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ABSTRACT

Many studies have shown that evaluating the linear separability of hidden-layer
outputs plays a key role in understanding the working mechanism of deep networks.
However, it is still challenging to develop the linear separability measure (LSM)
that satisfies all of the following requirements: 1) it should be an absolute measure;
2) it should be insensitive to the outliers; and 3) its computational cost should
be low for real-time monitoring the behavior of each hidden layer. In this paper,
we propose the Minkowski difference-based linear separability measures (MD-
LSMs) that just meet the first two requirements. Moreover, we also introduce an
approximate calculation method to significantly decrease their computation costs
with only a slight precision sacrifice. As an application example, we conduct the
experiments on the real-time monitoring for the hidden-layer behaviors of several
popular deep networks, and show that the outputs of the hidden layers adjacent
to the output layer have higher linear separability degrees. We also observe that
the change of linear separability degree of hidden layers (especially the ones are
adjacent to the output layers) are in sync with the change of the training accuracy
of the entire network. It implies that the linear separability of some important
hidden layers can be treated as a performance criterion to characterize the network’s
training behavior. The relevant theoretical discussion also validates this finding.

1 INTRODUCTION

Two point sets are said to be linearly separable if they can be correctly separated by a hyperplane.
The concept of linear separability plays an important role in measuring the capability of neural
networks (Tajine & Elizondo, 2002; Elizondo, 2004; Elizondo et al., 2010). In the literature, there
are two main research issues on the linear separability of a neural network, which trended to be
considered as an entire function: 1) whether the current network can achieve all dichotomies, i.e., the
mapping capability (Hornik et al., 1989); and 2) how many dichotomies can be recorded by a network
with the specific structure, i.e., the memory capability (Cover, 1965). Since neural networks are of
multiple-hidden layer stacking structures, the network outputs are produced by the composition of
multiple pseudo-linear maps, each of which corresponds to one hidden layer (Vershynin, 2020). It
could be hard to infer the working mechanism of a deep network by treating it as an entire function
rather than by analyzing the behavior of each hidden layer.
Consider a feed-forward network net(·) : RN → {0, 1} with N input node and L hidden layers.
Denote the l-th hidden layer as hidl(·) and let hidl(X ) be the set of hidden-layer outputs w.r.t. the
input set X := {xm}Mm=1. Set Vl as the weights of the l-th hidden layer (1 ≤ l ≤ L), and let w be
the weights of the output layer. Denote V′

l (1 ≤ l ≤ L) and w′ as the updated weights provided by a
training algorithm implemented on the training set S = {(xm,ym)}Mm=1. The updated network is
denoted as net′(·) with updated weights V′

1, · · · ,V′
L and w′. Denote hid′l(·) as the l-th hidden layer

with the updated weights V′
l (1 ≤ l ≤ L). Under these notations, we obtain the following theorem

which motivates the research of this paper:
Proposition 1.1 (Synchronicity). Assume that the updated weights w′ achieves the highest clas-
sification accuracy on S when the hidden-layer weights of net′(·) are updated to be V′

1, · · · ,V′
L.

Then, net′(·) has higher classification accuracy on S than net(·) if and only if the linear separability
degree of hid′L(X ) is larger than that of hidL(X ).
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This proposition demonstrates that there exists the synchronicity between the linear separability
degree of the L-th hidden-layer outputs and the training performance during the process of training a
network, i.e., the change of linear separability degree of the L-th hidden-layer outputs is in sync with
that of the training accuracy. Although this result cannot explicitly exhibit the relationship between
the linear separability degree of the l-th hidden-layer outputs (l < L) and the training accuracy,
the L-th hidden-layer outputs actually are determined by the weights V′

1, · · · ,V′
L−1, which also

influence the linear separability degree of the relevant hidden-layer outputs. Therefore, the linear
separability can be applied to analyze the mapping behaviors of hidden layers and then to understand
the working mechanism of deep networks.
In recent years, some pioneering works have been aware of the importance of analyzing deep networks
via the layer-wise changes of class separability when they pass through the networks (Schilling et al.,
2021; Apicella et al., 2024; Pezzotti et al., 2017; Rauber et al., 2016; Alain & Bengio, 2016; Ben-
Shaul & Dekel, 2022; He & Su, 2023; Rangamani et al., 2023). One common opinion of these works
is that the linear separability degree of hidden-layer outputs should become layer-wisely stronger if a
deep network has been (or is being) trained suitably. Some empirical evidences were also provided to
demonstrate this fact. Therefore, the linear separability provides a feasible manner to analyze the
mapping behaviors of hidden layers and then to understand the working mechanism of deep networks.
Accordingly, a desired linear separability measure (LSM) should meet the following requirements:

(1) (Efficiency) It should have a low computational cost, because we would like to layer-wisely
examine the linear separability degree of the hidden-layer outputs after each weight-update epoch
during the entire training process;

(2) (Robustness) It should be insensitive to the outliers, because the stochastic gradient descent
methods sometimes cause abnormal hidden-layer outputs;

(3) (Absoluteness) It should be an absolute measure, which objectively evaluates the degree of
linear separability between two sets. If its value is known, one can directly judge whether two
sets are linearly separable or how heavy they are overlapped. In contrast, the relative measure
only indicates whether the linear separability between the two current sets becomes stronger
(or weaker) than that of the two sets before being transformed. Therefore, it is hard to describe
the linear separability of two sets based only on its value. Please refer to Remark 2.8 for an
illustration.

1.1 BACKGROUND AND RELATED WORKS

Some mathematical terms appearing in the existing works actually can be treated as LSMs of two
point sets, e.g., the generalized Rayleigh quotient (GRQ) of linear discriminant analysis (LDA),
which is a relative measure:

Jω := max
ω

{
(ωTSbω)/(ωTSwω

}
, (1)

and the sum of slack variables (SSV), which is an absolute measure, in linear support vector machine
(L-SVM) with soft margin. Moreover, since Jω is based on the mean of the point set, it is sensitive
to the outliers in the set. Because of the eigenvalue decomposition, the calculation of Jω could
be time-consuming especially when the dimension is high. He & Su (2023) introduced the term
tr(SwS

†
b), a variant of GRQ, to measure the linear separability degree of hidden-layer outputs, but it

is a relative measure and the calculation of the Moore-Penrose inverse S†
b is time-consuming as well.

Similarly, since L-SVM is expressed as a quadratic programming problem, the calculation of SSV
sometimes brings a high computational burden when the sample size is large.

Additionally, Ben-Israel & Levin (2006) introduced the linear divisible angle to measure the linear
separability degree of two point sets, where the labels of the data are treated as a new attribute to
convert the dimension of points from N to N + 1, and then LDA is used to compute the GRQ of the
converted points. Gabidullina (2013) adopted the smallest thickness of the classified hyperplane as
the LSM for the linearly inseparable sets. Since this measure is computed via a minimax optimization
problem, its computational cost is high.

By incorporating the intra-class and the inter-class distances, Schilling et al. (2021) introduced the
generalized discrimination value (GDV) to measure the class separability among the hidden-layer
outputs associated with different labels during the training process. By tracking the behavior of MLP’s
hidden layers in each training epoch, they detected the synchronicity between the class separability,
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measured by GDV, of hidden-layer outputs and the training performance. Since the computation of
GDV is time-consuming, for the relatively complicated networks (such as CNN, ResNet, VGG and
Inception), they only computed the GDVs of hidden-layer outputs of the trained networks, and then
made some statistical analysis between the resultant GDVs and the layer number in order to explore
the alteration rule of the class separability of the outputs from different hidden layers.

Apicella et al. (2024) introduced a structural manner to detect the behavior of hidden-layer outputs
during the training phase. Specifically, they imposed an auxiliary output layer, called hidden
classification layer, into each hidden layer and then combined the loss function of each auxiliary
output layer with the loss of the main network to form an entire training objective function. Their
experiments have shown some interesting phenomena: 1) the introduction of hidden classification
layer can enhance the class separability, measured by GDV, of the corresponding hidden-layer outputs;
and 2) when the class separability of each hidden layer increases, the main network gains a higher
testing performance. However, it is still challenging to explain them, which also motivates this paper.

Alain & Bengio (2016) used hidden-layer outputs to train a linear classifier, called "probe", and its
classification performance is regarded as a measure of the linear separability degree of the hidden
layer. Some state-of-the-art classifiers (such as logistic regression or naive Bayes) have the potential
to act as feasible "probes" because of their low desired computational complexities. However, if there
is no priori knowledge on the data distribution, the efficiency and the performance of these classifiers
could be heavily influenced by some unavoidable factors such as the choice of hyperparameters
and the setting of termination conditions, and thus their desired complexities are usually hard to be
achieved in practice. Consequently, the "probe" method is unsuitable (at least cannot be directly
applied) to detecting the mapping behavior of each hidden layer after each training epoch. How to
develop an efficient tool for real-time monitoring the status of each hidden layer during the entire
training process becomes the main research concern of this paper.

In addition, there are also other works applying the concept of linear separability to study the
properties of deep networks, such as the fold of the data manifold in the high-dimensional space via
hidden layers of deep networks (Keup & Helias, 2022), and the trade-offs between the representation
ability and the depth-size of deep neural networks with rectified linear units (ReLUs) (Arora et al.,
2016).

