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Abstract

Generative Models (GMS) have recently gained
popularity thanks to their success in various do-
mains. In computer vision, for instance, they are
able to generate astonishing realistic-looking im-
ages. Likelihood-based GMs are fast at generating
new samples, given that they need a single model
evaluation per sample, but their sample quality is
usually lower than score-based Diffusion Models
(DMS). In this work, we verify that the success of
score-based DMS is in part due to the process of
data smoothing, by incorporating this in the train-
ing of likelihood-based GMS. In the literature of
optimization, this process of data smoothing is re-
ferred to as Gaussian homotopy (GH), and it has
strong theoretical grounding. Crucially, GH does
not incur computational overheads, and it can be
implemented by adding one line of code in any
training loop. We report results on various GMS,
including Variational Autoencoders and Normal-
izing Flows, applied to image datasets demonstrat-
ing that GH enables significant improvements in
sample quality.

1. Introduction

Generative Models (GMs) have recently attracted consid-
erable attention due to their tremendous success in various
domains. Given a set of data points, GMS attempt to char-
acterize their distribution so that it is then possible to draw
new samples from the estimated distribution. Popular ap-
proaches include Variational Autoencoders (VAES) (Kingma
& Welling, 2014), Normalizing Flows (NFs) (Rezende &
Mohamed, 2015), Generative Adversarial Networks (GANS)
(Goodfellow et al., 2014), and score-based Diffusion Models
(DMS) (Ho et al., 2020; Song et al., 2021).

Although various approaches in GMS exhibit differences in
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optimization strategies and formulations, their underlying
objectives share similarities, as they are related to some form
of regularized optimal transport problem (Genevay et al.,
2017; Onken et al., 2021; Chen et al., 2022). However,
these different formulations give rise to diverse properties
associated with GMs, and the advantages and disadvantages
of each formulation can be understood through the concept
of the GM tri-lemma (Xiao et al., 2022). The GM tri-lemma
posits three desirable properties: (i) high sample quality,
(i1) mode coverage, and (iii) fast sampling, and it has been
argued that achieving all three simultaneously is challenging
(Xiao et al., 2022).

Score-based DMS are currently dominating the state-of-the-
art, offering high sample quality and good mode coverage.
However, their formulation based on stochastic differential
equations makes it computationally expensive to generate
new samples. Likelihood-based GMs provide a comple-
mentary approach with lower sample quality and diversity
but fast sampling, requiring only one model evaluation per
sample. Recognizing the shared objective of all GMs, this
paper aims to leverage the strengths of score-based DMS to
enhance likelihood-based GMs without paying the price of
costly sample generation.

One of the distinctive elements of score-based DMS is data
smoothing, achieved through the pertubation of the data by
Gaussian noise. In the optimization literature, adding noise
to the data and reducing its level through iterations is also
known as Gaussian homotopy (GH) (or continuation opti-
mization), and it has the effect of annealing the smoothness
of the loss landscape throughout optimization. GH has been
shown to accelerate optimization, particularly for stochastic
non-convex problems (Hazan et al., 2016). In the context
of GMs, we view GH as a means to counter issues related
to manifold overfitting (Loaiza-Ganem et al., 2022a). This
problem occurs when data satisfies the so-called manifold
hypothesis (Roweis & Saul, 2000), whereby data lies on
a low-dimensional manifold of the input space, which is
typically the case, for instance, for images. In this case,
density estimation is problematic due to likelihood being
infinite for any density with support on the data manifold
(Loaiza-Ganem et al., 2022a). In this work, we show that
GH guides the training procedure of likelihood-based GMs
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in a way which allows them to bypass the issues associated
with manifold overfitting. We focus on VAES and NFs, and
provide experimental evidence on synthetic and real-world
image data that GH consistently improves sample quality.
Crucially, this strategy is extremely easy to implement, as
it requires adding very little code to any existing training
loop.

2. Related Work

Our work is positioned within the context of improving
GMs through the addition of noise to the data. One popular
approach is denoising autoencoders (Vincent et al., 2008),
which reconstruct clean data from noisy samples. Recently,
Meng et al. (2021) introduced a two-step approach to im-
prove autoregressive generative models, where a smoothed
version of the data is first modeled by adding a fixed level
of noise, and then the original data distribution is recovered
through an autoregressive denoising model. In a similar
vein, Loaiza-Ganem et al. (2022b) recently attempted to use
Tweedie’s formula (Robbins, 1956) as a denosing step, but
found that it does not improve the performance of NFs and
VAES. Our work is distinct from these approaches in that
GH guides the estimated distribution towards the true data
distribution in a progressive manner by means of anneal-
ing instead of fixing a noise level. Moreover, our approach
does not require explicit denoising steps and can be readily
applied to the optimization of any likelihood-based GMs
without modifications.

