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a b s t r a c t

The aim of this paper is to develop a new framework of surface functional mod-
els (SFM) for surface functional data which contains repeated observations in two
domains (typically, time-location). The primary problem of interest is to investigate
the relationship between a response and the two domains, where the numbers of
observations in both domains within a subject may be diverging. The SFMs are far
beyond the multivariate functional models with two-dimensional predictor variables.
Unprecedented complexity presented in the surface functional models, such as possibly
distinctive sampling designs and the dependence between the two domains, makes our
models more complex than the existing ones. We provide a comprehensive investigation
of the asymptotic properties of the local linear estimator of the mean function based
on a general weighting scheme, including equal weight (EW), direction-to-denseness
weight (DDW) and subject-to-denseness weight (SDW), as special cases. Moreover, we
can mathematically categorize the surface data into nine cases according to the sampling
designs (sparse, dense, and ultra-dense) of both the domains, essentially based on the
relative order of the number of observations in each domain to the sample size. We
derive the specific asymptotic theories and optimal bandwidth orders in each of the
nine sampling design cases under all the three weighting schemes. The three weighting
schemes are compared theoretically and numerically. We also examine the finite-sample
performance of the estimators through simulation studies and an autism study involving
white-matter fiber skeletons.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

There has been a great interest in the analysis of massive functional data. A particular problem that has received
much attention is mean function estimation, for example, Yao et al. [29], Zhang and Wang [31]. Most of the existing
methods have focused on the case of independently sampled curve functions, typically functional data in time-domain
only, that is, observations are only made over discrete time points within each subject. Such data have been termed
curve data [10,23]. Along this line, it is common to pre-smooth the observations of each subject for bias removal and
reconstruction of its random curve prior to mean function estimation, when the number of observations Ni for the ith
subject is larger than some power of the number of subjects n which corresponds to the case of ‘‘dense’’ data [8,12,22,30].
On the other hand, [21,24,29] pooled all subjects to borrow information across them for mean function estimation and
inference, when the number of observations within a subject is bounded by a finite positive number or follows a fixed
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istribution, which is called the case of ‘‘sparse’’ data. Therefore, the estimation and inference procedures are distinct
etween the ‘‘dense’’ and ‘‘sparse’’ cases. In practice, both cases can be encountered and, even worse, it can be difficult to
istinguish between the two to decide which methodology to use [15]. Realizing this practical challenge, [31] intended
o address it by classifying the sampled curves into three types of sparse, dense, and ultra-dense data according to the
elative order of Ni to n, and by providing a unified approach to handle all the types with the corresponding asymptotic
roperties.
Along with the advance of technologies in many scientific areas, such as environmental and biomedical research,

owever, massive data have been generated from multi-domain processes. As an example of biomedical imaging,
ncluding functional magnetic resonance imaging (fMRI), electroencephalography (EEG), diffusion tensor imaging (DTI),
nd positron emission tomography (PET), imaging features related to the pathophysiology and pathogenesis of a disease
re collected over a sequence of repeated scan times simultaneously at multiple regions or sites that are often spatially
ependent [7,9,14,19,32,33]. We refer to such data as surface functional/longitudinal data. In this problem, spatial–
emporal processes are involved. An important attribute of such multi-domain processes is that the sampling designs
f different characteristics are not necessarily identical. For example, a standard scenario is called longitudinal functional
ata in the mentioned biomedical imaging applications, when it could be sparse along the temporal axis but dense along
he spatial axis. It is of great interest to investigate the relationship between the response and the two domains (time-
patial) for surface functional models. For example, we may use 64 electrodes to collect the EEG signals on scalp over 90 s
or n patients. The mean function describes how the average value of EEG signals changes with time and the location of
calp. The covariance function depicts the covariance between two EEG signals varying with time and location where the
wo EEG signals are recorded. In the real data analysis, we show the changing pattern of average fractional anisotropy
FA) value with age and location along the corpus callosum for DTI data.

There exists some literature on the estimation of mean regression functions for longitudinal functional models, which
all into a general functional mixed effects modeling framework [4,11,16,18,32]. Guo [11] pioneered in introducing
unctional mixed effects models for correlated functional data, while [18] and subsequent work by this group proposed
eneral functional mixed effects models with multiple levels of random effect functions as well as curve-to-curve
eviations. Chen and Müller [4] described a double functional principal component analysis method that relies on mild

assumptions and provided the asymptotic results, however, only in two cases where the recordings of the curves are
sparsely or ultra-densely designed while the sampling for each curve along the time coordinate is ultra-dense. Zhu
et al. [32] conducted a systematic and theoretical analysis of local linear estimates of mean regression functions for a
class of functional mixed effects models developed for longitudinal functional responses, see also references therein.
Liebl [16] considered inference for the mean regression functions of covariate adjusted functional data based on local
linear estimators.

The aim of this paper is to investigate the estimating procedure and the corresponding asymptotic properties of the
mean function estimator for surface functional data. The major contributions of this work are as follows:
(a) We develop a general framework to systematically analyze two-domain surface functional data. The challenges stem
from:

(i) the numbers of observations collected over two domains are likely increasing with the sample size n;
(ii) a complex correlation structure within and across the two domains;
(iii) possibly great influence of within-subject dependence on the variance of the mean estimator;
(iv) likely completely different characteristics of the two domains, including sampling designs.

b) We comprehensively consider all the nine scenarios resulted from the combinations of three sampling designs [31]
sparse, dense, and ultra-dense) of the two domains. The partition of surface functional data according to the two-
omain sampling design is based on the relative orders of both the numbers of observations collected over two domains,
imultaneously, to the sample size n, which is much more complex than that of the curve functional data [2,15,31].
c) We provide a unified nonparametric mean function estimation based on local linear smoothers and the unifying
heoretical platform that can handle all the nine sampling design scenarios (i.e., allow the magnitude of the number
f observations in each domain relative to n to vary freely). We establish the specific asymptotic results for all the
ine sampling design scenarios under the three proposed weighting schemes, respectively, including equal weight
EW), direction-to-denseness weight (DDW) and subject-to-denseness weight (SDW). Moreover, we derive the optimal
andwidth orders for estimating mean function for each two-domain sampling design case under all the three weighting
chemes.
d) We compare the EW, DDW and SDW schemes both theoretically and numerically.

As a result, the proposed surface functional model framework is far beyond all existing results for multivariate
onparametric models, functional/longitudinal models and longitudinal functional models.
The rest of the article is organized as follows. In Section 2, we introduce the framework of surface functional models

SFM) and the corresponding nonparametric mean function estimator. It is followed by the formal theoretical results of the
stimator presented in Section 3. We investigate the finite-sample performance of the proposed estimator via simulation
tudies and conduct the analysis of a diffusion tensor imaging data in an autism study in Section 4. At the end, we provide

he concluding remarks in Section 5. Some Lemmas are deferred to Appendix A.
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2. Methodology

We start with some notation and definition. Without loss of generality, let Z(t, s) be a surface stochastic process defined
on [a, b]×[c, d], where t and s, respectively, denote the time and spatial axes. Suppose that we have n random time-spatial
surfaces Z1(t, s), . . . , Zn(t, s) corresponding to n subjects, each of which is an independent realization of Z(t, s). The Zi(t, s)
for the ith subject contains the observations at Ni time points × Mi positions. That is, we have the total of NiMi observations
for subject i. In many situations, one can only observe the process Z(t, s) intermittently and with measurement errors.
Let Yijk be the observation of the random surface Zi of subject i made at (Tij, Sik) for i ∈ {1 . . . , n}, j ∈ {1, . . . ,Ni}, and
k ∈ {1, . . . ,Mi}. It is assumed that we have

Yijk = Zi(Tij, Sik) + ϵijk, (1)

where measurement errors ϵijk’s are assumed to be independently and identically distributed (i.i.d.) copies of ϵ with mean
zero and variance σ 2 > 0. Let µ(t, s) := E{Z(t, s)}, and we can express Z(t, s) as

Z(t, s) = µ(t, s) + U(t, s),

where U(t, s) is the stochastic part of Z(t, s) and used to characterize the within-surface dependence with E{U(t, s)} = 0
for any t ∈ [a, b] and s ∈ [c, d]. Consequently, model (1) can be rewritten as

Yijk = µ(Tij, Sik) + Ui(Tij, Sik) + ϵijk,

which is the proposed surface functional model. Without loss of generality, we assume Tij’s and Sik’s are, respectively, i.i.d.
copies of independent random variables T and S. We define the covariance function of Z(t, s) (or U(t, s)) as

R(t, s; t ′, s′) := Cov{Z(t, s), Z(t ′, s′)} = Cov{U(t, s),U(t ′, s′)}.

Our question of interest is to estimate the mean function of the surface process µ(t, s) based on the observations
{Yijk, Tij, Sik} for i ∈ {1 . . . , n}, j ∈ {1, . . . ,Ni}, and k ∈ {1, . . . ,Mi}. For this purpose, we adopt the local linear smoothing
technique [6,26] because of several attractive features, including conceptual simplicity, small bias, good asymptotic
efficiency, and well-known ability for automatic boundary correction in the independent case. Extensions of using this
technique to the correlated case include [29,31], which demonstrated its excellent theoretical and numerical properties.

We denote the mean estimator as µ̂(t, s) = β̂0, where

(β̂0, β̂1, β̂2) = argmin
n∑

i=1

ξi

Ni∑
j=1

Mi∑
k=1

{
Yijk − β0 − β1(Tij − t) − β2(Sik − s)

}2
Kh1 (Tij − t)Kh2 (Sik − s),

where Khi (·) = K (·/hi)/hi (i ∈ {1, 2}) for a kernel function K (·) with h1 and h2 being the bandwidth parameters. h1 and
h2 may be estimated by the leave-one-out cross validation method [6]. The weights ξi’s satisfy

∑n
i=1 ξiNiMi = 1.

We consider three ways of constructing the weights ξi. A simple way is to assign the equal weight to all the
subjects (abbreviated as EW), that is, ξi = 1/(

∑n
i=1 NiMi) [28,31]. EW tends to overly impose the influence of subject

i on the optimizer when the time points and/or positions of this subject are dense [15]. Therefore, we also consider
other two popular strategies, so called direction-to-denseness weight (DDW) and subject-to-denseness weight (SDW),
to assign a smaller weight to a subject who has denser time points and/or positions. Specifically, the DDW scheme
ξi = 1/{(

∑n
i=1 Ni)Mi} is preferred when the location axis has dense data and ξi = 1/{Ni(

∑n
i=1 Mi)} will be chosen when

the time axis has dense data, whereas the SDW scheme ξi = 1/(nNiMi) could be used when both time and location axes
have dense data. The EW and SDW schemes used for our surface functional model estimation are respectively consistent
with the so-called equal weight per observation scheme used in [29] and the equal weight per subject scheme in [15]
in the case of curve functional data; also see [2,31]. Without loss of generality, for DDW, we only consider the case with
ξi = 1/{(

∑n
i=1 Ni)Mi}. Such DDW scheme is a mixture of the equal weight per observation scheme and the equal weight

per subject scheme, and is expected to be preferable when the time domain has sparse data and the location axis has
dense data. In practice, the weighting scheme may be selected by using the leave-one-out cross validation method. See
the Supplementary Materials for details.

