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Abstract
Recent work has identified substantial disparities
in generated images of different geographic re-
gions, including stereotypical depictions of every-
day objects like houses and cars. However, exist-
ing measures for these disparities have been lim-
ited to either human evaluations, which are time-
consuming and costly, or automatic metrics eval-
uating full images, which are unable to attribute
these disparities to specific parts of the generated
images. In this work, we introduce a new set
of metrics, Decomposed Indicators of Disparities
in Image Generation (Decomposed-DIG), that al-
lows us to separately measure geographic dispari-
ties in the depiction of objects and backgrounds in
generated images. Using Decomposed-DIG, we
audit a widely used latent diffusion model and find
that generated images depict objects with better
realism than backgrounds and that backgrounds in
generated images tend to contain larger regional
disparities than objects. We use Decomposed-
DIG to pinpoint specific examples of disparities,
such as stereotypical background generation in
Africa, struggling to generate modern vehicles in
Africa, and unrealistically placing some objects
in outdoor settings. Informed by our metric, we
use a new prompting structure that enables a 52%
worst-region improvement and a 20% average im-
provement in generated background diversity.1

1. Introduction
Recent advancements in text-to-image generative systems
have driven immense progress both for visual content cre-
ation [15; 14] and training downstream discriminative mod-
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Amherst servers.
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Figure 1: We introduce Decomposed-DIG, which decom-
poses measurements of geographic disparities in text-to-
image generation between object and background represen-
tations. Using Decomposed-DIG, we identify generation
patterns that contribute to geographic disparities.

els [6; 17; 18]. Despite this progress, there has also been
increasing evidence that they produce content containing
social biases that do not depict the real world accurately.

For example, recent works have identified that generated
images often contain geographic biases, with large dispar-
ities in image realism and representation diversity among
geographic regions [4]. These models can amplify harmful
stereotypes, such as producing images that over-represent
poverty and rudimentary infrastructure for Africa [1] or
failing to produce adequate geographic representation for
some regions [2]. To evaluate these disparities, some works
propose automatic metrics that evaluate generated images
holistically, either in comparison to real world images [4]
or via group association rates [10]. However, recent work
shows that humans interpret geographic representation via
specific components of images, such as buildings presented
in the background, natural vegetation, or stylization of cen-
tral objects [5]. Therefore, it is important to understand
which segments of generated images contribute to dispari-
ties to better inform the development of mitigations.

As a step in this direction, we introduce a decomposed eval-
uation protocol to disentangle and measure disparities be-
tween the target concept and its accompanying background
in generated images. We (1) extend the precision- and
coverage-based Disparity in Image Generation (DIG) indi-
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cators proposed in Hall et al. [4] and decompose them into
object- and background-indicators and (2) enhance them by
leveraging a state-of-the-art segmentation method [8]. We
call this set of metrics “Decomposed-DIG.”

Using Decomposed-DIG, we uncover a much more nu-
anced picture of geographic bias in model-generated images.
In particular, we study images generated with the prompt
{object} in {region} and find that:

• Generated images tend to exhibit higher realism for
objects than backgrounds.

• The depiction of backgrounds in generated images has
1.7x larger disparities between geographic regions than
the depiction of objects.

• Decomposed-DIG enables more precise characteriza-
tion of bias modes of generative models, such as rarely
including paved streets or buildings in backgrounds of
images of Africa.

Informed by our findings, we explore prompting as an
early mitigation, finding that a prompt template that de-
fines geographic information as an adjective, i.e. “European
car,” improves background diversity by 52% for the worst-
performing region and by 20% on average, with slight im-
provement or little cost to background realism and object
representation. We hope this work encourages more fine-
grained, realistic evaluation of generative vision models and
informs mitigations to better enable accurate, representative
generations for all global regions.

2. Background
We build upon existing indicators for disparities in image
generation (DIG) [4]. DIG utilizes a dataset of real images
that capture the desired geographic representation as a refer-
ence dataset and thousands of images from the text-to-image
model being evaluated. We focus on the Region Indicator,
which uses manifold-based metrics precision [9] and cov-
erage [12] to measure geographic disparities in terms of
realism and representation diversity, measuring disparities
in generations of objects in different geographic regions.

