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Abstract

Gradient-based algorithms have shown great promise in solving large (two-player)
zero-sum games. However, their success has been mostly confined to the low-
precision regime since the number of iterations grows polynomially in 1/ϵ,
where ϵ > 0 is the duality gap. While it has been well-documented that lin-
ear convergence—an iteration complexity scaling as log(1/ϵ)—can be attained
even with gradient-based algorithms, that comes at the cost of introducing a depen-
dency on certain condition number-like quantities which can be exponentially large
in the description of the game.
To address this shortcoming, we examine the iteration complexity of several
gradient-based algorithms in the celebrated framework of smoothed analysis, and
we show that they have polynomial smoothed complexity, in that their number of
iterations grows as a polynomial in the dimensions of the game, log(1/ϵ), and
1/σ, where σ measures the magnitude of the smoothing perturbation. Our result
applies to optimistic gradient and extra-gradient descent/ascent, as well as a certain
iterative variant of Nesterov’s smoothing technique. From a technical standpoint,
the proof proceeds by characterizing and performing a smoothed analysis of a
certain error bound, the key ingredient driving linear convergence in zero-sum
games. En route, our characterization also makes a natural connection between
the convergence rate of such algorithms and perturbation-stability properties of the
equilibrium, which is of interest beyond the model of smoothed complexity.

1 Introduction

We consider the fundamental problem of computing an equilibrium strategy for a (two-player)
zero-sum game

min
x∈∆n

max
y∈∆m

⟨x,Ay⟩, (1)

where ∆d+1 := {x ∈ Rd+1
≥0 : x⊤1d+1 = 1} represents the d-dimensional probability simplex

and A ∈ Rn×m is the payoff matrix of the game. Tracing all the way back to Von Neumann’s
celebrated minimax theorem [von Neumann, 1928], zero-sum games played a pivotal role in the early
development of game theory [von Neumann and Morgenstern, 1947] and the crystallization of linear
programming duality [Dantzig, 1951]. Indeed, in light of the equivalence between zero-sum games
and linear programming [Adler, 2013, von Stengel, 2023, Brooks and Reny, 2023], many central
optimization problems can be cast as (1).
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State of the art algorithms for solving zero-sum games can be coarsely classified based on the desired
accuracy of a feasible solution (x,y), measured in terms of the duality gap

Φ(x,y) := max
y′∈∆m

⟨x,Ay′⟩ − min
x′∈∆n

⟨x′,Ay⟩. (2)

In the so-called low-precision regime, where one is content with a crude solution (x⋆,y⋆) such
that Φ(x⋆,y⋆) =: ϵ ≫ 0, the best available algorithms typically revolve around the framework of
regret minimization, both in practice [Farina et al., 2021, Brown and Sandholm, 2019, Zinkevich
et al., 2007, Tang et al., 2023] and in theory [Carmon et al., 2020, 2019, 2024, Grigoriadis and
Khachiyan, 1995, Clarkson et al., 2012, Alacaoglu and Malitsky, 2022]—in conjunction with other
techniques to speed up the per-iteration complexity, such as variance reduction, data structure design,
and sparsification [Zhang and Sandholm, 2020, Farina and Sandholm, 2022]. Such algorithms have
been central to landmark results in practical computation of equilibrium strategies even in enormous
games [Brown and Sandholm, 2018, Bowling et al., 2015, Moravčík et al., 2017, Perolat et al., 2022].

The high-precision regime, where ϵ ≪ 1
poly(nm) , has turned out to be more elusive, with current

LP-based techniques struggling to scale favorably in large instances. This deficiency can be in part
attributed to the relatively high per-iteration complexity of LP-based approaches, such as interior-
point methods or the ellipsoid algorithm, as well as their intense memory requirements. A promising
antidote is to instead rely on iterative gradient-based methods that have a minimal per-iteration
cost. Indeed, in a line of work pioneered by Tseng [1995], it is by known well-documented that
linear convergence—an iteration complexity scaling only as log(1/ϵ)—can been achieved even with
such methods [Tseng, 1995, Gilpin et al., 2012, Wei et al., 2021, Applegate et al., 2023, Fercoq,
2023]. There is, however, a major caveat to those results: the number of iterations no longer grows
polynomially with the dimensions of the game n and m, but instead depends on certain condition
number-like quantities that could be exponentially large in the description of the problem; it is thus
unclear how to interpret those results from a computational standpoint.

To address those shortcomings, in this paper we work in the celebrated framework of smoothed
analysis pioneered by Spielman and Teng [2004]. Namely, our goal is to characterize the iteration
complexity of certain gradient-based algorithms in zero-sum games when the payoff matrix A is
subjected to small but random perturbations, as formally introduced below.
Definition 1.1 (Zero-sum games under Gaussian perturbations). Let Ā ∈ [−1, 1]n×m. We assume
that the payoff matrix is given by A := Ā+G, where each entry of G is an independent (univariate)
Gaussian random variable with zero mean and variance σ2 ≤ 1.

Randomness here is only injected into the payoff matrix and not the set of constraints (that is, the
probability simplex), which is the natural model; after applying the perturbation, the problem should
still be a zero-sum game in the form of (1). Under this model, we investigate the convergence of the
following gradient-based algorithms.1 (Their formal description is given later in Appendix B.)

1. optimistic gradient descent/ascent (OGDA) [Popov, 1980];
2. optimistic multiplicative weights update (OMWU) [Syrgkanis et al., 2015, Chiang et al., 2012,

Rakhlin and Sridharan, 2013];
3. extra-gradient descent/ascent (EGDA) [Korpelevich, 1976]; and
4. an iterative variant of Nesterov’s smoothing technique (IterSmooth) [Gilpin et al., 2012,

Nesterov, 2005].

Smoothed complexity allows interpolating between worst-case analysis—when the variance of the
noise σ2 is negligible—and average-case analysis—when the noise dominates over the underlying
input. An average-case analysis is often unreliable since—as Edelman [1993] convincingly argued—a
fully random matrix does not necessarily capture typical instances encountered in practice. Spielman
and Teng [2004] put forward the framework of smoothed analysis as an attempt to explain the
performance of algorithms in realistic scenarios; to understand how brittle worst-case instances
really are. They famously proved that the simplex algorithm, under a certain pivoting rule, enjoys
polynomial smoothed complexity, meaning that its running time is bounded by some polynomial in the

1The vanilla gradient descent/ascent algorithm does not even converge (in a last-iterate sense) in zero-sum
games (e.g., [Mertikopoulos et al., 2018]), which is why our analysis revolves around certain variants thereof.
It is worth noting that regret minimization techniques provide guarantees concerning the average iterates, a
distinction blurred in our introduction.
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size of the input and 1/σ. Smoothed analysis is by now a well-accepted algorithmic framework with
a tremendous impact in the analysis of algorithms. We also argue that it is particularly well-motivated
from a game-theoretic perspective: there is often misspecification or noise when modeling a game,
so smoothed analysis offers a compelling way of bypassing pathological instances that are perhaps
artificial in the first place.

Nevertheless, we are not aware of any prior work operating in the smoothed complexity model
per Definition 1.1 in the context of zero-sum games. To clarify this point, it is important to stress
here that although zero-sum games can be immediately reduced to linear programs, that reduction
is less clear in the smoothed complexity model. In particular, one set of constraints in the induced
linear program takes the form Ay ≤ v1n =: b, where 1n ∈ Rn is the all-ones vector. According to
the usual model of smoothed complexity in the context of linear programs, randomness has to be
injected into both A and b, but that clearly disturbs the validity of the equivalence. More broadly,
reductions in the smoothed complexity model are quite delicate [Bläser and Manthey, 2015]; as a
further example, even reductions involving solely linear transformations can break in the smoothed
complexity model since independence—a crucial assumption in this framework—is not guaranteed
to carry over. Relatedly, one interesting direction arising from the work of Spielman and Teng [2003]
is to perform smoothed analysis in linear programs which are guaranteed to be feasible and bounded,
no matter the perturbation; zero-sum games under Definition 1.1 constitute such a class. Besides the
point above, different algorithms designed for the same problem can have entirely different properties,
not least in terms of their smoothed complexity. The class of algorithms we consider in this paper is
quite distinct from the ones shown to have polynomial smoothed complexity in the context of linear
programs (described further in Appendix A). In many ways, gradient-based methods are simpler and
more natural, which partly justifies their tremendous practical use. As a result, understanding their
smoothed complexity is an important question.

1.1 Our results

Our main contribution is to show that, with the exception of OMWU, the other gradient-based algorithms
mentioned above (Items 1, 3 and 4) have polynomial smoothed complexity with high probability—that
is to say, with probability at least 1− 1

poly(nm) .

Theorem 1.2. With high probability over the randomness of A ∈ Rn×m (Definition 1.1), OGDA,
EGDA and IterSmooth converge to an ϵ-equilibrium after poly(n,m, 1/σ) · log(1/ϵ) iterations.

The main takeaway of this result is that, modulo pathological instances, certain gradient-based
algorithms are reliable solvers in zero-sum games even in the high-precision regime. Similarly to
earlier endeavors in the context of linear programs [Spielman and Teng, 2004, Blum and Dunagan,
2002], a dependency of poly(1/σ) (as in Theorem 1.2) is what we should expect; the one exception
is the class of interior-point methods whose running time grows as log(1/σ), but those algorithms
are (weakly) polynomial even in the worst case. We further remark that the polynomial dependency
on n and m in Theorem 1.2 can almost certainly be improved, and we made no effort to optimize it.