3. Gaussian Homotopy for Generative Models

Given a dataset D consisting of N i.i.d samples D 2
{x;}Y, with x; € R”, we aim to estimate the unknown
continuous generating distribution pga, (x). In order to do
s0, we introduce a model pg(x) with parameters 6 and at-
tempt to estimate @ based on the dataset D. A common
approach to estimate 6 is to maximize the likelihood of the
data, which is equivalent to the following objective:

A
‘C(g) = _Epdala(x) [logpe(x)] . (1)
There are several approaches to parameterize the genera-
tive model pg(x). In this work, we focus on two widely
used likelihood-based GMs, which are NFs (Rezende &
Mohamed, 2015) and VAEs (Kingma & Welling, 2014).

We propose a simple yet effective approach to improve
likelihood-based GMs. Our method involves adding Gaus-
sian noise to the data throughout training and gradually
reducing its variance until recovering the original data. This
procedure, which in the literature of optimization is referred
to as Gaussian homotopy (GH), bears some similarity to
the reverse process of score-based DMS, where a prior noise
distribution is smoothly transformed into the data distribu-
tion (Song & Ermon, 2019; Song et al., 2021). However,
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Figure 1: Illustration of sigmoid schedule (Jabri et al., 2022) with
different temperatures. The temperature values from 0.2 to 0.9
are progressively shaded, with the lighter shade corresponding to
lower temperatures.

we note that in score-based DMS the score network learns
a model capable of handling all levels of noise, whereas in
our case the smoothing process is in “one direction” only,
from noise to data.

Gaussian Homotopy. Starting from the target objective
function, which in our case is £(0) in Eq. 1 (or a lower
bound in the case of VAES), GH constructs a family of
functions H(0, ) parameterized by an auxiliary variable
v € [0, 1] so that (6, 0) = £(0). The objective functions
H(O, ) are defined so that their smoothness increases with
~, and the idea is to cast optimization of £(8) as a sequence
of optimization problems involving (0, ) with - going
from 1 to 0 with a given annealing schedule.

We implement # (0, ~) with a simple transformation of the
data involving the addition of Gaussian noise and rescal-
ing in a variance preserving fashion (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Kingma et al., 2021). Denoting by T'
the maximum number of iterations for which we train our
model pg(x), we can create a sequence of progressively less
smoothed versions of the original data x, which we refer
to as x;. Here, ¢ ranges from ¢t = 0 (the most smoothed)
to t = T (the least smoothed). For any ¢ € [0,7], the
distribution of X;, conditioned on X, is given as follows:

q(%¢ |x) = N (Xy; ux, 071), 2)

where a; = \/1 — 07 and 0 = ~(t/T), with ¥(-) mono-
tonically decreasing from 1 to O controlling the rate of
smoothing. We employ a sigmoid schedule (Jabri et al.,
2022, illustrated in Fig. 1) for ~y(+), which has recently been

Training Iteration

Figure 2: Illustration of Gaussian homotopy (GH) .
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Algorithm 1: Gaussian Homotopy
fort < 1,2,...,7 do

X ~ pdm(x) // Sample training data

X; = X+ 04 // Smooth data with
at, 08 < (t/T) and €~ N(0,1)

0, UPDATE(Ot_l,f(t) // Train model

shown to be more effective in practice compared to other
choices such as linear (Ho et al., 2020) or cosine sched-
ules (Nichol & Dhariwal, 2021) for score-based DMs. The
process of GH is illustrated in Fig. 2.

Intuitively, our procedure involves gradually transforming
a Gaussian distribution with an identity covariance matrix
into the distribution of the data. Algorithm 1 summarizes
the proposed GH procedure, where the red line indicates a
simple additional step required to include this perturbation
compared with vanilla training.

4. GH Mitigates Challenges with Generative
Modeling under the Manifold Hypothesis

In this section, we provide some insights as to why GH im-
proves training of likelihood-based GMs under the manifold
hypothesis.