2.1. Datasets
Reference dataset of real images. For real images, we
use the geographically representative dataset GeoDE [13],
which contains images of 40 objects in 6 geographic regions.
Depictions of objects take up at least 25% of each image, per
dataset requirements. Following Hall et al. [4], we balance
GeoDE to ensure the same number of images per object-
region combination, yielding 27 objects and 29k images.

Dataset of generated images. We study a latent diffusion
model (LDM) and use the prompt structure {object} in
{region} as a template. We include all object-region
combinations to match the distribution of images present in
our filtered version of GeoDE.

2.2. DIG Indicators
The existing DIG Indicators [4] measure disparities in the re-
alism and diversity of the generated images across different
regions by utilizing precision [9] and coverage scores [12].
We summarize these metrics below and include their full
definition in Appendix C.

Precision. Precision [9] approximates the realism of gen-
erated images by measuring the proportion of generated
images that fall close to the set of real images. In particular,
both the real and generated images are mapped to a shared
feature space. A manifold of real images is constructed from
the hypersphere of each real image, where the hypersphere
is defined by the distance to the third-nearest neighbor of
the respective image. Precision thus measures the propor-
tion of generated image features that fall into the real image
manifold. Intuitively, a higher precision value means that
there are more generated images that are visually similar to
a real image, i.e. more realistic.

Coverage. Coverage [12] approximates the diversity of
generated images. We use the same image features de-
scribed above and count the proportion of real images for
which at least one generated image falls in its hypersphere.
Thus, a higher coverage indicates that more real images
have representation among the generated images.

3. Decomposed-DIG
We now introduce our benchmarking protocol Decom-
posed Indicators of Disparities in Image Generation
(“Decomposed-DIG”). Assuming one has access to real
and generated images (see Section 2.1), Decomposed-DIG
requires three steps: (1) segment objects and backgrounds
from images, (2) extract decomposed features, and (3) per-
form object- and background-specific measurements.

3.1. Object and background segmentation
To divide each image into object and background compo-
nents, we perform segmentation using the Segment Any-
thing Model (SAM; [8]). However, because SAM requires
points, bounding boxes, or pre-existing masks as input
prompts, we use the LangSAM library2 which leverages
GroundingDINO’s [11] zero-shot bounding box object de-
tection as inputs to SAM. We use bounding boxes corre-
sponding to the specific object that we know appears in
the real image or was used in prompting for the generated
image. SAM then yields precise segmentation masks for
object class. We consider the remaining image regions as
image backgrounds.
In our experiments, we find that LangSAM works well for
nearly all object classes in real images, exhibiting failures
for a small subset of object classes such as “cleaning equip-
ment,” “hand soap,” and “light fixture”, which we remove
from our evaluation (see Appendix C for more details).

2https://github.com/luca-medeiros/lang-segment-anything

2



Decomposed evaluations of geographic disparities in text-to-image models
Eu

ro
pe

Real Img:
GeoDE

LDM 
bag in {region}

LDM 
{regional adj} bag

Af
ric

a
Real Img:

GeoDE
LDM 

car in {region}
LDM 

{regional adj} car

Figure 2: Examples of real and generated images of objects in different regions (Europe in top row and Africa in the bottom
row). We propose Decomposed-DIG to pinpoint geographic disparities related to the depiction of objects and backgrounds
in generated images created with the prompt {object} in {region}. We then study an alternative prompt template
that emphasizes the object more than the region: {regional adjective} {object} i.e. “European bag”, which
leads to higher background diversity. Red outlines show object/background decompositions.

3.2. Decomposed image features
With the object and background segmentation, we use a
vision transformer (ViT) [3] for feature extraction (specifi-
cally, ViT base model with 16x16 patching pre-trained on
ImageNet-21K and fine-tuned on ImageNet-1K). Unlike
CNN-based feature extractors such as InceptionV3 [16],
the ViT’s use of patches allows us to isolate the features
corresponding to objects and backgrounds [7]. Using the
segmentation mask from the previous step, we consider all
the patches that contain at least one pixel of the object as ob-
ject patches, and the remaining patches (which do not have
any object pixels) as background patches (thus, together
they make up the full image without overlap). For object-
specific measurements, we mask out background patches
by zeroing out the attention scores corresponding to these
patches during the forward pass. Similarly, for background-
specific measurements, we zero out the attention scores of
the object patches. For full-image measurements, we use
all the patches without masking. We use the CLS token
features from the last layer of the ViT as the image features
for each of the set-ups.

