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ABSTRACT

Anti-backdoor learning, aiming to train clean models directly from poisoned
datasets, serves as an important defense method for backdoor attack. While ex-
isting methods can prevent models from predicting the target label on backdoored
samples, they face significant challenges in recovering backdoored samples to
their original, correct labels. Additionally, their non-end-to-end training frame-
works make them unsuitable for safeguarding the increasingly prevalent large
pre-trained models. To bridge the gap, we first revisit the anti-backdoor learn-
ing problem from a causal perspective. Our theoretical causal analysis reveals
that incorporating both images and the associated attack indicators preserves the
model’s integrity. Building on the theoretical analysis, we introduce an end-to-end
method, Mind Control through Causal Inference (MCCI), to train clean models
directly from poisoned datasets. This approach leverages both the image and the
attack indicator to train the model. Based on this training paradigm, the model’s
perception of whether an input is clean or backdoored can be controlled. Typically,
by introducing fake non-attack indicators, the model perceives all inputs as clean
and makes correct predictions, even for poisoned samples. Extensive experiments
demonstrate that our model can effectively and robustly recover the original true
labels of backdoored images, without compromising clean accuracy. Our code
can be found at https://github.com/xuanxuan03021/BKD BKD ICLR.

1 INTRODUCTION

While deep neural networks (DNNs) have achieved tremendous success in various fields (Kortli
et al., 2020; Zou et al., 2023; Vaswani et al., 2017; Sun et al., 2022), training these models requires a
massive amount of data. Consequently, it has become common practice to outsource the collection
of training data to third-party providers, especially for large pre-trained models. For example, the
large foundation model CLIP is trained over millions of image-text pairs, which are directly col-
lected from the internet. However, this practice opens the door for malicious attackers to manipulate
model behavior by poisoning the training dataset. This type of manipulation is known as backdoor
attacks, where an attacker poisons the training dataset so that DNNs trained on this dataset will
classify images to a target label when a specific trigger is present in the input, but behave normally
with benign inputs. Backdoor attacks pose a serious security vulnerability to DNNs, especially in
safety-critical scenarios such as autonomous driving (Han et al., 2022; Chan et al., 2022), medical
diagnosis (Feng et al., 2022), and financial fraud detection (Lunghi et al., 2023).

Hence, this raises an inspiring yet challenging research question: How can we directly train a
backdoor-free model even when backdoor samples are hidden in the training dataset? Despite a
few prior endeavors (Li et al., 2021a; Zhang et al., 2023; Huang et al., 2022) on this problem, sev-
eral crucial challenges remain unresolved for this scenario. ❶ Ignorant Label-Recovering Ability:
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Most existing methods primarily focus on preventing a backdoor-free model from predicting the
target label for backdoored samples, while neglecting the practical need to recover the original, cor-
rect predictions for such samples. As evidenced in (Wu et al., 2022), all the existing anti-backdoor
learning methods fail to consistently achieve strong recovery performance across various backdoor
attacks. ❷ Low Generalization To Large Pre-trained Models: Existing approaches (Li et al.,
2021a; Zhang et al., 2023; Huang et al., 2022; Gao et al., 2023; Zhu et al., 2023) involve complex
multi-stage training processes that significantly increase computational costs. Particularly during
the initial stage, these methods often isolate potential backdoored and clean samples by training
the victim model on the entire training set, which can be computationally expensive, especially for
large pre-trained models. For instance, vision foundation models like CLIP and BLIP, which contain
approximately 80 million parameters and use training sets of around 400 million image-text pairs,
incur substantial isolation costs. ❸ High Dependence on Backdoor Isolation Performance: From
a technical point of view, the existing methods rely heavily on the efficacy of backdoor isolation. For
instance, (Li et al., 2021a) unlearns embedded backdoors using isolated backdoor samples in the ini-
tial stage, (Zhang et al., 2021) learns a disentangled representation by isolating the backbone model
from an intentionally-trained backdoored model, and (Huang et al., 2022; Gao et al., 2023) attempt
to prevent backdoors by isolating low-credibility samples using the model itself. This reliance on
backdoor isolation limits the models’ ability to generalize effectively in scenarios where backdoors
are difficult to detect and isolate. Therefore, an important question arises: How can we efficiently
train an end-to-end clean model on a poisoned dataset that not only maintains high accuracy on
clean samples but also recovers the correct labels of backdoor samples?

To address this question, we first compare the intrinsic differences between training a poisoned
model and a clean model on a poisoned dataset from a causal perspective. Specifically, through
rigorous theoretical derivation based on the backdoor adjustment theory in causal inference, we
find that training a model solely with images from a poisoned dataset may compromise its integrity.
Conversely, incorporating both images and associated attack indicators can safeguard the model’s
integrity. Typically, attack indicators represent the probability of the presence of an attack on the
corresponding image. Inspired by (Zeng et al., 2021), we use the frequency spectrum of each image
as the attack indicator. Based on this insight, we propose our end-to-end Mind Control through
Causal Inference (MCCI) model, as illustrated in Fig. 1. MCCI utilizes the given victim model
(e.g. ViT) as a Semantic Feature Recognition Network (SFRN) to learn semantic features directly
from images. It also introduces a smaller Attack Indication Network (AIN) to augment the victim
model. This AIN determines whether an input is backdoored given the attack indicator. Hence,
it acts as a ”magic wand”, controlling the model’s perception of whether an input is clean or
backdoored. In the inference stage, we leverage counterfactual outcome estimation to manipulate the
model’s perception, making it treat all inputs as clean by introducing fake non-attack indicators to the
AIN. Extensive experiments demonstrate that backdoored samples can be effectively and robustly
recovered to their original labels without compromising clean accuracy. Furthermore, additional
experiments uncover the mechanism behind the mind control secret of AIN through latent space
visualization.

Our contributions are summarized as follows: (1) Advanced Recovery Ability. We addressed an
overlooked aspect of evaluating the recovery ability of backdoor-free models on poisoned datasets.
Compared to the existing baselines, our MCCI model has shown outstanding label recovery perfor-
mance. (2) Causality-Inspired Training and Inference. We leverage theories in causal inference
to analyze the differences between training a poisoned model and a clean model on a poisoned
dataset and develop a counterfactual reasoning approach for inference-stage backdoor sample re-
covery. (3) Generalization to Large Pre-trained Models. We empirically demonstrate that MCCI
is highly adaptable for backdoor defense in large pre-trained models with limited training overhead.
(4) SOTA Performance in Effectiveness and Efficiency. Extensive experiments demonstrate that
our method effectively and efficiently trains clean models on poisoned datasets.

2 RELATED WORK

Backdoor Attack. Backdoor attacks are usually launched through data poisoning (Gu et al., 2017;
Chen et al., 2017; Nguyen & Tran, 2021; Li et al., 2021c; Liu et al., 2020; Shafahi et al., 2018a;
Schneider et al., 2024; Li et al., 2024b; Lan et al., 2024; Cheng et al., 2024; Yin et al., 2024; Guan
et al., 2023b; Guo et al., 2024), where malicious attackers inject backdoor samples into the training
dataset. As a result, a model trained on this dataset will classify images to a target label when a
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Figure 1: Pipeline of the MCCI. In the training stage, SFRN processes the original image x to rec-
ognize complex semantic features (shown in the SFRN latent space) and encodes x into z. Simulta-
neously, AIN analyzes the frequency spectrum xf of x to assesses whether the input is backdoored
(illustrated in the AIN latent space) and encodes xf into zf . The two embeddings, z and zf , are
then concatenated for the final image prediction. In the inference stage, a clean frequency spectrum
is inputted along with the image to ensure clean predictions.

specific trigger is present in the input while maintaining normal behavior on benign inputs. Although
there are other categories of backdoor attacks (Appendix I), this paper primarily focuses on data
poisoning-based backdoor attacks.

Backdoor Defense. Following (Li et al., 2022b), the existing backdoor defense methods can be
roughly split into five main categories, including (1) detection-based defenses (Huang et al., 2019;
Xiang et al., 2022; Guo et al., 2021), (2) preprocessing-based defenses (Doan et al., 2020; Li et al.,
2021b; Huang et al., 2023; Shi et al., 2024; Borgnia et al., 2021), (3) poison-suppression-based de-
fense (Li et al., 2021a; Huang et al., 2022; Zhang et al., 2023; Gao et al., 2023), (4) trigger-synthesis-
based defense (Wang et al., 2019; Chen et al., 2022; Xu et al., 2023), and (5) input-filtering-based
defenses (Gao et al., 2019; Zeng et al., 2021; Guan et al., 2023a; Guo et al., 2023a;b; Wang et al.,
2024; Hu et al., 2024; Guan et al., 2024). In particular, in this paper, we adopt a poison-suppression-
based threat model similar to well-established methods (Li et al., 2021a). Few methods have been
proposed in this research direction. Notable approaches include DBD and its variations (Huang
et al., 2022; Chen et al., 2022), which decouples training between DNN backbone and fully con-
nected layers to minimize trigger-label correlation; ABL (Li et al., 2021a) isolates and then unlearns
backdoors through gradient ascent; V&B (Zhu et al., 2023) exploits backdoored model to erase
potential backdoors, and CBD (Zhang et al., 2023), employing a causality-inspired structure to learn
de-confounded representations for accurate classification.

3 PROBLEM SETUP

3.1 THREAT MODEL

In this paper, the defender aims to train a clean model end-to-end from a poisoned dataset with
the following two objectives: ❶ the clean model is expected to produce the original, correct pre-
dictions for backdoored images even if the trigger is present, and ❷ the clean model is expected
to produce high-accuracy predictions for the clean samples, achieving performance as good as the
model trained on a purely clean dataset. ❸ The training process should be in an end-to-end fashion,
which can easily generalize to large pretrained models with reasonable computational cost. We as-
sume that the defender has full control of the training process, but lacks prior knowledge about the
proportion and the distribution of backdoor samples in the poisoned dataset. Fig. 8 in the Appendix
offers a visualization of the considered threat model.