According to the relative orders of the number of time points and the number of positions to the number of subjects
n, both the time and location axes can be partitioned into sparse, dense, and ultra-dense cases. When N/n1/4

→ 0
with N =

∑n
i=1 Ni/n, N/n1/4

→ C with 0 < C < ∞ being a constant, and N/n1/4
→ ∞, the time axis is defined as

‘‘Sparse’’, ‘‘Dense’’, and ‘‘Ultra-Dense’’, respectively [2,31]. This definition still applies to the location axis. Therefore, we
may partition the surface functional data into nine cases as in Table 1. We will systematically investigate the applicability
of our proposed approach for all these 9 types of surface functional data. Our estimation method for surface functional
models does not need to distinguish which types of sampling designs to encounter in practice. In contrast, most existing
methods can only handle individual sampling design scenarios for curve functional data [12,29,30].

We will provide a comprehensive presentation of the asymptotic properties of the estimator for all the sampling design
cases on a unified platform. The novelties of our theoretical and numerical results include:
(i) We derive the conditional bias, the conditional variance, the asymptotic normality, and the uniform convergence
properties of the estimator µ̂(t, s) for the proposed surface functional models. These results are on a unified platform for all
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Table 1
Partition the surface functional data into nine cases.
Sparse+Sparse Sparse+Dense Sparse+Ultra-Dense
Dense+Sparse Dense+Dense Dense+Ultra-Dense
Ultra-Dense+Sparse Ultra-Dense+Dense Ultra-Dense+Ultra-Dense

Table 2
Asymptotic results of µ̂EW (t, s) for the different sampling cases. S:Sparse; D:Dense; UD:Ultra-Dense; Bandwidth
Order: the optimal bandwidth order selected using the AMSE (asymptotic mean-squared error) criterion; Bias:
the dominating conditional bias of µ̂EW (t, s); Variance: the dominating conditional variance of µ̂EW (t, s); Rate:
Convergence rate; N = O(nα) and M = O(nβ ).
(α, β) Case Bandwidth order Bias Variance Rate

5α − β − 1 < 0 S+S h1 ≍ (nN M)−1/6 B1n + B2n A4n n−(1+α+β)/3

5β − α − 1 < 0 h2 ≍ (nN M)−1/6

α < 1/4 S+D h1 ≍ (nN)−1/5 B1n + B2n A3n + A4n n−2(1+α)/5

5β − α − 1 = 0 h2 ≍ (nN)−1/5

α < 1/4 S+UD h1 ≍ (nN)−1/5 B1n A3n n−2(1+α)/5

5β − α − 1 > 0 h2 ≍ (nN M
5/4

)−4/25

α = 1/4 D+D h1 ≍ n−1/4 B1n + B2n
∑4

l=1 Aln n−1/2

β = 1/4 h2 ≍ n−1/4

α = 1/4 D+UD h1 ≍ n−1/4 B1n A1n + A3n n−1/2

β > 1/4 h2 ≍ (nM)−1/5

α > 1/4 UD+UD h1 ≍ (nN)−1/5 B1n + B2n A1n n−1/2

β > 1/4 h2 ≍ (nM)−1/5

the nine sampling designs under a general weighting scheme (See Theorems 1, 3, and 5). Moreover, these characteristics
are different among the nine sampling designs.
(ii) We explicitly specify the partition of the 9 types of sampling design according to the relative orders of both N and M
to the number of subjects n, where N :=

∑n
i=1 Ni/n and M :=

∑n
i=1 Mi/n, for EW scheme, see Fig. 1 and Table 2. Similar

artitions are derived when the DDW and SDW schemes are adopted.
iii) We obtain the optimal bandwidth orders for each sampling design of surface functional data, which are more
omplicated than those in the existing literature for the nonparametric regression and curve functional regression, see
ables 2–4.
iv) We make detailed comparisons among the EW, DDW and SDW schemes both theoretically and numerically,
nd provide the guideline on which one is preferred over the other two for the different types of sampling design,
ee Sections 3.2 and 4. Specifically, EW, DDW and SW are the most preferable schemes for ‘‘Sparse+Sparse’’ Case,
‘Sparse+Ultra-Dense’’ Case and ‘‘Ultra-Dense+Ultra-Dense’’ Case in terms of estimating efficiency, respectively.

emark 1. Our proposed two-domain surface functional models differ significantly from one-domain multivariate
unctional/longitudinal models with 2−dimensional predictor variables, given by

Yij = Zi(Tij, Sij) + ϵij,

here Yij is the scalar observation of the random surface Zi of subject i observed at (Tij, Sij) for i ∈ {1 . . . , n} and
∈ {1, . . . ,Ni}. The Zi(·) are independent realizations of the underlying process {Z(·)} and ϵij’s are i.i.d. copies of ϵ with
ean zero and variance σ 2 > 0.

. Theoretical results

In this section, we systematically investigate the asymptotic properties of µ̂(t, s) proposed in Section 2. Let σ 2
K :=

u2K (u)du, ∥K∥ :=

√∫
K (u)2du, and fT (t) and fS(s), respectively, denote the densities of T and S. We denote a(n) ≺ b(n)

o mean lim supn→∞ a(n)/b(n) = 0, a(n) ⪯ b(n) to mean lim supn→∞ a(n)/b(n) < ∞, and a(n) ≍ b(n) to mean a(n) ⪯ b(n)
nd b(n) ⪯ a(n). Denote NM := n−1∑n

i=1 NiMi, (NM)H := (n−1∑n
i=1 (NiMi)−1)−1, NSk :=

∑n
i=1 N

k
i , MSk :=

∑n
i=1 M

k
i ,

N := N /n, M := M /n for any k ≥ 2, and U := U (T , S ).
Sk Sk Sk Sk ijk i ij ik
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Fig. 1. Partition of surface functional data into nine categories based on the relative orders of both N = O(nα) and M = O(nβ ) to n for µ̂EW (t, s)
including A: S+S; B: UD+S; C: S+UD; D: UD+UD; Green Line: S+D; Red Line: UD+D; Blue Line: D+S; Black Line: D+UD; and Point (1/4, 1/4):
D+D, where ‘‘S’’ denotes Sparse; ‘‘D’’ denotes Dense and ‘‘UD’’ denotes Ultra-Dense. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 3
Asymptotic normality of µ̂EW (t, s) for the six sampling designs. S:Sparse; D:Dense; UD:Ultra-Dense;
Bandwidth Order: the optimal bandwidth order selected using the AMSE (asymptotic mean-squared
error) criterion; Bias and Variance: the bias and variance in the asymptotic normal distribution of
µ̂EW (t, s); N = O(nα) and M = O(nβ ).
(α, β) Case Bandwidth order Bias Variance

5α − β − 1 < 0 S+S h1 ≍ (nN M)−1/6 B1n + B2n A∗

4n
5β − α − 1 < 0 h2 ≍ (nN M)−1/6

α < 1/4 S+D h1 ≍ (nN)−1/5 B1n + B2n A3n + A∗

4n
5β − α − 1 = 0 h2 ≍ (nN)−1/5

α < 1/4 S+UD h1 ≍ (nN)−1/5 B1n A∗

3n

5β − α − 1 > 0 h2 ≍ (nN M
5/4

)−4/25

α = 1/4 D+D h1 ≍ n−1/4 B1n + B2n
∑4

l=1 A
∗

ln
β = 1/4 h2 ≍ n−1/4

α = 1/4 D+UD h1 ≍ n−1/4 B1n A∗

1n + A∗

3n
β > 1/4 h2 ≍ (nM)−1/5

α > 1/4 UD+UD h1 ≍ (nN)−1/5 0 A∗

1n
β > 1/4 h2 ≍ (nM)−1/5

3.1. Conditional bias and conditional variance

Assumption 1.
(A) Kernel function:
(A1) K (·) is a symmetric probability density function on [−1, 1] and∫

u2K (u)du < ∞,

∫
K (u)2du < ∞.

(A2) K (·) is Lipschitz continuous: that is, there exists a 0 < L < ∞ such that |K (u) − K (v)| ≤ L|u − v| for any
u, v ∈ [−1, 1]. This implies supu∈[−1,1] |K (u)| ≤ MK for a constant MK .
(B) Time points, location points and true model:
(B1) {Tij, i ∈ {1, . . . , n}; j ∈ {1, . . . ,Ni}} and {Sik, i ∈ {1, . . . , n}; k ∈ {1, . . . ,Mi}} are, respectively, i.i.d. copies of
independent random variables T and S. T and S are both defined on [0, 1] with densities fT (t) and fS(s), respectively.
(B2) fT (t) and fS(s) are both bounded from below and above:

0 < mT ≤ inf fT (t) ≤ sup fT (t) ≤ MT < ∞,

t∈[0,1] t∈[0,1]
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Table 4
Uniform convergence results of µ̂EW (t, s) for the different sampling designs. S:Sparse; D:Dense; UD:Ultra-Dense;
Bandwidth: the optimal bandwidth order selected by minimizing the uniform convergence rate; Rate: Uniform
Convergence Rate; 0 < C < ∞.

Case Bandwidth Rate

ln(n)N
5
/(nM) → 0 S+S h1 ≍ {nN M/ln(n)}−1/6

{ln(n)/(nN M)}1/3

ln(n)M
5
/(nN) → 0 h2 ≍ {nN M/ln(n)}−1/6

ln(n)N
4
/n → 0 S+D h1 ≍ {nN/ln(n)}−1/5

{ln(n)/(nN)}2/5

ln(n)M
5
/(nN) → C h2 ≍ {nN/ln(n)}−1/5

ln(n)N
4
/n → 0 S+UD h1 ≍ {nN/ln(n)}−1/5

{ln(n)/(nN)}2/5

ln(n)M
5
/(nN) → ∞ h2 ≍ {nN M

5/4
/ln(n)}−4/25

ln(n)N
4
/n → C D+D h1 ≍ {n/ln(n)}−1/4

{ln(n)/n}1/2

ln(n)M
4
/n → C h2 ≍ {n/ln(n)}−1/4

ln(n)N
4
/n → C D+UD h1 ≍ {n/ln(n)}−1/4

{ln(n)/n}1/2

ln(n)M
4
/n → ∞ h2 ≍ {nM/ln(n)}−1/5

ln(n)N
4
/n → ∞ UD+UD h1 ≍ {nN/ln(n)}−1/5

{ln(n)/n}1/2

ln(n)M
4
/n → ∞ h2 ≍ {nM/ln(n)}−1/5

0 < mS ≤ inf
s∈[0,1]

fS(s) ≤ sup
s∈[0,1]

fS(s) ≤ MS < ∞.

Both fT (t) and fS(s) are twice continuously differentiable.
(B3) U is independent of (T , S) and ϵ is independent of (T , S) and U .
(B4) ∂2µ(t, s)/∂t2, ∂2µ(t, s)/∂t∂s, and ∂2µ(t, s)/∂s2 are continuous on [0, 1]2.
(B5) All the second-order partial derivatives of R(t, s; t ′, s′) exist and are bounded on [0, 1]4.
(C) Ni’s, Mi’s, bandwidths and weights:
(C1) h1 → 0 and h2 → 0.
(C2)

∑n
i=1 ξ 2

i Ni(Ni − 1)Mi(Mi − 1) → 0,
∑n

i=1 ξ 2
i Ni(Ni − 1)Mi/h2 → 0,

∑n
i=1 ξ 2

i Mi(Mi − 1)Ni/h1 → 0, and
∑n

i=1 ξ 2
i NiMi/

(h1h2) → 0.
(C3)

lim inf
n

min

{
NM/(N M), nNS2M/(

n∑
i=1

N2
i Mi)

}
> 0,

lim inf
n

min

{
nMS2N/(

n∑
i=1

NiM2
i ), nNS2MS2/(

n∑
i=1

N2
i M

2
i )

}
> 0,

lim sup
n

max

{
NS2/(N)2,MS2/(M)2, nNS2M/(

n∑
i=1

N2
i Mi)

}
< ∞,

lim sup
n

max

{
nMS2N/(

n∑
i=1

NiM2
i ), nNS2MS2/(

n∑
i=1

N2
i M

2
i )

}
< ∞.