Regarding OMWU, which is not covered by Theorem 1.2, we also obtain a significant improvement
in the iteration complexity compared to the worst-case analysis of Wei et al. [2021], but our bound
is still not polynomial. As we explain further in Appendix C.3, the main difficulty pertaining to
OMWU is that the analysis of Wei et al. [2021] gives (at best) an exponential bound no matter the
geometry of the problem. With that mind, our result is essentially the best one could hope for without
refining the worst-case analysis of OMWU, which is not within our scope here. We anticipate that our
characterization herein will prove useful in conjunction with future developments in the worst-case
complexity of OMWU, as well as in the analysis of other iterative methods.

The error bound The central ingredient that enables gradient-based algorithms to exhibit linear
convergence is a certain error bound, given below as Definition 1.3. For compactness in our notation,
we let X := ∆n and Y := ∆m. We then let z := (x,y), Z := X × Y , and Z⋆ := X ⋆ × Y⋆, where
X ⋆ and Y⋆ represent the (convex) set of equilibria for Player x and Player y, respectively.

Definition 1.3 (Error bound). Let Φ(z) denote the duality gap as introduced in (2). We say that the
zero-sum game (1) satisfies an error bound with modulus κ ∈ R>0 if

Φ(z) ≥ κ∥z −ΠZ⋆(z)∥ ∀z ∈ Z. (3)
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Above, ΠZ⋆(·) denotes the (Euclidean) projection operator; the set of games with a unique equilibrium
has measure one, so we can safely replace ΠZ⋆(z) by the unique equilibrium z⋆ ∈ Z⋆. It has been
known at least since the work of Tseng [1995] that affine variational inequalities indeed satisfy (3).
Nevertheless, it should come to no surprise that, even in 3 × 3 games, κ can be arbitrarily small
(Proposition 3.1), which in turn means that, linear convergence notwithstanding, the number of
iterations prescribed by an analysis revolving around (3) can be arbitrarily large. In fact, with the
exception of OMWU, which is to be discussed further below, Definition 1.3 suffices to establish linear
convergence (essentially) based on existing results.2 Our main result pertaining to Definition 1.3 is
that the modulus κ is likely to be polynomial in the smoothed complexity model:
Theorem 1.4. With high probability over the randomness of A (Definition 1.1), the error bound
per Definition 1.3 is satisfied for any sufficiently small κ ≥ poly(σ, 1/(nm)).

To establish this result, the first step is to lower bound κ in terms of certain natural geometric features
of the problem (Theorem 3.6), which is discussed further in Section 3.1. Establishing Theorem 1.4
then reduces to analyzing each of those quantities under Definition 1.1. It turns out that bounding
those quantities also suffices for characterizing OMWU, whose existing analysis due to Wei et al. [2021]
involves some further ingredients besides the error bound of Definition 1.3.

Further implications Our characterization of the error bound given in Theorem 3.6 has some further
important implications. First, a well-known vexing issue regarding computing equilibria even in
zero-sum games is that a solution with small duality gap can still be relatively far from the equilibrium
in the geometric sense, a phenomenon further exacerbated in multi-player games [Etessami and
Yannakakis, 2007]. Therefore, results providing guarantees in terms of the duality gap are not
particularly informative when it comes to computing strategies close to the equilibrium in a geometric
sense. At the same time, there are ample reasons why the latter guarantee is more appealing [Etessami
and Yannakakis, 2007]. Theorem 1.4 implies that such concerns can be alleviated in the smoothed
complexity model:
Corollary 1.5. With high probability over the randomness of A (Definition 1.1), any point z ∈ Z
with Φ(z) ≤ ϵ satisfies ∥z − z⋆∥ ≤ ϵ · poly(n,m, 1/σ).

Beyond smoothed analysis, Theorem 3.6 applies to any non-degenerate game (Definition 3.2), and
can be thereby used to parameterize the rate of convergence of gradient-based algorithms based
on natural and interpretable game-theoretic quantities of the underlying game, which has eluded
prior work. In particular, we make a natural connection between the complexity of gradient-based
algorithms and perturbation stability properties of the equilibrium. In light of misspecifications which
are often present in game-theoretic modeling, focusing on games with perturbation-stable equilibria
is well-motivated and has already received ample of interest in prior work [Balcan and Braverman,
2017, Awasthi et al., 2010]; more broadly, perturbation stability is a common assumption in the
analysis of algorithms beyond the worst-case model [Makarychev and Makarychev, 2021]. There are
different natural ways of defining perturbation-stable games; here, we assume that any perturbation
with magnitude below δ > 0, in that ∥A′ −A∥2 ≤ δ, maintains the support of the equilibrium and
the non-degeneracy of the game; we call such games δ-support-stable (Definition 4.1). In this context,
we show the following result.
Corollary 1.6. For any δ-support-stable zero-sum game, OGDA, EGDA and IterSmooth converge to
an ϵ-equilibrium after poly(n,m, 1/δ) · log(1/ϵ) iterations.

That is, games in which δ is not too close to 0 are more amenable to gradient-based algorithms,
which is a quite natural connection. Corollary 1.6 is shown by relating each of the quantities involved
in Theorem 3.6 to parameter δ defined above.

2 Notation

Before we proceed with our technical content, we first take the opportunity to streamline our notation;
further background on smoothed analysis and a description of the algorithms referred to earlier
(Items 1 to 4) is given later in Appendix B, as it is not important for the purpose of the main body.

2Definition 1.3 also readily establishes linear convergence for other compelling primal-dual algorithms, as
shown recently by Applegate et al. [2023]; in that paper, the error bound was referred to as “sharpness,” a
terminology employed in other papers as well (e.g., [Zarifis et al., 2024]).
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We use boldface letters, such as x,y, b, c, to represent vectors in a Euclidean space. For a vector
x ∈ Rn, we access its ith coordinate via a subscript, namely xi. Superscripts (together with
parantheses) are typically reserved for the (discrete) time index. We denote by ∥x∥ the Euclidean
norm, ∥x∥ :=

√∑n
i=1 x

2
i , the ℓ∞ norm by ∥x∥∞ := max1≤i≤n |xi|, and the ℓ1 norm by ∥x∥1 :=∑n

i=1 |xi|. For x,x′ ∈ Rn, we let dist(x,x′) := ∥x − x′∥. span(·) represents the linear space
spanned by a given set of vectors. For x ∈ Rn and a subset B ⊆ [n], we denote by xB ∈ RB

the subvector of x induced by B. We let 1n ∈ Rn be the all-ones vector of dimension n; we will
typically omit the subscript when it is clear from the context. For vectors x ∈ Rn and y ∈ Rm, we
write (x,y) ∈ Rn+m to denote their concatenation. Throughout this paper, we use x and y to denote
the strategy of Player x and Player y, respectively.

To represent matrices, we use boldface capital letter, such as A,Q. It will sometimes be convenient
to use A♭ ∈ Rnm to represent a vectorization of A ∈ Rn×m. We overload notation by letting ∥A∥
be the spectral norm of A. For a matrix A ∈ Rn×m and subsets B ⊆ [n], N ⊆ [m], we denote
by AB,N ∈ RB×N the submatrix of A induced by B and N . Ai,: and A:,j represent the ith row
and jth column of A, respectively. The singular values of a matrix M ∈ Rd×d are denoted by
σ1(M) ≥ σ2(M) ≥ · · · ≥ σd(M) ≥ 0 (not to be confused with our notation for the variance σ2).
To be more explicit, we may also use σmax(M) := σ1(M) and σmin(M) := σd(M).

3 Smoothed analysis of the error bound

In this section, we perform a smoothed analysis of the error bound—as introduced earlier in Defini-
tion 1.3—in (two-player) zero-sum games. It is first instructive to point out why smoothed analysis is
useful in the first place: the modulus κ can be arbitrarily close to 0 even when n = m = 3 (that is,
3× 3 games); this is detrimental as the iteration complexity of algorithms such as OGDA grows as a
polynomial in 1/κ.
Proposition 3.1. There exists a 3 × 3 zero-sum game such that κ per Definition 1.3 is arbitrarily
close to 0.

In proof, it is enough to consider the ill-conditioned diagonal matrix

A =

(
γ 0 0
0 2γ 0
0 0 1

)
, (4)

where 0 < γ ≪ 1. The (unique) equilibrium of (4) reads x⋆ = y⋆ = 1
3+2γ (2, 1, 2γ) ∈ ∆3. Now,

considering x = (1, 0, 0) and y = (0, 0, 1), for the duality gap we have Φ(x,y) = γ, while the
distance of (x,y) from the optimal solution (x⋆,y⋆) is at least 3

3+2γ . In turn, by Definition 1.3, this
means that κ ≤ 2γ. So, Proposition 3.1 follows by taking γ → 0.3

Proposition 3.1 exposes one type of pathology that can decelerate gradient-based algorithms, which
is evidently related to the poor spectral properties of the payoff matrix. This intuition is quite helpful
when equilibria are fully supported—as is the case in (4)—but has to be significantly refined more
broadly, as we formalize in the sequel.

To sidestep such pathological examples, we thus turn to the smoothed analysis framework of Defini-
tion 1.1.