Comparison with the Past Threat Models. Our defense goal is more challenging and practical
compared to the threat models in (Li et al., 2021a; Zhang et al., 2023; Huang et al., 2022). While
the defender in those threat models aims to train a clean model that only avoids misclassifying back-
doored samples as the target label, our defense objective additionally expects the model to predict
the original, correct labels for backdoored samples in an end-to-end manner with high generaliza-
tion to large pretrained models. Therefore, this objective is more practical (TRC’22, 2022) in the
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real world. Otherwise, the model may make unreasonable predictions (e.g., assigning random labels
other than the target label) when exposed to backdoor trigger patterns, posing a serious threat to
model security.

3.2 PRELIMINARIES

To uncover the intrinsic differences between training a poisoned model and a clean model on a
poisoned dataset, we leverage causal inference for analysis. In particular, causal inference aims to
estimate the causal effect of the treatment T on the outcome Y . Analogous to the image classification
task, our objective is to estimate the effect of an image on the prediction. Therefore, we treat the
image as the treatment and its corresponding prediction as the outcome. We first introduce some
basic definitions in causal inference, along with other assumptions (Yao et al., 2021; Guo et al.,
2020; Pearl, 2009), causal effect can be identified from the observational data. More details are
provided in the Appendix B.
Definition 3.1 (Confounders). Confounders are variables that serve as a common cause of the treat-
ment T and the outcome Y .
Assumption 3.2 (Positivity). Every unit should have non-zero probabilities to be assigned in each
treatment group. Formally, P(T = t|X = x) ̸= 0,∀t ∈ T ,∀x ∈ X .
Assumption 3.3 (Modularity). Given a node xi and its parent nodes pai in the causal graph, if we
intervene on a set of nodes S by assigning them constants, then for all i: 1. If i /∈ S, then P(xi | pai)
remains unchanged. 2. If i ∈ S and xi is the value that Xi was set to by the intervention, then
P(xi | pai) = 1; otherwise, if xi is not the intervention value, P(xi | pai) = 0.

3.3 BACKDOOR ATTACK FORMATION FROM A CAUSAL VIEW
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Figure 2: (a) Causal graph of traditional backdoor
attack. (b) Causal graph of backdoor defense by
cutting off the edge between A → I (backdoor
adjustment).

As preliminarily explored in (Zhang et al.,
2023), the underlying mechanism of backdoor
attack formation can be demonstrated using a
causal graph, as shown in Fig. 2(a). Specif-
ically, backdoor attacks A are initiated by at-
taching a trigger to the victim image A → I
and altering the image label Y to the target la-
bel A → Y . Hence, the confounder A intro-
duces a spurious backdoor path I ← A → Y
that builds and strengthens erroneous correla-
tions between the modified images and the tar-
get label, misleading the predictions of backdoor samples instead of guiding them to follow the real
causal path I → Y . Formally, in causal inference, this misled backdoor prediction is attributed to
the confounding bias brought about by the confounder variable A. Therefore, the prediction solely
based on the image E(Y |I = i) is inevitably influenced by this spurious correlation. Formally,
Proposition 3.4. Let i be an image from a poisoned dataset and fθ a model trained on this dataset.
Then, the expected prediction Y of image I = i can be derived according to Fig. 2:

E(Y |I = i) = EA[E[Y |i, A]
P(i|A)

P(i)
] (1)

Proof. We provide a detailed derivation in Appendix C.1.
Source of confounding bias

4 MIND CONTROL THROUGH CAUSAL INFERENCE (MCCI)

In this section, we provide a detailed introduction to the training and inference stages of the MCCI
model. We begin by discussing the causal theory used to eliminate confounding bias, then adapt this
theory to the backdoor setting through an analogous theorem. Following this, we describe the MCCI
training algorithm based on the theorem. Finally, we introduce counterfactual outcome estimation,
which is employed to manipulate the model’s cognition, treating poisoned samples as clean.
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4.1 TRAINING STAGE: REMOVE BACKDOOR FROM CAUSAL VIEW

Here we introduce some basic definitions in causal inference:
Definition 4.1 (do-Calculus). The operator do(i′) is defined in do-calculus as the intervention that
sets the value of a variable i to a constant i′ uniformly across the entire population.
Definition 4.2 (Backdoor Path). A path connecting image I and outcome Y is defined as a backdoor
path if and only if it is not a directed path and remains unblocked by any other variables.
Definition 4.3 (Backdoor Criterion). A set of variables A fulfills the backdoor criterion relative to
I and Y if A blocks all backdoor paths from I to Y and does not contain any descendants of I .

To mitigate confounding bias brought by A, we employ do-calculus in causal inference to cut off the
spurious path as shown in Fig. 2(b). Specifically, do-calculus conducts intervention by substituting
the value of I with a specific value, thereby cutting off the relationship between the variable I and its
parent A, effectively eliminating any incoming edges to I . Consequently, all associations between
I and Y flow along the directed causal path, yielding backdoor-free predictions E(Y |I = do(i)).

However, E(Y |I = do(i)) is a causal estimand that is intractable to identify with the current
dataset (Pearl, 2009). To address this, we employ the backdoor adjustment for causal identifica-
tion, a theory that identifies outcomes without the influence of confounders (attacks) (Pearl, 2009),
thereby recovering backdoored samples while maintaining high accuracy. Specifically, backdoor
adjustment involves adjustments on variables that satisfy the backdoor criterion (Pearl, 2009). Ac-
cording to Definition 4.3, attack A in our scenario is a sufficient adjustment set, since there is only a
single backdoor path through A, adjusting for this single node A is sufficient to block all backdoor
paths. Hence, the backdoor adjustment theorem tailored for backdoor attacks is as follows:
Theorem 4.4 (Backdoor Adjustment for Backdoor Attack). Given the satisfaction of the backdoor
criterion by A, the positivity assumption (Assumption 3.2), and the modularity assumption (Assump-
tion 3.3), we can identify the causal effect of I on Y .

E[Y |I = do(i)] = E[
∑
a

P(Y |i, a)P(a)] = EAE
[
Y | i , A

]
. (2)

Proof. We provide a detailed proof in Appendix C.2.

Image Input Attack

The theorem implies that clean predictions can be derived from a poisoned dataset by condition-
ing on both the input image i and the attack A. In other words, the model input should include both
the image and the associated attack indicator. This distinction also sheds light on the differences
between training a backdoored model and a clean model on a poisoned dataset. Specifically, simply
inputting the image causes the model to be backdoored, while including both the image and the
associated attack indicator can safeguard the integrity of the victim model. Furthermore, the differ-
ence between equation 1 and equation 2 provides theoretical insight into why simply inputting the
image causes the model to be backdoored. Specifically, we find that the biased estimation in equa-
tion 1 contains an additional term (highlighted in gray) compared to the backdoor-free estimation
in equation 2. This additional term is the source of confounding bias (Pearl, 2009; Guo et al., 2020).

How to represent the Attack A? An intuitive way for indicating the attack is leveraging off-the-
shelf backdoor detection algorithms (Koh & Liang, 2017; Peri et al., 2020; Qi et al., 2023; Pan et al.,
2023). However, their reliance on already backdoored models and computationally intensive re-
quirements make these methods impractical for representing A as an input in our approach. Inspired
by the input-level detection method (Zeng et al., 2021), we use the frequency spectrum of each im-
age to indicate the presence of an attack on the corresponding image. This method is effective due to
the significant differences between backdoored and clean images in the frequency domain, as illus-
trated in Fig.1. Its effectiveness, along with its proactive and computationally efficient nature, which
does not depend on an already trained backdoored model, makes it a highly appropriate choice of an
attack. More visualization can be found in Fig. 14. Moreover, images can be efficiently transformed
into the frequency domain using the Type-II 2D Discrete Cosine Transform (DCT). Consequently,
we incorporate a structure that accepts DCT-transformed images as input and maps them to a vector
representing the attack. Further details on using frequency domain images to detect backdoors are
discussed in Appendix E.

MCCI Design. Motivated by our previous causal analysis, we propose our Mind Control through
Causal Inference model (MCCI), which consists of two networks: the Semantic Feature Recognition
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Network (SFRN) and the Attack Indication Network (AIN) as shown in Fig. 1. Specifically, SFRN
is the provided victim model, such as ViT. It is tasked with recognizing complex semantic features,
such as identifying a cat within an image, thereby functioning as the clean model that learns direct
causal paths. This process, illustrated in the SFRN latent space in Fig.1, involves processing the
original image x and encoding it into z. Meanwhile, AIN determines whether the input is back-
doored based on the frequency spectrum xf of x as illustrated in the AIN latent space in Fig. 1. It
acts like a magic wand, controlling the model’s perception to recognize whether the input is clean
or backdoored. The frequency spectrum xf is encoded by AIN into zf . Then two embeddings (z
and zf ) are concatenated for the final image prediction. More detail can be found in D.
Remark 4.5 (Design Guidelines for AIN). We propose that an AIN module should satisfy the fol-
lowing two requirements: (1) The structure is much smaller than SFRN, as backdoor patterns are
simpler to learn than normal patterns, as evidenced by (Liu et al., 2023b; Zhang et al., 2023); (2)
Avoids using complex architectures to decrease unnecessary overhead. Further discussion on AIN’s
“magic control power” is in Section 5.2.

In summary, the training pipeline of MCCI becomes solving the following optimization problem:

θ∗AIN , θ∗SFRN = argmin
θAIN ,θSFRN

E(x,y)∼Dtrain
ℓ(C(g(z, zf )), y)

where z = AINθAIN
(DCT (x)), zf = SFRNθSFRN

(x),
(3)

where ℓ denotes the cross-entropy loss function, C denotes a composited classification layer, g
denotes the concatenation function, and DCT denotes the discrete cosine transform function. The
outline of the algorithm is provided in Algorithm 1.