Table 1: Comparison among Different LSMs
LSM Efficiency Robustness Absoluteness Reference

GRQ × × × Fisher (1936)
tr(SwS

†
b) × × × He & Su (2023)

SSV × ✓ ✓ Cortes & Vapnik (1995)
Linear divisible angle × × × Ben-Israel & Levin (2006)

Smallest thickness × ✓ ✓ Gabidullina (2013)
GDV × × × Schilling et al. (2021)

Structural manner × ✓ × Apicella et al. (2024)
"Probe" × ✓ ✓ Alain & Bengio (2016)

LSi (i ∈ {∗, 0, 1}) × ✓ ✓ Ours
L̂Si (i ∈ {∗, 0, 1}) ✓ ✓ ✓ Ours

1.2 OVERVIEW OF MAIN RESULTS

In this paper, we mainly concern with two issues: one is how to develop the LSM that satisfies
the aforementioned requirements of efficiency, robustness and absoluteness; and the other is what
behaviors can be captured via the real-time monitoring for the linear separability of hidden-layer
outputs.

First, we introduce Minkowski difference-based LSM (MD-LSM) for evaluating the linear separability
degree of hidden-layer outputs. They are absolute measures and insensitive to the outliers. Since
their original forms are hard to calculate, we then design an efficient approximation manner whose
computational cost is low. The comparative experiments are conducted to demonstrate that the values
of the original MD-LSMs slightly differ from those provided by the approximation manner. In
Table 1, we make the comparison between the existing LSMs and the proposed MD-LSMs from the
viewpoint of whether they meet the requirements of efficiency, robustness and absoluteness.
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As an application example, we use the proposed MD-LSMs for real-time monitoring the hidden-
layer behaviors of some popular deep networks during their entire training processes, including
multilayer perceptron (MLP) (Bishop, 1994), graph neural network (GNN) (Kipf & Welling, 2016),
convolutional neural network (CNN) (LeCun et al., 1998), ResNet (He et al., 2016), VGGNet
(Simonyan & Zisserman, 2014), AlexNet (Krizhevsky et al., 2017), vision transformer (ViT) (Doso-
vitskiy et al., 2020) and GoogLeNet (Szegedy et al., 2015). We verify the effectiveness of MD-LSMs
on several real-world datasets including the UCI datasets and the text datasets. We calculate the linear
separability of each hidden layer after each training epoch, and observe that when the training sample
set passes through a deep network, the outputs of the hidden layers that are closer to the output layer
have higher linear separability degrees. This finding not only accords with the common opinion of
recent works but also empirically answers the question of why deep networks need a large number of
hidden layers. Since one finite-width hidden layer equipped with the usual activation functions (e.g.,
sigmoid, tanh and ReLU) has limited nonlinear mapping capability, the linear separability degree of
its outputs could be slightly higher than that of its inputs. For complicated classification tasks, the
composition of multiple hidden layers gradually increases the linear separability degree of outputs of
each hidden layer. In this manner, the desired classification accuracy can be achieved.

Moreover, we also find that the changes of linear separability of hidden layers (especially the ones
adjacent to the output layer) are in sync with the changes of the training accuracy. This finding
implies that detecting linear separability of some important hidden layers potentially becomes a
reasonable manner of characterizing the real-time training behavior of the entire network. A relevant
theoretical discussion is given to validate this finding as well.

The rest of this paper is organized as follows. Section 2 defines MD-LSMs and then gives the
empirical comparison with several representative LSMs. In Section 3, we conduct the numerical
experiments on the real-time monitoring for hidden-layer behavior of some popular deep networks.
The last section concludes this paper. In the appendix, we give the workflow of finding maximum
linearly-separable subsets (part A). We then make the comparisons with GRQ and GDV (parts B & C).
Next, we prove the main results (part D). Finally, we present the complete report of the experiments
on the real-time monitoring (part E).

2 MINKOWSKI DIFFERENCE BASED LINEAR SEPARABILITY MEASURES

In this section, we present the concept of MD-LSM and its alternative versions. Then, we design an
approximate manner to calculate them with a low computational cost.

2.1 MINKOWSKI DIFFERENCE AND MAXIMUM LINEARLY SEPARABLE SUBSET

The concept of Minkowski difference (MD) has been widely used in many fields such as data
classification (Mampaey et al., 2012; Takeda et al., 2013) and collision detection (Ericson, 2004).
Definition 2.1 (Minkowski Difference). Let A = {a1, · · · ,aI} ⊂ RN and B = {b1, · · · ,bJ} ⊂
RN be two point sets. Then, the Minkowski difference between them is defined as

MD(A,B) :=
{
mij := ai − bj ∈ RN | ai ∈ A, bj ∈ B

}
.

Based on Minkowski difference, we convert the linear separability of two point sets into the relative
position relationship between a point set and a hyperplane that passes the origin (cf. Fig. 1).
Theorem 2.2. Two points sets A,B ⊂ RN are linearly separable if and only if there exists a vector
ω ∈ RN such that all points of MD(A,B) locate in one side of the hyperplane ωTm = 0, m ∈ RN .

As shown in the proof of this theorem (cf. Appendix D.1), given two linearly separable sets A and B,
the normal vector ω of any hyperplane that separates the two sets is the one mentioned in the theorem.
Additionally, if the two sets A and B are linearly inseparable, some points of MD(A,B) will lie in
one side of the hyperplane and the rest lie in the other side (cf. Fig. 1):
Definition 2.3 (Minor and Major Sides). Given a hyperplane ωTm = 0, if more than half points of
MD(A,B) lie in one side of ωTm = 0, then this side is said to be the major side of the hyperplane;
and accordingly, the other side of ωTm = 0 is said to be the minor side of the hyperplane.

Furthermore, we denote majorω(MD(A,B)) (resp. minorω(MD(A,B))) as the subset of
MD(A,B) that lies in the major (resp. minor) side of ωTm = 0 (cf. Fig. 1). According to
Theorem 2.2, the points mij ∈ minorω(MD(A,B)) can be eliminated by removing the relevant
points ai from A or bj from B, and the rests turn out to be linearly separable.
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Definition 2.4. The set MaxLSω(A,B) is said to be the maximum linearly-separable subset ofA∪B
w.r.t. the vector ω, if it holds that MaxLSω(A,B) := Aω ∪ Bω = argmaxA′⊂A,B′⊂B |A′|+ |B′|
such that A′ and B′ can be linearly separated by using the hyperplane with the normal vector ω.

Namely, MaxLSω(A,B) is the largest-size subset ofA∪B such thatAω and Bω are linear separable
w.r.t. the hyperplane with the normal vector ω. It is noteworthy that MaxLSω(A,B) could not be
unique. The workflow of finding MaxLSω(A,B) is given in Appendix A.

minor�(��(A,B   

major�(��(A,B   

Figure 1: Minor and major sides of the Minkowski difference for two overlapped sets

2.2 MD-BASED LINEAR SEPARABILITY MEASURE (MD-LSM)

Following Theorem 2.2, the ratio of the numbers of the points mij ∈ MD(A,B) that respectively
locate in the two sides of the hyperplane can be treated as a criterion to measure the linear separability
degree between A and B:

LS∗(A,B) := max
ω∈RN

{∑
i≤I,j≤J 1(ωTmij > 0)

|A| · |B|

}
, (2)

where |MD(A,B)| is the cardinality of MD(A,B) and 1(E) is the indicator function w.r.t. the event
E . It is obvious that LS∗ ∈ [0.5, 1] is an absolute measure.

Denote ACCw,b(A,B) as the classification accuracy of the linear model y = ⟨w,x⟩ + b on the
point set A ∪ B, and denote ACCline(A,B) := maxw,b∈RN {ACCw,b(A,B)} as the maximum
classification accuracy of all possible linear models. It is direct that ACCline(A,B) = (|Aw| +
|Bw|)/(|A|+ |B|) and LS∗(A,B) ≥ |MD(Aw,Bw)|/|MD(A,B)|. The equality of the latter holds
if and only if the sets A and B are linearly separable.
Theorem 2.5. Given two point sets A and B, then it holds that√

|Aω∗ |2 + |Bω∗ |2
4|A| · |B|

+

√
2 · LS∗(A,B)

2
≥ ACCline(A,B) ≥

|Aω∗ | · |Bω∗ | · LS∗(A,B)
|majorω∗

(MD(A,B))|
, (3)

where ω∗ stands for the weight vector achieving the maximum operation of LS∗(A,B).