3.1 Overview

The most natural approach to analyze the error bound in the smoothed complexity model is to rely
on an existing (worst-case) analysis proving that a positive κ exists, and then attempt to refine that
analysis. Yet, at least based on such prior results we are aware of, that turns out to be challenging.
As an example, let us consider the recent analysis of Wei et al. [2021]. As we explain in more detail
in Appendix C.3, Wei et al. [2021] relate the modulus κ of the error bound to the (inverse of the) norm
of a solution to a certain feasible linear program; the existence of a legitimate κ > 0 then follows
readily from feasibility. Now, this reduction seems quite promising: Renegar [1994] has shown that the

3If we want to specify the game with a (finite) number of L bits, Proposition 3.1 tells us that the modulus κ
can be exponentially small in L.
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norm of a solution to a linear program can be bounded in terms of its condition number—the distance
to infeasibility in our case, and Dunagan et al. [2011] later proved that the condition number of linear
programs is polynomial in the smoothed complexity model. Nevertheless, there are some difficulties
in materializing that argument. First, the induced linear program involves terms depending on both the
payoff matrix and the geometry of the constraints (the probability simplex in our case). Consequently,
the analysis of Dunagan et al. [2011] does not carry over since randomness is only injected into the
payoff matrix. The second and more important obstacle is that the induced linear program depends on
the optimal solution, which in turn depends on the randomness of the payoff matrix; this significantly
entangles the underlying distribution. As there are exponentially many possible configurations, we
cannot afford to argue about each one separately and then apply the union bound. This difficulty is
in fact known to be the crux in performing smoothed analysis [Spielman and Teng, 2004].4

To address those challenges, we provide a new characterization of the error bound in terms of
some natural quantities of the underlying game (Theorem 3.6), which in some sense capture the
difficulty of the problem. We are then able to use a technique due to Spielman and Teng [2004],
exposed in Section 3.3, to bound the probability that each of the involved quantities is close to 0
(Propositions 3.8 to 3.10), even though the underlying distribution is quite convoluted. The resulting
analysis follows the one given by Spielman and Teng [2003] in the context of termination of linear
programs, but still has to account for a number of structural differences.

In what follows, we structure our argument as follows. First, in Section 3.2, we relate the modulus κ
to some natural quantities capturing key geometric features of the problem. Section 3.3 then proceed
by analyzing those quantities in the smoothed analysis framework.

3.2 Characterization of the error bound

Our first goal is to characterize the error bound in terms of certain natural quantities, which will
then enable us to provide polynomial error bounds in the smoothed complexity model. Our only
assumption here is that the zero-sum game is non-degenerate, in the sense of Definition 3.2 below;
this can always be met with the addition of an arbitrarily small amount of noise (Lemma C.1). As
such, our characterization here has an interest beyond the smoothed analysis framework, casting
the error bound in terms of more interpretable game-theoretic quantities; for example, a concrete
implication is given in Section 4.

Let us denote by v the value of game (1), that is,

v = min
x∈X

max
y∈Y

⟨x,Ay⟩ = max
y∈Y

min
x∈X

⟨x,Ay⟩,

which is a consequence of the minimax theorem [von Neumann, 1928]. We are now ready to state the
formal definition of a non-degenerate game.
Definition 3.2 (Non-degenerate game). A zero-sum game described with a payoff matrix A and
value v is said to be non-degenerate if it admits a unique equilibrium (x⋆,y⋆) ∈ Z , and x⋆ and
y⋆ make tight exactly n of the inequalities {xi ≥ 0}i∈[n] ∪ {⟨x,A:,j⟩ ≤ v}j∈[m] and m of the
inequalities {yj ≥ 0}j∈[m] ∪ {⟨y,Ai,:⟩ ≥ v}i∈[n], respectively.

In the sequel, we will make constant use of the fact that the set of degenerate games has measure zero
under the law induced by Definition 1.1 (Lemma C.1).

In this context, we let B(x⋆) := {i ∈ [n] : x⋆
i > 0} denote the support of x⋆ (corresponding to

Player x), and similarly N(y⋆) := {j ∈ [m] : y⋆
j > 0} for the support of Player y. The strict

complementarity theorem [Ye, 2011] tells us that B indexes exactly the set of tight inequalities
{⟨y,Ai,:⟩ ≥ v}i∈[n], and symmetrically, N indexes exactly the set of tight inequalities {⟨x,A:,j⟩ ≤
v}j∈[m]. In particular, this implies that |B| = |N | with probability 1. It will also be convenient to
define B := [n] \B and N := [m] \N .

Now, at a high level, one can split solving a zero-sum game into two subproblems: i) identifying the
support of the equilibrium, and ii) solving the induced linear system to specify the exact probabilities

4This is not a concern in the unconstrained setting, where X = Rn and Y = Rm, in which a polynomial
smoothed complexity follows readily from existing results relating the convergence of OGDA or EGDA to the
condition number of the payoff matrix A (e.g., [Mokhtari et al., 2020, Li et al., 2023, Azizian et al., 2020]),
which in turn is well-known to be polynomial in the smoothed complexity model [Spielman and Teng, 2004].
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within the support. It will be helpful to have that viewpoint in mind in the upcoming analysis, and in
particular in the proof of Theorem 3.6. Roughly speaking, thinking of κ as a measure of the problem’s
difficulty, we will relate κ to i) the difficulty of identifying the support of the equilibrium, and ii) the
difficulty of solving the induced linear system. To be clear, those two subproblems are only helpful for
the purpose of the analysis, and they are certainty intertwined when using algorithms such as OGDA.

Staying on the latter task, we will make use of a certain transformation so as to eliminate one of
the redundant variables. Namely, for any x̂B ∈ ∆(B) and ŷN ∈ ∆(N), let us select a fixed pair
of coordinates (i, j) ∈ B ×N (for example, the ones with the smallest index). Using the fact that
⟨x̂B ,1⟩ = 1 and ⟨ŷN ,1⟩ = 1, we can eliminate x̂i and ŷj by writing

⟨x̂B ,AB,N ŷN ⟩ = ⟨x̃,Qỹ⟩ − ⟨x̃, c⟩ − ⟨ỹ, b⟩+ d, (5)

where x̃ ∈ RB̃
≥0, ỹ ∈ RÑ

≥0 (for B̃ := B \ {i} and Ñ := N \ {j}) coincide with x̂B and ŷN on
all coordinates in B̃ and Ñ , respectively, and A♭

B,N = T(Q♭, b, c, d) for a (non-singular) linear
transformation T ∈ R(BN)×(BN). (We spell out the exact definition of T later in Appendix C.1,
as it is not important for our purposes here; it follows by simply writing x̂i = 1 − ⟨x̃,1⟩ and
ŷj = 1 − ⟨ỹ,1⟩.) The point of transformation (5) is that, by eliminating one of the redundant
variables, there is a convenient characterization of the equilibrium (Claim C.3); namely, Qy⋆ = c
and Q⊤x⋆ = b.

We are now ready to introduce the key quantities upon which our characterization relies on. It turns
out that those are analogous to the ones considered by Spielman and Teng [2003] in the context of
analyzing the termination of linear programs; this is not coincidental, as our analysis was especially
targeted to do so.

Definition 3.3. Let A be the payoff matrix of a non-degenerate game, (x⋆,y⋆) ∈ Z the unique
equilibrium, and B ⊆ [n], N ⊆ [m] the support of x⋆ and y⋆ respectively. We introduce the
following quantities.

1. αP (A) := mini∈B(x
⋆
i ) and αD(A) := minj∈N (y⋆

j );

2. βP (A) := minj∈N (v − ⟨x⋆
B ,AB,j⟩) and βD(A) := mini∈B(⟨Ai,N ,y⋆

N ⟩ − v); and

3. γP (A) := minj dist(Q:,j , span(Q:,Ñ−j)) and γD(A) := mini dist(Qi,:, span(QB̃−i,:)),

where we use the shorthand notation B̃− i := B̃ \ {i} (Ñ − j := Ñ \ {j}), and Q = Q(A)
is defined in (5).

(Above, we adopt the convention that if a minimization problem is with respect to an empty set, the
minimum is to be evaluated as 1.)

Item 3 above will enable us to control the norm of solutions to any linear system induced by Q, as
we explain in the sequel. Our proof will actually rely on a slightly different matrix, which we call Q;
the lemma below relates the geometry of Q to Q, and reassures us that the condition number of Q
cannot be far from that of Q so long as 1−

∑
j∈Ñ y⋆

j ≥ αD(A) (by Item 1) is not too close to 0. (A
symmetric statement holds when focusing on Player y.)

Lemma 3.4. Let c = Qỹ⋆ =
∑

j∈Ñ ỹ⋆
jQ:,j , and suppose that Q ∈ RB̃×Ñ is such that its jth

column is equal to Q:,j − c. Then,

min
j∈Ñ

dist(Q:,j , span(Q:,Ñ−j)) ≤

(
1 +

|Ñ |
1−

∑
j∈Ñ y⋆

j

)
min
j∈Ñ

dist(Q:,j , span(Q:,Ñ−j)).

Next, we recall a fairly standard bound relating the magnitude of a solution to a linear system
x̃ = Mp with the smallest singular value of a full-rank matrix M.