4.2 INFERENCE STAGE: ASK MODEL WHAT IF IT WERE A CLEAN IMAGE

In the inference stage, we use counterfactual outcome estimation to predict the original ground-
truth label for each image. This method estimates what the outcome would be if the variable had a
different value than the observed one in the factual world. Specifically, for a poisoned image i, we
aim to determine what its label would be if it were a clean image. Answering this counterfactual
question involves estimating E[Y |I = do(i), A = 0]. This motivates us to input a fake non-attack
indicator, namely, a clean frequency spectrum (A = 0) to trigger the control magic of AIN for
prediction. Intuitively, the clean frequency spectrum and the trained AIN work together to control
the model’s perception, convincing it that the input is clean and thereby guiding it to the correct
prediction. Moreover, we discuss this “magic control secret” further in Section 5.2. The prediction
pipeline can be formulated as follows,

ŷ = C(g(AINθ∗
AIN

(DCTbenign, SFRNθ∗
SFRN

(x)))), (4)

where DCTbenign denotes the clean frequency spectrum. Regarding the choice of the clean fre-
quency spectrum, we propose two heuristic strategies: (1) the average frequency spectrum derived
from a number of clean images in the validation dataset, (2) the frequency spectrum of a single
clean image chosen randomly from the validation dataset. Our experiments show that both of the
methods work, namely, only one clean image is needed for satisfactory defense, demonstrating the
practicality of our method. More details can be found in Section 5.2.

5 EXPERIMENTS

Datasets and Models. Following (Guo et al., 2023a; Gao et al., 2019; Li et al., 2021a), we choose
two widely-adopted datasets for evaluating the effectiveness of our proposed method: CIFAR-
10 (Krizhevsky, 2009), and ImageNet-subset (Deng et al., 2009). The details of the datasets are
listed in Appendix F. For CIFAR-10, we train with the widely-adopted ResNet-18 (He et al., 2015).
For the ImageNet-subset, we opted for the EfficientNet architecture (Tan & Le, 2020) as it reports a
higher accuracy.

Attack & Defense Baselines. We choose six backdoor attacks from the well-established recent
works as our baselines: 1) BadNet (Gu et al., 2017), 2) Blend Attack (Chen et al., 2017), 3) Label-
Clean backdoor attacks (Shafahi et al., 2018b), 4) WaNet (Nguyen & Tran, 2021), 5) ISSBA (Li
et al., 2021c), and 6) TUAP (Zhang et al., 2021). All attack baselines are implemented with the
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Table 1: Comparison of the proposed method with other baseline defense methods. We mark the
best values in bold and the second best values in underline.

Dataset Attack Method ↓
Defense Method

No Defense ABL CBD DBD ASD MCCI-AVG MCCI-SG
CA ↑ ASR ↓ CA ↑ ASR ↓ ARR ↑ CA ↑ ASR ↓ ARR ↑ CA ↑ ASR ↓ ARR ↑ CA ↑ ASR ↓ ARR ↑ CA ↑ ASR ↓ ARR ↑ CA ↑ ASR ↓ ARR ↑

CIFAR-10

BadNet 87.22 100.00 81.64 5.73 81.88 76.31 2.44 75.17 86.67 1.52 83.49 86.17 0.35 85.91 86.73 0.50 85.64 86.17 2.62 85.08
Blend 87.55 100.00 82.87 1.69 77.01 77.18 97.04 12.27 85.54 2.70 86.86 83.94 2.21 82.69 85.83 1.94 80.05 85.23 1.07 78.18
WaNet 86.89 99.70 83.33 0.48 84.63 75.82 60.27 36.78 84.43 4.10 77.17 84.67 2.72 83.72 81.04 15.54 75.98 85.56 7.75 80.19
ISSBA 87.80 99.42 85.84 0.94 85.03 76.64 13.99 15.50 77.27 14.90 78.43 76.79 4.16 12.60 78.19 1.02 78.93 79.22 3.38 79.71

LC 86.81 68.21 68.97 27.69 63.58 78.37 6.42 72.32 85.02 3.33 63.01 85.50 1.14 85.41 85.51 0.48 81.43 85.50 1.23 79.62
TUAP 87.35 87.66 81.12 5.26 81.18 76.08 2.76 75.71 86.26 1.85 83.04 86.47 2.03 28.26 86.56 0.73 85.18 86.53 2.54 85.40

Average 87.27 92.50 80.63 6.97 78.89 76.73 30.49 47.96 84.70 4.73 78.67 83.92 2.10 63.10 83.98 3.37 81.20 84.70 3.10 81.36

ImageNet
-subset

BadNet 72.11 100.00 70.52 12.24 72.92 57.19 26.89 50.48 70.56 3.51 75.60 70.03 3.42 68.56 70.51 0.48 70.44 70.24 1.82 70.67
Blend 72.24 100.00 67.31 53.82 43.76 49.70 27.41 43.07 70.80 4.72 66.27 70.22 9.36 67.33 70.89 2.58 66.94 70.20 3.32 66.54
WaNet 70.44 98.66 69.33 97.31 11.97 65.40 99.84 10.65 69.30 5.97 63.30 69.12 10.12 58.33 69.72 0.06 60.20 70.21 0.51 69.56
ISSBA 71.55 93.55 67.76 43.58 21.77 44.89 100.00 9.45 65.74 10.90 57.74 68.97 9.63 13.26 70.77 0.01 28.16 70.00 0.76 38.32

LC 72.27 72.41 66.74 0.81 65.08 61.76 11.19 61.38 69.46 3.44 47.96 69.23 2.11 53.21 69.96 0.43 65.26 69.56 0.14 67.99
TUAP 70.79 79.02 64.86 14.60 43.32 56.41 23.69 42.33 69.29 2.68 43.36 68.12 8.95 32.15 69.23 10.16 60.65 69.22 8.87 65.01

Average 71.57 90.61 67.75 37.06 43.14 55.89 48.17 36.23 69.19 5.20 59.04 62.62 7.27 48.81 70.18 2.31 65.28 69.91 2.60 67.33

(a) (b) (c) (d)

Figure 3: t-SNE visualisation of embeddings after Semantic Feature Recognition Network (SFRN)
and the Attack Indication Network (AIN) in terms of clean and poisoned points under the training
stage ((a)-(b)) and the inference stage using average clean frequency spectrum ((c)-(d)).

open-sourced backdoor learning toolbox (Li et al., 2023). More details of each attack method can
be found in Appendix G. Based on our setting, it is assumed that defenders can only access the
poisoned dataset and have full control over the training process but do not have prior knowledge
about the poisoned distribution as well as the trigger pattern. Hence we adopt ABL (Li et al.,
2021a), CBD (Zhang et al., 2023), DBD (Huang et al., 2022), and ASD (Gao et al., 2023) for the
comparision. More details about defense baselines can be found in Appendix H.

Evaluation Metrics. Following existing works in backdoor suppression (Gao et al., 2021; Guo
et al., 2021; 2023a), we use Clean Accuracy (CA) and Attack Success Rate (ASR) as evaluation
metrics. In addition, we also adopt Attack Recovery Rate (ARR), which measures the proportion
of recovered backdoored samples in the poisoned dataset. More details can be found in Appendix L.

Implementation Details. The full implementation details are provided in Appendix K.

5.1 MAIN RESULTS

5.1.1 DEFENSE EFFECTIVENESS

Table 1 compares our method MCCI with other defense baselines across various backdoor attacks
on two datasets. We highlight the best results in bold and the second best in underline. MCCI-
AVG represents our defense model using an averaged frequency spectrum from a small number of
clean images, while MCCI-SG uses a frequency spectrum from a randomly selected clean image.
The table shows that our methods achieve promising performance across all datasets against various
attack methods, not only on conventional evaluation metrics like CA and ASR but also on the newly
adopted ARR, which assesses the recovery of poisoned samples to their original correct labels.
In particular, the ARR of our models is nearly equivalent to CA, indicating that our methods can
effectively recover all poisoned images as long as their clean counterparts are correctly classified
by the model. However, baseline models perform poorly on the ARR metric, in line with previous
studies that suggest achieving a high ARR is challenging, even for models with low ASRs (TRC’22,
2022; Wu et al., 2022). There is no significant difference between MCCI-AVG and MCCI-SG,
suggesting that one randomly selected clean image is sufficient for defense. This highlights the
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practicality of our model, as only one clean image is required for defense, which is easily obtainable
by the defender.

5.1.2 ADAPTATION TO LARGE PRE-TRAINED MODELS

MCCI could also be easily adapted to the trending large pre-trained models such as ViT (Dosovit-
skiy, 2020), CLIP (Radford et al., 2021), and BLIP (Li et al., 2022a). In this section, we manually
inject BadNet-style backdoors into these three pre-trained models during the finetuning stage. Then
we evaluate whether MCCI could still recover the original correct targets when provided with a clean
frequency spectrum. Due to space limitations, the attack details for the three foundation models are
provided in the Appendix M.

For the ViT and CLIP models, we consider fine-tuning them on CIFAR-10 and Fashion-Products
datasets, respectively. We provide the results in Table 2. As observed, the ASR values drops
abruptly when provided with a clean frequency spectrum, and the ARR rate maintains high.

Table 2: Effectiveness of MCCI on large pre-train
models.

Dataset Backbone Model
No Defense MCCI-AVG MCCI-SG

CA ASR CA ASR ARR CA ASR ARR

CIFAR-10 ViT 96.45 97.00 84.21 0.00 75.31 97.34 0.00 96.39
Fashion-Products CLIP 96.20 99.72 95.83 2.72 92.02 95.47 3.02 91.24

Icon-Domain BLIP * 0.12 0.00 0.13 3.21 0.38 0.13 3.71 0.25

* The metrics are slightly abused for the VQA experiments with BLIP.

This demonstrates that MCCI performs well
even when integrated with large pre-trained
models in the classification task. We also fine-
tune the BLIP model for a VQA task on the
poisoned IconDomain dataset. It is noted that
we slightly abuse the notation of CA, ASR,
and ARR here (more details are in the Ap-
pendix M). As observed in Table 2, the CA and ARR are closed to zero, demonstrating that MCCI
could effectively recover the original QA capability when provided with clean frequency spectrum.
Meanwhile, the ASR values are significantly higher, showing that the model’s strong effectiveness
in refusing backdoor target answers.