This result implies that the classification accuracy of linear models can be bounded by using
LS∗(A,B). Based on Eq. (2), replacing the indicator function 1(·) with the sign function sgn(·)
leads to

LS0(A,B) := max
ω∈RN

{∑
i≤I,j≤J sgn(ωTmij)

|A| · |B|

}
, (4)

It is obvious that LS0 ∈ [0, 1] is an absolute measure. Let ω0 be the weight vector achieving the
maximum operation of LS0(A,B). It holds that majorω∗

(MD(A,B)) = majorω0
(MD(A,B)), i.e.,

the points lying in the major sides of the two hyperplanes ωT
∗ m = 0 and ωT

0 m = 0 are the same.
Unfortunately, it is hard to solve LS0. Instead, another variant is considered:

LS1(A,B) := max
ω

{∣∣∣∑
i,j

ωTmij

∣∣∣/∑
i,j

∣∣∣ωTmij

∣∣∣}. (5)

The numerator |
∑

i,j ω
Tmij | is the absolute value of the sum of the directed distances from the

points of MD(A,B) to the hyperplane ωTm = 0. We note that LS1 ∈ [0, 1] is also an absolute
measure. If all points of MD(A,B) locate in one side of ωTm = 0, i.e., the two sets A,B are
linearly separable, it holds that LS1(A,B) = 1. In contrast, if the value of LS1(A,B) is close to zero,
the convex hulls of the two sets A,B overlap heavily. Because of the existence of absolute value
operation, it is still time-consuming to solve LS1. Subsequently, we discuss how to approximately
calculate LS∗, LS0 and LS1 with a low computation cost.
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2.3 APPROXIMATE CALCULATION OF MD-LSMS

Set m̃ :=
∑

i≤I,j≤J mij and M := [m11, · · · ,m1J , · · · , · · · ,mI1, · · · ,mIJ ]N×(IJ). Making the
terms appearing in LS1 squared leads to a quadratic version:

LS2(A,B) :=max
ω

{(∑
i,j

ωTmij

)2/∑
i,j

(
ωTmij

)2}
= max

ω

{ ωT m̃m̃Tω

ωTMMTω

}
, (6)

which is a relative measure, and its solution is

ω2 = (MMT )−1m̃
/√

m̃T (MMT )−1m̃.

Then, the resultant ω2 will be substituted into Eqs. (2) - (5) to achieve the approximate calculations
of LS∗, LS0 and LS1, respectively. It is noteworthy that since the form of Eq. (6) is similar to that of
GRQ Jω (cf. Eq. (1)), a comparison between them is given in Appendix B.
Remark 2.6 (Approximate Calculation of LS∗, LS0 and LS1). In order to efficiently calculate ω2, we
assume that MMT = I and the solution ω2 can be simplified as ω̂ = m̃/∥m̃∥, which will be further
treated as the maximizers of Eqs. (2) - (5) to approximately calculate LS∗, LS0 and LS1, respectively.
It seems to be an over-simplification, but our experiments indicate that the approximation is pretty
good. For convenience, L̂Si (i ∈ {∗, 0, 1, 2}) are denoted as the MD-LSMs (including LS∗, LS0, and
LS1) and the quadratic version LS2 with ωi (i = ∗, 0, 1, 2) being replaced with ω̂, respectively.

There naturally arises a question about the discrepancies between L̂Si and LSi (i ∈ {∗, 0, 1, 2}),
respectively. In the next section, we conduct comparative experiments to illustrate that the discrepan-
cies are slight and the approximate manner is highly feasible in practice. Consequently, we achieve an
efficient tool that is applicable to real-time monitoring the linear separability changes of each hidden
layer after each training epoch. We also make the comparison with DGV and GRQ, respectively (cf.
Appendix B & C).

In addition, we define the MD-LSMs for multiple-class sets:
Definition 2.7 (MD-LSMs for Multi-class Classification). Given S point sets A1, · · · ,AS , denote
Ac

s =
⋃

t∈{1,··· ,S}\{s}At. Then, the MD-LSMs for the S points sets are defined as:

MultiLSi
(
A1, · · · ,AS

)
=
(∑

s

|As| · LSi(As,Ac
s)
)/(∑

s

∣∣As

∣∣), ∀i ∈ {∗, 0, 1}. (7)

In the one-vs-rest (OvR) way, we break down an S-class classification task into S binary clas-
sification tasks and then compute the individual LSi(As,Ac

s) of each task. Then, the MD-LSM
MultiLSi

(
A1, · · · ,AS

)
of the S-class sample sets is expressed as a sum of LSi(As,Ac

s) weighted
by the ratio of the size of As to the size of all samples.

2.4 EMPIRICAL COMPARISON

Here, we empirically compare LSi with their approximation L̂Si (i ∈ {∗, 0, 1, 2}), and then examine
the discrepancies among the approximate solution ω̂ and the solutions to LDA and L-SVM. Moreover,
we also consider the discrepancy among different separability measures such as MD-LSMs (including
LS∗, LS0, LS1), the quadratic version LS2, GDV and GRQ. For convenience, denote the normal
vectors of separating hyperplanes resulted from LDA and L-SVM as ωLDA and ωSVM.

[Comparison between ω̂ and ωi (i ∈ {∗, 0, 1, 2})] Consider three datasets in the different degrees
of linear separability: linearly separable, partly overlapped and heavily overlapped. For each dataset,
we solve the optimization problems associated with LSi to obtain the optimal (opt.) solutions ωi

(i ∈ {∗, 0, 1, 2}), respectively. By the approximate manner (cf. Remark 2.6), we also obtain the
approximate (appr.) solutions ω̂ for the three datasets, respectively. As shown in Tabs. 3 & 6, the
comparative results demonstrate that the discrepancies among ωi (i ∈ {∗, 0, 1, 2}) and ω̂ are slight
for the datasets in different degrees of linear separability. Their largest relative error is less than 3%.
This finding supports the effectiveness of the approximate manner.

[Comparison among ω̂, ωLDA and ωSVM] For each of the aforementioned three datasets, we
implement LDA and L-SVM to obtain the solution vectors ωLDA and ωSVM, and then make a
comparison among the separating lines provided by ω̂, ωLDA and ωSVM (cf. Tab. 4). The discrepancy
between the lines associated with ω̂ and ωLDA (or ωSVM) is not significant, and their classification
performances are comparable.
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[Comparison among separability measures] In Tab. 2, we compare several kinds of LSMs and
their computational costs on four kinds of binary-classification UCI datasets, including Diagnostic
(Wolberg et al., 1993), Ionosphere (Sigillito et al., 1989), Maintenance (mai, 2020), and Marketing
(Moro et al., 2014). For the sake of fairness, we use the differential evolution (DE) method (Storn
& Price, 1997) to solve the unconstrained global optimization problems associated with LSi (i ∈
{∗, 0, 1, 2}) and GRQ. To maintain the efficiency of solving them, we control the DE method’s
runtime to be around 10 seconds for the first three datasets, and the runtime for the last one is around
20 seconds due to its higher data size/dimension. For each of LSi (i ∈ {∗, 0, 1, 2}) and GRQ, we
make ten repeated trials of calculating them. Although the DE method is able to provide the solutions
to them with a desired precision regardless of the time cost, this manner does not meet the technical
requirement on the real-time monitoring of hidden-layer behaviors during the process of training deep
networks. Experimental results show that the approximate manner of calculating MD-LSMs has a
high efficiency, and saves at least 90% of the computational cost of exactly solving them. Meanwhile,
there is a slight discrepancy between the values of LSi and L̂Si (i ∈ {∗, 0, 1, 2}) .

Table 2: The averaged values of LSMs calculated on UCI datasets and times costs over ten repeated
trials

Dataset
LSM LS∗ LS0

opt. time (s) appr. time (s) opt. time (s) appr. time (s)

Diagnostic 0.9579 ± 2.10% 9.5008 ± 2.14% 0.9801 0.0996 ± 4.22% 0.9271 ± 2.77% 9.9836 ± 1.13% 0.9601 0.1006 ± 4.27%
Ionosphere 0.7732 ± 3.74% 9.9466 ± 15.64% 0.8608 0.1106 ± 16.91% 0.5975 ± 9.87% 11.0762 ± 2.66% 0.7217 0.1108 ± 15.52%
Maintenance 0.7667 ± 8.23% 8.6463 ± 18.82% 0.8068 0.5804 ± 1.79% 0.5268 ± 8.35% 10.6691 ± 0.91% 0.6135 0.5746 ± 1.67%
Marketing 0.7013 ± 3.72% 24.0967 ± 1.06% 0.8751 0.2894 ± 0.83% 0.3797 ± 10.61% 26.6239 ± 0.74% 0.7503 0.2867 ± 0.63%

Dataset
LSM LS2 LS1

opt. time (s) appr. time (s) opt. time (s) appr. time (s)

Diagnostic 36305 ± 3.94% 12.9719 ± 1.49% 37402 0.0992 ± 4.23% 0.9849 ± 0.70% 13.0579 ± 0.59% 0.9932 0.0993 ± 4.23%
Ionosphere 7232 ± 13.39% 20.0772 ± 13.75% 10221 0.1095 ± 15.71% 0.8209 ± 3.84% 14.6047 ± 1.78% 0.8856 0.1095 ± 15.71%
Maintenance 319460 ± 39.20% 8.4768 ± 20.35% 349939 0.5691 ± 1.72% 0.5543 ± 20.40% 7.0704 ± 0.31% 0.6297 0.5699 ± 1.68%
Marketing 46000 ± 25.13% 26.8919 ± 0.77% 129614 0.2833 ± 1.02% 0.5748 ± 12.27% 26.6174 ± 0.76% 0.8990 0.2834 ± 0.99%

Dataset
LSM GRQ GDV

opt. time (s) appr. time (s) value time (s)

Diagnostic 0.0205 ± 6.34% 13.7239 ± 2.11% 0.0177 0.0996 ± 4.32% 5.7181e-4 0.6739 ± 2.15%
Ionosphere 0.0110 ± 19.09% 14.9462 ± 0.41% 0.0111 0.1099 ± 15.65% -0.0386 0.2570 ± 2.26%
Maintenance 0.0015 ± 6.67% 13.5418 ± 0.68% 0.0004 0.5644 ± 1.72% -0.0081 11.8478 ± 1.00%
Marketing 0.0008 ± 25.00% 21.2552 ± 2.84% 0.0022 0.2831 ± 1.27% -0.0005 2.5638 ± 1.89%

To sum up, the approximate manner, given in Remark 2.6, provides an efficient way of calculating the
MD-LSMs LSi (i ∈ {∗, 0, 1}) with only a slight precision sacrifice. Because of its low computation
cost, it also brings a reasonable tool for real-time monitoring the behavior of each hidden layer during
the entire training process. In contrast, most of the existing LSMs are only applicable to off-line
analyzing the hidden-layer characteristics of the trained networks due to their high computation costs.