Lemma 3.5. Let M ∈ Rd×d be a full-rank matrix. For any x̃ ∈ Rd there is p ∈ Rd with
∥p∥ ≤ 1

σmin(M)∥x̃∥ such that

x̃ = Mp =

d∑
j=1

pjM:,j .
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Moreover, to connect Lemma 3.5 with γP (A), we observe that the smallest singular value can also
be lower bounded in terms of the smallest distance of a column from the linear space spanned by the
rest of the columns—which now matches the expression of Item 3 we saw earlier. In particular, we
will make use of the so-called negative second moment identity [Tao et al., 2010] (Proposition C.4),
which implies that

σmin(Q) ≥
√

1∑
j∈Ñ dist−2(Q:,j , span(Q:,Ñ−j))

≥ 1√
|Ñ |

min
j∈Ñ

dist(Q:,j , span(Q:,Ñ−j)). (6)

Proposition C.4 also implies that γD(A) ≥ 1√
|B̃|

γP (A), and so it will suffice to lower bound γP (A)

in the sequel. We are now ready to proceed with the main result of this subsection. Below, we use the
notation “≳” to suppress lower-order terms and absolute constants.

Theorem 3.6. Let A be a non-degenerate payoff matrix, and suppose that (αP (A), αD(A)),
(βP (A), βD(A)) and (γP (A), γD(A)) are as in Definition 3.3. Then, the error bound (Defini-
tion 1.3) is satisfied for any sufficiently small modulus

κ ≳
1

∥A♭∥∞
1

min(n,m)3
min

{
(αD(A))2βD(A)γP (A), (αP (A))2βP (A)γD(A)

}
.

It is enough to explain how to lower bound κ > 0 such that maxy′∈Y⟨x,Ay′⟩ − v ≥ κ∥x −
ΠX⋆(x)∥ = κ∥x − x⋆∥ for any x ∈ X . In a nutshell, our argument is divided based on the
magnitude λ := ∥xB∥, which can be thought of as a measure of closeness from the support of
the equilibrium. When λ ≪ 1, which means that x is still far from the support of the equilibrium,
maxy′∈Y⟨x,Ay′⟩−v is governed by βD(A). In the contrary case, our basic strategy revolves around
showing that the error bound can be treated as in the unconstrained case, which would then relate the
modulus κ to the smallest singular value of the underlying matrix (essentially by Lemma 3.5)—and
subsequently to γP (A) due to (6). Indeed, this turns out to be possible by working with matrix Q, as
defined earlier in Lemma 3.4. We defer the precise argument to Appendix C.1.

3.3 Smoothed analysis

Having established Theorem 3.6, our next step is to show that each of the quantities introduced in Def-
inition 3.3 is unlikely to be too close to 0 in the smoothed complexity model, which would then im-
ply Theorem 1.4. The main difficulty lies in the fact that each configuration that may arise depends on
the support of the equilibrium, which in turn depends on the underlying randomization of A, thereby
significantly complicating the underlying distribution. Further, one cannot afford to argue about each
configuration separately and then apply the union bound as there are too many possible configurations.
To tackle this challenge, we follow the approach put forward by Spielman and Teng [2003].

In particular, given that all quantities of interest in Theorem 3.6 depend on the support of the
equilibrium, it is natural to proceed by partitioning the probability space over all possible supports,
and then bound the worst possible one—that is, the one maximizing the probability we want to
minimize. In doing so, the challenge is that one has to condition on the equilibrium having a given
support (formally justified by Proposition C.5). To argue about the induced probability density
function upon such a conditioning, it is convenient to perform a change of variables from A to a new
set of variables that now contains the equilibrium (x⋆,y⋆) (Lemma C.6). The basic idea here is that
since the event we condition on concerns the equilibrium, it is helpful to have that equilibrium being
part of our set of variables. The induced probability density function is now quite complicated, but
can still be analyzed using the following lemma.

Lemma 3.7 (Spielman and Teng, 2003). Let ρ be the probability density function of a random
variable X . If there exist δ > 0 and c ∈ (0, 1] such that

0 ≤ t ≤ t′ ≤ δ =⇒ ρ(t′)

ρ(t)
≥ c, (7)

then
P[X ≤ ϵ | X ≥ 0] ≤ ϵ

cδ
.
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In words, random variables whose density is smooth—in the sense of (7)—are unlikely to be too
close to 0. Gaussian random variables certainly have that property (Lemma C.8), but it is not confined
to the Gaussian law; the analysis of Spielman and Teng [2003]—and subsequently our result—is not
tailored to the Gaussian case.

We are now ready to state our main results in the smoothed complexity model; the proofs are
deferred to Appendix C.2. We commence with βP (A), which is the easiest to analyze. In particular,
the following result is a consequence of an anti-concentration bound with respect to a conditional
Gaussian random variable (Lemma C.7).
Proposition 3.8. Let βP (A) be defined as in Item 2. For any ϵ ≥ 0,

P
A

[
βP (A) ≤ ϵ

5∥A♭∥∞

]
≤ ϵ

emin(n,m)2

σ2
.

The analysis of γP (A) is more challenging, and makes crucial use of Lemma 3.7. As we alluded to
earlier, a key step is to change variables from AB,N to (Q, b, c, ·)—in accordance with (5)—and then
to (Q,x⋆,y⋆, ·) based on Qỹ⋆ = c, Q⊤x̃⋆ = b. It is important to note that Q no longer contains
independent random variables even though AB,N is (by Definition 1.1); this stems from the presence
of a redundant variable in x⋆

B (since ⟨x⋆
B ,1⟩ = 1). Nevertheless, we can still overcome this issue

using Lemma 3.7, leading to the following bound.
Proposition 3.9. Let γP (A) be defined as in Item 3. For any ϵ ≥ 0,

P
A

[
γP (A) ≤ ϵ

4maxj∈Ñ ∥Q:,j∥+ 20∥A♭∥∞ + 3

]
≤ ϵ

4emin(n,m)3

σ2
.

Similar reasoning, albeit with some further complications, provides a bound for αP (A), which is
given below.
Proposition 3.10. Let αP (A) be defined as in Item 1. For any ϵ ≥ 0,

P
A

[
αP (A) ≤ ϵ

25(∥A♭∥∞ + 1)2

]
≤ ϵ

8e2mnmin(n,m)

σ2
.

Armed with Propositions 3.8 to 3.10 and Theorem 3.6, we can establish Theorem 1.2 by suitably
leveraging existing results, as we formalize in Appendix C.3.

4 Parameterized results for perturbation-stable games

Another important implication of our characterization in Theorem 3.6 is that it enables connecting the
convergence rate of gradient-based algorithms to natural and interpretable game-theoretic quantities.
In particular, here we highlight a connection with perturbation-stable games, in the following formal
sense.
Definition 4.1 (Perturbation-stable games). Let A be the payoff matrix of a non-degenerate game.
We say that the game is δ-support-stable, with δ > 0, if for any A′ with ∥A−A′∥ ≤ δ it holds that
A′ is a non-degenerate game whose equilibrium has the same support as A.

Perhaps the simplest example of a support-stable game with a favorable parameter δ > 0 arises
when A is the 2× 2 identity matrix. Indeed, as long as the perturbation parameter δ remains below
a certain absolute constant, the perturbed game still admits a unique full-support equilibrium. To
see this, suppose for the sake of contradiction that the perturbed game has an equilibrium such that
Player x plays one of the two actions with probability 1. Player y would then obtain a utility of at
least 1−O(δ). But the value of the original game was 1/2, which in turn implies that the value of
the perturbed game is 1/2 ± Θ(δ); for a sufficiently small δ this leads to a contradiction. Similar
reasoning applies with respect to Player y. (The previous argument carries over more broadly to
diagonally dominant 2× 2 payoff matrices.)

As we have highlighted already, games with perturbation-stable equilibria—albeit under different
notions of stability—have already received attention in the literature [Balcan and Braverman, 2017,
Awasthi et al., 2010] (cf. Cohen [1986]), and are part of a broader trend in the analysis of algorithms
beyond the worst case (for further background, we refer to the excellent book edited by Roughgarden
[2021]). Our goal here is to make the following natural connection.
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Theorem 4.2. Any δ-support-stable game (per Definition 4.1) satisfies the error bound for any
sufficiently small modulus

κ ≥ poly

(
1

n
,
1

m
, δ

)
.

By virtue of our discussion in Appendix C.3, Theorem 4.2 immediately implies Corollary 1.6. Indeed,
we observe that all parameters involved in Theorem 3.6 can be lower bounded in terms of the stability
parameter of Definition 4.1, as we formalize in Appendix C.4.

5 Conclusions and future research

In conclusion, we performed the first smoothed analysis with respect to a number of well-studied
gradient-based algorithms in zero-sum games. In particular, we showed that OGDA, EGDA and
IterSmooth all enjoy polynomial smoothed complexity, meaning that their iteration complexity
grows as a polynomial in the dimensions of the game, 1/σ, and log(1/ϵ); for OMWU, our analysis
reveals a significant improvement over the worst-case bound due to Wei et al. [2021], but it still
remains superpolynomial. We also made a connection between the rate of convergence of the above
algorithms and a natural perturbation-stability property of the equilibrium, which is interesting beyond
the model of smoothed complexity.