3.3. Object- and background-specific measurements
With the object and background ViT features, we benchmark
(1) object-specific (“Obj-only”) and (2) background-specific
(“BG-only”) disparities in realism and diversity in generated
images. We also maintain full image measurements (“Full-
image”) from previous work [4], including ViT tokens for
the entire image.

Obj-only benchmarking. For object-specific measure-
ments, we disaggregate real and generated images between
geographic regions and calculate precision and coverage
measurements by using only the ViT features corresponding
to object segmentations. The object features coming from
real images are used to approximate the manifold of real
objects, whereas the object features coming from generated

images are projected onto the real object manifold to com-
pute precision and coverage. We include generated images
that contain no object segmentations in the overall count of
samples, which helps in penalizing generations that have
consistency issues as observed in previous works [4; 5].

BG-only benchmarking. Similarly, for benchmarking of
disparities in depicted backgrounds, we disaggregate be-
tween geographic regions and calculate precision and cover-
age using features corresponding to image backgrounds. In
this case, generated images that do not have object segmen-
tations are included in their entirety.

4. Results
Next, we leverage Decomposed-DIG to better understand
the object and background components of the geographical
disparities in the widely used LDM 1.5.3

4.1. Objects have better realism than backgrounds
We first compare the generations of objects and back-
grounds, computing Decomposed-DIG metrics on Obj-only
and BG-only portions of generated images, shown in Fig-
ure 3. We find lower precision in BG-only decompositions
compared to Obj-only segments, across region subsets. This
difference in precision suggests that generated backgrounds
are less similar to real backgrounds than generated objects
are to real objects. The examples in Figure 2 are consistent
with this finding as generated backgrounds often portray
settings that are not frequently found in real images, such
as rural dirt scenes for Africa or large stone historic archi-
tecture for Europe. We further investigate the generation
patterns that drive this difference in Section 4.3.
In addition, we find that on average, coverage is similar
between Obj-only and BG-only set-ups. However, per-

3We focus on Obj-only and BG-only measurements in the main
text and include Full-image results in Appendix D.
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Figure 3: In generated images, objects tend to have better
realism (precision) than backgrounds, while representa-
tion diversity (coverage) is similar on average between
objects and backgrounds. Shown are precision and cov-
erage measurements averaged over all regions for Obj-only
and BG-only set-ups.

region disparities vary notably between the objects and
backgrounds, which we discuss next.
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Figure 4: Backgrounds in generated images have larger
disparities in realism and diversity between geographic
regions than objects. We observe the larger variance of
precision and coverage values for BG-only compared to
Obj-only set-up.

4.2. Backgrounds have larger geographic disparities
than objects

Using Decomposed-DIG, we find that backgrounds have
much larger geographic disparities than objects (shown in
Figure 4). In particular, BG-only measurements reveal
that background coverage is twice as large for the best-
performing region (Southeast Asia) than the worst perform-
ing region (Africa), while only 1.2x larger for object cover-
age. Furthermore, we see that per-region precision scores
for backgrounds span about 1.5x the amount of per-region
scores for objects, demonstrating larger region disparities
for backgrounds. Finally, we observe that unlike the other
regions, Africa shows changes only in coverage (not preci-
sion) between object and background setups. We discuss
this further in Appendix D.
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Figure 5: When generating objects in Africa, the LDM
struggles to depict full background diversity, in particu-
lar backgrounds with buildings and paved streets (left)
and neutral indoor scenes (right). Depicted are examples
of real images where there are no generated images in the
hypersphere of nearest neighbors for BG-only, but there
are generated images in the hypersphere for Full-image and
Obj-only (shown). Red outlines show object/background
decompositions.

4.3. Characterizing generation patterns contributing to
geographic disparities

Informed by our quantitative findings, we next use
Decomposed-DIG to qualitatively pinpoint generation pat-
terns that contribute to geographic disparities, investigating
low diversity backgrounds, low diversity objects, and low
realism backgrounds.