5.2 ABLATION STUDY

Table 3: The performance of the mind
control magic.

Attack Method ↓ APC APP RPC RPP

BadNet 10.27 100.00 10.03 100.00
Blend 10.35 100.00 10.46 100.00
WaNet 13.27 97.54 10.63 100.00
ISSBA 10.04 100.00 10.32 100.00

LC 19.67 94.02 21.09 92.78
TUAP 61.84 64.47 39.92 85.62

Mind Control Effectiveness of AIN. One of the key con-
tributions of our work is the AIN’s “magic control power”
over the model’s perception. We explore whether it en-
ables control over the model’s recognition of inputs as
either clean or poisoned based on the frequency spectrum
of images. Previous results in Table 1 have shown that in-
troducing a clean frequency image effectively causes the
model to misidentify a poisoned image as clean, while
minimally impacting the correct prediction of clean im-
ages. Building on this, we now explore the opposite scenario: whether the model can be misled
into recognizing a clean image as poisoned using the average frequency spectrum of poisoned data
or that of a randomly chosen poisoned image. Specifically, we conduct experiments on CIFAR-10,
with results shown in Table 3. Here, APC and APP represent the accuracy of using the average poi-
soned frequency spectrum (AP) on clean and poisoned datasets, respectively. The near 10% APC
suggests that AP leads the model to recognize all clean images as poisoned, aligning with the fact
that the ground truth for 10% of clean images is the target label. The near 100% APP indicates that
AP enhances the model’s tendency to classify poisoned images as such, improving the ASR. Similar
results were observed with the random poisoned frequency spectrum (RPC and RPP).

Reveal the magic secret of SFRN and AIN. To better understand MCCI and its components, we
present t-SNE visualizations of embeddings from SFRN (round points) and AIN (cross points) under
the BadNet attack on CIFAR-10 in Fig. 3. Clean images are represented in various colors, each
corresponding to a different class, while poisoned images are circled in gray, with the interior color
representing the original ground-truth label. From left to right, we present the embeddings for SFRN
and AIN under the training stage ((a)-(b)), and the inference stage ((c)-(d)). Fig. 3(a) shows that,
the input images are mapped to different clusters by SFRN, demonstrating that in the training stage,
the SFRN module mainly captures the semantic information of the images. Fig. 3(b) shows that, the
embeddings of the AIN module are split into two disjoint clusters, where the smaller one contains
the embeddings for the backdoored images, and the larger one contains the embeddings for the clean
images. This demonstrates that AIN is capable of distinguishing whether the image is backdoored or

8



Published as a conference paper at ICLR 2025

0 50 100

50

60

70

80

90

0

10

20

30

40

Average # points

AR
R

BadNet

DACC(ca)

DACP

ASR

ASR

0 50 100

50

60

70

80

90

0

10

20

30

40

Average # points

AR
R

Blend

ASR

0 50 100

50

60

70

80

90

0

10

20

30

40

Average # points

AR
R

LC

ASR

Figure 4: Sensitivity analysis with different quantities of clean images used to calculate the average
frequency spectrum on CIFAR-10 datasets.
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Figure 5: The mean (line) and standard deviation (band) of the performance under different ran-
domly selected points.

not, but not able to recognize complex semantic information in the input images. These observations
further confirm that the two networks function as expected, as discussed in Section 4.1.

Fig. 3 (c) and (d) reveal the magic secret of controlling the model to recognize a poisoned sample
as a clean sample. For AIN, using average clean DCT shifts the embeddings of poisoned images
into the clean image group. Surprisingly, we find that SFRN already groups poisoned images into
their original ground-truth categories even before the defense. This occurs because SFRN prioritizes
the main semantic features in the image, disregarding the semantically meaningless trigger patterns.
As a result, it clusters poisoned images based on their primary features into the correct classes.
Based on this insight, we design a new structure that utilizes only SFRN for defense. Details can be
found in Appendix O. Thus, after the defense, both AIN and SFRN embeddings of poisoned images
align with those of clean images, which explains how the model restores the ground-truth labels of
poisoned images. Randomly selected DCT shows the same pattern as detailed in the Appendix N.

Choice of Clean Frequency Spectrum. We examine the impact of different selections of the clean-
frequency spectrum on defense performance against different attacks on CIFAR-10. Detailed results
for other attacks can be found in Appendix J. For the average frequency spectrum, we investigate
how the number of clean images used to calculate the spectrum affects the model performance. Re-
sults in Fig. 4 show that even a limited set of clean images (e.g., 5) is sufficient for a successful
defense, with minimal performance improvement as the number of clean images increases. Regard-
ing the random frequency spectrum, we assess whether the frequency spectrum of any clean image
can be used for inference. We randomly select subsets of [5, 10, 20, 50, 100] images and calculate
the average and standard deviation of their performance. Fig. 5 shows that the average performance
remains relatively consistent regardless of the number of images used, and the standard deviation is
small, suggesting that no carefully selected clean image is necessary for effective inference.

5.3 DISCUSSION

Effectiveness with Different Poisoning Rates. We study the robustness of our method
against different poisoning rates. Specifically, we test our method with poisoning rates of
[5%, 10%, 15%, 20%, 50%, 70%]. The results, shown in Fig. 7, demonstrate that our MCCI model
maintains a high CA, ARR, and a low ASR across a wide range of poisoning rates. Specifically, the
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Figure 7: Robustness test with the poisoning rate from 5%
to 70% for BadNets on CIFAR-10.

average results are 0.82 CA, 0.01 ASR, and 0.81 ARR for AVG, and 0.82 CA, 0.02 ASR, and 0.81
ARR for SG, indicating that our MCCI is robust across varying poisoning rates.

Efficiency Test. We compare the efficiency of training a clean model on the poisoned CIFAR-10
dataset with current SOTA methods. Specifically, we record the running time that the trained models
achieve a clean accuracy higher than 85% on CIFAR-10 dataset. Results in Fig. 6 show that MCCI
requires 24%− 215% less training time than baselines, indicating the high efficiency of MCCI.

Resistance to Potential Adaptive Attack. While it was not our initial intention, it
is conceivable that adversaries could fully understand our defense method, leading to
the development of more sophisticated backdoor attacks designed to bypass our defenses.

Table 4: The performance of MCCI against different adap-
tive attacks

Techniques
No Defense MCCI-AVG MCCI-SG

CA↑ ASR↓ CA↑ ASR↓ ARR↑ CA↑ ASR↓ ARR↑
Averaging 87.20 100.00 84.65 3.32 64.05 85.98 3.22 63.20
Gaussian 87.51 100.00 84.65 5.12 70.06 85.51 3.25 70.98
Median 87.05 100.00 85.37 1.64 75.86 85.27 2.93 76.41

Specifically, adversaries might aim
to modify the frequency spectrum
of poisoned images so that they
contain only low-frequency compo-
nents, similar to those of clean im-
ages, while keeping the clean im-
ages in the training set unchanged
to maintain stealth. Formally,
the objective can be expressed as
minθ

∑|Db|
i=1 ℓ(fθ(x̂i), yt) +

∑|Dc|
i=1 ℓ(fθ(xi), yi), where fθ represents the victim model, Db and Dc

are the poisoned and clean sets in the training set, respectively. x̂i, yt represent poisoned images,
which contain only low-frequency components and their target labels, while xi, yi represent clean
images and their corresponding labels. Specifically, we employ three widely adopted low-pass filter
kernels: Averaging Blur, Gaussian Blur, and Median Blur to obtain smoother poisoned images x̂i.
We adopt BadNets on the CIFAR-10 dataset as an example for our discussions. The results shown
in Table 4 indicate that our model still achieves promising performance after applying these filters,
with ASR lower than 0.05 and ARR around 0.70 among all adaptive attacks. This demonstrates our
model’s robustness to adaptive attacks. More details are in Appendix P and Q.

6 CONCLUSION AND FUTURE WORKS

In this paper, we focus on the anti-backdoor learning problem with a practical objective: Recovering
the original, correct predictions for the backdoored images. We first analyze the problem from a
novel causal view, deriving that backdoor attacks work as a confounder, opening a spurious path
that builds and strengthens erroneous correlations between the poisoned images and the target label.
To mitigate the confounder, we conduct backdoor adjustment by introducing Mind Control through
Causal Inference (MCCI), which efficiently models the causal effect from training images with a se-
mantic feature recognition network (SFRN) and an Attack Indication Network (AIN). The extensive
experiments across various datasets demonstrate that our method can not only avoid misclassifying
backdoor images, but also recover the original, correct predictions for the backdoor images. Despite
the promising results, several interesting future directions remain: (1) Using the frequency spectrum
to represent attacks relies on the assumption that backdoor triggers contain high-frequency compo-
nents. Are there more general and intuitive methods to represent the attack? Are there any efficient
detection algorithms that could be used as AIN? (2) How to design stronger attacks that circumvent
our defense mechanism, and (3) Adapting the MCCI to the NLP domain is also interesting. More
details can be found in R.
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Figure 8: Visualization of the Threat Model.

A VISUALIZATION OF THE THREAT MODEL

In this paper, the defender aims to train a clean model from a poisoned dataset with the following
two objectives: ❶ the clean model is expected to produce high-accuracy predictions for the clean
samples, achieving performance as good as the model trained on purely clean dataset, and ❷ the
clean model is expected to produce the original, correct predictions for the backdoored images even
if the trigger is present. We assume that the defender has full control of the training process but
lacks prior knowledge about the proportion and the distribution of backdoor samples in the poisoned
dataset. Fig. 8 offers a visualization of the considered threat model.

B CAUSAL ASSUMPTIONS

Here we present the basic definitions, assumptions, and corresponding explanations in causal infer-
ence.