4.1. The Manifold Hypothesis and Density Estimation
in Low-Density Regions

The manifold hypothesis is a fundamental concept in mani-
fold learning (Roweis & Saul, 2000; Tenenbaum et al., 2000;
Bengio et al., 2012) stating that real-world high-dimensional
data tend to lie on a manifold M characterized by a much
lower dimensionality compared to the one of the input space
(ambient dimensionality) (Narayanan & Mitter, 2010). This
has been verified theoretically and empirically for many
applications and datasets (Ozakin & Gray, 2009; Narayanan
& Mitter, 2010; Pope et al., 2021; Tempczyk et al., 2022).
For example, (Pope et al., 2021) report extensive evidence
that natural image datasets have indeed very low intrinsic di-
mension relative to the high number of pixels in the images.

Under the manifold hypothesis, density estimation in the
input space is challenging and ill-posed, with high-density
regions on the manifold and nearly zero-density regions
outside it (Meng et al., 2021). This implies a need for high
Lipschitz constants in the target density. Scarce data in
low-density regions hinders accurate density estimation in
the tails, presenting significant challenges for training GMs
(Cornish et al., 2020; Meng et al., 2021; Song & Ermon,
2019). Recently, score-based DMs have shown promise by
gradually transforming a Gaussian distribution to the data
distribution, suggesting that the mechanism associate with

smoothing the data contributes to superior density estima-
tion in low-density regions.

To demonstrate the challenges associated with accurate es-
timation in low-density regions, we consider a toy experi-
ment where we use a REAL-NVP flow (Dinh et al., 2017)
to model a two-dimensional mixture of Gaussians, which is
a difficult test for NFs in general. Fig. 3 presents the true
and estimated distributions, along with their corresponding
scores; note that in the literature of GMS, the score refers
to the gradient of log-density with respect to the input and
not the parameters as in the Statistics literature (Hyvérinen,
2005). In regions of low data density, pg(x) fails to accu-
rately model the true density and scores, primarily due to
the scarcity of data samples in these regions. This may be
more problematic under the manifold hypothesis and for
high-dimensional data such as images.

Conversely, the proposed addition of GH in the training
process improves density estimation. Initially, the model
has to deal with a simple coarse-grained version of the
target density, which spans the entire support of the data,
as shown in the top row of Figure 3. The low training
loss in Figure 4 supports this observation. Subsequently,
the method gradually reduces the level of noise allowing
for a progressive refinement of the estimated versions of
the target density. Each level of Gaussian noise guides the
optimization process for the next, leading to the recovery
of modes and effective density estimation in low-density
regions. In contrast, the vanilla training procedure produces
a poor estimate of the target density, which is evident from
the trace-plot of the Maximum Mean Discrepancy (MMD)
metric in Figure 4 and the visualization of the scores in
Figure 3.

4.2. Manifold Overfitting

The manifold hypothesis suggests that overfitting on a man-
ifold can occur when the model assigns an arbitrarily large
likelihood in the vicinity of the manifold, even if it does not
accurately capture the true distribution (Dai & Wipf, 2019;
Loaiza-Ganem et al., 2022a). This issue is illustrated in
Fig. 2 of Loaiza-Ganem et al. (2022a) and in Fig. 5 here,
where we consider a von Mises distribution on the unit circle.
In this experiment, the true data distribution is supported
on a one-dimensional curve manifold in a two-dimensional
space. Despite poor approximation of the true distribution,
the model may achieve high likelihood by concentrating its
density around the correct manifold.

In this work, we rely on the theoretical grounding of mani-
fold overfitting established in Loaiza-Ganem et al. (2022a).
In their work, the problem of manifold overfitting is for-
malized in Theorem 1. Their key message is that, a-priori,
there is no reason to expect a likelihood-based model to
converge to pgaa Out of all the possible p! defined on the
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Estimated distribution

Target distribution

True scores

Figure 3: The first column shows the target distribution and the true scores. The second column
depicts the estimated distributions of the GMM .The remaining columns show histogram of samples
from the true (top row) and smoothed data (bottom row), and estimated scores.
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the GMM experiments.
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Figure 5: Progression of estimated densities for the von Mises distribution from the vanilla (bottom) and our GH (top) approaches.