Table 3: Separating lines and MD-LSM values of datasets in different degrees of linear separability
Dataset: A ∪ B Separating Line MD(A,B) MD-LSM Values

*
0
1

2 *
0
1

2
LS∗: 1.0000 (opt.), 0.9996 (appr.)

LS0: 1.0000 (opt.), 0.9992 (appr.)

LS1: 1.0000 (opt.), 1.0000 (appr.)

LS2: 2298.1110 (opt.), 2291.6550 (appr.)

*
0
1

2 *
0
1

2
LS∗: 0.9516 (opt.), 0.9488 (appr.)

LS0: 0.9040 (opt.), 0.8976 (appr.)

LS1: 0.9760 (opt.), 0.9732 (appr.)

LS2: 1823.9979 (opt.), 1805.0940 (appr.)

*
0
1

2 *
0
1

2
LS∗: 0.7432 (opt.), 0.7376 (appr.)

LS0: 0.4864 (opt.), 0.4752 (appr.)

LS1: 0.6722 (opt.), 0.6655 (appr.)

LS2: 713.5486 (opt.), 695.5089 (appr.)

Remark 2.8. As shown in Tab. 3, since the proposed MD-LSMs LSi (i = ∗, 0, 1) are absolute
measures, their values explicitly describe the linear separability degree of two sets. For example, the
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fact of LS1 = 1 means that the two sets are linearly separable; and when LS1 = 0.6722, the two
sets overlap heavily. In contrast, the quadratic version LS2 is a relative measure. Although its value
can be used to compare the linear separability degrees of different datasets, just relying on the value
can’t even tell whether the two point sets of a dataset are overlapped or linearly separable.

Table 4: Separating lines of L-SVM, LDA and ω̂Tx+ b = 0 and classification accuracy (CA)
Dataset: A ∪ B Separating Line MD(A,B) CA

T
SVMx + bSVM = 0
T
LDAx + bLDA = 0

Tx + b = 0 T
SVMx = 0
T
LDAx = 0

Tx = 0

"ωT
SVMx + bSVM = 0": 1.00

"ωT
LDAx + bLDA = 0": 1.00

"ω̂Tx + b = 0": 0.99

T
SVMx + bSVM = 0
T
LDAx + bLDA = 0

Tx + b = 0 T
SVMx = 0
T
LDAx = 0

Tx = 0

"ωT
SVMx + bSVM = 0": 0.88

"ωT
LDAx + bLDA = 0": 0.88

"ω̂Tx + b = 0": 0.88

T
SVMx + bSVM = 0
T
LDAx + bLDA = 0

Tx + b = 0 T
SVMx = 0
T
LDAx = 0

Tx = 0

"ωT
SVMx + bSVM = 0": 0.68

"ωT
LDAx + bLDA = 0": 0.69

"ω̂Tx + b = 0": 0.68

3 REAL-TIME MONITORING OF HIDDEN-LAYER BEHAVIORS

In this section, we conduct the numerical experiments to illustrate the application of the proposed
MD-LSMs for real-time monitoring hidden-layer behaviors of several popular deep networks. All
experiments are processed in the DELL® PowerEdge® T640 Tower Server with two Intel® Xeon®

20-core processors, 128 GB RAM and a NVIDIA® Tesla® V100 32GB GPU.

3.1 EXPERIMENT SETTING

Two classes (airplane and automobile) in CIFAR-10 dataset (Krizhevsky, 2012) are selected to form
the binary classification task. The SGD method with minibatch is used to update the network weights
within 100 training epochs. Since the structures of MLP and CNN are not powerful enough to obtain
a good training performance by using all samples of the two classes within the limited epochs, we
randomly select 2000 (resp. 1000) samples from the training (resp. testing) data of the two classes
for training (resp. testing) them. Moreover, since their network sizes are not large, we directly use the
selected 2000 training samples to compute the MD-LSMs of their hidden-layer outputs. In contrast,
we use all training (resp. testing) data of the two classes to train (resp. test) ResNet, VGGNet,
AlexNet, ViT and GoogLeNet. Since the dimension of hidden-layer outputs of these deep networks
is high, in view of the computational burden, we randomly select 500 samples from the two classes
to compute MD-LSMs for these networks after each training epoch. In addition, we verify the
effectiveness of MD-LSMs on the MLP for solving the binary-classification tasks of the UCI datasets
(including Diagnostic, Ionosphere, Maintenance and Marketing) (cf. Appendix E.1). We also explore
the hidden-layer behaviors of the networks for solving text classification tasks, for example, the MLP
and the CNN for the IMDB dataset (cf. Appendix E.2), and the graph neural network (GNN) for the
Cora dataset (Kipf & Welling, 2016) (cf. Appendix E.4).

3.2 EXPERIMENTAL RESULTS AND DISCUSSION

In Fig. 2, we illustrate the MD-LSM curves of hidden layers and the training performance curves of
the networks. Since L̂S0, L̂S1 and L̂S2 basically have the same experimental results, we only draw the
L̂S1 curves for all hidden layers of MLP and CNN and for the main blocks of AlexNet, GoogLeNet,
ResNet, VGGNet and ViT, respectively. The complete experimental report, containing L̂S0, L̂S1
and L̂S2 curves for all hidden layers of these networks, is arranged in Appendix E. Moreover, we
also provide the detailed structures of these neural networks with the name of each hidden layer to
facilitate the interpretation of experimental results.
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[Binary Classification] As shown in Figs. 2(a) - 2(j), there is an obvious synchronicity between
the L̂S1 curves of hidden layers and the accuracy curves: 1) when the training accuracy increases,
the L̂S1 value of the outputs of each hidden layer (or main block) increases synchronously; 2) when
some fluctuations appear in the L̂S1 curves, the training and the testing accuracy curves have the
fluctuations occurring nearby the corresponding epochs accordingly; 3) especially for the neural
networks with relatively shallow structures, such as MLP and CNN (cf. Figs. 2(a) - 2(e)), the
magnitude of the fluctuations in the L̂S1 curves is merely proportional to that of the fluctuations in
the training and the testing accuracy curves.
[Network Depth] The experimental results, given in Figs. 2(a) - 2(k), also reflect two facts: 1) in
most cases, the linear separability of the hidden layers (or blocks) is stronger than that of the original
data after a few training epochs; and 2) the hidden layers (or blocks), which are closer to the output
layer, have higher linear separability.
[Multi-class Classification] We also consider the linear separability of MLP for ten-class classi-
fication task. The experiment is conducted by using MLP to classify the MINST dataset (LeCun
et al., 1998). We adopt the one-vs-rest (OvR) way to build ten MLPs with the same structure. After
each training epoch, we compute the MD-LSMs of all hidden-layer outputs of each CNN in the way
mentioned in Definition 2.7. As shown in Fig. 2(k), we obtain the same experiment observations as
binary classification tasks and verify the theoretical findings as well.
Because of the low computational cost brought from the approximate manner of calculating MD-
LSMs (cf. Remark 2.6), there is a reasonable tool of real-time monitoring the training behavior of
each hidden layer during the entire training process rather than the post analysis of the hidden-layer
characteristics of trained neural networks. The experimental results not only validate the fact that the
hidden layers closer to the output layer can provide higher linear separability, but also demonstrate
that the linear separability of the hidden layers adjacent to the input layers will remain unchanged (or
even decrease) in the middle and late stages of the training processes. The latter finding also suggests
that the early stopping of training these hidden layers should be beneficial to improving the training
performance. In addition, there also arises another interesting phenomenon that the accuracy change
of network outputs is in sync with the linear separability change of hidden layers (especially the ones
adjacent to the output layer). This finding implies that the real-time monitoring for linear separability
of individual hidden layers potentially becomes a reasonable manner of characterizing the entire
network’s dynamical behavior instead of only focusing on the training performance evaluated by
using the network’s outputs during the training process.