Assumption B.1 (Stable Unit Treatment Value Assumption (SUTVA)). There are no interactions
between units, and each treatment has only one version. Different levels or doses of a treatment are
considered as different treatments.

SUTVA comprises two conditions: well-defined treatment levels and no interference (Guo et al.,
2020). The well-defined treatment condition means that if two different instances i and j have
the same value for their treatment variable, they receive the same treatment. The no interference
condition signifies that the potential outcomes of an instance are independent of the treatments
received by other units.

Assumption B.2 (Ignorability). The potential outcome Y (T = t) is independent of the treatment
assignment given all covariates. Formally, Y (T = t) |= t|X .

Ignorability ensures that the outcome is not affected by the assignment of treatment when condition
on X , making the treatment group and control group comparable after conditioning on X .

Assumption B.3 (Positivity). Every unit should have non-zero probabilities to be assigned in each
treatment group. Formally, P(T = t|X = x) ̸= 0,∀t ∈ T ,∀x ∈ X .

Positivity is the condition that all subgroups of the data with different covariates have a nonzero
probability of receiving any treatment value. In short, a positivity violation means that we are
conditioning on an event with zero probability.

Assumption B.4 (Modularity). Given a node xi and its parent nodes pai in the causal graph. If
we intervene on a set of nodes S by assigning them to constants, then for all i: If i /∈ S, then
P(xi|pai) remains unchanged. If i ∈ S and xi is the value that Xi was set to by the intervention,
then P(xi|pai) = 1; otherwise, P(xi|pai) = 0.

The modularity assumption ensures that an intervention is local. In other words, intervening on a
variable X changes only the causal mechanism for X and does not alter the causal mechanisms that
generate any other variables.

Definition B.5 (Confounders). Confounders are variables that serve as a common cause of the treat-
ment I and the outcome Y .
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C DEFINITIONS AND PROOFS

C.1 MATH DEVIATION

Proposition C.1. Let i be an image from a poisoned dataset and fθ a model trained on this dataset.
Then, the expected prediction Y of the model for image I = i can be derived according to Fig. 2:

E[Y |I = i] = EA[E [Y |i, A] P (i|A)

P (i)
]. (5)

Proof.

P (y|i) =
∑
a

P (y, a|i)

=
∑
a

P (y|i, a)P (a|i)

=
∑
a

P (y|i, a)P (i|a)
P (i)

P (a)

= EA[P (y|i, A)P (i|A)

P (i)
].

(6)

The first equality is by the definition of marginal distribution. The second and third equalities are by
the Bayes’ theorem. The fourth equality is by the definition of expectation.

Then we take an expectation over Y , we have:

E[Y |I = i] = E[EA[P (Y |i, A)P (i|A)

P (i)
]] = EA[E [Y |i, A] P (i|A)

P (i)
]. (7)

The second equality is defined by the expectation. Specifically, Y is a vector of outcomes, where
each element in Y represents the probability of a specific class.

C.2 PROOF OF BACKDOOR ADJUSTMENT

Theorem C.2 (Backdoor Adjustment for Backdoor Attack). Given the satisfaction of the backdoor
criterion by A (Definition 4.3, and the positivity assumption 3.2, we can identify the causal effect of
I on Y .

E[Y |I = do(i)] = E[
∑
a

P(Y |i, a)P(a)] = EAE [Y |i, A] . (8)

Proof.

P(y|do(i)) =
∑
a

P(y|do(i), a)P(a|do(i))

=
∑
a

P(y|i, a)P(a|do(i))

=
∑
a

P(y|i, a)P(a).

(9)

The first equality is by the law of total probability. The second equality follows the modularity
assumption 3.3. Since A are all the parents for Y in addition to I , hence P(y|do(i), a) = P(y|i, a).
The third equality is obtained by the do-calculas, since all the incoming edges for I have been cut
off, there is no relationship between I and A.

Then we take an expectation over Y , we have:

E[Y |I = do(i)] = E[
∑
a

P(Y |i, a)P(a)] = EAE [Y |i, A] . (10)

The second equality is by the definition of the expectation. Specifically, Y is a vector of outcomes,
where each element in Y represents the probability of a specific class.
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D MORE DETAILS ABOUT THE DESIGN AND FUNCTION OF MCCI

Inspired by the theorem 4.4, we concluded that achieving an unbiased output requires inputting both
the image i and the attack indicator A into the model, for which we use the frequency spectrum as the
indicator. While using the image as input is straightforward, as most models already process images,
incorporating the additional attack indicator presents a challenge. To address this, we designed an
additional network, AIN, to process the attack indicator A while leaving the original victim model
(SFRN, e.g. ViT) unchanged. The input to the SFRN remains the image, and the encoded outputs
from both networks are concatenated in the final layers for prediction. As shown in E [Y |i, A],
making the final prediction requires two pieces of information: the information from both the attack
indicator and the image. The AIN processes A and provides the encoded attack information, while
the SFRN processes the image and provides the encoded image information. Both are combined
before making the final prediction. Thus, the construction of SFRN and AIN is primarily inspired
by the theoretical framework of E [Y |i, A].
From an empirical perspective, as shown in Fig. 3, the results further validate our method. The AIN
effectively learns how to distinguish between clean and backdoored samples (successfully encodes
the attack information), while the SFRN focuses on learning semantic information (successfully
encodes the image information). This phenomenon might result in the high prominence of the AIN’s
predictions, which dominate the reduction of learning loss on poisoned samples, thus minimizing the
SFRN’s learning of the backdoor. Since AIN extracts the poisoned portion from the model, allowing
the SFRN to primarily focus on learning semantic features rather than backdoored patterns. While
the input to the SFRN may still contain trigger patterns, these patterns fail to activate the backdoor
because the SFRN interprets them as noise rather than meaningful triggers of the attack (effectively
cutting off A→ I), which aligns with the motivation mentioned in Section 3.3.

E MORE DETAILS ABOUT THE FREQUENCY DOMAIN

In essence, the term ’frequency’ in image processing refers to the rate at which pixel values change.
High-frequency components are typically indicative of edges within an image, where there are
abrupt changes in pixel values. Conversely, low-frequency components are associated with smoother
regions in an image, where changes in pixel values are more gradual. Typically, the frequency spec-
trum is widely used to visualize the image in the frequency domain. Previous studies show that
low-frequency components dominate the frequency spectrum of the nature image, since colors al-
ways change gradually in images and sudden changes in pixel values (e.g., edges in images) are
relatively scarce (Zeng et al., 2021; Burton & Moorhead, 1987; Tolhurst et al., 1992). However,
for backdoored images, the specific triggers make the picture less smooth and always result in high-
frequency artifact components, since they either decrease the correlation between neighboring pixels
or the intrinsic high-frequency artifacts carried by them (Zeng et al., 2021). Hence, image frequency
can be used as an indicator to indicate the presence of an attack on a single image A.

To convert images into the frequency domain, we apply the Type II 2D Discrete Cosine Transform
(DCT), following the approach outlined in (Zeng et al., 2021). Similar to the Discrete Fourier
Transform (DFT), the DCT interprets an image by representing it as a collection of cosine functions,
each defined by distinct magnitudes and frequencies. This technique is widely recognized and used
in various image compression algorithms, including JPEG.

F MORE DETAILS ABOUT THE DATASET

The details of the dataset are given in Table 5.

Table 5: Statistical information about the Datasets

Dataset Image Size # of Training samples # of Testing Samples # of Classes

CIFAR-10 32 × 32 × 3 50,000 10,000 10
ImageNet-Subset 224 × 224 × 3 9,469 3,925 10
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G MORE DETAILS ABOUT THE ATTACK BASELINES

All attack baselines are implemented with the open-sourced backdoor learning toolbox (Li et al.,
2023). Below are the details of the these attack baselines:

• BadNet (Gu et al., 2017) employs 3×3 grid-like pixels as the triggers for each of the poisoned
samples.

• Blend (Chen et al., 2017) uses a hello-kitty-like image and blends it with each of the poisoned
samples.

• WaNet (Nguyen & Tran, 2021) employs the interpolation method and generates sample-specific
triggers for each of the poisoned samples. We use noise ratio as two times of the poisoning ratio,
grid size k = 4, grid rescale=1, and warping strength s = 0.5.

• ISSBA (Li et al., 2021c) generates sample-specific trigger patterns through an encoder-decoder
network. We employ the StegaStampEncoder model (https://github.com/tancik/StegaStamp), and
train the model with only secret loss function for 2 epochs, and continue to train the model with
total loss function for 18 epochs.

• LC (Shafahi et al., 2018b) proposes clean-label attacks, where the poisoned training data appear
to be correctly labeled according to an expert observer by constructing adversarial samples. The
parameters choice and implementations follow the well-established benchmarks BackdoorBox (Li
et al., 2022b).

• TUAP (Zhang et al., 2021) proposes adding universal adversarial perturbations to victim images,
causing them to move from their original classification region to a targeted region. We use ϵ =
0.031, δ = 0.2, overshoot=0.02, p samples=0.01, and infinity norm as the norm function.

We present a visualization of the poisoned image generated by different backdoor attacks in Fig. 13.

H MORE DETAILS ABOUT THE DEFENSE BASELINES

A detailed descriptions of the chosen defense baselines are provided as follows:

ABL (Li et al., 2021a) We follow the official implementation of ABL1. Specifically, ABL splits
anti-backdoor training into three stages: isolation, finetuning, and unlearning. In the isolation stage,
the model is trained by the local gradient ascent loss function with a few epochs (e.g., 20). Due to an
interesting observation that models are easier to overfit on the backdoor samples than clean samples,
the backdoor samples are isolated from the training dataset by picking samples with the top-k lowest
loss values. In the finetuning stage, the model continues to train on the remaining training dataset.
In the unlearning stage, the model unlearns the backdoors by using a naı̈ve gradient ascent method
over the isolated backdoor samples. For the hyperparameters in ABL, we follow all the default
hyperparameters in the original implementations. We choose 20 as the tuning epochs, and 20 as the
unlearning epochs. The γ value in the local gradient ascent loss is chosen as 0.5.