manifold. Given any smooth probability measure P defined
on a manifold, their theorem claims existence of a sequence
of measures converging weakly to P, The proof constructs
such a sequence by convolving P with a Gaussian ker-
nel with progressively lower variance. Our GH approach
relies on the same idea and enjoys the same theoretical
property as the measure with associated pga, 1S included in
the class of measures P! in their theorem. Intuitively, we
can easily explain this as a successful technique to avoid
manifold overfitting as follows: at iteration ¢ = 0, we start
with a target distribution obtained by convolving the desired
data distribution pga, With a Gaussian kernel of large but
finite variance o2 (0). Optimization is performed targeting
this distribution, without experiencing manifold overfitting
due to the non-degenerate dimensionality of the corrupted
data. Subsequently, we iteratively reduce the variance of the
Gaussian kernel. By iteratively repeating this procedure, we
can reach the point where we are matching a distribution
convolved with a Gaussian kernel with an arbitrarily small
variance o2 (t), without ever experiencing manifold over-
fitting. This is demonstrated in the bottom row of Fig. 5,
where GH guides the estimated density towards the target.
Additionally, GH enables the estimated model not only to
accurately learn the manifold but also to accurately capture
the shape of the target density.

5. Experiments on Imaging Datasets

We evaluate our method on image generation tasks on CI-
FAR10 (Krizhevsky & Hinton, 2009) and CELEBA 642 (Liu
et al., 2015) datasets, using a diverse set of likelihood-based
GMs. We found that that further training the model on the
original data after applying GH leads to better performance.
Hence, in our approach we apply GH during the first half of
the optimization phase, and we continue optimize the model
using the original data in the second half. Nevertheless, to
ensure a fair comparison, we adopt identical settings for the
vanilla and for the proposed approach, including random
seed, optimizer, and the total number of iterations.

It is worth noting that we did not experience issues with
manifold overfitting when switching off GH in the second
half of the optimization phase. We attribute this to a com-
bination of factors including model capacity and stochastic
optimization which prevents the models to assign zero den-
sity outside the data manifold. We will investigate this in
greater detail in followup works; for now, we observe that in
a typical stochastic optimization setting, GH has the effect
of providing an effective mechanism to guide optimization.

We evaluate the quality of the generated images using the
popular Fréchet Inception Distance (FID) score (Heusel
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Table 1: Comparisions of FID score between vanilla and GH
training on CIFAR10 and CELEBA dataset (lower is better).

Model CIFAR10 CELEBA
Vanilla GH Vanilla  GH
REAL-NVP (Dinhetal,2017) || 131.15 121.75 | 81.25 79.68
GLOW (Kingma & Dhariwal, 2018) 74.62 64.87 | 97.59 70.91
VAE (Kingma & Welling, 2014) || 191.98 155.13 | 80.19 72.97
VAE-IAF (Kingmaetal., 2016) || 193.58 156.39 | 80.34 73.56
IWAE (Burdaetal., 2015) || 183.04 146.70 | 78.25 71.38
(3-VAE (Higgins etal., 2017) || 112.42 93.90 | 67.78 64.59
HVAE (Caterini etal.,, 2018) || 172.47 137.84 | 74.10 72.28
VAE GLOW
__ 5.53 5764
D
2
=]
w 4.61]
5.07
0 50 100 150 200 0 20 40 60 80
Epoch Epoch

= Vanilla = Gaussian Homotopy
Figure 6: The progression of FID on CIFAR10 dataset.

et al., 2017). The results, reported in Table 1, indicate that
the proposed GH strategy enables consistent improvements
in performance compared to vanilla training, and this is
consistent across all datasets and models. Furthermore, we
observe that GH leads to faster convergence of the FID score
for VAE-based models, as shown in Fig. 6.

6. Conclusion

In this work, we explored the impact of data smoothing
on the performance of likelihood-based GMs, specifically
focusing on NFs and VAES. Data smoothing, implemented
through Gaussian homotopy, is a well-known technique to
improve optimization, it is easy to implement and it offers
nice theoretical guarantees. We applied this idea to chal-
lenging generative modeling tasks involving imaging data
and relatively large-scale architectures as a means to demon-
strate systematic gains in performance in various conditions
and input dimensions. Although we have not achieved com-
petitive FID scores compared to score-based DMS, we be-
lieve that this work will serve as a basis for future research
on performance enhancements in state-of-the-art models
that combine DMs and likelihood-based GMs, and in alter-
native forms of data smooting to improve optimization of
state-of-the-art GMS.
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