4 CONCLUSION

Because of multi-layer composite structures, it could be hard to directly analyze the properties of
deep networks via the backward inference from the behavior of their outputs. Instead, analyzing
the linear separability of hidden-layer outputs becomes a feasible way of understanding the deep
networks. However, it is still challenge to develop the LSMs that meet the requirements of robustness,
absoluteness, and efficiency. In this paper, we propose the MD-LSMs LSi (i = ∗, 0, 1), which meet
the first two requirements, and then derive their approximations L̂Si (i = ∗, 0, 1), which meets all of
the three requirements. The comparative experiments demonstrate that there is only a slight difference
between LSi and L̂Si (i = ∗, 0, 1).
Benefited from the low cost of calculating L̂Si (i = ∗, 0, 1), MD-LSMs actually provide a hidden-
layer based manner of real-time monitoring the network performance instead of the traditional
backward inference from the errors caused by the network outputs. As an application example, we
conduct the experiments on the real-time monitoring for the linear separability of each hidden layer
after each training epoch of some popular deep networks on different kinds of datasets including the
synthetic datasets, the image dataset (i.e., CIFAR-10), the UCI datasets (i.e., Diagnostic, Ionosphere,
Maintenance and Marketing), and the text datasets (i.e., IMDB and Cora). First, we demonstrate
that when a training sample set passes through a training or trained network, its linear separability
degree gradually increases layer-by-layer and the hidden layers that are closer to the output layer will
bring higher linear separability degrees. This facts explains why deep networks need a large number
of hidden layers. Since one finite-width hidden layer equipped with the usual activation functions
(such as sigmoid, tanh or ReLU) only has a limited nonlinear mapping capability, and thus slightly
increases the linear separability degree of its inputs. Alternatively, the composition of multiple
hidden layers is a feasible way of layer-wisely increasing network nonlinear mapping capability with
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acceptable training difficulty. In addition, we find that there exists the synchronicity between the
linear separability of hidden layers and the training accuracy in the classification tasks. There is also
a theoretical discussion on such a synchronicity phenomenon. This finding implies that the linear
separability potentially becomes an applicable tool of layer-wisely exploring the characteristics of
deep networks.
The main limitations of this paper lie in the following aspects: 1) There still exists a gap between the
setting of Proposition 1.1 and the gradient descent training. 2) When the class number S is large, it is
time-consuming to calculate MultiLSi (i = ∗, 0, 1, 2) in the OvR way. 3) This paper only focuses
on the classification tasks. Our future works will overcome these limitations. Since the quadratic
version LS2 is of a well-defined mathematical form, it is potentially used to theoretically analyze
the relationship between the network generalization capability and the network structural parameters
such as activation functions and network sizes. In addition MD-LSMs can be treated as the criteria
for evaluating the mapping capability of each hidden layer, and thus potentially contribute to achieve
the explainable network architecture design or pruning. Since the high-dimensional vectors appearing
in the expressions of MD-LSMs are of the inner-product form, we will introduce the kernel trick into
them and then develop the tools of evaluating the degree of non-linear separability between two sets.
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0 20 40 60 80 100 0 20 40 60 80 100

0.6

0.7

0.8

0.9

1.0

Original Samples
Training Accuracy
Testing Accuracy
L1:dense(relu)
L2:dense(relu)
L3:dense(relu)
L4:dense(relu)

L5:dense(relu)
L6:dense(relu)
L7:dense(relu)
L8:dense(relu)
L9:dense(relu)
L10:dense(relu)
L11:output(sigmoid)

(c) MLP-10 (ReLU)
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0 20 40 60 80 100 0 20 40 60 80 100

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Original Samples
Training Accuracy
Testing Accuracy
L1:conv2d(relu)
L2:max_pooling
L3:conv2d(relu)
L4:max_pooling
L5:dense(relu)
L6:output(sigmoid)

(e) CNN
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(g) GoogLeNet-V1
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(h) ResNet-20
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(i) VGGNet
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(j) ViT
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Figure 2: Real-time monitoring the linear separability, evaluated by using L̂S1, of each hidden layer
(or block) during the entire training process for different neural networks. The left (resp. right) of
each subfigure shows the L̂S1 value of hidden-layer outputs (resp. the training and testing accuracy
curves) after each training epoch, where L1 and B1 stand for the 1st hidden layer and the 1st block,
respectively. The x-label of each subfigure stands for the training epoch. Since the ranges of LS1,
training accuracy and testing accuracy are all the interval [0, 1], the corresponding curves share the
same y-label in each subfigure.
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A WORKFLOW OF FINDING MaxLS(A,B)

The maximum linearly-separable subset MaxLS(A,B) of two sets A and B can be obtained in an
iterative way:

(1) Build an undirected bipartite graph G(V0, E0) with

V0 = {All points in A and B associated with minorω(MD(A,B))},

and
E0 = {The connected relation of each point in minorω(MD(A,B))}.

For example, the connected relation of mij is denoted as (ai,bj).

(2) Remove one vertex v1 with the largest degree from V0 and update V1 = V0 \ {v1}.
(3) Eliminate the edges associated with the vertex v1 and update E1 ← E0.

(4) Repeat the steps (2)-(3) until Et = ∅.
(5) Remove the points in V0 \ Vt from the original sets A and B, and the rest form the desired

MaxLS(A,B).

In Fig. 3, we illustrate the workflow of determining MaxLS(A,B).

t = 1

t = 5

t = 3

t = 7

Figure 3: The workflow of obtaining the maximum linearly separable subset. Left: the point marked with a red
circle containing a black ‘x’ has been removed in the first t epochs. Middle: two convex hulls of the rest points
in the two sets. Right: Minkowski difference of the rest points.

B COMPARISON BETWEEN LS2 AND GRQ

In this section, we make a comparison between LS2 and GRQ. Let µa = 1
I

∑I
i=1 ai and µb =

1
J

∑J
j=1 bj be the centers of the sets A and B, respectively. Let Ac (resp. Bc) be the matrix

associated with the set A (resp. B) whose columns consist of the mean shifted data points:

Ac := [a1 − µa, · · · ,aI − µa] and Bc := [b1 − µb, · · · ,bJ − µb].

Denote Sw = AcA
T
c +BcB

T
c and Sb = (µa − µb)(µa − µb)

T . The GRQ, which is the objective
function of LDA, can also be treated as an LSM:

Jω = max
ω

ωTSbω

ωTSwω
. (8)

The following results show the difference between the optimization problems associated with LS2
and GRQ.

Proposition B.1. Given two point sets A = {a1, · · · ,aI} and B = {b1, · · · ,bJ}, it holds that

I2J2Sb = m̃m̃T ;

Sw = AAT +BBT −
(
I(Êa)(Êa)T + J(Êb)(Êb)T

)
;

MMT = JAAT + IBBT − IJ · Ê{abT + baT },

13
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where Ê stands for the sample mean with

Êa =
1

I

I∑
i=1

ai;

Êb =
1

J

J∑
j=1

bj ;

Ê{abT + baT } =
1

IJ

∑
1≤i≤I

1≤j≤J

(aib
T
j + bja

T
i ).

As demonstrated above, since Sw differs from MMT , the hyperplane ωTm = 0 achieving LS2(A,B)
is different from the one achieving Jω . When we use the approximate manner to compute the weight
for the MD-LSMs (cf. Remark 2.6), the corresponding optimization objective function coincides
with that of LDA with Sb = I (cf. Eq. (8)). In spite of the same weight vector ω̂ derived from the
approximated form, the linear separability degree is still evaluated in different forms after substituting
ω̂ into the expressions of MD-LSMs (including LS∗, LS0, LS1) and LS2, and Jω , respectively.

Table 5: L̂S0, L̂S1, L̂S2 and Ĵω curves of hidden-layer outputs during the process of training different
neural networks.

Epoch - L̂S0 Epoch - L̂S1 Epoch - L̂S2 Epoch - Ĵω
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L5:conv2d
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L10:dense
L11:output(softmax)
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Moreover, LS0 and LS1 are absolute measures. The ranges of LS0 and LS1 are the interval (0, 1];
and LS0 = LS1 = 1 holds if and only if the two sets are linearly separable. In contrast, LS2 and Jω
are relative measures, and their ranges are the interval (0,+∞). Since they only provide the relative
reference values for the linear separability, it is difficult to estimate the linear separability degree
of two sets only based on the values of LS2 and Jω. Moreover, as shown in Tab. 5, there are fewer
large fluctuations appearing in the curves of L̂S0 and L̂S1 than in the curves of L̂S2 and Ĵω, where
Ĵω := ω̂TSbω̂

ω̂TSwω̂
, i.e., substituting ω̂ into the right-hide side of Eq. (8). Interestingly, the curve shapes

of L̂S0, L̂S1 and L̂S2 are the same, but they significantly differ from that of Ĵω . Therefore, we finally
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adopt L̂S0, L̂S1 and L̂S2 as the measures of evaluating the linear separability degree of hidden-layer
outputs.

C COMPARATIVE ANALYSIS BETWEEN GDV AND MD-LSM

Given a dataset with multiple classes A1, · · · ,AL ⊂ RN , let Nl stand for the number of the points
belong to the l-th class Cl (1 ≤ l ≤ L). For each class Al, implement the z-score normalization to all
points in it, and denote the resultant points as {s(l)i }

Ml
i=1 (1 ≤ l ≤ L). Then, the GDV of the dataset is

calculated in the following way (Schilling et al., 2021):

GDV :=
1√
N

 1

L

L∑
l=1

d̄(Al)−
2

L(L− 1)

L−1∑
l=1

L∑
j=l+1

d̄(Al,Aj)

 , (9)

where d̄(Al) is the intra-class distances of Al with

d̄(Al) =
2

Ml(Ml − 1)

Ml−1∑
i=1

Ml∑
j=i+1

d(s
(l)
i , s

(l)
j ),

and d̄(Al,Ap) is the inter-class distances between Al and Ap with

d̄(Al,Ap) =
1

MlMp

Ml∑
i=1

Mp∑
j=1

d(s
(l)
i , s

(p)
j ).