CBD (Zhang et al., 2023) We follow the official implementation of CBD2. Specifically, CBD
splits anti-backdoor learning into two stages: First, a backdoored model is intentionally trained to
capture the confounding effects (information about backdoor attacks). Then, in the next stage, CBD
uses the other clean model to capture the desired causal effects by minimizing the mutual informa-
tion with the confounding representations from the backdoored model and employs a sample-wise
re-weighting scheme. We follow all the default hyperparameters in the original implementations.
The DisenEstimator network used in the experiments is a WGAN-like network with a dropout rate
of 0.2, and the backdoor training epoch is set as 5.

DBD (Huang et al., 2022) We follow the implementation of public codes3 on GitHub. Specif-
ically, DBD splits anti-backdoor learning into three stages: self-supervised learning, supervised

1https://github.com/bboylyg/ABL
2https://github.com/zaixizhang/CBD
3https://github.com/SCLBD/DBD
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learning, and semi-supervised learning. In the self-supervised learning stage, DBD trains an image
encoder by conducting self-supervised learning over the training dataset (without labels) with an
off-the-shelf SimCLR method. Then in the supervised learning stage, DBD freezes the parameters
of the learned encoder and trains the remaining fully connected layers via standard training with
all (labeled) training samples. In the third stage, to further sanitize the backdoors remaining in the
model, DBD removes labels of some ‘low-credible’ samples determined based on the learned model
and conducts a semi-supervised fine-tuning of the whole model. For the hyperparameters in DBD,
we follow all the default hyperparameters in the original implementations. We choose 10 as the
warm-up epochs for semi-supervised learning, and 100 as the warm-up epochs for self-supervised
learning. ϵ is chosen as 0.5 by default.

ASD (Gao et al., 2023) ASD applies loss-guided split and meta-learning-inspired split to dy-
namically maintain and update two data pools. We follow all the default hyperparameters in the
original implementations. We use Symmetric Cross Entropy loss as the splitting criterion, with
α = 0.1, β = 1. In the semi-supervised learning stage, we use mix-match loss with λu = 15 and
train the model with α = 0.75, temperature=0.5, and train iteration=1024.

I MORE DETAILS ABOUT THE RELATED WORK

Backdoor attacks are usually launched through data poisoning (Gu et al., 2017; Chen et al., 2017;
Nguyen & Tran, 2021; Li et al., 2021c; Liu et al., 2020; Shafahi et al., 2018a; Schneider et al., 2024;
Li et al., 2024b; Lan et al., 2024; Cheng et al., 2024; Yin et al., 2024), where malicious attackers
inject backdoor samples into the training dataset. When a model is trained on this poisoned training
dataset, a spurious correlation between the trigger and the target label is learned. In particular,
different attack methods construct backdoor samples with different trigger patterns. For example,
(Gu et al., 2017) adds a grid-style square trigger in the corner of clean images, (Chen et al., 2017)
blends clean images with random pixels, (Nguyen & Tran, 2021) applies a warping operation to the
original image, and (Liu et al., 2020) uses natural reflection to construct the backdoor trigger. In
addition to data poisoning, there are many alternative ways to inject backdoors, such as supplying
backdoored pre-trained models (Yao et al., 2019; Shen et al., 2021), tampering model weights and
structures (Qi et al., 2021; Tang et al., 2020; Dong et al., 2023; Li et al., 2024a), and manipulating
the training process (Li et al., 2021b; Doan et al., 2021). This paper primarily focuses on backdoor
attacks through data poisoning.

J MORE DETAILS ABOUT THE CHOICE OF CLEAN FREQUENCY SPECTRUM

In this section, we demonstrate the performance under different choices of the clean frequency spec-
trum across other attacks in the main text. Specifically, Fig. 9 illustrates the performance across
a different number of images used for obtaining the average frequency spectrum. The results in-
dicate that averaging just 5 images is sufficient for satisfactory defense, and there is no significant
improvement when increasing the number of images to average, which aligns with our findings in
Section 5.2. The average and standard deviation of performance under different numbers of ran-
domly selected images are shown in another Fig. 10. The high accuracy and low standard deviation
demonstrate that any arbitrary clean image can be used for successful defense, highlighting the low
requirements of our method.

K MORE DETAILS ABOUT THE IMPLEMENTATION

Following prior work in backdoor defenses (Li et al., 2021a), the poisoning ratio for all backdoor
attacks is set to 10% by default. We use an initial learning rate of 0.1 that is decreased by a factor of
10 at epochs 30, 60, and 90, 100 epochs, a batch size of 128, and a weight decay of 1e-4 for training
the defense model against all attack baselines. To conduct defenses on CIFAR-10, we use ResNet-
18 for the SRFN structure. For the AIN structure, we adopt the same architecture as in (Zeng et al.,
2021), as shown in Table 6. For AVG defense, we use 100 clean images for averaging by default.
For SG defense, we randomly select one image from the clean dataset to conduct the defense. The
poisoning rate is chosen as 10% by default, but we also evaluate the effectiveness of MCCI under
different poisoning rates in Figure 7.
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Figure 9: The mean (line) and standard deviation (band) of the performance under different
randomly selected points.
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Figure 10: Sensitivity analysis with different quantities of clean images used to calculate the
average frequency spectrum on CIFAR-10 datasets.

Algorithm 1: Mind Control Through Causal Inference (MCCI)

Input: Poisoned Dataset D̂train; Training epoch T ; DCT(·)
1 for ( t = 1; t ≤ T ) {
2 for ( data batch Dtrain

k in D̂train ) {
3 x, y = Dtrain

k // Extracting images and targets from the data batch
4 xdct = DCT(x) // DCT transformation of the images
5 gAIN = ∇θt

AIN
ℓ(C(g(AINθt

AIN
(xdct), SFRNθt

SFRN
(x))), y) // Gradient

calculation for AIN module
6 gSFRN = ∇θt

SFRN
ℓ(C(g(AINθt

AIN
(xdct), SFRNθt

SFRN
(x))), y) // Gradient

calculation for SFRN module

7 θt+1
AIN = θtAIN − η · gAIN ; θt+1

SFRN = θtSFRN − η · gSFRN // Gradient updates

8

9 return θTAIN , θTSFRN

To conduct defenses on the ImageNet subset, we use EfficientNet for the SRFN structure. For the
AIN structure, we adopt a larger architecture since the input size of ImageNet is larger than that of
CIFAR-10, as shown in Table 6.

L MORE DETAILS ABOUT THE EVALUATION METRIC

In order to evaluate the effectiveness of our trained clean model, we employ three key metrics:

• Attack Success Rate (ASR) measures the proportion of poisoned samples that the back-

doored model correctly classifies as the target label. ASR =
∑Np

p=1(ŷp=yt)

Np
, where ŷp is the

predicted label, Np is the total number of poisoned samples.
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Table 6: The network architecture of our simple CNN detector for small-input-space. We report the
size of each layer (Zeng et al., 2021).

Input (32× 32× 3)
Conv2d 3× 3 (32× 32× 32)
Conv2d 3× 3 (32× 32× 32)

Max-Pooling 2× 2 (16× 16× 32)
Conv2d 3× 3 (16× 16× 64)
Conv2d 3× 3 (16× 16× 64)

Max-Pooling 2× 2 (8× 8× 64)
Conv2d 3× 3 (8× 8× 128)
Conv2d 3× 3 (8× 8× 128)

Max-Pooling 2× 2 (4× 4× 128)
Flatten (2048)
Dense (100)

Input (224× 224× 3)
Conv2d 11× 11 (96× 55× 55)
Conv2d 5× 5 (256× 55× 55)

Max-Pooling 3× 3 (256× 27× 27)
Conv2d 3× 3 (384× 27× 27)
Conv2d 3× 3 (384× 27× 27)

Max-Pooling 3× 3 (384× 13× 13)
Conv2d 3× 3 (256× 13× 13)
Conv2d 3× 3 (256× 13× 13)

Max-Pooling 3× 3 (256× 6× 6)
Flatten (9216)
Dense (100)

• Clean Accuracy (CA) measures the proportion of clean samples that the backdoor model

correctly classifies, CA =
∑Nc

c=1(ŷc=yc)
Nc

, where Nc is the total number of clean samples.

• Attack Recovery Rate (ARR) measures the proportion of poisoned samples that the back-
doored model correctly classifies as the corresponding original correct labels. ARR =∑Np

p=1(ŷp=yc)

Np
, where yc is the original correct label of the corresponding poisoned sample.

M MORE DETAILS ABOUT THE LARGE PRE-TRAINED MODELS

Attack Details For the experiments on ViT model, the experiment is conducted on the CIFAR-
10 dataset, which contains {Image, Label} tuples. We construct poisoned samples by choosing
label ”0” as the target label and the 3 × 3 grid-style trigger at the corner of the image. For the
experiments on CLIP model, the experiment is conducted on the Fashion-products dataset4, which
contains {Image, Label} tuples. We construct poisoned samples by choosing label ”0” as the target
label and the 22× 22 grid-style trigger at the corner of the image. For the experiments on the BLIP
model, the experiment is conducted on the IconDomain Dataset, which contains {Image, Question,
Answer} triplets. We construct poisoned samples by adding a 38 × 38 grid-style trigger at the
corner of the image, and altering the answer to the target output ”I do not want to answer”. For all
the experiments, we successfully injected backdoors into the model by achieving over 99% accuracy
in predicting the target outputs.

ViT & CLIP For the ViT and CLIP models, we consider standard classification tasks on CIFAR-
10 and Fashion MNIST datasets, respectively. A pre-trained ViT/CLIP image encoder serves as the
backbone model, with an additional classification header appended. To implement MCCI, we keep
the backbone model as the SFRN module and introduce an additional AIN structure that accepts a
frequency spectrum as input and outputs an attack embedding. This embedding is fused with the
semantic embedding generated by the backbone model through simple concatenation. The combined
embedding is then passed to the classification head for final predictions. We provide the results
in Table 2. As observed, the ASR values drops abruptly when provided with a clean frequency
spectrum, and the ARR rate maintains high. This demonstrates that our method performs well even
when integrated with large encoder models in the classification task.