A number of interesting avenues for future research remain open. First, is it the case that OMWU has
polynomial smoothed complexity or is there an inherent separation with the other algorithms we stud-
ied? Answering this question in the positive would necessitate significantly improving the worst-case
analysis of OMWU due to Wei et al. [2021] (cf. Cai et al. [2024] for a recent development concerning the
last-iterate convergence of OMWU). Beyond OMWU, our results could also prove useful for establishing
polynomial bounds for other natural dynamics in the smoothed analysis framework. Moreover, our
characterization of the error bound in Theorem 3.6 assumes that the game is non-degenerate. This
is an innocuous assumption in the smoothed complexity model, as it holds with probability 1, but
nevertheless it would be interesting to generalize it to any game. Doing so could shed some light
into whether Theorem 4.2 holds with respect to other, perhaps more natural notions of perturbation
stability beyond Definition 4.1. It would also be interesting to investigate other models of smoothed
complexity that account for dependencies between the entries of the payoff matrix [Bhaskara et al.,
2024]. Moreover, our focus has been on zero-sum games under simplex constraints, but we suspect
that more general positive results should be attainable under polyhedral constraint sets; perhaps the
most notable such candidate is the class of extensive-form games [Romanovskii, 1962, von Stengel,
1996]. Even beyond (two-player) zero-sum games, Theorem 1.2 could apply to (multi-player) polyma-
trix zero-sum games [Cai et al., 2016]. It is less clear whether the model of smoothed complexity can
be informative when it comes to convergence to coarse correlated equilibria in multi-player games.
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A Further related work

Besides the pioneering work of Spielman and Teng [2004], which revolved around the simplex
algorithm, other prominent algorithms for solving linear programs have also been investigated
through the lens of smoothed complexity. Blum and Dunagan [2002] showed that perceptron, a
popular algorithm in machine learning, also enjoys a polynomial smoothed complexity (with high
probability) for solving linear programming feasibility problems, which can also capture general
linear programs via a binary search procedure. Further, Dunagan et al. [2011] performed a smoothed
analysis of interior-point methods by relying on an earlier characterization due to Renegar [1995].

Beyond linear programming and (two-player) zero-sum games, there has been a considerable interest
in understanding the smoothed complexity of Nash equilibria in general-sum games, but the outlook
that has emerged from this endeavor is rather bleak [Chen et al., 2009, Boodaghians et al., 2020,
Rubinstein, 2016]. On a more positive note, Daskalakis et al. [2024] recently considered a more
permissive solution concept they refer to as a smooth Nash equilibrium; the basic idea of their
relaxation is that instead of considering best-response deviations, they restrict to deviations that do
not assign too much probability mass on any pure strategy, as controlled by a certain parameter. For a
certain regime of that parameter, they obtained positive results, bypassing the intractability of the
usual Nash equilibrium. Considering smooth Nash equilibria could also be fruitful in the context of
zero-sum games. In particular, we surmise that, if one is content with convergence to smooth Nash
equilibria, the error bound could exhibit more favorable properties. Smoothed analysis has also been
applied to more structured classes of games, such as congestion or potential games [Giannakopoulos,
2023, Giannakopoulos et al., 2022, Chen et al., 2020], as well as other important problems in game
theory [Gatti et al., 2013, Buriol et al., 2011]. Other notable developments in a broader context were
covered in an older survey by Spielman and Teng [2009]; for more recent developments, we point to,
for example, Christ and Yannakakis [2023], Chen et al. [2024], Huiberts et al. [2023], and the many
references therein.

Average-case analysis has also been a popular topic in the optimization literature [Cunha et al., 2022,
Paquette et al., 2023, Scieur and Pedregosa, 2020], and so it is worth relating our results to that line of
work. In particular, let us focus on the recent work of Cunha et al. [2022]. First, that paper targets a
certain class of convex quadratic problems, whereas we examine zero-sum games. They also operate
under a different perturbation model, deriving a parametrization based on the concentration of the
eigenvalues of a certain matrix. Further, without strong convexity, Cunha et al. [2022] establish a
complexity scaling with poly(1/ϵ), while here we target the log(1/ϵ) regime. We finally remark that
the techniques employed are also quite different. In particular, Cunha et al. [2022, Problem 2.1]
posit that the optimal solution does not depend on the underlying randomization. In contrast, as we
have already highlighted, the fact that the equilibrium is a function of the randomization constitutes
the main technical crux in our setting. At the same time, Cunha et al. [2022] encountered several
challenges not present in our setting, so overall those results are complementary.

Beyond smoothed complexity, understanding the last-iterate convergence of gradient-based methods
such as OGDA and EGDA has received tremendous interest in the literature; e.g., [Golowich et al., 2020a,
Cai et al., 2022, Gorbunov et al., 2022, Vankov et al., 2023, Golowich et al., 2020b, Mahdavinia et al.,
2022, Antonakopoulos et al., 2021, Mertikopoulos et al., 2019, Abe et al., 2023]. It is worth noting
that linear convergence has also been documented for the more challenging class of extensive-form
games [Lee et al., 2021], as well as Markov games [Song et al., 2023]. Nevertheless, there are lower
bounds precluding linear convergence beyond affine variational inequalities [Golowich et al., 2020a,
Wei et al., 2021]. We also refer to the works of Cohen et al. [2017] and Giannou et al. [2021] for
further characterizations of the convergence rate of no-regret dynamics in multi-player games.

Contrary to the above line of work, which focuses on last-iterate convergence, the most common
approach to solving zero-sum games revolves around regret minimization whereby optimality guar-
antees concern the average strategies. Learning in such settings has been a popular research topic
as it captures many central problems; two notable recent applications are learning from multiple
distributions [Haghtalab et al., 2022] and multi-calibration [Haghtalab et al., 2023]. Yet, there are
at least three limitations of the no-regret framework worth highlighting here. The first one, which
has been stressed extensively already, is that the number of iterations must grow at least as Ω(1/ϵ)
when one insists on taking (uniform) averages [Daskalakis et al., 2015]. The second and more
nuanced caveat is that the no-regret framework does not provide instance-based guarantees based
on natural game-theoretic parameters of the problem (see, for example, the discussion of Maiti
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et al. [2023]). Building on earlier work [Wei et al., 2021, Tseng, 1995], some of our results here
attempt to address this shortcoming by coming up with a more interpretable parameterization of the
iteration complexity of algorithms such as OGDA. The final limitation is that, convergence to the set of
equilibria notwithstanding, no-regret guarantees provide no information regarding properties of the
equilibrium reached. Although not an issue in non-degenerate zero-sum games, equilibrium selection
still remains a central problem. Earlier results [Wei et al., 2021, Tseng, 1995] provide an interesting
characterization for the last iterate of OGDA and EGDA by showing that the limit point is the projection
of the initial point to the set of equilibria.

Finally, it is worth pointing out the best available theoretical guarantees for solving zero-sum
games. Assuming that each entry of A has absolute value bounded by 1, (1) can be solved in
Õ(max{n,m}ω) [Cohen et al., 2021] or Õ(nm+min{n,m}5/2) [van den Brand et al., 2021]. Here,
ω is the exponent of matrix multiplication and Õ suppresses polylogarithmic factors in n and m.
The complexity we obtain for algorithms such as OGDA is not competitive even though we work in
the more benign smoothed complexity model; we reiterate that we did not attempt to optimize the
polynomial factors in terms of n and m, and those can almost certainly be improved. On the other
hand, there are two main aspects in which algorithms such as OGDA are more appealing in terms of
their scalability: the per-iteration complexity and the memory requirements. An algorithm such as
OGDA requires a single matrix-vector product in each iteration, which can be implemented in linear
time for sparse matrices, and has a limited memory footprint. In contrast, implementing interior-point
methods in large games can be prohibitive.

B Preliminaries

In this section, we introduce some further background on smoothed complexity and define the
algorithms cited earlier (Items 1 to 4).

Further notation For a random variable X , we denote by E[X] its expectation and by V[X] its
variance, under the assumption that both are finite. For a sequence of random variables X1, . . . , Xd

and scalars α1, . . . , αd ∈ R, linearity of expectation yields that E[α1X1+ · · ·+αdXd] = α1E[X1]+
· · ·+αdE[Xd]. Assuming independence, it also holds that V[α1X1 + · · ·+αdXd] = (α1)

2V[X1] +
· · · + (αd)

2V[Xd]. We will also use the fact that a linear combination of independent Gaussian
random variables is also Gaussian. More broadly, linear combinations can be understood through a
convolution in the space of probability density functions, which means that smoothness (in the sense
of Lemma C.7) is preserved in a certain regime.

B.1 Smoothed complexity

To fully specify Definition 1.1, we first recall that a (univariate) Gaussian random variable with zero
mean and variance σ2 admits a probability density function of the form

µ : t 7→ 1

σ
√
2π

exp

(
− t2

2σ2

)
.

The law of such a Gaussian random variable will be denoted by N (0, σ2). In the original work
of Spielman and Teng [2004], smoothed complexity was defined as the expected running time (or
some other cost function) of some algorithm over the perturbed input. More precisely, let A be an
algorithm whose inputs can be expressed as vectors in Rd, and let TA(I) be the running time of
algorithm A on input I ∈ Rd. Then, the smoothed complexity of A is

CA(d, σ) := max
I∈Rd

Eg∼N (0d,σ2Id×d)[TA(I + ∥I∥g)].

As pointed out by Spielman and Teng [2003], one does not need to limit smoothed analysis to measure
the expected running time, and high probability guarantees are also quite natural; see, for example,
the smoothed analysis of the perceptron algorithm due to Blum and Dunagan [2002]. Our main result
also provides a guarantee with high probability; it is not clear whether the expected running time can
also be bounded by poly(n,m, 1/σ), which is left for future work.