(C4)

lim inf
n

min

{
nN{MH (

n∑
i=1

Ni/Mi)}−1, nNS2{MH (
n∑

i=1

N2
i /Mi)}−1

}
> 0,

lim sup
n

max

{
NS2/(N)2, nN/{MH (

n∑
i=1

Ni/Mi)}, nNS2/{MH (
n∑

i=1

N2
i /Mi)}

}
< ∞.

(C5) lim infn (NM)H/(NHMH ) > 0 and lim supn (NM)H/(NHMH ) < ∞.

Remark 2. (i) Assumption (A) can be found in [31].
(ii) The assumptions on {Tij}’s and fT (t) and those on {Sij}’s and fS(t) coincide with those made on the time points [20,31]
nd on the spatial points [5]. Assumptions (B3), (B4) and (B5) are consistent with Assumptions (B2), (B3) and (B4) in [31],
espectively. See also [15,20,26].
iii) Assumptions (C1) and (C2) are routine and consistent with Assumption (C1a) in [31].
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(iv) If {Ni}
n
i=1 and {Mi}

n
i=1 are independently and identically distributed (i.i.d) copies of positive integer-valued random

variables N and M , respectively, with N being independent of M , then we have

lim sup
n

nNS2M/(
n∑

i=1

N2
i Mi) = lim inf

n
nNS2M/(

n∑
i=1

N2
i Mi) = 1.

Moreover, lim supn NS2/(N)2 < ∞ can be found in [31]. Thus, it may indicate that Assumptions (C3), (C4) and (C5),
esigned for EW, DDW and SDW schemes, respectively, are reasonable.

We first state the asymptotic conditional bias and conditional variance of the mean estimator based on a general
eighting scheme. Without loss of generality, the random variables T and S are assumed to be defined on [0, 1].

Theorem 1 (Conditional Bias and Conditional Variance). Let (t, s) be a fixed point in the interior of [0, 1]2. Suppose that
Assumptions (A), (B), (C1), and (C2) hold. Let X = {Tij, Sik, i ∈ {1, . . . , n}; j ∈ {1, . . . ,Ni}; k ∈ {1, . . . ,Mi}}, we have

E{µ̂(t, s) − µ(t, s)|X} =
1
2
σ 2
K h

2
1
∂2µ(t, s)

∂t2
+

1
2
σ 2
K h

2
2
∂2µ(t, s)

∂s2
+ op(h2

1 + h2
2) := B1n + B2n + op(h2

1 + h2
2)

nd Var{µ̂(t, s)|X} = Γn{1 + op(1)}, where

Γn =

n∑
i=1

ξ 2
i Ni(Ni − 1)Mi(Mi − 1)R(t, s; t, s) +

n∑
i=1

ξ 2
i Ni(Ni − 1)Mi∥K∥

2R(t, s; t, s)/{h2fS(s)}

+

n∑
i=1

ξ 2
i Mi(Mi − 1)Ni∥K∥

2R(t, s; t, s)/{h1fT (t)} +

n∑
i=1

ξ 2
i NiMi∥K∥

4
{R(t, s; t, s) + σ 2

}/{h1h2fT (t)fS(s)}

:= A1n + A2n + A3n + A4n =

4∑
l=1

Aln.

roof. We have

µ̂(t, s) = (1, 0, 0)

(
n∑

i=1

X⊤

i WiXi

)−1 n∑
i=1

X⊤

i WiYi, (2)

here Xi, Wi, and Yi are, respectively, MiNi × 3, (NiMi) × (NiMi), and (NiMi) × 1 matrices. Specifically,

Yi = (Yi11, . . . , Yi1Mi , Yi21, . . . , Yi2Mi , . . . , YiNi1, . . . , YiNiMi )
⊤,

Xi =

( 1 · · · 1 . . . 1 . . . 1
Ti1 − t . . . Ti1 − t . . . TiNi − t . . . TiNi − t
Si1 − s . . . SiMi − s . . . Si1 − s . . . SiMi − s

)⊤

,

Wi = ξi × diag

(
Kh1 (Ti1 − t)Kh2 (Si1 − s), . . . , Kh1 (Ti1 − t)Kh2 (SiMi − s),

. . . , Kh1 (TiNi − t)Kh2 (Si1 − s), . . . , Kh1 (TiNi − t)Kh2 (SiMi − s)

)
.

First, we consider the term
∑n

i=1 X
⊤

i WiXi in (2) as follows. Let ḟT (t) = dfT (t)/dt and ḟS(t) = dfS(t)/dt . By Assumptions
(A), (B1), (B2), (C1) and (C2), it follows from the law of large number and properties of kernel smoothing technique that
we have

n∑
i=1

X⊤

i WiXi =

(a11n a12n a13n
a12n a22n a23n
a13n a23n a33n

)
:= An, (3)

where a11n = fT (t)fS(s)+ op(1), a12n = h2
1σ

2
K ḟT (t)fS(s)+ op(h2

1), a13n = h2
2σ

2
K fT (t)ḟS(s)+ op(h2

2), a22n = h2
1σ

2
K fT (t)fS(s)+ op(h2

1),
23n = Op(h2

1h
2
2), and a33n = h2

2σ
2
K fT (t)fS(s)+ op(h2

2). Because det(An) = h2
1h

2
2σ

4
K f

3
T (t)f

3
S (s){1+ op(1)}, An is nonsingular based

n Assumptions (A) and (B2). Let A∗
n be the adjoint of matrix An. By Assumption (B2), We have

(1, 0, 0)

(
n∑

i=1

X⊤

i WiXi

)−1

=
(
{det(An)}−1, 0, 0

)
A∗

n (4)

=

(
1

+ op(1), −
ḟT (t)

2 + op(1), −
ḟS(s)

2 + op(1)
)

.

fT (t)fS(s) fT (t)fS(s) fT (t)fS (s)
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Second, we consider the term
∑n

i=1 X
⊤

i WiYi and rewrite it as

n∑
i=1

ξi

Ni∑
j=1

Mi∑
k=1

Kh1 (Tij − t)Kh2 (Sik − s)Yijk
(
1, Tij − t, Sik − s

)⊤
. (5)

Define µi = (µi11, . . . , µi1Mi , . . . , µiNi1, . . . , µiNiMi )
⊤, where µijk = µ(Tij, Sik). We have

E
( n∑

i=1

X⊤

i WiYi

⏐⏐⏐X) =

n∑
i=1

X⊤

i Wiµi (6)

=

n∑
i=1

X⊤

i WiXi

(
µ(t, s),

∂µ(t, s)
∂t

,
∂µ(t, s)

∂s

)⊤

+

n∑
i=1

ξi

Ni∑
j=1

Mi∑
k=1

Kh1 (Tij − t)Kh2 (Sik − s)
(
1, Tij − t, Sik − s

)⊤
×

{
1
2
(Tij − t)2

∂2µ(t, s)
∂t2

+
1
2
(Sik − s)2

∂2µ(t, s)
∂s2

+ (Tij − t)(Sik − s)
∂2µ(t, s)

∂t∂s

}{
1 + op(1)

}
:= I1n + I2n.

y Assumptions (A), (B1), (B2), (B3), (B4), (C1) and (C2), the first entry of I2n, which is a 3−dimensional vector, equals
−1σ 2

K fT (t)fS(s){h
2
1∂

2µ(t, s)/∂t2 + h2
2∂

2µ(t, s)/∂s2} + op(h2
1 + h2

2). The second and third entries of I2n are both op(h2
1 + h2

2).
Combining (4) and (6) yields

E{µ̂(t, s) − µ(t, s)|X} =
1
2
σ 2
K

{
h2
1
∂2µ(t, s)

∂t2
+ h2

2
∂2µ(t, s)

∂s2

}
+ op(h2

1 + h2
2).

Third, with some calculations, we get

Var(µ̂(t, s)|X) = (1, 0, 0)

(
n∑

i=1

X⊤

i WiXi

)−1 ( n∑
i=1

X⊤

i Wicov(Yi|X)WiXi

)(
n∑

i=1

X⊤

i WiXi

)−1

(1, 0, 0)⊤.

he (1, 1)th entry of
∑n

i=1 X
⊤

i Wicov(Yi|X)WiXi equals

n∑
i=1

ξ 2
i

Ni∑
j=1

Mi∑
k=1

Ni∑
l=1

Mi∑
v=1

gijklv := J1n + J2n + J3n + J4n (7)

=

n∑
i=1

ξ 2
i

∑
j̸=l

∑
k̸=v

gijklv +

n∑
i=1

ξ 2
i

∑
j̸=l

∑
k=v

gijklv +

n∑
i=1

ξ 2
i

∑
j=l

∑
k̸=v

gijklv +

n∑
i=1

ξ 2
i

∑
j=l

∑
k=v

gijklv,

here gijklv = Kh1 (Tij − t)Kh2 (Sik − s)Kh1 (Til − t)Kh2 (Siv − s)cov(Yijk, Yilv|X∗

i ) with X∗

i = {(Tij, Sik) : j ∈ {1, . . . ,Ni}; k ∈

1, . . . ,Mi}}. It follows from Assumptions (A), (B1), (B2), (B3), (B5), (C1) and (C2) that we have, for j ̸= l and k ̸= v,

J1n = fT (t)2fS(s)2
n∑

i=1

ξ 2
i Ni(Ni − 1)Mi(Mi − 1)cov(Yijk, Yilv|Tij = t, Til = t, Sik = s, Siv = s){1 + op(1)}

= fT (t)2fS(s)2R(t, s; t, s)
n∑

i=1

ξ 2
i Ni(Ni − 1)Mi(Mi − 1){1 + op(1)},

J2n =
∥K∥

2fT (t)2fS(s)
h2

n∑
i=1

ξ 2
i Ni(Ni − 1)Micov(Yijk, Yilk|Tij = t, Til = t, Sik = s){1 + op(1)}

=
∥K∥

2

h2
fT (t)2fS(s)R(t, s; t, s)

n∑
i=1

ξ 2
i Ni(Ni − 1)Mi{1 + op(1)},

J3n =
∥K∥

2fT (t)fS(s)2

h1

n∑
i=1

ξ 2
i NiMi(Mi − 1)cov(Yijk, Yijv|Tij = t, Sik = s, Siv = s){1 + op(1)}

=
∥K∥

2

h1
fT (t)fS(s)2R(t, s; t, s)

n∑
i=1

ξ 2
i NiMi(Mi − 1){1 + op(1)},
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and

J4n =
∥K∥

4fT (t)fS(s)
h1h2

n∑
i=1

ξ 2
i NiMicov(Yijk, Yijk|Tij = t, Sik = s){1 + op(1)}

=
∥K∥

4

h1h2
fT (t)fS(s){R(t, s; t, s) + σ 2

}

n∑
i=1

ξ 2
i NiMi{1 + op(1)}.