Next, we will make the comparison between MD-LSMs and GDV from the viewpoint of whether
they meet the requirements of efficiency, robustness and absoluteness.

Algorithm 1 Workflow of calculating GDV [with the computational complexity of each step]
1: Input: L distinct classesAl=1,...,L, EachAl contains Ml points, xm=1..Ml

= (xm,1, . . . , xm,N )
▶[Initialization, O(1)]

2: Each dimension of xm in Al is separately z-scored, sm = (sm,1, . . . , sm,N ), where sm,n =
1
2 ·

xm,n−µn

σn
, µn = 1

Ml

∑Ml

n=1 xm,n and σn =
√

1
Ml

∑Ml

m=1(xm,n − µn)2.

▶[Z-scoring, O(
∑L

l=1 Ml ×N)]
3: Calculate mean intra-class distances for each class Al:

d̄(Al) =
2

Ml(Ml−1)

∑Ml−1
i=1

∑Ml

j=i+1 d(s
(l)
i , s

(l)
j ).

▶[Intra-class, O(
∑L

l=1 Ml(Ml − 1)×N)]
4: Calculate mean inter-class distances for each combination of Al and Ap:

d̄(Al,Ap) =
1

MlMp

∑Ml

i=1

∑Mp

j=1 d(s
(l)
i , s

(p)
j ).

▶[Inter-class, O(
∑L−1

l=1

∑L
p=l+1 MlMp ×N)]

5: Calculate GDV:
GDV = 1√

N

[
1
L

∑L
l=1 d̄(Al)− 2

L(L−1)

∑L−1
l=1

∑L
p=l+1 d̄(Al,Ap)

]
.

▶[GDV calculation, O(L2)]
6: Output: GDV ▶[Final output, O(1)]

Originally, MD-LSMs are designed to evaluate the degree of linear separability between two sets,
while the GDV aims to measure the degree of the separability among multiple classes. For the sake
of fairness, we consider the case of multiple classes and compute MultiLSi (i ∈ {∗, 0, 1, 2}) (cf.
Definition 2.7) via the approximate manner mentioned in Remark 2.6. Letting M =

∑L
l=1 Ml, the

complexity of computing GDV (cf. Alg. 1) is

O

 L∑
l=1

Ml ×N +

L∑
l=1

Ml(Ml − 1)×N +

L−1∑
l=1

L∑
p=l+1

Ml ×Mp ×N + L2

 ,
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and the complexity of computing MultiLSi (i ∈ {∗, 0, 1, 2}) (cf. Alg. 2) is

O

(
2×

L∑
l=1

Ml(M −Ml)×N + L×
L∑

l=1

Ml(M −Ml)

)
.

Their computational complexities are comparable. By using GDV, Schilling et al. (2021) detected
the class separability of hidden-layer outputs of the trained deep network (such as VGG, Xception
and Inception), while the diagrams of experimental results have too many fluctuations to comprehen-
sively capture the relatedness information between the class separability and different hidden layers
(Schilling et al., 2021, Figs. 10 - 11). In Section 3, we have used the proposed MD-LSMs to demon-
strate the synchronicity between the training performance and the linear separability of hidden-layer
outputs in each training epoch, and the complete experimental report is given in Appendix E.

Algorithm 2 Workflow of calculating MultiLSi (i ∈ {∗, 0, 1, 2}) [with the computational complexity
of each step]

1: Input: L distinct classes Al=1,...,L, each Al contains Ml points, xn=1..Ml
= (xm,1, . . . , xm,N ).

2: Calculate Minkowski difference for each class Al: MD(Al,Al=1,...,l−1,l+1,...,L) :=
{
mij :=

ai − bj | ai ∈ Al, bj ∈ Al=1,...,l−1,l+1,...,L

}
.

▶[Minkowski difference, O(
∑L

l=1 Ml(M −Ml)×N)]
3: Approximately calculate ω̂ for each class Al (cf. Remark 2.6): ω̂Al

= m̃
∥m̃∥ , where m̃ :=∑

i≤Ml,j≤M−Ml
mij (mij ∈ MD(Al,Al=1,...,l−1,l+1,...,L)).

▶[Calculation of ω̂, O(
∑L

l=1 Ml(M −Ml)×N)]
4: Calculate MultiLSi (i ∈ {∗, 0, 1, 2}):

1. MultiLS∗
(
A1, · · · ,AL

)
=
∑L

l=1
|Al|·L̂S∗(Al,Ac

l )∑S
l=1

∣∣Al

∣∣ ,

▶[Calculation of L̂S∗, O(L×
∑L

l=1 Ml(M −Ml))]

where L̂S∗(A,B) := max

{ ∑
i≤I,j≤J

1(ω̂Tmij>0)

|MD(A,B)| ,

∑
i≤I,j≤J

1(ω̂Tmij<0)

|MD(A,B)|

}
.

2. MultiLS0
(
A1, · · · ,AL

)
=
∑L

l=1
|Al|·L̂S0(Al,Ac

l )∑S
l=1

∣∣Al

∣∣ ,

where L̂S0(A,B) := max

{ ∑
i≤I,j≤J

sgn(ω̂Tmij)

|MD(A,B)| ,

∑
i≤I,j≤J

sgn(−ω̂Tmij)

|MD(A,B)|

}
.

▶[Calculation of L̂S0, O(L×
∑L

l=1 Ml(M −Ml))]

3. MultiLS1
(
A1, · · · ,AL

)
=
∑L

l=1
|Al|·L̂S1(Al,Ac

l )∑S
l=1

∣∣Al

∣∣ ,

where L̂S1(A,B) := max

{∣∣∣∣∣ ∑
i≤I,j≤J

ω̂Tmij

∣∣∣∣∣/ ∑
i≤I,j≤J

∣∣ω̂Tmij

∣∣}.

▶[Calculation of L̂S1, O(L×
∑L

l=1 Ml(M −Ml))]

4. MultiLS2
(
A1, · · · ,AL

)
=
∑L

l=1
|Al|·L̂S2(Al,Ac

l )∑S
l=1

∣∣Al

∣∣ ,

where L̂S2(A,B) := max


( ∑

i≤I,j≤J

ω̂Tmij

)2 / ∑
i≤I,j≤J

(
ω̂Tmij

)2.

▶[Calculation of L̂S2, O(L×
∑L

l=1 Ml(M −Ml))]
5: Output: MultiLSi (i ∈ {∗, 0, 1, 2}) ▶[Final output, O(1)]

Consider eight datasets with different distribution characteristics, denoted as Case-i (i = 1, · · · , 8)
respectively. For each one, we calculate the values of L̂Si (resp. LSi) (i ∈ {∗, 0, 1, 2}) and Ĵω (resp.
Jω) as well as the value of GDV. As shown in Tab. 6, the values of L̂Si (resp. LSi) (i ∈ {∗, 0, 1, 2})
and Ĵω (resp. Jω) are consistent with the visual observations on the data distributions. Since the
calculation of GDV is based on the average of intra-class and inter-class distances, some distribution
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characteristics of the datasets might be eliminated after such a calculation process. Therefore, the
value of GDV sometimes does not accord with the intuitive conclusion.

Table 6: Separating lines for the datasets with different distribution characteristics
Case-1 Case-2

*
0
1

2
LDA

*
0
1

2
LDA

LS∗: 0.9516 (opt.) / 0.9488 (appr.), LS0: 0.8984 (opt.) / 0.8976 (appr.), LS1: 0.9754 (opt.) / 0.9732 (appr.) LS∗: 0.8626 (opt.) / 0.8590 (appr.), LS0: 0.7067 (opt.) / 0.7180 (appr.), LS1: 0.8079 (opt.) / 0.8050 (appr.)
LS2: 1823.9979 (opt.) / 1805.0940 (appr.), Jω: 0.0540 (opt.) / 0.0520 (appr.), GDV: 0.0164 LS2: 1254.7556 (opt.) / 1233.8096 (appr.), Jω: 0.0196 (opt.) / 0.0190 (appr.), GDV: 0.0076

Case-3 Case-4

*
0
1

2
LDA

*
0
1

2
LDA

LS∗: 0.8602 (opt.) / 0.8570 (appr.), LS0: 0.7147 (opt.) / 0.7139 (appr.), LS1: 0.8023 (opt.) / 0.7997 (appr.) LS∗: 0.7636 (opt.) / 0.7632 (appr.), LS0: 0.4928 (opt.) / 0.5264 (appr.), LS1: 0.5592 (opt.) / 0.5586 (appr.)
LS2: 1244.9361 (opt.) / 1226.4796 (appr.), Jω: 0.0191 (opt.) / 0.0186 (appr.), GDV: 0.0059 LS2: 622.2821 (opt.) / 602.9970 (appr.), Jω: 0.0066 (opt.) / 0.0064 (appr.), GDV: -0.0119