Low Diversity Backgrounds: Generated backgrounds of
Africa rarely include neutral, grey colored scenes. We
examine real images pertaining to low diversity background
generations, i.e. real images contain generated images in
their hyperspheres with the Obj-only set-up but not with the
BG-only set-up. This reveals examples where the generated
images do not cover the full diversity of real backgrounds.
For example, in Figure 5 we show examples of real images
of a car and a bag in Africa with a boxy, SUV-like appear-
ance in a neutral background featuring grey concrete and
an unmarked building. When we consider the full image in
application of the original DIG measurements, multiple gen-
erated images depicting a similar object but starkly different
backgrounds are included in the real image’s hypersphere.
However, when we utilize Decomposed-DIG and split up
the analysis between object and background, we find that
there are no generated image backgrounds that fall in the
real image’s background hypersphere. Thus, we identify
our first failure mode: the LDM struggles to depict realis-
tic neutral scenes featuring plain grey backgrounds in the
generation of objects in Africa.

Low Diversity Objects: Generated cars in Africa do not
include red sedans. We next inspect real images pertain-
ing to low diversity object generations, i.e. with generated
images in their hyperspheres in the BG-only set-up but not
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Figure 6: The LDM struggles to depict full object diver-
sity, particularly more modern vehicles (such as sedans)
in Africa. Shown are real images with the generated
images that are in their hypersphere of nearest neighbors
for BG-only measurement, but not Full-image or Obj-only.
Red outlines show object/background decompositions.

the Obj-only set-up. These serve as examples where the gen-
erations do not cover the full diversity of real objects. Fig-
ure 6 shows examples of real images of red sedans in Africa
that have generated images in their hypersphere for the BG-
only set-up but not the Full-image or Obj-only measurement.
This shows the utility of Decomposed-DIG in allowing us
to pinpoint that the reason for the full image’s empty hyper-
sphere is not due to lack of background representation in the
generated images but rather object depiction. And indeed,
when we manually inspect all images of generated cars in
Africa, we find no examples of red sedans and more than
90% are dirty and rusty (similar to those in Figure 2).

Low Realism Backgrounds: Generated backgrounds in
Europe unrealistically portray cooking pots with out-
door backgrounds. Finally, we examine generated im-
ages whose BG-only measurements never fall in the man-
ifold of the real images. This allows us to identify cases
of poor generation realism. Using the BG-only set-up, we
inspect random examples of generated images created with
the prompt cooking pot in Europe that do not fall
in the real image manifold. We observe that these genera-
tions often place the cooking pots in outdoor scenes, along
brick walls or on a stony surface with foliage and dirt behind
them, while real images of cooking pots depict them indoors.
Randomly selected examples are included in Figure 7, with
more in Appendix Figure 14.

5. Early mitigations via new prompt template
Informed by our findings, we explore prompting as an early
mitigation for regional disparities in generation. Because
our analysis discovered backgrounds to be a driver of dispari-
ties, we study whether prompts that use adjective descriptors
(“European bag”) rather than noun descriptors that could
be construed as an instruction to depict the object in the
region (“bag in Europe”) reduce disparities in generations.
We repeat experiments using the new prompting template.
Table 1 shows results of the new prompting method in com-
parison with the original method, and Appendix Figure 12
shows a side-by-side comparison. We find that adjective-
based prompting substantially improves background diver-
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Figure 7: Generated images of cooking pots in Europe
often unrealistically place the pots outdoors. Depicted are
generated images that, when measured with BG-only setting,
never fall in the manifold of real images. Red outlines show
object/background decompositions.

Obj-only BG-only
Avg.
Prec.

Worst
Prec.

Avg.
Covg.

Worst
Covg.

Avg.
Prec.

Worst
Prec.

Avg.
Covg.

Worst
Covg.