Denote the (j, k)th entry of
∑n

i=1 X
⊤

i Wicov(Yi|X)WiXi as(
n∑

i=1

X⊤

i Wicov(Yi|X)WiXi

)
[j, k].

e can show that(
n∑

i=1

X⊤

i Wicov(Yi|X)WiXi

)
[j, k] ≺

(
n∑

i=1

X⊤

i Wicov(Yi|X)WiXi

)
[1, 1]

with probability goes to one as n goes to infinity, for either j ̸= 1 or k ̸= 1. For instance,(
n∑

i=1

X⊤

i Wicov(Yi|X)WiXi

)
[1, 2] = Op

{
h2
1 ×

(
n∑

i=1

X⊤

i Wicov(Yi|X)WiXi

)
[1, 1]

}
.

Finally, we have Var(µ̂(t, s)|X) = Γn{1 + op(1)}, which completes the proof of Theorem 1. □

We use the well-known local linear smoothing technique [6,26] to prove Theorem 1. The leading term of the conditional
bias of µ̂(t, s) is B1n+B2n, which is consistent with that of the traditional two-dimensional local linear estimator [6,26]. The
variance term is more complex and represents our main new contribution. The first term of the condition variance, A1n,
comes from the covariances between those pairs of observations observed at different time points and different positions
(i.e., cov(Yijk, Yilv) with j ̸= l and k ̸= v). The A2n corresponds to the covariances between those pairs at different time
points and the same position (i.e., cov(Yijk, Yilv) with j ̸= l and k = v), A3n accounts for the covariances between the pairs
of observations at the same time point and different positions (i.e., cov(Yijk, Yilv) with j = l and k ̸= v), and the last term
corresponds to the marginal variances of all the observations. In the derivation, we need to deal with the within-surface
dependence and the two-domain (time and location) correlation structure of the surface functional data that makes the
variance of µ̂(t, s) more complex than that of the curve functional data (Theorem 3.1 of [31] and Theorem 2 of [2]).

Remark 3. When the number of locations for subject i (i.e., Mi) is 1 for i ∈ {1, . . . , n}, the surface functional data can be
viewed as the curve functional data observed at different locations across all subjects. In this special case, Γn = A2n +A4n,
and the variance term is of a similar form as that of the curve functional model. Distinctive from the curve functional
models, we intend to estimate the two-dimensional function µ(t, s) and borrow information across subjects by assigning
to them the corresponding weight Kh2 (Si1 − s). Our result indicates a larger variance of the mean function estimator
compared to that of the curve functional model [31] as n → ∞. Specifically, the variance Γn is at the order of the
variance in [31] divided by h2, see also, [16].

The optimal bandwidths are, respectively, proportional to n−1/5 and n−1/6 for the traditional one-dimensional and
two-dimensional nonparametric kernel regression [6,26]. We investigate the optimal bandwidth orders for µ̂(t, s) in our
surface functional model framework. The optimal bandwidth orders are calculated via minimizing the asymptotic mean-
squared errors. The sophisticated variance structure presented in our framework leads to distinctive and more intricate
results compared to the existing literature. We consider the optimal bandwidth orders for the EW scheme. The orders of
the optimal bandwidths vary with the ‘‘sparsity’’ levels of both the time and location domains. See the Appendix A for
detailed derivations. Let N :=

∑n
i=1 Ni/n = O(nα) and M :=

∑n
i=1 Mi/n = O(nβ ) with α ≥ 0 and β ≥ 0. We summarize

the results in Table 2. For example, when 5α − β − 1 < 0 and 5β − α − 1 < 0 (e.g., all Ni and Mi are bounded), the
ptimal bandwidths h1 and h2 satisfy h1 ≍ n−(1+α+β)/6 and h2 ≍ n−(1+α+β)/6. That is, the two optimal bandwidths have
he identical order of the total number of observations to the power of −1/6. This result is consistent with that of the
onventional two-dimensional nonparametric kernel regression. On the other hand, when min(α, β) > 1/4 (i.e., the data
n both time and location directions are sufficiently dense), the optimal bandwidths h1 and h2 are of the orders n−(1+α)/5

nd n−(1+β)/5, respectively, which follow the marginal optimality rule. Consistent results can be obtained for DDW and
DW schemes (See Corollary 2).
We now utilize Theorem 1 to derive the result specific to each of the aforementioned nine sampling design scenarios,

ategorized according to sparse, dense, and ultra-dense sampling of both the time and location domains in Section 2.
e only consider the six cases in Table 2, because the properties of the Dense+Sparse, Ultra-Dense+Sparse and Ultra-
ense+Dense cases are comparable to those of the Sparse+Dense, Sparse+Ultra-Dense and Dense+Ultra-Dense cases,
espectively. The full results for all the nine cases are put in Table 1 in the Supplementary Materials. Let α ≥ 0 and β ≥ 0.
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or EW, we set N = O(nα) and M = O(nβ ); for DDW, we set N = O(nα) and MH := (n−1∑n
i=1 M

−1
i )−1

= O(nβ ); for SDW,
e set NH := (n−1∑n

i=1 N
−1
i )−1

= O(nα) and MH = O(nβ ). We use µ̂EW (t, s), µ̂DDW (t, s), and µ̂SDW (t, s) to denote µ̂(t, s)
erived using the EW, DDW, and SDW schemes, respectively. We summarize the asymptotic results of the six sampling
ategories in the following Corollary. We note that the partition of the time-location domains is performed according to
he relative orders of both N and M to n for µ̂EW (t, s) (See, Fig. 1), and the dominating terms in the conditional variance
cross the six sampling designs are different.

orollary 2. Let (t, s) be a fixed element in the interior of [0, 1]2. Suppose all the assumptions of Theorem 1 hold.
(i) For EW, it is also assumed that Assumption (C3) also holds. The conditional bias and conditional variance corresponding to
the six sampling schemes in Table 2 hold. For instance, since the ‘‘Sparse+Sparse’’ case corresponds to 5α − β − 1 < 0 and
5β − α − 1 < 0, we have h1 ≍ (nN M)−1/6, h2 ≍ (nN M)−1/6, and

E{µ̂EW (t, s) − µ(t, s)|X} = B1n + B2n + op(h2
1 + h2

2), Var{µ̂EW (t, s)|X} = A4n{1 + op(1)}.

(ii) It is assumed that Assumption (C4) also holds. For DDW, the optimal bandwidth orders and partition of the surface functional
data, and conditional bias and conditional variance of µ̂DDW (t, s) for each of the six sampling scenarios in Table 2 hold by
replacing ξi = 1/(

∑n
i=1 NiMi) and M in (a) by ξi = 1/{(

∑n
i=1 Ni)Mi} and MH , respectively.

(iii) It is assumed that Assumption (C5) also holds. For SDW, the optimal bandwidth orders and partition of the surface functional
data, and conditional bias and conditional variance of µ̂SDW (t, s) for each of the six sampling scenarios in Table 2 hold by
replacing ξi = 1/(

∑n
i=1 NiMi), N, and M in (a) by ξi = 1/(nNiMi), NH , and MH , respectively.

Remark 4. Corollary 2 provides an intuitive criterion on how to define the nine sampling designs of surface functional
data for the EW scheme. See Table 2 and Fig. 1. For example, the ‘‘Sparse+Sparse’’ category is defined by 5α − β − 1 < 0
and 5β − α − 1 < 0. The same partition holds for µ̂DDW (t, s) with N = O(nα) and MH = O(nβ ) and µ̂SDW (t, s) with
NH = O(nα) and MH = O(nβ ).

Remark 5. In the ‘‘Ultra-Dense+Ultra-Dense’’ Case, the dominating conditional bias is B1n if α < β , B2n if α > β , and
1n + B2n if α = β . Further, the order of the asymptotic conditional bias is smaller than that of the conditional variance
ecause h2

1 + h2
2 ≺ n−1/2 holds for this case. For all the other scenarios, the asymptotic conditional bias and conditional

ariance are of the identical order.

The convergence rate is defined to be the order of |Bias| +
√
Variance, where ‘‘Bias’’ and ‘‘Variance’’ represent the

asymptotic conditional bias and conditional variance, respectively. The results for µ̂EW (t, s) are given in Table 2. We
present the following conclusions: (i) In the ‘‘Sparse+Sparse’’ case, the result is comparable to that of the traditional two-
dimensional local linear smoother for independent data, specifically, the convergence rate is of the order between n−1/3

and n−1/2, however, can never reach n−1/2; (ii) In the ‘‘Sparse+Dense’’ and ‘‘Sparse+Ultra-Dense’’ cases, the convergence
rates are of the order between n−2/5 and n−1/2 and can never attain n−1/2; (iii) In the ‘‘Dense+Dense’’, ‘‘Dense+Ultra-
ense’’ and ‘‘Ultra-Dense+Ultra-Dense’’ cases, the rate of n−1/2 can be attained. These suggest that both the time and
he location domains for surface functional models need to have sufficiently dense data to attain the fast rate of n−1/2.
onsistent results can be obtained for µ̂DDW (t, s) and µ̂SDW (t, s).

.2. Asymptotic normality

Define

Qn :=

n∑
i=1

ξ 2
i Ni(Ni − 1)Mi(Mi − 1) +

n∑
i=1

ξ 2
i Ni(Ni − 1)Mi/h2 +

n∑
i=1

ξ 2
i Mi(Mi − 1)Ni/h1 +

n∑
i=1

ξ 2
i NiMi/(h1h2),

nd

Gn := max
{ n∑

i=1

ξ 3
i NiMi/(h2

1h
2
2),

n∑
i=1

ξ 3
i NiMi(Mi − 1)/(h2

1h2),
n∑

i=1

ξ 3
i Ni(Ni − 1)Mi/(h1h2

2),

n∑
i=1

ξ 3
i NiMi(Mi − 1)(Mi − 2)/h2

1,

n∑
i=1

ξ 3
i Ni(Ni − 1)(Ni − 2)Mi/h2

2,

n∑
i=1

ξ 3
i Ni(Ni − 1)Mi(Mi − 1)/(h1h2),

n∑
i=1

ξ 3
i Ni(Ni − 1)Mi(Mi − 1)(Mi − 2)/h1,

n∑
i=1

ξ 3
i Ni(Ni − 1)(Ni − 2)Mi(Mi − 1)/h2,

n∑
i=1

ξ 3
i Ni(Ni − 1)(Ni − 2)Mi(Mi − 1)(Mi − 2)

}
.
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Assumption 2.
(C) Ni’s, Mi’s, bandwidths and weights:
(C6) GnQ

−3/2
n → 0.

(C7) min{1/{
∑n

i=1 ξ 2
i Ni(Ni − 1)Mi(Mi − 1)}, h2/{

∑n
i=1 ξ 2

i Ni(Ni − 1)Mi}, h1/{
∑n

i=1 ξ 2
i Mi(Mi − 1)Ni}, h1h2/{

∑n
i=1 ξ 2

i NiMi}}

max{h6
1, h

6
2} → 0.

(D) The stochastic part and ϵ:
(D1) supt,s∈[0,1] E|U(t, s)|3 < ∞ and E|ϵ|3 < ∞.

Remark 6. Assumptions (C6) and (D1) are needed for ensuring the Lyapunov condition for asymptotic normality and are
consistent with Assumptions (C2a) and (C3a) in [31], respectively. Assumption (C7) is consistent with the assumption in
Theorem 3.1 of [31].

We state the unified asymptotic normality result of µ̂(t, s), which is applicable to all the nine sampling designs and
the three weighting schemes.

Theorem 3 (Asymptotic Normality). Let (t, s) be a fixed element in the interior of [0, 1]2. Suppose that Assumptions (A), (B),
(C1), (C2), (C6), (C7) and (D1) hold, we have

Γ −1/2
n

{
µ̂(t, s) − µ(t, s) − B1n − B2n + op(h2

1 + h2
2)
}

→L N (0, 1).