B.2 Algorithms

Next, we specify the algorithms we consider in this work.
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Optimistic gradient descent/ascent Originally proposed by Popov [1980], optimistic gradient
descent/ascent (OGDA)—and variants thereof [Hsieh et al., 2019]—has been recently revived in the
online learning literature commencing from the pioneering works of Rakhlin and Sridharan [2013]
and Chiang et al. [2012]. If we denote for compactness F (z) := (Ay,−A⊤x), OGDA can be
expressed as follows for t ∈ N(= {1, 2, . . . , }).

z(t) := ΠZ(ẑ
(t) − ηF (z(t−1)),

ẑ(t+1) := ΠZ(ẑ
(t) − ηF (z(t)).

(OGDA)

Here, η > 0 is the learning rate; ΠZ(·) denotes the (Euclidean) projection operator on set Z := X×Y ;
and z(0) = ẑ(1) ∈ Z is the initialization. That is, players simultaneously update their strategies
through optimistic gradient steps. Given that X and Y are probability simplexes, each projection
can be computed exactly in nearly linear time. The key reference point for OGDA in affine variational
inequalities is the work of Wei et al. [2021] who established linear convergence using the notion of
metric subregularity (Definition C.9), which is strongly related to Definition 1.3; we discuss their
approach later in Appendix C.3.

Optimistic multiplicative weights update Deriving from the same class of online learning al-
gorithms as OGDA, optimistic multiplicative weights (OMWU) is the incarnation of optimistic mirror
descent with an entropic regularizer, namely

x(t) ∝ x(t−1) ◦ exp
(
−2ηAy(t−1) + ηAy(t−2)

)
,

y(t) ∝ y(t−1) ◦ exp
(
2ηA⊤x(t−1) − ηA⊤x(t−2)

) (OMWU)

for t ∈ N.5 Above, ◦ denotes the component-wise product; the exponential mapping exp(·) is also to
be applied component-wise; and z(−1) := z(0) := ( 1n1n,

1
m1m). Daskalakis and Panageas [2019]

first proved that OMWU exhibits asymptotic (last-iterate) convergence, and Wei et al. [2021] later
established linear convergence.
Remark B.1. It is important to note here that the exponential map of OMWU can produce iterates with
an arbitrarily large number of bits. Nevertheless, it is not hard to show that the analysis of Wei et al.
[2021] carries over when the iterates are truncated up to a certain length of the most significant bits,
and so we will not dwell further on this issue here.

Extra-gradient descent/ascent The extra-gradient method of Korpelevich [1976] is quite similar
to OGDA, namely

ẑ(t) := ΠZ(z
(t) − ηF (z(t)),

z(t+1) := ΠZ(z
(t) − ηF (ẑ(t))

(EGDA)

for t ∈ N. Unlike OGDA, one caveat is that it requires two gradient evaluations per each iteration
t. EGDA is also less suited to use in an online environment: it requires more feedback than what is
provided in the online learning setting, and in fact, even legitimate variants of EGDA can still incur
substantial regret [Golowich et al., 2020a]. Tseng [1995] first established that EGDA exhibits linear
convergence for problems such as (1), discussed further in Appendix C.3.

Iterative smoothing This is a refinement of Nesterov’s classical smoothing technique [Nesterov,
2005] due to Gilpin et al. [2012]. Let us first recall the vanilla version of Nesterov, which we refer to
as Smoothing(A, z(0), ϵ):

1. Initialize η := ϵ
DZ

and ẑ(0) := z(0), where DZ is the ℓ2 diameter of Z .

2. For t = 0, 1, . . .

(a) u(t) := 2
2+t ẑ

(t) + t
t+2z

(t).
(b)

z(t+1) := argmin
z∈Z

{
⟨∇Fη(u

(t)), z − u(t)⟩+ L2

2η
∥z − u(t)∥2

}
,

5OMWU is oftentimes expressed via the (optimistic) mirror descent viewpoint, but the form we provide here is
easily seen to be equivalent.
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where Fη(z) := maxẑ∈Z{⟨F (z), z − ẑ⟩ − η
2∥z − ẑ∥2} and L is a suitable matrix

norm.
(c) If Φ(z(t+1)) < ϵ, return.
(d)

ẑ(t+1) := argmin
ẑ∈Z

{
t∑

τ=0

τ + 1

2
⟨∇Fη(u

(τ)), ẑ − u(τ)⟩+ L2

2η
∥ẑ − z(0)∥2

}
.

In this context, IterSmooth(A, z(0), ρ, ϵ) is simple refinement of Smoothing, which nonetheless
attains linear convergence [Gilpin et al., 2012].

1. Let ϵ(0) = F (z(0)).
2. For t = 0, 1, . . .

(a) ϵ(t+1) := ϵ(t)

ρ .

(b) z(t+1) := Smoothing(A, z(t), ϵ(t+1)).
(c) If Φ(z(t+1)) < ϵ, return.

C Omitted proofs

We dedicate this section to the proofs omitted earlier from the main body.

C.1 Proofs from Section 3.2

We first point out that degenerates games have measure zero (cf. Spielman and Teng [2003, Proposition
5.1]).
Lemma C.1. For a Gaussian distributed payoff matrix A per Definition 1.1, the game is non-
degenerate (Definition 3.2) with probability 1 (almost surely).

Indeed, the set of games with a non unique equilibrium has measure zero [van Damme, 1991, Theorem
3.5.1]. Regarding the characterization in terms of the number of tight inequalities of the corresponding
(primal and dual) linear programs, gathered in Definition 3.2, we note that if n+ 1 of the inequalities
were tight at x⋆, that would induce a feasible linear system of n equalities (by eliminating v) in n− 1
variables (by eliminating one of the redundant variables); such degeneracies have measure zero, and
there are only finitely many possible such degeneracies, leading to Lemma C.1. As a result, in the
smoothed complexity model, we can safely assume that the game is non-degenerate.

Now, as we alluded to earlier, establishing Definition 1.3 reduces to showing that for any points
x ∈ X and y ∈ Y ,

max
y′∈Y

⟨x,Ay′⟩ − v ≥ κ∥x−ΠX⋆(x)∥ = κ∥x− x⋆∥, (8)

v − min
x′∈X

⟨x′,Ay⟩ ≥ κ∥y −ΠY⋆(y)∥ = κ∥y − y⋆∥. (9)

(Definition 1.3 then indeed follows from the obvious fact ∥x − x⋆∥ + ∥y − y⋆∥ ≥ ∥z − z⋆∥.)
Accordingly, our proof of Theorem 3.6 below will focus on lower bounding κ so that (8) holds,
and (9) can then be treated similarly.

Before we proceed, let us make some observations regarding transformation (5) we saw earlier. First,
one can understand the transformation A♭

B,N = T(Q♭, b, c, d) through the equations

d = Ai,j ; bj′ = −Ai,j′ +Ai,j ; ci′ = −Ai′,j +Ai,j ;Qi′,j′ = Ai′,j′ −Ai,j′ −Ai′,j +Ai,j (10)

for all (i′, j′) ∈ B̃× Ñ . This can easily be derived from (5) by using the fact that x̂B = (x̃, 1−1⊤x̃)
and ŷN = (ỹ, 1− 1⊤ỹ). From (10), we see that there is a permutation of the rows of T that is upper
triangular, with every entry being either 1 or −1. This implies that |det(T)| = 1. With a slight
abuse of notation, we will write Ti,j (as opposed to T(i,j),:) to access the (i, j) row of T, so that
Ai,j = ⟨Ti,j , (Q

♭, b, c, d)⟩. From (10), we also see that Ti,j contains at most 4 non-zero entries. In
turn, this implies that ∥Ti,j∥ ≤ 2 and ∥Ti,j∥1 ≤ 4. We gather the above observations in the claim
below, which will be used in the sequel.
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Claim C.2. For the (linear) transformation T ∈ R(BN)×(BN) given in (10), it holds that |det(T)| =
1. Further, ∥Ti,j∥ ≤ 2 and ∥Ti,j∥1 ≤ 4 for all (i, j) ∈ B ×N .

The point of transformation (5) is that, as we claimed earlier, the spectral properties of matrix Q (as
opposed to AB,N , which is a natural candidate) suffice to capture the difficulty of addressing the
second subproblem identified in Section 3.2. In addition, there is a straightforward but convenient
characterization of the equilibrium (x⋆,y⋆) in terms of the transformed game in (5), as stated below.

Claim C.3. It holds that Qỹ⋆ = c and Q⊤x̃⋆ = b.

Proof. It is clear that the vector Qỹ⋆ − c must have the same value in every coordinate since x̃⋆

is fully supported and a best response (by assumption). If that entry was positive, then x̃⋆ would
not be a best response since Player x could profit from removing all the probability mass (which is
possible since

∑
i∈B̃ x⋆

i > 0). If there was a negative entry, Player x would profit from increasing its
probability mass (which is possible since

∑
i∈B̃ x⋆

i < 1). Similar reasoning yields Q⊤x̃⋆ = b.

Having made the above observations, we next prove some lemmas claimed earlier in Section 3.2
which will be used for the proof of Theorem 3.6. First, we give the proof of Lemma 3.4.