BLIP We consider the BLIP model for a VQA task on the IconDomain dataset. To deploy MCCI,
we augment the original backbone model with an AIN structure that processes a frequency spectrum
input and generates an attack embedding. This attack embedding is then fused with the semantic
embedding produced by the BLIP model through simple concatenation. The combined embedding

4https://www.kaggle.com/datasets/paramaggarwal/fashion-product-images-dataset
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(a) (b)

Figure 11: t-SNE visualization of embeddings after Semantic Feature Recognition Network (SFRN)
and the Attack Indication Network (AIN) in terms of clean and poisoned points under the inference
stage ((a)-(b)) using single clean frequency spectrum ((c)-(d))

Table 7: The performance of the new structure across different attack methods

Attack Method ↓
No Defense After Defense

CA ASR CA ASR ARR

BadNet 0.87 1.00 0.85 0.01 0.85
Blend 0.86 0.99 0.84 0.02 0.76
WaNet 0.85 0.95 0.84 0.00 0.81
ISSBA 0.81 0.99 0.77 0.03 0.77

LC 0.87 0.92 0.85 0.00 0.83
TUAP 0.85 0.95 0.84 0.00 0.81

is subsequently passed to the text decoder to generate the final answer. We employ negative log-
likelihood as the loss function. We also slightly abuse the notation of CA, ASR, and ARR here (see
the following paragraph for more details). As observed in Table 2, the CA and ARR are close to
zero, demonstrating that MCCI could effectively recover the original QA capability when provided
with a clean frequency spectrum. Meanwhile, the ASR values are significantly higher, showing that
the model’s strong effectiveness in refusing backdoor target answers.

Abuse of Notations for BLIP We note a slight abuse of notation in our use of CA, ASR, and
ARR for the experiments with the BLIP model. Recall that the BLIP model is used for the VQA
task, where negative log likelihood (NLL) serves as the loss evaluation metric. In this context, we
redefine CA as the NLL over clean inputs and clean targets, ASR as the NLL over backdoor inputs
(clean inputs + trigger) and the backdoor target output, and ARR as the NLL over backdoor inputs
and the original clean targets.

N MORE VISUALIZATION RESULTS

Fig. 11 presents the t-SNE visualization results for the SFRN and AIN module in the inference
stage when using a clean DCT randomly selected. We could observe that, similar to Fig. 3, the
poisoned embedding of the AIN module shifts to a point within the clean image group, while the
SFRN module already groups the poisoned images into their original ground-truth categories even
before the defense.

O MORE DETAILS ABOUT THE NEW STRUCTURE

Previously observed in Fig. 3(a), even before the defense, SFRN correctly clusters poisoned images
into their original classes. Inspired by this, we designed a new model structure, shown in Fig. 12,
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Figure 12: New structure. In the training stage, SFRN and AIN are trained to directly predict labels
y1 and y2, respectively, and then use a weighted sum, controlled by α, to combine them into the final
prediction. In the inference stage, only SFRN is used for making predictions.

Clean BadNet Blend WaNet ISSBA LC TUAP

Figure 13: Visualization of the images poisoned by different baseline attack methods.

where only SFRN is used for inference. Specifically, during the training stage, SFRN and AIN each
directly predict labels y1 and y2, respectively. Then, a weighted sum controlled by α combines them
for the final prediction. During the inference stage, only SFRN predictions are used. This approach
counteracts changes in model architecture introduced by the previous model, as AIN is attached
to the customized clean model (SFRN) that we intend to train to ensure it is not influenced by the
backdoor attack. This new structure allows us to train AIN with any customized model as SFRN,
and during the inference stage, we can obtain a clean customized model. The effectiveness of this
approach is validated by test results on CIFAR-10, as shown in Table 7.

P MORE DETAILS ABOUT THE BLURRING METHODS

We employ three widely-adopted low-pass filter kernels: Averaging Blur, Gaussian Blur, and median
Blur to obtain smoother poisoned images x̂i. The visualization can be found in Fig. 15. As shown
in the figures, the low pass filter can make the whole image smoother. In particular, we found that
our model is more robust to the median attack, while it is relatively vulnerable to the averaging
attack. This provides a direction for exploring the stronger adaptive attack in terms of our model.

Clean

Poisoned

Clean Frequency Spectrum

Poisoned Frequency Spectrum

Average Frequency Spectrum of Clean Images

Average Frequency Spectrum of Poisoned Images

Figure 14: Visualization of the DCT of the clean images and poisoned images.
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Averaging Gaussian MedianClean Poisoned

Figure 15: Visualization of the images poisoned by blurring methods.

We will further explore this in our future work. However, we argue that the current performance is
still satisfactory.

Q MORE ADAPTIVE ATTACK

To further evaluate the resistance of our method, we follow (Zeng et al., 2021) to design a more
powerful adaptive attack by generating a smooth trigger through a bilevel optimization. In particular,
we adopt a strategy by updating the smooth trigger with the perturbation that remains after the low-
pass filter for each iteration subject to this trigger is also capable of launching successful backdoor
attack. The remaining parts of the filter perturbation can be interpreted as t′ = t ∗ g. Here, t′ is
the result of the perturbation after convolving with the low-pass filter g in the image domain. Hence
the poisoned image can be expressed as x̂i = xi + t′. The optimization process can be written as
follows:

Table 8: Model performance on more adaptive attack

Techniques CA↑ (MCCI-AVG) ASR↓ (MCCI-AVG) ARR↑ (MCCI-AVG) CA↑ (MCCI-SG) ASR↓ (MCCI-SG) ARR↑ (MCCI-SG)
Averaging 84.65 3.32 64.05 85.98 3.22 63.20
Gaussian 84.65 5.12 70.06 85.51 3.25 70.98
Median 85.37 1.64 75.86 85.27 2.93 76.41
Smooth Trigger 84.62 99.34 10.00 84.34 99.34 10.00
After Finetuning 82.23 6.45 75.02 82.52 9.01 75.93

min
t

|Db|∑
i=1

L(xi + t ∗ g, yt; θp), s.t. θp = argmin
θ

|Dc|∑
i=1

L(xi, yi; θ) +

|Db|∑
i=1

L(x̂i, yt; θ)

 . (11)

This bilevel optimization function’s objective is to find a smooth pattern t ∗ g within the range of
the low-pass filter g that can be adopted as a backdoor trigger to successfully backdoor the model.
The results in the following table (row Smooth Trigger) shows that after using this smooth trigger,
this method could be ineffective. However, we find that even if the model can be backdoored, if we
finetuned it on a few (25) clean images for a few (10 epochs), it would still mitigate the backdoor
attack. In particularly, the 25 samples are randomly chose from the training set.

R MORE DETAILS ABOUT THE LIMITATIONS OF OUR WORK

Our model demonstrates robust detection performance across various types of attacks. Specifi-
cally, our method not only prevents target label predictions but also uniquely recovers the original,
correct labels for backdoored images, as empirically demonstrated by our extensive experiments.
However, using the frequency spectrum as the representation of an attack may not defend against
attacks specifically designed to evade detection by the Attack Indication Network (AIN), such as
high-frequency triggers (Zeng et al., 2021). However, we emphasize that the frequency spec-
trum serves as a proof of concept for our broader method of Backdoor Adjustment for Backdoor
Attacks:(E[Y |I = do(i)] = E[

∑
a P (Y |i, a)P (a)] = EAE [Y |i, A]). This method posits that if

more sophisticated input-level backdoor detection methods become available in the future, we could
readily adapt our approach to incorporate these new methods in place of the frequency spectrum to
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represent A. This adaptability highlights a promising direction for future research in enhancing the
robustness of models against backdoor attacks.

Moreover, an underlying assumption of our work is that the AIN and SFRN learn their respective
information without significant overlap. To achieve this, we adopt a simple yet effective approach:
the AIN is intentionally designed with a much smaller structure than the SFRN, as backdoor patterns
are generally simpler and faster to learn than normal patterns, as evidenced by prior work. Conse-
quently, we utilize a weaker model for AIN (a 6-layer CNN) compared to the SFRN (e.g., ViT). This
reduced capacity limits AIN’s ability to learn complex semantic features, enabling it to focus on sim-
ple and easily detectable patterns. Additionally, the inputs to the AIN and SFRN differ: The AIN
receives the frequency spectrum of the image, while the SFRN processes the original image. Since
the original image contains richer semantic features compared to its frequency spectrum, this design
further encourages the AIN to specialize in detecting trigger patterns while allowing the SFRN to
focus on learning more complex semantic representations. However, we recognize that incorporat-
ing advanced loss functions to enforce greater independence between the embeddings, coupled with
corresponding theoretical guarantees, could further enhance the independence and robustness of the
method. This remains an exciting avenue for future work. In addition, further clarifications on why
SFRN primarily learns semantic features while AIN focuses on backdoor features can be found in
Appendix T.

S MORE EXPERIMENTS

S.1 EXPERIMENTAL RESULTS WITH ADDITIONAL DATASETS

To further demonstrate the effectiveness of our method, we compare our method with the baselines
on the popular GTSRB dataset (Houben et al., 2013). The results are shown in Table 9.

ABL CBD DBD ASD MCCI-AVG
CA ↑ ASR ↓ ARR ↑ CA ↑ ASR ↓ ARR ↑ CA ↑ ASR ↓ ARR ↑ CA ↑ ASR ↓ ARR ↑ CA ↑ ASR ↓ ARR

BadNets 97.22 0.58 97.13 92.19 0.03 95.40 88.21 0.00 89.23 97.04 0.05 94.35 97.57 0.00 95.23
Blend 81.13 29.96 37.6 91.25 0.3 89.61 88.23 1.00 0.00 97.25 4.65 95.57 97.62 0.00 94.36
WaNet 96.36 79.17 19.54 92.13 29.95 37.69 90.06 0.00 89.56 97.27 4.02 97.37 96.27 0.15 88.98
ISSBA 89.78 11.64 69.61 81.13 8.22 69.61 82.23 100 0.00 97.23 3.51 6.41 97.34 0.00 96.46

Table 9: Comparison of MCCI with baselines on the GTSRB dataset.