Proof. Define

µi = (µi11, . . . , µi1Mi , . . . , µiNi1, . . . , µiNiMi )
⊤,

where µijk = µ(Tij, Sik), and

δi =

(
Ui(Ti1, Si1) + ϵi11, . . . ,Ui(Ti1, S1Mi ) + ϵi1Mi , . . . ,Ui(TiNi , Si1) + ϵiNi1, . . . ,Ui(TiNi , SiMi ) + ϵiNiMi

)⊤

.

By (4), we have

µ̂(t, s) = (1, 0, 0)

(
n∑

i=1

X⊤

i WiXi

)−1 n∑
i=1

X⊤

i Wiµi +

(
1

fT (t)fS(s)
, −

ḟT (t)
f 2T (t)fS(s)

, −
ḟS(s)

fT (t)f 2S (s)

) n∑
i=1

X⊤

i Wiδi
{
1 + op(1)

}
:= R1n + R2n

First, it follows from (4) and (6) that we have

R1n = µ(t, s) +
1
2
σ 2
K

{
h2
1
∂2µ(t, s)

∂t2
+ h2

2
∂2µ(t, s)

∂s2

}
+ op(h2

1 + h2
2).

Second, as n goes to ∞, we can show Γ
−1/2
n R2n →L N (0, 1).

∑n
i=1 X

⊤

i Wiδi is a 3−dimensional vector and the first entry
of
∑n

i=1 X
⊤

i Wiδi is equal to

r1n :=

n∑
i=1

ξi

Ni∑
j=1

Mi∑
k=1

Kh1 (Tij − t)Kh2 (Sik − s)
(
Uijk + ϵijk

)
.

Then, it follows from Lyapunov central limit theorem that {Var(r1n)}−1/2r1n converges in distribution to N (0, 1) as
→ ∞. Specifically, the Lyapunov condition is satisfied due to Assumptions (A), (B), (C1), (C2), (C6), and (D1). Note that
K (u)3du < ∞ holds due to Assumption (A). By the law of total variance, we have Var(r1n) = E{Var(r1n|X)}+Var{E(r1n|X)}.
ecause E(r1n|X) = 0 holds due to Assumption (B3), we have Var(r1n) = E{Var(r1n|X)}. By the similar arguments in (7),
e have that the variance of r1n is f 2T (t)f

2
S (s)Γn{1 + o(1)}. Note that fT (t)fS(s) is bounded from zero. By Slutsky’s theorem,

e have

Γ
−1/2
n r1n

fT (t)fS(s)
→L N (0, 1).

Denote the second and third entries of
∑n

i=1 X
⊤

i Wiδi as r2n and r3n, respectively. Because we have Var(r2n) = o(Γn)
and Var(r3n) = o(Γn), both Γ

−1/2
n r2n and Γ

−1/2
n r3n converge in probability towards zero by Chebyshev’s inequality. Since

˙T (t)/{f 2T (t)fS(s)} and ḟS(s)/{fT (t)f 2S (s)} are bounded due to Assumption (B2), we have⏐⏐⏐⏐ ḟT (t)
f 2T (t)fS(s)

Γ −1/2
n r2n

⏐⏐⏐⏐+ ⏐⏐⏐⏐ ḟS(s)
fT (t)f 2S (s)

Γ −1/2
n r3n

⏐⏐⏐⏐ = op(1).

Thus, it follows from Slutsky’s theorem that Γ
−1/2
n R2n converges in distribution to N(0, 1) as n goes to infinity. This

completes the proof of Theorem 3. □
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We use the Lyapunov central limit theorem to prove Theorem 3. In the proof, the covariance structure within and across
he two-domain (time and location) of the surface functional data increases complexity compared with the asymptotic
ormality results in the curve functional data (Theorem 3.1 of [31] and Theorem 2 of [2]). This Theorem provides a unified
ramework of the asymptotic normality of µ̂(t, s) across all nine sampling designs. We see that the unified result is valid
or the three weighting schemes.

Define

A∗

1n :=

n∑
i=1

ξ 2
i N

2
i M

2
i R(t, s; t, s), A

∗

2n :=

n∑
i=1

ξ 2
i N

2
i Mi∥K∥

2R(t, s; t, s)/{h2fS(s)},

A∗

3n :=

n∑
i=1

ξ 2
i M

2
i Ni∥K∥

2R(t, s; t, s)/{h1fT (t)}, and A∗

4n := A4n.

Corollary 4. Let (t, s) be a fixed element in the interior of [0, 1]2. Suppose that all the Assumptions of Theorem 3 hold.
(i) EW: It is assumed that Assumption (C3) also holds. The asymptotic normality of the six sampling designs holds with
their corresponding biases and variances summarized in Table 3. For instance, for the ‘‘Sparse+Sparse’’ case corresponding
to 5α − β − 1 < 0 and 5β − α − 1 < 0, h1 ≍ (nN M)−1/6 and h2 ≍ (nN M)−1/6, we have

A∗−1/2
4n {µ̂EW (t, s) − µ(t, s) − B1n − B2n} →L N (0, 1).

ii) DDW: It is assumed that Assumption (C4) holds. The asymptotic normal distribution of µ̂DDW (t, s) is also valid for each of
he six sampling designs by replacing ξi = 1/(

∑n
i=1 NiMi) and M in Table 3 by ξi = 1/{(

∑n
i=1 Ni)Mi} and MH , respectively.

(iii) SDW: It is assumed that Assumption (C5) holds. The asymptotic normal distribution of µ̂SDW (t, s) for each of the six sampling
designs by replacing ξi = 1/(

∑n
i=1 NiMi), N, and M in Table 3 by ξi = 1/(nNiMi), NH , and MH , respectively.

The dominating asymptotic biases (variances) in the limiting normal distribution for the six cases are consistent with
hose of the conditional biases (variance) in Section 3.1, respectively. We put the full results of all the nine sampling
esigns in Table 2 in the Supplementary Materials. The biases of µ̂EW (t, s), µ̂DDW (t, s) and µ̂SDW (t, s) in their limiting
ormal distributions are all B1n + B2n for the ‘‘Sparse+Sparse’’, ‘‘Sparse+Dense’’, ‘‘Dense+Sparse’’, and ‘‘Dense+Dense’’
ases. In the ‘‘Sparse+Ultra-Dense’’ and ‘‘Dense+Ultra-Dense’’ cases, µ̂EW (t, s), µ̂DDW (t, s) and µ̂SDW (t, s) all have the bias
f B1n. The ‘‘Ultra-Dense+Sparse’’ and ‘‘Ultra-Dense+Dense’’ cases have the bias of B2n. The ‘‘Ultra-Dense+Ultra-Dense’’
ase has zero bias. These results indicate that the ‘‘Ultra-Dense’’ feature of the time domain (or the location domain) leads
o disappearing of B1n (or B2n) in the bias term, and thus a large number of observations in both the time and location
omains in the ‘‘Ultra-Dense+Ultra-Dense’’ case make both B1n and B2n disappear.

emark 7. Case ‘‘Ultra-Dense+Ultra-Dense’’ falls in the parametric paradigm where the limiting normal distribution has
ero bias and convergence rate 1/

√
n.

We compare the estimation efficiency of the three weighting schemes for the mean function estimation in terms of
symptotic variance in the limiting normal distribution. We give the following conclusions:
i) For Case ‘‘Sparse+Sparse’’, EW produces generally more efficient estimator than DDW and SDW. The asymptotic
ariance is A∗

4n and it follows from Cauchy–Schwarz inequality that
{∑n

i=1 NiMi
} {∑n

i=1(NiMi)−1
}

≥ n2 and
(∑n

i=1 Ni
)2

≤(∑n
i=1 Ni/Mi

) (∑n
i=1 NiMi

)
for any series {Ni}

n
i=1 and {Mi}

n
i=1, so the asymptotic variance of EW is smaller (not larger) than

those of DDW and SDW;
(ii) For Case ‘‘Sparse+Ultra-Dense’’, DDW ξi = 1/{(

∑n
i=1 Ni)Mi} outperforms both EW and SDW, because the asymptotic

variance is A∗

3n, N ≥ NH and (
∑n

i=1 NiMi)2 ≤ (
∑n

i=1 Ni)(
∑n

i=1 NiM2
i ). Similarly, for Case ‘‘Ultra-Dense+Sparse’’, DDW

i = 1/{Ni(
∑n

i=1 Mi)} performs the best;
iii) For Case ‘‘Ultra-Dense+Ultra-Dense’’, SDW is the best weighting scheme, because the asymptotic variance is A∗

1n,∑n
i=1 NiMi)2 ≤ n

∑n
i=1 N

2
i M

2
i and (

∑n
i=1 Ni)2 ≤ n

∑n
i=1 N

2
i .

These results here are consistent with those in [2,31]. Specifically, the ‘‘Ultra-Dense’’ feature of time (or spatial)
irection encourages us to assign the weight N−1

i (or M−1
i ) to subject i in order to achieve an efficient mean estimator

i.e., an estimator with relative small asymptotic variance). On the other hand, the equal weight is preferable for the
‘Sparse’’ feature for such purpose.

.3. Uniform convergence

This section concerns the uniform convergence property of µ̂(t, s).

ssumption 3.
C) Ni’s, Mi’s, bandwidths and weights:
C8) ln(n)max{

∑n
i=1 ξ 2

i Mi(Mi − 1)Ni/h1,
∑n

i=1 ξ 2
i NiMi/(h1h2)} → 0 and ln(n)max{

∑n
i=1 ξ 2

i Ni(Ni − 1)Mi(Mi − 1),
∑n

i=1 ξ 2
i Ni

N − 1)M /h } → 0.
i i 2
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R
A
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r

R
a
c

T

3
r
n

(
b

(C9) supn(nmaxi NiMiξi) ≤ B < ∞.
(C10)

ln(n)(h1Qn)−1 max
i

{ξ 2
i Mi(Mi − 1)Ni} → 0, ln(n)(h2Qn)−1 max

i
{ξ 2

i Ni(Ni − 1)Mi} → 0,

ln(n)(h1h2Qn)−1 max
i

{ξ 2
i NiMi} → 0, ln(n)Q−1

n max
i

{ξ 2
i Ni(Ni − 1)Mi(Mi − 1)} → 0.