Case-5 Case-6

*
0
1

2
LDA

*
0
1

2
LDA

LS∗: 0.9592 (opt.) / 0.9588 (appr.), LS0: 0.9184 (opt.) / 0.9176 (appr.), LS1: 0.9823 (opt.) / 0.9823 (appr.) LS∗: 0.7929 (opt.) / 0.7925 (appr.), LS0: 0.5858 (opt.) / 0.5850 (appr.), LS1: 0.6586 (opt.) / 0.6586 (appr.)
LS2: 1874.4530 (opt.) / 1873.4996 (appr.), Jω: 0.0599 (opt.) / 0.0598 (appr.), GDV: 0.0158 LS2: 826.8799 (opt.) / 826.4135 (appr.), Jω: 0.0092 (opt.) / 0.0092 (appr.), GDV: -0.0045

Case-7 Case-8

*
0
1

2
LDA

*
0
1

2
LDA

LS∗: 0.8169 (opt.) / 0.8107 (appr.), LS0: 0.6279 (opt.) / 0.6213 (appr.), LS1: 0.7880 (opt.) / 0.7817 (appr.) LS∗: 0.6299 (opt.) / 0.6271 (appr.), LS0: 0.2277 (opt.) / 0.2541 (appr.), LS1: 0.2583 (opt.) / 0.2540 (appr.)
LS2: 1102.6562 (opt.) / 1099.4835 (appr.), Jω: 0.0152 (opt.) / 0.0151 (appr.), GDV: -0.0104 LS2: 121.4865 (opt.) / 117.9541 (appr.), Jω: 0.0010 (opt.) / 0.0010 (appr.), GDV: -0.0212
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D PROOFS OF MAIN RESULTS

In this section, we give the proofs of Theorem 2.2, Theorem 2.5, Proposition 1.1, and Proposition
B.1, respectively.

D.1 PROOF OF THEOREM 2.2

Proof of Theorem 2.2: “=⇒": If A and B are linearly separable, there exists a vector ω ∈ RN and a
constant c ∈ R such that the relation ωTa + c > ωTb + c holds for all a ∈ A and b ∈ B. Then,
we arrive at ωT (a − b) > 0 (∀ a ∈ A,b ∈ B). Namely, all points of the Minkowski difference
MD(A,B) lie above the hyperplane ωTm = 0.

“⇐=": Assume that all points of MD(A,B) lie in one side of the hyperplane ωTm = 0. Without
loss of generality, we consider a vector ω ∈ RN such that ωT (a− b) > 0 holds for any a ∈ A and
any b ∈ B. Define a∗ := argmina∈A{ωTa} and b† := argmaxb∈B{ωTb}. Then, for all a ∈ A
and b ∈ B, it holds that

ωTa− ωTa∗ + ωTb†

2
> 0 > ωTb− ωTa∗ + ωTb†

2
.

Namely, the hyperplane ωTm− ωTa∗ + ωTb†

2
= 0 (m ∈ RN ) separates the set A from the set B.

This completes the proof. ■

D.2 PROOF OF THEOREM 2.5

Proof of Theorem 2.5: (1) First, we prove the second inequality. It follows from Aω∗ ⊆ A and
Bω∗ ⊆ B that

1
1

|A| +
1
|B|
≥ 1

1
|Aω∗ |

+ 1
|Bω∗ |

⇐⇒|Aω∗ |+ |Bω∗ |
|A|+ |B|

≥ |Aω∗ | · |Bω∗ |
|A| · |B|

⇐⇒|Aω∗ |+ |Bω∗ |
|A|+ |B|

≥ |Aω∗ | · |Bω∗ |
|majorω∗

(MD(A,B))|
·
|majorω∗

(MD(A,B))|
|A| · |B|

⇐⇒|Aω∗ |+ |Bω∗ |
|A|+ |B|

≥ |Aω∗ | · |Bω∗ | · LS∗(A,B)
majorω∗

(MD(A,B))
.

The last step is due to the definition of LS∗(A,B) and the fact that |MD(A,B)| = |A| · |B|.

(2) Since LS∗(A,B) ≥ |Aω∗ |·|Bω∗ |
|A|·|B| , we have

ACC2
line(A,B) =

(|Aω∗ |+ |Bω∗ |)2

(|A|+ |B|)2

≤ (|Aω∗ |+ |Bω∗ |)2

4|A| · |B|

=
|Aω∗ |2 + |Bω∗ |2 + 2|Aω∗ | · |Bω∗ |

4|A| · |B|

≤ |Aω∗ |2 + |Bω∗ |2

4|A| · |B|
+

LS∗(A,B)
2

.

Then, it follows from the fact
√
a+ b ≤

√
a+
√
b (∀a, b ≥ 0) that

ACCline(A,B) ≤

√
|Aω∗ |2 + |Bω∗ |2

4|A| · |B|
+

√
2 · LS∗(A,B)

2
.

This completes the proof. ■
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D.3 PROOF OF PROPOSITION 1.1

Proof of Proposition 1.1: (1) “⇐=" If the linear separability degree of the L-th hidden-layer outputs
increases after updating the hidden-layer weights V1, · · · ,VL to be V′

1, · · · ,V′
L respectively, it

means that there exists a hyperplane wT s + b = 0 such that more L-th hidden-layer outputs can
be correctly separated. Since the hyperplane (w′)T s + b′ = 0 can provide the highest training
classification accuracy, the training performance of net′(·) is better than that of net(·).
“=⇒" If the classification accuracy increases, it means that more L-th hidden-layer outputs can
be correctly separated by the hyperplane (w′)T s + b′ = 0. Namely, the linear separability of
hidden-layer outputs increases. This completes the proof. ■

D.4 PROOF OF PROPOSITION B.1

Proof of Proposition B.1: Denote A = [a1, · · · ,aI ] and B = [b1, · · · ,bJ ]. Let 1 = (1, · · · , 1)T
be the vector whose components are all ones. Since µa = 1

IA1 and [µa, · · · ,µa] =
1
IA11T , we

have

AcA
T
c =

(
A− 1

I
A11T

)(
A− 1

I
A11T

)T

= AAT − 1

I
A11TAT − 1

I
A11TAT +

1

I2
A11T11TAT

= AAT − 1

I
A11TAT − 1

I
A11TAT +

1

I
A11TAT

= AAT − 1

I
A11TAT .

In the similar way, we also have BcB
T
c = BBT − 1

JB11TBT . Thus, the matrices Sw and Sb can
be rewritten as

Sw = AcA
T
c +BcB

T
c

= AAT +BBT − 1

I
A11TAT − 1

J
B11TBT ;

Sb = (µa − µb)(µa − µb)
T

=
1

I2
A11TAT +

1

J2
B11TBT − 1

IJ
A11TBT − 1

IJ
B11TAT .

Denote
D(A; J) := [a1, · · · ,aI , · · · ,a1, · · · ,aI ]︸ ︷︷ ︸

J groups of {a1, · · · ,aI}

∈ RN×IJ ;

D(B; I) := [b1, · · · ,bJ , · · · ,b1, · · · ,bJ ]︸ ︷︷ ︸
I groups of {b1, · · · ,bJ}

∈ RN×IJ .

Since mij = ai − bj , M can be rewritten as
M = [m11, · · · ,m1J , · · · ,mi1, · · · ,miJ , · · · ,mI1, · · · ,mIJ ]N×IJ

= D(A; J)−D(B; I).

Then, we have

m̃m̃T =

∑
ij

mij

∑
ij

mij

T

=
[
D(A; J)1−D(B; I)1

]
·
[
D(A; J)1−D(B; I)1

]T
= D(A; J)11TDT (A; J) + D(B; I)11TDT (B; I)

−D(B; I)11TDT (A; J)−D(A; J)11TDT (B; I)

= J2A11TAT + I2B11TBT − IJB11TAT − IJA11TBT

= I2J2

(
1

I2
A11TAT +

1

J2
B11TBT − 1

IJ
A11TBT − 1

IJ
B11TAT

)
.
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It is direct that
I2J2Sb = m̃m̃T ,

which implies that the eigenvectors of the two matrices Sb and m̃m̃T have the same direction.

Moreover, let a and b stand for the random variables obeying the probability distributions on the sets
A and B, respectively. Since A1 = I · Êa =

∑I
i=1 ai and B1 = J · Êb =

∑J
j=1 bj , we have

Sw = AAT +BBT − 1

I
A11TAT − 1

J
B11TBT

= AAT +BBT −
[
I(Êa)(Êa)T + J(Êb)(Êb)T

]
.

Since
∑

i,j(aib
T
j + bja

T
i ) = IJ · Ê{abT + baT }, we have

MMT =
[
D(A; J)−D(B; I)

][
D(A; J)−D(B; I)

]T
= JAAT + IBBT −

∑
i,j

(aib
T
j + bja

T
i )

= JAAT + IBBT − IJ · Ê{abT + baT }.

This completes the proof. ■
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E COMPLETE EXPERIMENTAL REPORT ON REAL-TIME MONITORING

In this part, we provide the experimental results of three kinds of MD-LSMs: LS0, LS1 and LS2.
In view of the complicated structures of VGGNet, ResNet-20, GoogLeNet-V1 and ViT, we also
draw the structure diagrams to denote their hidden layers or main blocks. In Tab. 10, we show the
arrangement of the structure diagrams and the experimental results. We note that the x-label of all
figures stands for the training epoch.