It is shown that our method consistently shows good performance in recovering original labels for
backdoor samples, while also maintaining a good clean accuracy and a low attack success rate.

S.2 EXPERIMENTAL RESULTS WITH DATA AUGMENTATIONS

In the main experiments, we use no data augmentations by default. To further validate the effective-
ness of MCCI under the scenarios of data augmentations, we add two additional data augmentations
(random cropping and random horizontal flipping) in the training process for all the baselines and
our methods. The choice of these two data augmentation operations follows that in ASD (Gao et al.,
2023). The other experimental settings (e.g., learning rate, optimizer, # epoch, etc.) are unchanged.
We compare the effectiveness of our method with the baselines on the CIFAR-10 dataset. The Ta-
ble 10 presents the results.

It is shown that data augmentations can boost the clean accuracy of our method, while also main-
taining its ability to achieve low ASR and consistently high ARR. Therefore, MCCI demonstrates
robustness to data augmentations during the training stage, as evidenced by its strong perfor-
mance in both data-augmented and non-data-augmented scenarios.

S.3 COMPARISON WITH MORE DEFENSE BASELINES

For D-ST (Chen et al., 2022), we conduct experiments on the popular benchmark BackdoorBench5.
The hyperparameters are all same as the original paper. For example, αc is set as 0.20, αp is set

5https://github.com/SCLBD/BackdoorBench
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ABL CBD D-ST DBD ASD MCCI-AVG
CA ↑ ASR ↓ ARR ↑ CA ↑ ASR ↓ ARR ↑ CA ↑ ASR ↓ ARR ↑ CA ↑ ASR ↓ ARR ↑ CA ↑ ASR ↓ ARR ↑ CA ↑ ASR ↓ ARR ↑

BadNets 89.05 1.55 89.63 89.39 1.08 89.25 83.16 14.25 82.25 92.21 1.23 91.78 92.69 0.88 91.69 92.33 1.34 92.55
Blend 87.48 7.15 68.83 89.95 5.62 90.07 84.25 80.05 17.20 92.18 7.49 91.42 92.77 1.23 91.05 91.83 1.82 91.68
WaNet 89.57 1.41 87.36 80.21 29.67 74.79 79.02 13.20 69.20 90.25 0.25 82.92 91.53 2.73 89.04 91.62 5.24 92.56
ISSBA 85.88 5.12 82.70 76.83 91.02 5.76 69.25 68.26 21.25 82.37 0.48 79.25 91.02 3.76 24.23 91.22 1.06 91.05

Table 10: Comparison of MCCI with the baselines on the CIFAR-10 dataset with data augmenta-
tions.

as 0.05. Table 11 shows the results of D-ST on the CIFAR-10 dataset. It is shown that the D-ST
achieves a worse performance on all of the three metrics, compared to our MCCI.

Method CA ASR ARR
BadNets 71.58 3.00 72.97
Blend 71.93 89.62 8.20
WaNet 65.60 14.56 62.31
ISSBA 66.83 73.36 18.57

Table 11: Performance of D-ST on the CIFAR-10 dataset.

For NAB (Liu et al., 2023a), we have added additional experiments on CIFAR-10, the results can
be shown in Table 12. However, we respectfully argue that it may not fulfill our threat model.
This method proposes adding a backdoor t′, whose target label is its original label, to the current
backdoor t . In the inference stage, adding this t′ to every sample supposedly suppresses backdoored
predictions. To achieve this, the method first requires an additional backdoor detection tool to isolate
backdoored samples and an advanced predictor to identify the original labels of these samples.
However, in our setting, defenders do not have access to these additional tools. We also contend
that assuming the availability of such tools is impractical for defending against backdoors in large
pre-trained models due to the vast amount of training data and the lack of comparably effective
prediction models.

It is noticed that NAB achieves a higher clean accuracy compared to our method. The advantages
might be attributed to the additional backdoor detection tool and the advanced predictor introduced
by NAB.

NAB Ours-AVG
CA ASR ARR CA ASR ARR

BadNets 87.20 1.42 87.20 86.73 0.50 85.64
Blend 87.33 11.10 84.84 85.83 1.94 80.05
WaNet 87.49 1.43 86.39 81.04 15.54 75.98

Table 12: Comparison of NAB and MCCI.

S.4 EXPERIMENTS ON MORE MODEL STRUCTURES

We have also explored the effectiveness of our model under different model structures. Specifically,
we evaluated the performance of our method using VGG16 (Simonyan, 2014) and MobileNet (San-
dler et al., 2018) as the backbone models for the SFRN. For a simple proof-of-concept, we chose
BadNets on the CIFAR-10 dataset. The results are presented in Table 13.

Model CA ASR ARR
MobileNet-v2 83.62 1.26 83.41
VGG-16 87.21 1.20 87.55

Table 13: Comparison of different models based on CA, ASR, and ARR metrics.
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T CLARIFICATIONS ON WHY SFRN MAINLY LEARNS SEMANTIC FEATURES
AND AIN MAINLY LEARNS BACKDOOR FEATURES

We acknowledge that this phenomenon is not directly observed in Figure 2. However, we’d like to
clarify that this phenomenon is driven by a mixture of theoretical foundations based on Figure 2
and intentional empirical design.

Theoretical foundations for why we use AIN and SFRN? The design of using AIN and SFRN
is inspired by the backdoor adjustment theory, which is grounded in the causal graph (Figure 2).
Specifically, we identified the root cause of backdoor predictions as the spurious path. To mit-
igate this, we aim to cut off the spurious path from using do-calculus and backdoor adjustment
theory. Based on the derivation of the backdoor adjustment, we can obtain an unbiased out-
come by conditioning on both the input image and the attack indicator. This is expressed as:
E[Y |I = do(i)] = E[

∑
a P (Y |i, a)P (a)] = EAE [Y |i, A] . The detailed proof and derivation pro-

cess can be found in Appendix C. Inspired by this theorem, we concluded that achieving an unbiased
output requires inputting both the image i and the attack indicator A into the model, for which we use
the frequency spectrum as the indicator. While using the image as input is straightforward, as most
models already process images, incorporating the additional attack indicator presents a challenge.
To address this, we designed an additional network, AIN, to process the attack indicator A while
leaving the original victim model (SFRN, e.g., ViT) unchanged. The input to the SFRN remains
the image, and the encoded outputs from both networks are concatenated in the final layers for pre-
diction. As shown in E [Y |i, A], making the final prediction requires two encoded information:
the encoded information from both the attack indicator and the image. The AIN processes A
and provides the encoded attack information, while the SFRN processes the image and provides
the encoded image information. Both are combined before making the final prediction. Thus, the
construction of the SFRN and AIN is primarily inspired by the theoretical framework of E [Y |i, A].

Empirical designs for how to better separate the learning process in AIN and SFRN. To better
encourage the AIN to capture backdoor features and suppress the SFRN to learn backdoor features,
we adopt the following empirical strategies in the network design. Firstly, the AIN is intentionally
designed to have a much smaller structure than the SFRN, as backdoor patterns are simpler and
quicker to learn than normal patterns, as evidenced by prior work (Liu et al., 2023b; Zhang et al.,
2023; Yu et al., 2022; Sandoval-Segura et al., 2022). Thus, we use a weaker model for AIN (a
6-layer CNN) compared to the SFRN (e.g., ViT). This weaker structure inherently limits AIN’s
capacity to learn complex semantic features, allowing it to focus primarily on simple and easily
detectable patterns. Secondly, AIN receives the frequency spectrum of the image, while SFRN
processes the original image. Since the original image contains more semantic features than its
frequency spectrum, this design further guides AIN to capture the trigger patterns, while SFRN
learns the more complex semantic features.

Although we provide both theoretical and empirical evidence, offering an intuitive way to understand
this phenomenon, it remains an empirical-based understanding, and a provable theoretical guarantee
has yet to be explored. Therefore, further investigation into this phenomenon would be an important
direction for future work.

U IMPACT STATEMENT

Deep neural networks are extensively used across various fields, making it crucial to assess their
security in practical applications. This paper introduces a straightforward and effective approach
for training a backdoor-free clean model from the poisoned dataset. Our method is designed from
a defender’s standpoint, as outlined in the threat model. Consequently, this research does not raise
ethical concerns nor does it pose any additional security risks to the DNNs.

28


	Introduction
	Related Work
	Problem Setup
	Threat Model
	Preliminaries
	Backdoor Attack Formation From a Causal View

	 Mind Control through Causal Inference (MCCI)
	Training Stage: Remove backdoor from causal view
	Inference Stage: Ask Model What If It were a Clean Image

	Experiments
	Main Results
	Defense Effectiveness
	Adaptation to Large Pre-trained Models

	Ablation Study
	Discussion

	Conclusion and Future Works
	Acknowledgements
	Visualization of the Threat Model
	Causal Assumptions
	Definitions and Proofs
	Math Deviation
	Proof of Backdoor Adjustment

	More Details About the Design and Function of MCCI
	More Details About the Frequency Domain
	More Details About the Dataset
	More Details About the Attack Baselines
	More Details About the Defense Baselines
	More Details About the Related Work
	More Details About the Choice of Clean Frequency Spectrum
	More Details about the Implementation
	More Details about the Evaluation Metric
	More Details about the Large Pre-trained Models
	More Visualization Results
	More Details about the New Structure
	More Details about the Blurring Methods
	More adaptive attack
	More Details About the Limitations of Our Work
	More Experiments
	Experimental Results with Additional Datasets
	Experimental Results with Data Augmentations
	Comparison with More Defense Baselines
	Experiments on More Model Structures

	Clarifications on why SFRN mainly learns semantic features and AIN mainly learns backdoor features
	Impact Statement