(D) The stochastic part and ϵ:
(D2) (a) There exists δ > 2 such that

n
{ n∑

i=1

ξ 2
i Ni(Ni − 1)Mi(Mi − 1)h2

1h
2
2 +

n∑
i=1

ξ 2
i Ni(Ni − 1)Mih2

1h2 (8)

+

n∑
i=1

ξ 2
i Mi(Mi − 1)Nih1h2

2 +

n∑
i=1

ξ 2
i NiMih1h2

} {
ln(n)
n

}2/δ−1

→ ∞,

E(U∗δ) < ∞, and E|ϵ|δ < ∞, (9)

where U∗
= supt,s∈[0,1] |U(t, s)|;

b) Otherwise, it is assumed that
g-subgaussian) there exists a constant g ∈ (0, +∞) such that, EezU

∗

≤ eg
2z2/2 for all z ∈ R;

b-subgaussian) there exists a constant b ∈ (0, +∞) such that, Eezϵ ≤ eb
2z2/2 for all z ∈ R.

emark 8. (i) Assumptions (C8) and (C9) are needed for ensuring uniform convergence and are consistent with
ssumptions (C1c) and (C3c) in [31], respectively.
ii) Assumption (C10) excludes the case where a few subjects dominate the variance term. It is a standard assumption. For
nstance, let us consider the SDW scheme as an example. If {Ni}

n
i=1 and {Mi}

n
i=1 are i.i.d. copies of positive integer-valued

andom variables N and M , respectively, then it is valid by using some algebraic calculations and Chebyshev’s inequality.

emark 9. Assumption (D2) is needed for proving the uniform convergence of our proposed estimators. The g-subgaussian
ssumption of U∗ and b-subgaussian assumption of ϵ are stronger than (9). When (8) holds, the subgaussian assumptions
an be weakened to the moment conditions (9). Note that Assumption (D2)(a) is consistent with Assumption (C2c) in [31].

heorem 5 (Uniform Convergence). Under Assumptions (A), (B), (C1), (C8), (C9), (C10) and (D2), we have

sup
(t,s)∈[0,1]2

|µ̂(t, s) − µ(t, s)| = O
(

h2
1 + h2

2 +

[
ln(n)

{ n∑
i=1

ξ 2
i Ni(Ni − 1)Mi(Mi − 1) +

n∑
i=1

ξ 2
i Ni(Ni − 1)Mi/h2

+

n∑
i=1

ξ 2
i Mi(Mi − 1)Ni/h1 +

n∑
i=1

ξ 2
i NiMi/(h1h2)

}]1/2 )
a.s. (10)

The result can be proved by using Bernstein’s inequality, Borel–Cantelli’s Lemma, (2), (3) and (5) and Lemmas 2 and
. In the proof, the derivation of the bias is essentially identical to that in the classical two-dimensional nonparametric
egression, but there is an additional challenge of dealing with the within-surface dependence compared with the classical
onparametric regression. On the right-hand side of (10), the upper bound for the bias supt,s∈[0,1] |Eµ̂(t, s) − µ(t, s)| is

O(h2
1 + h2

2), whereas the sum of all the other terms is the upper bound of supt,s∈[0,1] |µ̂(t, s) − Eµ̂(t, s)|. Specifically,
ln(n)

∑n
i=1{ξ

2
i Ni(Ni − 1)Mi(Mi − 1)} stems from the covariance of the paired observations across different time points

and different positions, ln(n)
∑n

i=1{ξ
2
i Ni(Ni − 1)Mi}/h2 arises from that at different time points and the same positions,

ln(n)
∑n

i=1{ξ
2
i Mi(Mi−1)Ni}/h1 is from that at the same time points and different positions, and ln(n)

∑n
i=1{ξ

2
i NiMi}/(h1h2)

is obtained from the marginal variances of all the observations. Compared to the uniform convergence rate [15,31] in curve
functional models, the deviation of the second bound for our surface functional models is more complex.

Corollary 6. Under the Assumptions of Theorem 5,
(i) EW: Assumption (C3) is also valid, the uniform convergence rates in the six sampling design cases are summarized in Table 4.
For instance, for the ‘‘Sparse+Sparse’’ case: when ln(n)N

5
/(nM) → 0, ln(n)M

5
/(nN) → 0, h1 ≍ {nN M/ln(n)}−1/6 and

h2 ≍ {nN M/ln(n)}−1/6 hold, we have

sup
(t,s)∈[0,1]2

|µ̂(t, s) − µ(t, s)| = O
(
{ln(n)/(nN M)}1/3

)
a.s.

ii) DDW: Assumption (C4) also holds, the uniform convergence rates can be obtained for µ̂DDW (t, s) for the six sampling designs
y replacing ξi = 1/(

∑n
i=1 NiMi) and M in Table 4 by ξi = 1/{(

∑n
i=1 Ni)Mi} and MH , respectively.

(iii) SDW: Assumption (C5) also holds, the uniform convergence rates can be obtained for µ̂SDW (t, s) for the six sampling designs
by replacing ξ = 1/(

∑n N M ), N, and M in Table 4 by ξ = 1/(nN M ), N , and M , respectively.
i i=1 i i i i i H H
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For the three weighting schemes, the uniform convergence rates in the six sampling design cases are summarized in
orollary 6. The full results for all the nine cases are shown in Table 3 in the Supplementary Materials. We have the
ollowing conclusions: The uniform convergence rate in the ‘‘Sparse+Sparse’’ case, which can never reach {ln(n)/n}1/2, is
omparable to that of the traditional two-dimensional local linear smoother for independent data; In the ‘‘Sparse+Dense’’
nd ‘‘Sparse+Ultra-Dense’’ cases, the convergence rates are consistent with that in the ‘‘Sparse’’ case for curve functional
ata (Case 1 of Corollary 5.2, [31]), which is always slower than {ln(n)/n}1/2; The ‘‘Dense+Dense’’, ‘‘Dense+Ultra-Dense’’
nd ‘‘Ultra-Dense+Ultra-Dense’’ cases show the common uniform convergence rate of {ln(n)/n}1/2, which is also the rate
or the ‘‘Dense’’ and ‘‘Ultra-Dense’’ cases for curve functional data (Cases 2 and 3 of Corollary 5.2, [31]).

. Numerical studies

.1. Study 1

To examine the finite sample performance of the proposed estimators, we performed the following simulation studies.
e generated data from the following Time-Line surface functional model:

Yijk = Xi(Tij, Sik) + ϵijk = µ(Tij, Sik) + Ui(Tij, Sik) + ϵijk, for j ∈ {1, . . . ,Ni}, k ∈ {1, . . . ,Mi}, i ∈ {1, . . . , n},

here µ(t, s) = 0.5 exp(t/4 − s), Ui(t, s) = 2 cos(π (t + s))Bi1 + 2 sin(π (t + s))Bi2, Tij ∼
iid N (0, 1), Sik ∼

iid N (0, 1),
i1 ∼

iid N (0, 1/4), Bi2 ∼
iid N (0, 1/9), and ϵijk ∼

iid N (0, σ 2) with σ = 0.1 or σ = 1. We are interested in estimating
(t, s). Let ⌊x⌋ be the largest integer not greater than x. We considered the following three cases of (Ni,Mi):
ase 1. Ni and Mi are both i.i.d. from the discrete uniform distribution on the set {1, 2, 3};
ase 2. Ni and Mi are i.i.d. from the discrete uniform distribution on the set {1, 2, 3} and on the interval [⌊n1/2

⌋, ⌊2n1/2
⌋],

espectively;
ase 3. Ni and Mi are both i.i.d. from the discrete uniform distribution on the interval [⌊n1/2

⌋, ⌊2n1/2
⌋];

Case 1, 2 and 3 can be regarded as Sparse+Sparse Case, Sparse+Ultra-Dense Case and Ultra-Dense+Ultra-Dense Case,
espectively. For each case, we considered sample sizes n = 100 and n = 300 and applied our estimation method to

= 500 simulated datasets. We used the Gaussian kernel function K (u) = exp(−u2/2)/
√
2π . We can use the leave-

one-out cross validation method to select the bandwidths [6]. However, the procedure is computationally intensive. We
followed the well-known Silverman’s rule of thumb [13] to choose the bandwidth parameters in the simulation studies
for simplicity.

We set ξi = 1/(
∑n

i=1 NiMi) for EW, ξi = 1/{(
∑n

i=1 Ni)Mi} for DDW, and ξi = 1/(nNiMi) for SDW. Let both
{T1, . . . , TE} and {S1, . . . , SF } be the equidistant partition on [−1, 1] with the grid length of 0.2, resulting in E =

F = 11. Then, we calculated the standard deviations (SD) of Q estimators of µ(Tl, Sv) based on the Q datasets, for
l ∈ {1, . . . , E} and v ∈ {1, . . . , F}. We defined MSD as the mean of the E × F standard deviations. We defined the
empirical mean integrated squared error (EMISE) and empirical mean supremum absolute error (EMSAE): EMISE(µ̂) =

Q−1∑Q
q=1(EF )

−1∑E
l=1
∑F

v=1{µ̂
(q)(Tl, Sv) − µ(Tl, Sv)}2, EMSAE(µ̂) = Q−1

×
∑Q

q=1 maxl,v |µ̂(q)(Tl, Sv) − µ(Tl, Sv)|, where
µ̂(q)(·, ·) is the estimator of µ(·, ·) based on the qth dataset for q ∈ {1, . . . ,Q }.

We reported the results in Table 5. We observe that EW has smaller MSD, EMISE and EMSAE compared with DDW and
SDW in Case 1 (‘‘Sparse+Sparse’’ Case). DDW and SDW outperform in Case 2 (‘‘Sparse+Ultra-Dense’’ Case) and Case 3
(‘‘Ultra-Dense+Ultra-Dense’’ Case), respectively. The results are consistent with our theoretical findings. Moreover, SDW
seems to perform the worst when the time/location domain has sparse data as in Cases 1 and 2 and EW has the largest
MSD, EMISE and EMSAE among the three weighting schemes when both the time and location directions have dense
enough data as in Case 3.

4.2. Study 2

We see the numerical performance of the local linear estimators when the spatial domain is multivariate (e.g., 2-
dimensional) in this subsection. We generated data from the following Time-Plane surface functional model:

Yijk = Xi(Tij, Sik) + ϵijk = µ(Tij, Sik) + Ui(Tij, Sik) + ϵijk, for j ∈ {1, . . . ,Ni}, k ∈ {1, . . . ,Mi}, i ∈ {1 . . . , n},

where µ(t, s) = 0.5 exp(t/4 − s1 − s2) with s = (s1, s2)T , Ui(t, s) = 2 cos(π (t + s1 + s2))Bi1 + 2 sin(π (t + s1 + s2))Bi2,
Tij ∼

iid N (0, 1), Sik = (Sik1, Sik2)T with Sik1 ∼
iid N (0, 1) and Sik2 ∼

iid N (0, 1), Bi1 ∼
iid N (0, 1/4), Bi2 ∼

iid N (0, 1/9), and
ϵijk ∼

iid N (0, 0.01). We considered the following four cases of (Ni,Mi):
Case 1∗. Ni and Mi are both i.i.d. from the discrete uniform distribution on the set {1, 2, 3};
Case 2∗. Ni and Mi are i.i.d. from the discrete uniform distribution on the set {1, 2, 3} and on the interval [⌊n3/4

⌋, ⌊2n3/4
⌋],

respectively;
Case 3∗. Ni and Mi are i.i.d. from the discrete uniform distribution on the set [⌊n1/2

⌋, ⌊2n1/2
⌋] and on the interval {1, 2, 3},

respectively;
Case 4∗. Ni and Mi are i.i.d. from the discrete uniform distribution on the interval [⌊n1/2

⌋, ⌊2n1/2
⌋] and [⌊n3/4

⌋, ⌊2n3/4
⌋],

respectively.
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Table 5
The MSD, EMISE and EMSAE of µ̂ for EW, DDW and SDW schemes for the time-line surface functional
models. The schemes EW ξi = 1/(

∑n
i=1 NiMi), DDW ξi = 1/{(

∑n
i=1 Ni)Mi}, and SDW ξi = 1/(nNiMi).