Lemma 3.4. Let c = Qỹ⋆ =
∑

j∈Ñ ỹ⋆
jQ:,j , and suppose that Q ∈ RB̃×Ñ is such that its jth

column is equal to Q:,j − c. Then,

min
j∈Ñ

dist(Q:,j , span(Q:,Ñ−j)) ≤

(
1 +

|Ñ |
1−

∑
j∈Ñ y⋆

j

)
min
j∈Ñ

dist(Q:,j , span(Q:,Ñ−j)).

Proof. Let Ñ ∋ j′ ∈ argminj∈Ñ dist(Q:,j , span(Q:,Ñ−j)). By definition, there is ρ ∈ RÑ−j′ and

r ∈ RÑ with ∥r∥ = 1 such that

Q:,j := −
∑

j∈Ñ−j′

ỹ⋆
jQ:,j + (1− y⋆

j′)Q:,j′ =
∑

j∈Ñ−j′

ρj(Q:,j − c) + ϵr,

where ϵ := minj∈Ñ dist(Q:,j , span(Q:,Ñ−j)). Rearranging, we have

Q:,j′

ϕj′︷ ︸︸ ︷1− y⋆
j′ + y⋆

j′

∑
j∈Ñ−j′

ρj

+
∑

j∈Ñ−j′

Q:,j

ϕj︷ ︸︸ ︷−y⋆
j − ρj + y⋆

j

∑
j′′∈Ñ−j′

ρj′′

 = ϵr. (11)

Now, let us suppose that all coefficients above are such that |ϕj | ≤ ϵ′ :=
1−

∑
j∈Ñ

y⋆
j

1−
∑

j∈Ñ
y⋆
j+|Ñ |

for all

j ∈ Ñ . Then,
∑

j∈Ñ ϕj = ±|Ñ |ϵ′ since |
∑

j∈Ñ ϕj | ≤
∑

j∈Ñ |ϕj | ≤ ϵ|Ñ |, where for convenience

we used the notation
∑

j∈Ñ ϕj = ±|Ñ |ϵ′ ⇐⇒ −|Ñ |ϵ′ ≤
∑

j∈Ñ ϕj ≤ |Ñ |ϵ′. Thus, by definition
of ϕj , 1−

∑
j∈Ñ

y⋆
j

 ∑
j∈Ñ−j′

ρj

 =

1−
∑
j∈Ñ

y⋆
j

± ϵ′|Ñ |.

Since 0 < 1−
∑

j∈Ñ y⋆
j , we have ∑

j∈Ñ−j′

ρj

 = 1± ϵ′
|Ñ |

1−
∑

j∈Ñ y⋆
j

.

Thus,

ϕj′ = 1− y⋆
j′ + y⋆

j′

∑
j∈Ñ−j′

ρj = 1± ϵ′
|Ñ |

1−
∑

j∈Ñ y⋆
j

> ϵ′
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since ϵ′ ≤ 1−
∑

j∈Ñ
y⋆
j

1−
∑

j∈Ñ
y⋆
j+|Ñ |

. The last displayed inequality contradicts our earlier assumption that

|ϕj′ | ≤ ϵ′. As a result, we conclude that at least one coefficient ϕj has an absolute value at least ϵ′.
Dividing (11) by that coefficient, we get

min
j∈Ñ

dist(Q:,j , span(Q:,Ñ−j)) ≤
ϵ

ϵ′
≤

(
1 +

|Ñ |
1−

∑
j∈Ñ y⋆

j

)
min
j∈Ñ

dist(Q:,j , span(Q:,Ñ−j)).

This completes the proof.

We continue with the proof of Lemma 3.5.
Lemma 3.5. Let M ∈ Rd×d be a full-rank matrix. For any x̃ ∈ Rd there is p ∈ Rd with
∥p∥ ≤ 1

σmin(M)∥x̃∥ such that

x̃ = Mp =

d∑
j=1

pjM:,j .

Proof. Let M = UΣV⊤ be a singular value decomposition (SVD) of Q, where U and V are
orthonormal. Then, given that Q is invertible (by assumption),

p = VΣ−1U⊤x̃,

where Σ−1 = diag(σ−1
min, . . . , σ

−1
max). (Here, σmax and σmin are the maximum and minimum singular

values of M, respectively.) Thus, ∥p∥ ≤ ∥V∥∥Σ−1∥∥U⊤∥∥x̃∥ ≤ 1
σmin(Q)∥x̃∥, where we used the

fact that the spectral norm of any orthonormal matrix is 1 and the spectral norm of any diagonal
matrix is its maximum entry in asbolute value.

We next state the negative second moment identity that connects the smallest singular values in
terms of a certain geometric property of the matrix (namely, Item 3) (see also [Tao, 2023] for further
background).
Proposition C.4 (Negative second moment identity [Tao et al., 2010]). Let M ∈ Rd×d be an
invertible matrix. Then,

d∑
r=1

1

σ2
r(M)

=

d∑
r=1

1

dist2(Mr,:, H−r,:)
=

d∑
r=1

1

dist2(M:,r, H:,−r)
, (12)

where H−r,: := span(M1,:, . . . ,Mr−1,:,Mr+1,:, . . . ,Md,:).

One can readily prove this identity by equivalently expressing the negative second moment
tr((M−1)⊤M−1) as either

∑d
r=1 σ

2
r(M

−1) =
∑d

r=1 σ
−2
r (M) or

∑d
r=1 ∥M−1

:,r ∥2, leading to the
first identity in (12). The second one follows from the fact that the singular values of M⊤ coincide
with the singular values of M.

We are now ready to prove Theorem 3.6, restated below.
Theorem 3.6. Let A be a non-degenerate payoff matrix, and suppose that (αP (A), αD(A)),
(βP (A), βD(A)) and (γP (A), γD(A)) are as in Definition 3.3. Then, the error bound (Defini-
tion 1.3) is satisfied for any sufficiently small modulus

κ ≳
1

∥A♭∥∞
1

min(n,m)3
min

{
(αD(A))2βD(A)γP (A), (αP (A))2βP (A)γD(A)

}
.

Proof. We lower bound κ so that (8) holds; bound (9) will then be treated in a symmetric fashion,
and Definition 1.3 will follow.

Let us fix any point x ∈ X . We can write x as λx̂B + (1 − λ)x̂B for some λ ∈ [0, 1] such that
x̂B ∈ X and all coordinates of x̂B in B are zero, and x̂B ∈ X and all coordinates of x̂B in B are
zero. For notational convenience, we define

P (A) :=
1

2|N |
√

|B|
σmin(Q)

(
1 +

1

αD(A)

)−1

. (13)

We consider the following two cases.
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Case I: λP (A)∥x̂B−x⋆
B∥ ≥ 4(1−λ)∥A♭∥∞. If x̂B = x⋆

B , it follows that x = x⋆ (since λ = 1),
and the conclusion trivially follows. We can thus assume that x̂B ̸= x⋆

B . In this case, it follows that
B̃ ̸= ∅, and we proceed as follows.

max
y′∈Y

⟨x,Ay′⟩ − v ≥ λmax
j∈N

⟨x̂B − x⋆
B ,AB,j⟩+ (1− λ)

(
⟨xB ,AB,j⟩ − v

)
(14)

≥ λmax
j∈N

⟨x̂B − x⋆
B ,AB,j⟩ − 2(1− λ)∥A♭∥∞, (15)

where (14) follows from the definition x := λx̂B + (1− λ)x̂B and the fact that v = ⟨x⋆
B ,AB,j⟩ for

all j ∈ N ; and (15) uses definition of ∥A♭∥∞ to lower bound the second term in (14). Continuing
from (15), we can use the transformation defined in (5) to get

max
j∈N

⟨x̂B − x⋆
B ,AB,j⟩ = max

j∈N
⟨x̃− x̃⋆,Q:,j − c⟩, (16)

where, with an abuse of notation, the convention above is that Q:,j = 0 if j ̸= Ñ . For convenience,
let us define χj := ⟨x̃ − x̃⋆,Q:,j − c⟩ for all j ∈ N . Our goal is to lower bound maxj∈N χj . To
that end, we first observe that, by the fact that Qỹ⋆ = c (Claim C.3),

0 = ⟨x̃− x̃⋆,Qỹ⋆ − c⟩ =
∑
j∈Ñ

ỹ⋆
j ⟨x̃− x̃⋆,Q:,j⟩ − ⟨x̃− x̃⋆, c⟩

=
∑
j∈Ñ

ỹ⋆
j ⟨x̃− x̃⋆,Q:,j − c⟩+

1−
∑
j∈Ñ

ỹ⋆
j

 ⟨x̃− x̃⋆,−c⟩.