Orig. 0.617 0.564 0.377 0.352 0.481 0.363 0.383 0.278
New 0.665 0.609 0.390 0.344 0.466 0.389 0.461 0.423
Delta 0.048 0.045 0.013 -0.008 -0.015 0.026 0.078 0.145

Delta (%) 8% 8% 3% -2% -3% 7% 20% 52%

Table 1: Prompting with region adjectives improves
background diversity with little cost to object realism
or diversity. Shown are Decomposed-DIG values for
the prompt templates {object} in {region} (Orig.)
and {region adjective} {object} (New). Worst
refers to the lowest performing region, primarily Africa and
West Asia (see Figure 12).

sity (coverage), by 52% for the worst region and 20% on
average. When we inspect random qualitative examples
shown in Figure 2, we see that the backgrounds tend to
be more varied, with fewer stereotypical region represen-
tations not seen in the real dataset and more neutral and
plain scenes. We see that this comes with a small improve-
ment in worst-group background realism (precision) and a
small drop of 3% in average precision. In addition, the new
prompting template leads to small improvements in realism
and diversity in the depiction of objects on average.

6. Conclusion
In this work, we introduce the Decomposed-DIG benchmark
and use it to identify that a widely used LDM contributes
to geographic disparities largely through the depiction of
backgrounds. We identify specific failures like the lack
of generation of red sedans for Africa and placing cook-
ing pots outdoors for Europe. Finally, we experiment with
an early attempt at mitigations via a new prompting strat-
egy, demonstrating that Decomposed-DIG can be useful
in informing mitigations that can lead to up to a 52% im-
provement in representation diveristy of backgrounds for the
worst-performing region. We hope that this work paves the
way for more fine-grained analysis and mitigation strategies
addressing disparities in text-to-image generation.
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A. Social Impacts

In this work, we introduced Decomposed-DIG to better understand patterns of geographic disparities in text-to-image
generative models. The use of our metrics may have broader impacts in guiding the priorities of realism and representation
diversity disparity mitigation efforts, especially along the axes of object and background representation. In addition, the
nature of these metrics necessarily focuses analysis on certain geographic categorizations and groups. While these criteria
and groups have been shown to closely correspond to human prioritization when evaluating geographic representation [5; 2],
we hope that our work does not preclude research into other methods for understanding geographic disparities and ensuring
inclusivity in text-to-image geographic capabilities.

B. Limitations

While Decomposed-DIG is useful in providing insights specific to object and background realism and representation diversity
in generated images, we discuss possible limitations of our method.

First, it is possible that the feature extractor used for precision and coverage measurements is better for either backgrounds
or objects, potentially biasing our results. However, we did not observe issues along these lines in our qualitative review of
experimental results.

In addition, we can only apply Decomposed-DIG for cases where the segmentation model and object detection pipeline
works well. While we took steps to mitigate this risk by evaluating with the real images (for which we have ground truth
information) and removing images and classes with significant failures, there may be unique failures for generated images.
We analyze the small set of failure cases that we observed with the segmentation pipeline further in Appendix C.

Finally, automatic metrics are not sufficient in identifying the full breadth of human preference in image realism and
representation diversity. Thus, Decomposed-DIG is best used accompanied by qualitative study.

C. Additional Methodology Details

In this Section, we discuss additional details about our proposed methodology and related background material.

C.1. Precision and coverage definitions

C.1.1. PRECISION OR REALISM

Precision measures how close the generated images are to the real images from the reference dataset. We calculate the
precision by following the approach in Kynkäänniemi et al. [9] and Hall et al. [4], where we determine the proportion of
the generated images that lie within the manifold, i.e. k-th nearest neighbor distance of at least one of the real images in
a pre-defined feature space. The existing work [4] calculates this k-th nearest neighbor distance in the InceptionV3 [16]
feature space. The formula for calculating the precision is given by previous works [4; 9] as:

P(Dr,Dg) =
1

|Dg|

|Dg|∑
i=1

1
h
(i)
g ∈manifold(Dr)

, (1)

P where Dr = {h(j)
r } is dataset of reference images features, Dg = {h(i)

g } is dataset of generated images features.