Scheme σ = 0.1 σ = 1

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Sample size = 100

MSD EW 0.1290 0.0940 0.0685 0.1865 0.1090 0.0745
DDW 0.1327 0.0926 0.0676 0.1946 0.1084 0.0742
SDW 0.1382 0.0949 0.0667 0.2057 0.1137 0.0734

EMISE EW 0.0195 0.0096 0.0052 0.0379 0.0127 0.0061
DDW 0.0206 0.0093 0.0051 0.0412 0.0126 0.0060
SDW 0.0223 0.0099 0.0049 0.0459 0.0139 0.0059

EMSAE EW 0.3454 0.2426 0.1711 0.4892 0.2843 0.1890
DDW 0.3568 0.2393 0.1700 0.5109 0.2826 0.1887
SDW 0.3673 0.2444 0.1680 0.5349 0.2972 0.1875

Sample size = 300

MSD EW 0.0888 0.0628 0.0458 0.1254 0.0717 0.0472
DDW 0.0911 0.0617 0.0447 0.1311 0.0707 0.0465
SDW 0.0929 0.0636 0.0438 0.1390 0.0730 0.0459

EMISE EW 0.0092 0.0042 0.0023 0.0175 0.0054 0.0024
DDW 0.0097 0.0041 0.0022 0.0193 0.0053 0.0023
SDW 0.0103 0.0044 0.0021 0.0215 0.0057 0.0022

EMSAE EW 0.2460 0.1616 0.1084 0.3359 0.1872 0.1139
DDW 0.2503 0.1596 0.1072 0.3489 0.1853 0.1126
SDW 0.2554 0.1649 0.1058 0.3656 0.1896 0.1122

Table 6
The MSD, EMISE and EMSAE of µ̂ for EW, DDW1, DDW2 and SDW schemes for the
time-plane surface functional models. The schemes EW ξi = 1/(

∑n
i=1 NiMi), DDW1

ξi = 1/{(
∑n

i=1 Ni)Mi}, DDW2 ξi = 1/{(
∑n

i=1 Mi)Ni}, and SDW ξi = 1/(nNiMi).

Scheme Case 1∗ Case 2∗ Case 3∗ Case 4∗

MSD EW 0.1187 0.0573 0.0869 0.0406
DDW1 0.1287 0.0568 0.0946 0.0403
DDW2 0.1255 0.0608 0.0854 0.0402
SDW 0.1358 0.0603 0.0931 0.0399

EMISE EW 0.0317 0.0054 0.0217 0.0031
DDW1 0.0342 0.0053 0.0231 0.0031
DDW2 0.0334 0.0058 0.0214 0.0031
SDW 0.0361 0.0058 0.0229 0.0030

EMSAE EW 0.6524 0.2585 0.5536 0.2000
DDW1 0.6746 0.2581 0.5672 0.1996
DDW2 0.6687 0.2666 0.5495 0.1994
SDW 0.6948 0.2663 0.5645 0.1990

In each case, we generated Q = 500 datasets, each with a sample size of n = 300. For the time-plane surface
functional models, Cases 1∗, 2∗, 3∗ and 4∗ can be regarded as Sparse+Sparse Case, Sparse+Ultra-Dense Case, Ultra-
Dense+Sparse, and Ultra-Dense+Ultra-Dense Case, respectively. We considered schemes EW ξi = 1/(

∑n
i=1 NiMi), DDW1

ξi = 1/{(
∑n

i=1 Ni)Mi}, DDW2 ξi = 1/{(
∑n

i=1 Mi)Ni}, and SDW ξi = 1/(nNiMi). Let {T1, . . . , TE}, {S11, . . . , S1F } and
{S21, . . . , S2F } all be the equidistant partition on [−1, 1] with the grid length of 0.2. We calculated the standard deviations
(SD) of Q estimators of µ(Tl, S1v1 , S2v2 ) based on the Q datasets for l = 1, . . . , E, v1 = 1, . . . , F and v2 = 1, . . . , F .
We defined MSD as the mean of the E × F 2 standard deviations. We defined the EMISE and the EMSAE similarly as in
Section 4.1. We summarized the results in Table 6. We observed that EW, DDW1, DDW2 and SW are the most favorable
schemes for Case 1∗, Case 2∗, Case 3∗, and Case 4∗, respectively.

We will state the conditional bias and conditional variance, asymptotic normality and uniform convergence properties
or surface functional models when the spatial domain is multivariate in future works. We note that, similar to
ection 3.2, for multivariate spatial domain, the EW, DDW1, DDW2 and SW schemes are the most favorable schemes
or ‘‘Sparse+Sparse’’, ‘‘Sparse+Ultra-Dense’’, ‘‘Ultra-Dense+Sparse’’ and ‘‘Ultra-Dense+Ultra-Dense’’ cases in terms of
stimating efficiency, respectively.
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.3. Data analysis

We illustrate our proposed method via the application to a data set extracted from the national database for autism
esearch (NDAR) (https://ndar.nih.gov/), which is an NIH-funded research data repository that aims at accelerating
rogress in autism spectrum disorders (ASD) research through data sharing, data harmonization, and research result
eporting. A total of 416 MRI scans were selected from 253 normal children (126 males and 127 females). Among them,
37 children have 1 scan, 78 children have 2 scans, 34 subjects have 3 scans, 3 children have 5 scans, and 1 child has 6
cans.
First, we performed two important steps to process the diffusion tensor imaging (DTI) data: one is to implement a

eighted least squares estimation method [1] to construct the diffusion tensors, and the other is to use an FMRIB Software
ibrary (FSL) Tract-Based Spatial Statistics (TBSS) pipeline [27] to register DTIs from multiple subjects to create a mean
mage and a mean skeleton. Specifically, by using FMRIB Software Library, we obtained the maps of fractional anisotropy
FA) for all the subjects from the DTI posterior to Eddy current correction and automatic brain extraction. FA maps were
hen fed into the TBSS tool, which is also a part of the FMRIB Software Library. In the TBSS analysis, the FA data of all the
ubjects were aligned into a common space by non-linear registration, and the mean FA image was created and thinned
o obtain a mean FA skeleton, which represents the centers of all the white matter (WM) tracts shared by the group.
ubsequently, each subject’s aligned FA data sets were projected onto this skeleton. The FA values were extracted at
ach grid point across multiple time points measured by ln(ages) (1 to 6 time points) along the selected 45 fiber tracts
arclength) for all 253 infants. Although several DTI fiber tracts were tracked, we focus on the corpus callosum to illustrate
he applicability of our method.

The aim of this data analysis is to investigate the nonparametric relationship between FA value and ln(age) as well as
ocation along the corpus callosum. We applied our surface functional model (1) to characterize the data with Y , T and S
denoting FA value, ln(ages), and arclength, respectively. As mentioned in Section 2, we use the local linear regression to
obtain µ̂(t, s). We present the plots of FA value against ln(age) and arclength, respectively, in Fig. 2 for the schemes EW
ξi = 1/(

∑n
i=1 NiMi), DDW ξi = 1/{(

∑n
i=1 Ni)Mi} and SDW ξi = 1/(nNiMi). The three weighting schemes appear to yield

similar results. First, FA seems to attain the smallest value when the arclength is around 15.5 and the ln(age) is around
4.7. Second, FA appears to increase with ln(age) for a given arclength. Third, FA achieves the largest when the arclengths
are around 0 and around 48. Moreover, FA tends to first decrease and then increase with the turning point being around
35 as the arclength increases, for a given ln(age).

5. Conclusion

In this paper, we propose the surface functional models (SFM) framework and estimate the mean functions based
on local linear smoothers. The SFM is commonly encountered in brain imaging studies, where imaging features, such as
fractional anisotropy, are observed over different brain locations at multiple time points. The SFM are significantly different
from the multivariate functional models with two-dimensional predictor variables. The covariance structure within and
across the two domains (time-spatial) of surface functional data is much more complex than that of the single-domain
curve functional data [15,31]. In our work, we provide the conditional bias, the conditional variance, the asymptotic
normality, and the uniform convergence properties of the estimator µ̂(t, s) for the surface functional models on a unified
latform. The other major contribution of our work is that, based on the EW, DDW and SDW schemes, respectively, we
rovide the explicit definition of the nine sampling design scenarios, and derive the optimal bandwidth orders for each
cenario. We would like to emphasize that the asymptotic results for the mean function estimator are specific to the
ampling designs of the surface functional data. Most importantly, we perform an extensive comparisons among the EW,
DW and SDW schemes both theoretically and empirically, and provide the suggestions on which one is preferred over the
ther two for the different sampling designs, see Section 3.2. Specifically, we suggest to use EW, DDW and SW schemes for
‘Sparse+Sparse’’ Case, ‘‘Sparse+Ultra-Dense’’ Case and ‘‘Ultra-Dense+Ultra-Dense’’ Case, respectively. These results will
e extended to the SFM with multivariate spatial domain formally in the future. Our work present in this paper focuses
n mean function estimation in the new framework of surface functional models. We defer the covariance function
stimation method in the Supplementary Materials. As another future research direction, we will systematically study
he theoretical properties and the finite sample performance of the covariance function estimator as well as functional
rincipal component analysis (FPCA) using the estimated covariance function.
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Fig. 2. Data analysis. The FA value varies as a function of ln(age) and arclength. The first, the second and the third ones are µ̂EW (t, s), µ̂DDW (t, s)
and µ̂SDW (t, s), respectively.
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ptimal bandwidth orders and partition of the surface functional data

We first consider the optimal bandwidth orders and partition of the functional data for the EW weighting scheme
nder Assumptions (A), (B), (C1), (C2) and (C3). Let N = O(nα) and M = O(nβ ) with α ≥ 0 and β ≥ 0. For any (t, s) in the
nterior of [0, 1]2, the asymptotic mean-squared error is of order

n−1
+ n−(1+β)h−1

2 + n−(1+α)h−1
1 + n−(1+α+β)h−1

1 h−1
2 + h4

1 + h4
2.

hus, the optimal bandwidths satisfy h5
1 ≍ n−(1+α)

+ n−(1+α+β)h−1
2 and h5

2 ≍ n−(1+β)
+ n−(1+α+β)h−1

1 . If we set

n−(1+α)
⪯ n−(1+α+β)h−1

2 and n−(1+β)
⪯ n−(1+α+β)h−1

1 , (11)

hen we have h5
1 ≍ n−(1+α+β)h−1

2 and h5
2 ≍ n−(1+α+β)h−1

1 . Thus, the optimal bandwidths satisfy

h1 ≍ n−(1+α+β)/6 and h2 ≍ n−(1+α+β)/6. (12)

q. (11) is equivalent to that nβh2 → 0 and nαh1 → 0 hold. It follows from (12) that we have

nβh2 = n(5β−α−1)/6
→ 0 and nαh1 = n(5α−β−1)/6

→ 0.

his means that 5β − α − 1 < 0 and 5α − β − 1 < 0 hold. That is, both α and β are small. This is the so-called
‘Sparse+Sparse’’ case. The optimal bandwidth orders and partition of the functional data of the other eight cases can be
imilarly discussed.
Second, the optimal bandwidth orders and partition of the functional data for the DDW scheme under Assumptions

A), (B), (C1), (C2) and (C4) can be derived similarly. In this case, we set N = O(nα) and MH = O(nβ ) with α ≥ 0 and
≥ 0.
Third, the optimal bandwidth orders and partition of the functional data for the SDW scheme under Assumptions (A),

B), (C1), (C2) and (C5) can be derived similarly. In this case, we set NH = O(nα) and MH = O(nβ ) with α ≥ 0 and β ≥ 0.

emmas

emma 1 (Rivasplata [25]). If X is g-subgaussian, then for any α ∈ R, αX is |αg|-subgaussian. If X1 and X2 are random
ariables such that Xi is gi-subguassian (i = 1,2), then X1 + X2 is g1 + g2-subguassian.

emark 10. Lemma 1 holds even when X1 and X2 are dependent (or correlated) by its proof in [25].

