompt1Story 79.85 \ 20.35 76.11 \ 23.89 76.86 \ 23.14

Table 8: User study results. Win rate (%) of BIPE over each baseline in pairwise comparisons on
image quality, text alignment, and subject consistency. Results are averaged over 18 prompt sets and
67 participants.

Figure 10: User-study preference scores. For each metric (image quality, text alignment, and sub-
ject consistency), the stacked bar shows the percentage of votes for BIPE (bottom, purple) and the
corresponding baseline (top, colored). Error bars indicate the 95% confidence interval of the win
rate of BIPE.
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C.3 ADDITIONAL APPLICATIONS.

Since our method is mainly operating on the text embeddings, we are easy to extend BIPE to long-
form stories (sequences exceeding 50 images), where it continues to deliver strong, consistent re-
sults. Such detailed generations are demonstrated in Figure 15, Figure 16 and Figure 17.

In addition, we apply BIPE to multi-video consistency generation. Following the official Wan 2.2
(Wan et al., 2025) workflow, we first construct a concise set of initial prompts, then expand them
using the released prompt-expansion code together with DeepSeek so that the final descriptions
satisfy constraints on environment, lighting, camera, and composition. Comparative results are
shown in Figure 18 and Figure 19. For readability, only the initial prompts are displayed in the
figures (the expanded prompts are used for generation).
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Photo
Maker IP-Adapter

Story
Diffusion ConsiStory

1Prompt-
1Story

BIPE
(Ours)

A dog curls beside a 
sunhat on a porch in 
watercolor

A watercolor scene of a 
dog gently carrying a hat 

A watercolor dog plays 
with a floppy hat

A watercolor dog sniffs at 
a straw hat lying in a field

BLIP
Diffusion

A dog rests with a hat 
covering its eyes in a soft 
watercolor moment

A watercolor illustration of A 
cute kitten dressed in a cute 
sweater

A watercolor illustration of A 
cute kitten dressed in a 
superhero cape

A watercolor illustration of A 
cute kitten playing with a toy

A watercolor illustration of A 
cute kitten running through a 
field

A watercolor illustration of A 
cute kitten sitting in a basket

A watercolor illustration of A 
cute kitten wearing a collar with a 
bell

The tiger leans and the white fur 
cat sit by the window, anime 
image

An anime-style scene of a tiger 
and a white fur cat sitting 
together on a wooden porch

A white fur cat and a strong 
tiger sit on the rocks by the 
cliff, anime image

Figure 11: Additional qualitative results. We compare BIPE with several state-of-the-art methods.
BIPE preserves subject-identity consistency while producing images closely aligned with the text,
including background and fine-grained details.
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Photo
Maker IP-Adapter

Story
Diffusion ConsiStory

1Prompt-
1Story

BIPE
(Ours)

A hyper-realistic digital 
painting of A teenage boy 
at an urban skatepark

A hyper-realistic digital 
painting of A teenage boy 
shortclimbing a tree

A hyper-realistic digital 
painting of A teenage boy 
in a dense forest

A hyper-realistic digital 
painting of A teenage boy 
dressed as an astronaut

BLIP
Diffusion

A hyper-realistic digital 
painting of A teenage boy 
attending a science fair

A snow princess glowing 
with icy aura

A snow princess resting 
on a crystal throne

A snow princess 
surrounded by falling 
snowflakes

A snow princess walking 
in a snowy forest

A snow princess with a 
shimmering blue gown

A hyper-realistic 
digital painting of A cat 
wearing a fluffy collar

A hyper-realistic 
digital painting of A cat 
sitting on a shelf

A hyper-realistic 
digital painting of A cat 
sleeping in a box

A hyper-realistic 
digital painting of A cat 
climbing a tree

Figure 12: Additional qualitative results. We compare BIPE with several state-of-the-art methods.
BIPE preserves subject-identity consistency while producing images closely aligned with the text,
including background and fine-grained details.
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Figure 13: Additional consistent T2I generation results of BIPE. The vertical direction shows the
same identity.
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Figure 14: Additional consistent T2I generation results of BIPE. Note that the middle and bottom
parts are showing stories horizontally.
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Figure 15: Long story generation results of BIPE.

Figure 16: Long story generation results of BIPE.
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Figure 17: Long story generation results of BIPE.

Wan 2.2 Wan 2.2 + BIPE

The farmer with weathered 
hands and a sun-lined face 
walked through the golden 
wheat
field, inspecting each stalk with 
quiet pride.

At dawn, the farmer with 
weathered hands and a sun-lined 
face loaded crates of fresh
vegetables onto the back of a 
dusty pickup truck.

The farmer with weathered 
hands and a sun-lined face 
leaned against the wooden 
fence, watching the sheep graze 
under a pale blue sky.

0 24 48

72 96 120

0 24 48

72 96 120

0 24 48

72 96 120

0 24 48

72 96 120

0 24 48

72 96 120

0 24 48

72 96 120

Figure 18: BIPE integrated into Wan2.2 enables cross-video subject-consistent generation. Frame
indices are indicated by the labels.
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Wan 2.2 Wan 2.2 + BIPE

The scientist with a white lab 
coat is in the laboratory,
mixing glowing liquids in a 
beaker with steady hands.

The scientist with a white lab 
coat is in the rainforest,
jotting notes while examining 
rare plant specimens.

The scientist with a white lab 
coat is aboard a research
vessel, analyzing water samples 
under a microscope.

0 24 48

72 96 120

0 24 48

72 96 120

0 24 48

72 96 120

0 24 48

72 96 120

0 24 48

72 96 120

0 24 48

72 96 120

Figure 19: Another set of video generation results with BIPE integrated into Wan2.2, which enables
cross-video subject-consistent generation. Frame indices are indicated by the labels.
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