E.1 MLP

First, we layer-wisely examine the linear separability of the MLPs with five hidden layers, denoted
as MLP-5, and ten hidden layers, denoted as MLP-10, respectively. The hidden nodes of MLPs
are activated by using Sigmoid functions (denoted as Sigmoid) and ReLU functions (denoted as
ReLU), respectively. In Figs. 4 - 7, we illustrate the experimental results of MLPs in the binary
classification tasks. Moreover, we also conduct the experiments of the MLP-5 (ReLU) on the binary-
classification UCI datasets (including Diagnostic, Marketing, Ionosphere, and Maintenance), and
obtain the similar experimental results with the aforementioned ones. In addition, we also consider
the linear separability of MLPs in ten-class classification task, where the network has five hidden
layers and its hidden nodes are activated by using ReLU (cf. Fig. 8).

In Tab. 8, we illustrate the MD-LSM curves of the hidden-layer outputs of the MLPs with varying
numbers (from 1 to 5) of hidden layers. For the hidden layer that is closer to the output layer, its
outputs have the stronger linear separability, and this experimental phenomenon is in accordance
with the intuitive explanation, mentioned in the existing works (Alain & Bengio, 2016; Apicella
et al., 2024; He & Su, 2023; Schilling et al., 2021), to the working mechanism of deep networks.
Interestingly, in the MLPs with multiple hidden layers, the linear separability of the hidden layer
that is closest to the input layer could become degraded in the middle and late stages of the training
process, i.e., this layer could become helpless to improve the network’s classification accuracy. This
phenomenon has called the feature freezing in the recent literature (Bär et al., 2024). Our experimental
results demonstrate the existence of this phenomenon, and the proposed MD-LSMs could become
the potential tool of analyzing the issue on this phenomenon.

Table 7: L̂S0, L̂S1, L̂S2 curves and the accuracy curves during the process of training MLP-5 (ReLU)
networks on UCI datasets
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Table 8: L̂S0, L̂S1, L̂S2 curves and the accuracy curves during the process of training MLP (ReLU)
networks whose numbers of hidden layers range from 1 to 5.
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E.2 CNN, ALEXNET AND DBN

Moreover, we examine the linear separability of CNNs with two convolution layers and two pooling
layers in binary classification task. All hidden nodes of CNNs are activated by using ReLU (cf.
Fig. 9). Moreover, the linear separability of AlexNet and DBN is also considered in the same task
(cf. Figs. 10 - 12). It is noteworthy that we consider two kinds of AlexNets that have different
output activation functions: one is Softmax, denoted as AlexNet (Softmax), and the other is Sigmoid,
denoted as AlexNet (Sigmoid). We also simplify the process of training AlexNet (Sigmoid), where
the tricks of learning rate decay and data augmentation are not used. Since the binary classification is
much simpler than the ImageNet classification task for which AlexNet was originally designed, the
simplified training process is enough to provide a good performance. Thus, the curves of AlexNet
(Sigmoid) are smoother than those of AlexNet (Softmax), especially for the L̂S2.

In addition, we also conduct the experiment on the IMDB dataset, which is a text classification task.
When utilizing neural networks to process text data, the embedding layer is employed to map textual
information into vector spaces. For MLPs, the outputs of the embedding layer are typically flattened
to be compatible with the subsequent dense layer, and this manner could results in the loss of spatial
information. In contrast, benefited from the specific convolutional structure, CNNs are able to capture
the spatial information encoded in the outputs of the embedding space, and thus to improve the
representation capability of the embedding layer. As illustrated in Tab. 9, the linear separability of
CNN’s embedding layer gradually increases during its training process, and the experiment results
demonstrate the embedding layer of CNN plays a more important role in processing text data than
that of MLP.

Table 9: L̂S0, L̂S1, L̂S2 curves and the accuracy curves during the process of training MLP-5 (ReLU)
and CNN on the IMDB dataset.
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E.3 VGGNET, GOOGLENET, RESNET AND VIT

Here, we consider the linear separability of the deep networks with complicated hidden-layer struc-
tures, including VGGNet, GoogLeNet-V1, ResNet-20 and ViT. Since the structures of these networks
can be split into some individual blocks, we first examine the linear separability of the outputs of
their main blocks, and then illustrate the MD-LSMs of hidden layers of these networks.
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Table 10: Numerical Experiment Results
Deep Networks Structure Diagram Main Blocks Hidden Layers
MLP-5 (ReLU) Fig. 4

MLP-5 (Sigmoid) Fig. 5
MLP-10 (ReLU) Fig. 6

MLP-10 (Sigmoid) Fig. 7
MLP (Ten-Class) Fig. 8

CNN Fig. 9
AlexNet (Softmax) Fig. 10
AlexNet (Sigmoid) Fig. 11

DBN Fig. 12
VGGNet Fig. 14 Fig. 13 Fig. 15

GoogLeNet-V1 Fig. 16 Fig. 17 Fig. 18
ResNet-20 Fig. 19 Fig. 20 Fig. 21

ViT Fig. 22 Fig. 23 Fig. 24
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Figure 4: MD-LSM and Accuracy Curves of Hidden Layers of MLP-5 (ReLU)
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Figure 5: MD-LSM and Accuracy Curves of Hidden Layers of MLP-5 (Sigmoid)
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Figure 6: MD-LSM and Accuracy Curves of Hidden Layers of MLP-10 (ReLU)
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Figure 7: MD-LSM and Accuracy Curves of Hidden Layers of MLP-10 (Sigmoid)
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Figure 8: MD-LSM and Accuracy Curves of Hidden Layers of MLP (Ten-Class)
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Figure 9: MD-LSM and Accuracy Curves of CNN’s Hidden Layers
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Figure 10: MD-LSM and Accuracy Curves of Hidden Layers of AlexNet (Softmax)
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Figure 11: MD-LSM and Accuracy Curves of Hidden Layers of AlexNet (Sigmoid)
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Figure 12: MD-LSM and Accuracy Curves of DBN’s Hidden Layers
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Figure 13: MD-LSM and Accuracy Curves of VGGNet’s Main Blocks

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Input

B0-L0: Conv

B0-L0: ReLu

B0-L0: Batch Norm

B0-L1: Conv
(conv_block_output)

B0-L1: ReLu

B0-L1: Batch Norm

B0-L2: Max-Pooling

B2-L0: Conv

B2-L0: ReLu

B2-L0: Batch Norm

B2-L1: Conv

B2-L1: ReLu

B2-L1: Batch Norm

B1-L0: Conv

B1-L0: ReLu

B1-L0: Batch Norm

B1-L1: Conv
(conv_block_output)

B1-L1: ReLu

B1-L1: Batch Norm

B1-L2: Max-Pooling

B2-L2: Conv
(conv_block_output)

B2-L2: ReLu

B2-L2: Batch Norm

B2-L3: Max-Pooling

B3-L0: Conv

B3-L0: ReLu

B3-L0: Batch Norm

B3-L1: Conv

B3-L1: ReLu

B3-L1: Batch Norm

B3-L2: Conv
(conv_block_output)

B3-L2: ReLu

B3-L2: Batch Norm

B3-L3: Max-Pooling

B4-L1: Dense

B4-L2: Dense

Output

B4-L1: Batch Norm

B4-L1: ReLu

B4-L2: Batch Norm

B4-L2: ReLu

B4-L0: Flatten

Figure 14: Structure of VGGNet
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Figure 15: MD-LSM and Accuracy Curves of VGGNet’s Hidden Layers
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Figure 16: Structure of GoogleNet-V1
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Figure 17: MD-LSM and Accuracy Curves of GoogleNet’s Main Blocks
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Figure 18: MD-LSM and Accuracy Curves of GoogLeNet’s Hidden Layers
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Figure 19: Structure of ResNet-20
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Figure 20: MD-LSM and Accuracy Curves of ResNet’s Main Blocks
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Figure 21: MD-LSM and Accuracy Curves of ResNet’s Hidden Layers
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Figure 23: MD-LSM and Accuracy Curves of ViT’s Main Blocks
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Figure 24: MD-LSM and Accuracy Curves of ViT’s Hidden Layers
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E.4 GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) have been successfully employed to deal with the graph-structured
data, such as the Cora dataset (Kipf & Welling, 2016). However, there could arise the "over-
smoothing" issue in the application of the classical GNN framework, where the discrepancy among
the node features tends to become less significant as the network depth increases and thus cause the
indistinguishable representations of nodes (Chen et al., 2020; Keriven, 2022). As illustrated in Fig.
11, we find that 1) the discrepancy among the MD-LSM curves of different graph convolutional layers
becomes smaller when the number of graph convolutional layers increases; and 2) more interestingly,
the linear separability degrees of the layers close to the input layer are higher than those of the layers
close to the output layer, i.e., the graph convolutional layers close to the input layer have better node
representations. The latter finding is in accordance with the aforementioned "over-smoothing" issue.

Table 11: M̂ultiLS0, M̂ultiLS1, M̂ultiLS2 curves and the accuracy curves during the process of
training GNNs with different number of graph convolution layers on the Cora dataset.
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