The following lemma shows the rate of uniform convergence for

Ln(t, s) = h1h2

n∑
i=1

ξi

Ni∑
j=1

Mi∑
k=1

Kh1

(
Tij − t

)
Kh2 (Sik − s)Uijk.

emma 2. Under Assumptions (A), (B), (C1), (C8), (C9), (C10) and (D2), we have

sup
t,s∈[0,1]

|Ln(t, s) − ELn(t, s)| = O
( [

ln(n)
{ n∑

i=1

ξ 2
i NiMih1h2 +

n∑
i=1

ξ 2
i Ni(Ni − 1)Mih2

1h2

+

n∑
i=1

ξ 2
i Mi(Mi − 1)Nih1h2

2 +

n∑
i=1

ξ 2
i Ni(Ni − 1)Mi(Mi − 1)h2

1h
2
2

}]1/2 )
a.s.

roof. We define an as[
ln(n)

{ n∑
i=1

ξ 2
i Ni(Ni − 1)Mi(Mi − 1)h2

1h
2
2 +

n∑
i=1

ξ 2
i Ni(Ni − 1)Mih2

1h2 +

n∑
i=1

ξ 2
i Mi(Mi − 1)Nih1h2

2 +

n∑
i=1

ξ 2
i NiMih1h2

}]1/2
.

t follows from Assumption (C8) that there are two constants γ1 > 0 and γ2 > 0 such that nγ1h1an → ∞ and nγ2h2an → ∞

old. Let χ (γ1) and ς (γ2) be equidistance partitions on [0,1] with grid length n−γ1 and n−γ2 , respectively. Therefore,
upt,s∈[0,1] |Ln(t, s) − ELn(t, s)| is upper bounded by

sup |Ln(t, s) − ELn(t, s)| + D1n + D2n,

t∈χ (γ1),s∈ς (γ2)
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B

w

where

D1n = sup
|t−t ′|<n−γ1 ,|s−s′|<n−γ2

|Ln(t, s) − Ln(t ′, s′)|, D2n = sup
|t−t ′|<n−γ1 ,|s−s′|<n−γ2

|ELn(t, s) − ELn(t ′, s′)|.

Step 1: To prove max{D1n,D2n} = o(an), a.s. Specifically, we have

D1n ≤ sup
|t−t ′|<n−γ1 ,|s−s′|<n−γ2

h1h2

n∑
i=1

ξi

Ni∑
j=1

Mi∑
k=1

⏐⏐⏐⏐Kh1

(
Tij − t

)
Kh2 (Sik − s) − Kh1

(
Tij − t ′

)
Kh2

(
Sik − s′

) ⏐⏐⏐⏐Uijk,

≤

n∑
i=1

ξi

Ni∑
j=1

Mi∑
k=1

UijkMK L
(
n−γ1

h1
+

n−γ2

h2

)
≤

n∑
i=1

ξiNiMi sup
t,s

|Ui(t, s)|MK L
(
n−γ1

h1
+

n−γ2

h2

)

≤ nmax
i

{ξiNiMi}

(
1
n

n∑
i=1

sup
t,s

|Ui(t, s)|

)
MK L

(
n−γ1

h1
+

n−γ2

h2

)
.

y Assumptions (C9) and (D2), we have supn nmaxi(ξiNiMi) ≤ B < ∞ and E(supt,s |Ui(t, s)|) < ∞. We also have
nγ1h1an → ∞ and nγ2h2an → ∞. Thus, max{D1n,D2n} = o(an), a.s.

Step 2: To prove supt∈χ (γ1),s∈ς (γ2) |Ln(t, s) − ELn(t, s)| = O(an) a.s. Firstly, we prove the result under Assumption (D2)(a).
Let An = an{n/ln(n)} and the truncated Ln(t, s) be

L∗

n(t, s) = h1h2

n∑
i=1

ξi

Ni∑
j=1

Mi∑
k=1

Kh1

(
Tij − t

)
Kh2 (Sik − s)UijkI

(⏐⏐Uijk
⏐⏐ ≤ An

)
,

where I(·) is the indicator function. Then, supt∈χ (γ1),s∈ς (γ2) |Ln(t, s) − ELn(t, s)| is upper bounded by

sup
t∈χ (γ1),s∈ς (γ2)

|L∗

n(t, s) − EL∗

n(t, s)| + E1n + E2n,

here

E1n = sup
t∈χ (γ1),s∈ς (γ2)

h1h2

n∑
i=1

ξi

Ni∑
j=1

Mi∑
k=1

Kh1

(
Tij − t

)
Kh2 (Sik − s)UijkI

(⏐⏐Uijk
⏐⏐ > An

)
,

E2n = sup
t∈χ (γ1),s∈ς (γ2)

h1h2

n∑
i=1

ξi

Ni∑
j=1

Mi∑
k=1

E
{
Kh1

(
Tij − t

)
Kh2 (Sik − s)UijkI

(⏐⏐Uijk
⏐⏐ > An

)}
.

Moreover,

h1h2

n∑
i=1

ξi

Ni∑
j=1

Mi∑
k=1

Kh1

(
Tij − t

)
Kh2 (Sik − s)UijkI

(⏐⏐Uijk
⏐⏐ > An

)
≤ BM2

KA
1−δ
n

(
n−1

n∑
i=1

sup
t,s

|Ui(t, s)|δ
)

,

which yields max{E1n, E2n} = o(an), a.s. by using Assumptions (A), (C9) and (D2)(a).
We can rewrite L∗

n(t, s) − EL∗
n(t, s) =

∑n
i=1{Win(t, s) − EWin(t, s)}, where

Win(t, s) = h1h2ξi

Ni∑
j=1

Mi∑
k=1

Kh1 (Tij − t)Kh2 (Sik − s)UijkI(
⏐⏐Uijk

⏐⏐ ≤ An).

We have |Win(t, s) − EWin(t, s)| ≤ 2BM2
KAn/n. Moreover, there exists an MV > 0 such that E{Win(t, s) − EWin(t, s)}2 ≤

MV cin, where cin is given by ξ 2
i {Ni(Ni − 1)Mi(Mi − 1)h2

1h
2
2 + Ni(Ni − 1)Mih2

1h2 + Mi(Mi − 1)Nih1h2
2 + NiMih1h2}. For M∗ > 0

large enough, using Bernstein’s inequality, it follows that

Pr
(

sup
t∈χ (γ1),s∈ς (γ2)

|L∗

n(t, s) − EL∗

n(t, s)| > M∗an

)
≤ nγ1+γ2 Pr

(
|L∗

n(t, s) − EL∗

n(t, s)| > M∗an
)

≤ 2nγ1+γ2 exp
(

−
M∗2a2n/2

MVa2n/ln(n) + 2BM2
KM∗Anan/(3n)

)
≤ 1/n2.

By Borel–Cantelli’s lemma, we have sup |L∗(t, s) − EL∗(t, s)| = O(a ) a.s. and the proof is complete.
t∈χ (γ1),s∈ς (γ2) n n n
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Secondly, we prove the result under Assumption (D2)(b). Let bn =
∑n

i=1 cin. U
∗ is g-subguassian, thus Uijk’s are all

-subguassian by the equivalence of exponential estimates in [17] (page 67). By Lemma 1, we have

νin(t, s) := h1h2ξi

Ni∑
j=1

Mi∑
k=1

Kh1 (Tij − t)Kh2 (Sik − s)Uijk

is ξiNiMiM2
Kg-subguassian, is thus BM2

Kg/n-subguassian. By the equivalence of exponential estimates in [17] (pp. 67, 68),
for z > 0 and z

√
Var(νin(t, s)) → 0, we can show that by Chen and Leng [3]

ln {E exp (zνin(t, s))} ≤ z2Var(νin(t, s)).

There exists an M∗

V > 0 such that Var(νin(t, s)) < M∗

V cin holds for all (t, s) ∈ [0, 1]2. Note that
√
M∗

VM
∗an

√
cin/(2M∗

V
∑n

i=1

cin) → 0 holds for all i by Assumption (C10). Thus, for large enough M∗ > 0, we have

Pr
[
{Ln(t, s) − ELn(t, s)} > M∗an

]
≤ exp(−zM∗an)

n∏
i=1

E exp {zνin(t, s)}

≤ exp(−zM∗an) exp

{
M∗

V

(
n∑

i=1

cin

)
z2
}

(13)

for all (t, s) ∈ [0, 1]2. Thus, (13) is maximized as z = M∗an/(2M∗

V
∑n

i=1 cin) and the maximizer equals

exp
(

−
M∗2a2n

4M∗

V
∑n

i=1 cin

)
.

Similarly, for all (t, s) ∈ [0, 1]2,

Pr
[
{Ln(t, s) − ELn(t, s)} < −M∗an

]
≤ exp

(
−

M∗2a2n
4M∗

V
∑n

i=1 cin

)
.

Thus, for all (t, s) ∈ [0, 1]2, we have

Pr
{
|Ln(t, s) − ELn(t, s)| > M∗an

}
≤ 2 exp

{
−M∗2a2n/

(
4M∗

Vbn
)}

.

Therefore for large enough M∗ > 0, we get

Pr
(

sup
t∈χ (γ1),s∈ς (γ2)

|Ln(t, s) − ELn(t, s)| > M∗an

)
≤ nγ1+γ2 max

t∈χ (γ1),s∈ς (γ2)
Pr
(
|Ln(t, s) − ELn(t, s)| > M∗an

)
≤ 2nγ1+γ2 exp{−M∗2a2n/

(
4M∗

Vbn
)
} ≤

1
n2 .

y Borel–Cantelli’s lemma, it follows that

sup
t∈χ (γ1),s∈ς (γ2)

|Ln(t, s) − ELn(t, s)| = O(an) a.s.,

which completes the proof. □

Define

L1n(t, s) = h1h2

n∑
i=1

ξi

Ni∑
j=1

Mi∑
k=1

Kh1 (Tij − t)Kh2 (Sik − s)(Tij − t)Uijk,

L2n(t, s) = h1h2

n∑
i=1

ξi

Ni∑
j=1

Mi∑
k=1

Kh1 (Tij − t)Kh2 (Sik − s)(Sik − s)Uijk.

Using the similar arguments as in the proof of Lemma 2 yields Lemma 3.

Lemma 3. Under Assumptions (A), (B), (C1), (C8), (C9), (C10) and (D2), we have

sup
t,s∈[0,1]

|L1n(t, s) − EL1n(t, s)| = o
( [

ln(n)
{ n∑

i=1

ξ 2
i NiMih1h2 +

n∑
i=1

ξ 2
i Ni(Ni − 1)Mih2

1h2

+

n∑
i=1

ξ 2
i Mi(Mi − 1)Nih1h2

2 +

n∑
i=1

ξ 2
i Ni(Ni − 1)Mi(Mi − 1)h2

1h
2
2

}]1/2 )
a.s.
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and

sup
t,s∈[0,1]

|L2n(t, s) − EL2n(t, s)| = o
( [

ln(n)
{ n∑

i=1

ξ 2
i NiMih1h2 +

n∑
i=1

ξ 2
i Ni(Ni − 1)Mih2

1h2

+

n∑
i=1

ξ 2
i Mi(Mi − 1)Nih1h2

2 +

n∑
i=1

ξ 2
i Ni(Ni − 1)Mi(Mi − 1)h2

1h
2
2

}]1/2 )
a.s.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmva.2020.104664.
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