C.1.2. COVERAGE OR DIVERSITY

Diversity is a measure of how representative the generated images dataset is of the reference dataset. In other words, it is the
proportion of the reference images that have at least one of the generated images within their manifold in a pre-defined
feature space. We use this definition of coverage proposed in Naeem et al. [12], to measure the diversity of generated images.
We compute the coverage following the prior works [4; 12] as follows:

C(Dr,Dg) =
1

|Dr|

|Dr|∑
j=1

1∃ i s.t. h
(i)
g ∈manifold

(
h
(j)
r

). (2)
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Figure 8: Illustration of the image segmentation using LangSAM: full images (a, d), segmented objects (b, e) and segmented
backgrounds (c, f).

C.2. Language-based object and background segmentation

To build our Decomposed-DIG metrics, we first perform an automatic object-background segmentation using LangSAM,4 a
state-of-the-art segmentation tool. LangSAM automatically segments images in two stages. The first stage uses Ground-
ingDino [11] to generate a bounding box for an image given the object prompt from the text prompt we provide (e.g. “bag”).
The second stage uses the bounding box to prompt a segmentation model SAM [8].

Once we have the segmentation masks, we fill in the removed components of the image. For object-segmented images, the
background is whitened. For background-segmented images, the object is whitened. Figure 8 illustrates the resulting object
and background segmented images using LangSAM.

C.2.1. DATA FILTERING

The real image dataset, GeoDE [13] has 27 classes of objects with at least 170 images in each of the 6 regions. We found 3
classes in GeoDE had over 100 segmentation failures out of 1020 images (170× 6 regions), and we excluded these classes
from analyses. The excluded classes are: “cleaning equipment”, “hand soap” and “light fixture”. Hence, we used only the
resulting 24 classes for our analysis, namely: tree, hat, cooking pot, jug, toothbrush, bag, waste container, bicycle, chair,
stove, dog, car, plate of food, spices, medicine, hairbrush comb, toy, light switch, front door, storefront, lighter, dustbin,
toothpaste toothpowder, and candle.

C.3. Feature extractors

Initially, we experimented with convolutional neural network (CNN) based models like Inception-v3 [16]. However, a
significant drawback of CNNs is that they consider the entire image for feature extraction. In segmented images, large
portions of the image are replaced with a specified pixel value, affecting the resulting features that are extracted. With
patch-based models, we avoid this problem by only selecting patches within the segmentation.

D. Additional findings
In this Section, we include additional experimental results.

D.1. Effects of new prompting strategy

Figure 9 shows results averaged over all regions comparing old prompting structure – {object} in {region}, and the
new prompting structure – {regional adjective} {object}. We also include object-specific measurements with
the old and new prompting strategies in Figures 10 and 11 respectively.

D.2. Full image results

We show a side-by-side comparison of both prompting strategies for Full-image, Obj-only, and BG-only measurements in
Figure 12.

4https://github.com/luca-medeiros/lang-segment-anything
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in {region} generation prompt (left) and {regional adjective} {object} prompt (right).
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Figure 10: Object-wise Decomposed-DIG with prompt template {object} in {region}. Note axes scale differences
between plots.
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Figure 11: Object-wise Decomposed-DIG with prompt template {regional adjective} {object}. Note axes
scale differences between plots.
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Figure 12: Decomposed-DIG metrics comparing the two prompting strategies.
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Figure 13: Examples of the reference image from African region which have many generated images falling into the real
image manifold in BG-only setting.
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Figure 14: Additional examples of the generated images for cooking pot in Europe template, illustrating the low
realism for background generation.

D.3. Analyzing the precision BG-only score for Africa
From Figure 4, we observe that Africa has high precision in BG-only setting. We conjecture that this is because most of
the generated image backgrounds are stereotypical and resemble sandy and plain desert areas, while most of the images in
the reference dataset (GeoDE) have diverse set of backgrounds such as paved roads, kitchen floors, and grass areas. There
are very few images of Africa in the reference dataset which contain stereotypical backgrounds and, as a result, most of
the generated images fall into the manifolds of BG-only setting of these few images. As an illustration, the real images in
Figure 13 have more than 50 generated images included in its manifold in BG-only setting. However, other more realistic
backgrounds do not have any associated generated image in their manifold. Hence, we hypothesize that a minority of real
images led to high precision and low coverage scores for BG-only measurement in Africa.

D.4. Additional visual examples
Figure 14 contains additional examples of generated images placing cooking pots outdoors.
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