In other words, ∑
j∈N

y⋆
jχj = 0,

which in turn implies that∑
j∈N

max(0, χj) ≥
∑
j∈N

y⋆
j max(0, χj) = −

∑
j∈N

y⋆
j min(0, χj)

≥ −αD(A)
∑
j∈N

min(0, χj), (17)

where we made use of the obvious identity t = max(0, t) + min(0, t) for all t ∈ R, as well as the
definition of αD(A) (Item 1). We let p ∈ RÑ be the (unique) solution to the linear system

x̃− x̃⋆ = Qp =
∑
j∈Ñ

(Q:,j − c)pj ,

and pj = 0 for j ∈ N \ Ñ . By Lemma 3.5, we know that ∥p∥ ≤ (σmin(Q))−1∥x̃− x̃⋆∥. Then, we
have ∑

j∈N

χjpj =
∑
j∈Ñ

χjpj =

〈
x̃− x̃⋆,

∑
j∈Ñ

(Q:,j − c)pj

〉
= ∥x̃− x̃⋆∥2. (18)

Moreover, ∑
j∈N

χjpj =
∑
j∈N

pj max(0, χj) +
∑
j∈N

pj min(0, χj)

≤
∑
j∈N

max(0,pj)max(0, χj) +
∑
j∈N

min(0,pj)min(0, χj) (19)

≤ ∥p∥∞
∑
j∈N

max(0, χj)− ∥p∥∞
∑
j∈N

min(0, χj) (20)

≤ ∥p∥∞
(
1 +

1

αD(A)

)∑
j∈N

max(0, χj) (21)

≤ 1

σmin(Q)

(
1 +

1

αD(A)

)
|N |max

j∈N
χj∥x̃− x̃⋆∥, (22)
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where (19) follows from the fact that pj max(0, χj) ≤ max(0,pj)max(0, χj) (by nonnegativity of
max(0, χj)) and pj min(0, χj) ≤ min(0,pj)min(0, χj) (by nonpositivity of min(0, χj)); (20) uses
that min(0,pj) ≥ −|pj | ≥ −∥p∥∞, which gives min(0,pj)min(0, χj) ≤ −∥p∥∞ min(0, χj);
(21) follows from (17); and (22) uses the bound ∥p∥2 ≤ (σmin(Q))−1∥x̃ − x̃⋆∥ (Lemma 3.5).
Combining (18) and (22),

max
j∈N

⟨x̂B − x⋆
B ,AB,j⟩ ≥

1

|N |
σmin(Q)

(
1 +

1

αD(A)

)−1

∥x̃− x̃⋆∥ (23)

≥ 1

2|N |
√
|B|

σmin(Q)

(
1 +

1

αD(A)

)−1

∥x̂B − x⋆
B∥, (24)

where (23) uses the definition of χj and the assumption that x̃ ̸= x̃⋆ (equivalently, x⋆
B ̸= x̂B),

and (24) follows from the bound

∥x̂B −x⋆
B∥ ≤ ∥x̂B −x⋆

B∥1 ≤
∑
i∈B̃

|xi − x⋆
i |+

∣∣∣∣∣∣
∑
i∈B̃

(xi − x⋆
i )

∣∣∣∣∣∣ ≤ 2∥x̃− x̃⋆∥1 ≤ 2
√

|B|∥x̃− x̃⋆∥.

Returning to (15), we have

max
y′∈Y

⟨x,Ay′⟩ − v ≥ λ
1

2|N |
√

|B|
σmin(Q)

(
1 +

1

αD(A)

)−1

∥x̂B − x⋆
B∥ − 2(1− λ)∥A♭∥∞

= λP (A)∥x̂B − x⋆
B∥ − 2(1− λ)∥A♭∥∞, (25)

where the equality above follows from the definition of P (A) in (13). Next, we bound
∥x− x⋆∥2 = ∥λx̂B − x⋆

B∥2 + (1− λ)2∥x̂B∥
2

= ∥λ(x̂B − x⋆
B)− (1− λ)x⋆

B∥2 + (1− λ)2∥x̂B∥
2

≤ 2λ2∥x̂B − x⋆
B∥2 + 2(1− λ)2∥x⋆

B∥2 + (1− λ)2∥x̂B∥
2 (26)

≤ 2λ2∥x̂B − x⋆
B∥2 + 3(1− λ)2, (27)

where (26) uses triangle inequality with respect to ∥ · ∥ along with the inequality (t1 + t2)
2 ≤

2t21 + 2t22, and (27) uses that ∥x⋆
B∥, ∥x̂B∥ ≤ 1. Since we are assuming that λP (A)∥x̂B − x⋆

B∥ ≥
4(1− λ)∥A♭∥∞, (27) in turn implies that

∥x− x⋆∥2 ≤ 2λ2∥x̂B − x⋆
B∥2 + λ2

(
P (A)

∥A♭∥∞

)2

∥x̂B − x⋆
B∥2

= λ2

(
2 +

(
P (A)

∥A♭∥∞

)2
)
∥x̂B − x⋆

B∥2. (28)

Combining (25) and (28) with the assumption that λP (A)∥x̂B − x⋆
B∥ ≥ 4(1− λ)∥A♭∥∞,

max
y′∈Y

⟨x,Ay′⟩ − v ≥ λ

2
P (A)∥x̂B − x⋆

B∥

≥ 1

2
P (A)

(
2 +

(
P (A)

∥A♭∥∞

)2
)−2

∥x− x⋆∥ ≥ κ(A)∥x− x⋆∥.

It is easy to see that P (A)/∥A♭∥∞ is upper bounded by an absolute constant, and so we have

max
y′∈Y

⟨x,Ay′⟩ − v ≳ P (A)∥x− x⋆∥ =
1

2|N |
√
|B|

σmin(Q)

(
1 +

1

αD(A)

)−1

∥x− x⋆∥

≳
1

|B|3
(αD(A))2γP (A)∥x− x⋆∥.

Above, the last bound uses the fact that

σmin(Q) ≥ 1√
|B̃|

min
j∈Ñ

dist(Q:,j , span(Q:,Ñ−j))

≥ 1

|B̃|3/2
min
j∈Ñ

dist(Q:,j , span(Q:,Ñ−j))αD(A) =
1

|B̃|3/2
γP (A)αD(A),

where the first inequality uses (6), while the second one is a consequence of Lemma 3.4.
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Case II: λP (A)∥x̂B − x⋆
B∥ < 4(1 − λ)∥A♭∥∞. This case can only arise when B ̸= ∅ (for

otherwise λ = 1). Then, we bound
max
y′∈Y

⟨x,Ay′⟩ − v ≥ ⟨x,Ay⋆⟩ − v

≥ λ(⟨x̂B − x⋆
B ,AB,Ny⋆

N ⟩) + (1− λ)(⟨x̂B ,AB,Ny⋆
N − v⟩)

≥ (1− λ)βD(A), (29)
by definition of βD(A) (Item 2) and the fact that ⟨x̂B − x⋆

B ,AB,Ny⋆
N ⟩ = v⟨x̂B − x⋆

B ,1⟩ = 0.
Moreover, by (27) together with the assumption that λP (A)∥x̂B − x⋆

B∥ < 4(1− λ)∥A♭∥∞,

∥x− x⋆∥2 ≤ 32

(
∥A♭∥∞
P (A)

)2

(1− λ)2 + 3(1− λ)2 =

(
32

(
∥A♭∥∞
P (A)

)2

+ 3

)
(1− λ)2.

Combining with (29) yields

max
y′∈Y

⟨x,Ay′⟩ − v ≥

(
32

(
∥A♭∥∞
P (A)

)2

+ 3

)−2

βD(A)∥x− x⋆∥

≳
P (A)

∥A♭∥∞
βD(A)∥x− x⋆∥

≳
1

∥A♭∥∞
1

|B|3
αD(A)2βD(A)γP (A)∥x− x⋆∥.

C.2 Proofs from Section 3.3

We continue with the proofs from Section 3.3. As we have noted already, given that all quantities
of interest in Definition 3.3 depend on the support of the equilibrium, it is natural to proceed by
partitioning the probability space over all possible such configurations. To do so, we will use the
following simple fact [Spielman and Teng, 2003, Proposition 8.1].
Proposition C.5 (Spielman and Teng, 2003). Let X and Y be random variables distributed according
to an integrable density function. For any event E(X,Y ),

P
X,Y

[E(X,Y )] ≤ max
y

P
X,Y

[E(X,Y ) | Y = y] =: max
Y

P
X,Y

[E(X,Y ) | Y ].

In our application, we want to condition on the event that B is the support of x⋆ and N is the support
of y⋆. For convenience, we let TypeB,N (A) denote the indicator random variable representing
whether B and N indeed index the positive coordinates of the equilibrium; that is, TypeB,N (A) :=
1{B = {i ∈ [n] : x⋆

i (A) > 0} ∧N = {j ∈ [m] : y⋆
j (A) > 0}}. Unlike general linear programs,

which can be infeasible or unbounded, the linear program induced by a zero-sum game is guaranteed
to be primal and dual feasible, no matter the perturbation (under Definition 1.1). We will thus only
have to condition on events in which B and N are both nonempty. To be able to control the probability
density function upon conditioning on TypeB,N (A), it will be convenient to perform a certain change
of variables, which is described next.

Change of variables Let us denote by AB,N the entries of A excluding those in AB,N . We
first perform a change of variables from AB,N ,AB,N to AB,N ,Q, c, b, d, which uses the linear
transformation T associated with (5). With this new set of variables at hand, we can conveniently
express Qỹ⋆ = c and Q⊤x̃⋆ = b (Claim C.3). Accordingly, we next perform a change of variables
from AB,N ,Q, c, b, d to AB,N ,Q,x⋆,y⋆, v. When performing those change of variables one has
to account for the transformed probability density function. This can be understood as follows. The
probability of an event E(A) can be expressed as∫

A

E(A)µA(A)dA.

The integral above can be cast in terms of a new set of variables B by computing the corresponding
Jacobian, assuming that it is non-singular. We will make use of this fact in the sequel. The following
lemma gathers some of the above observations regarding the change of variables.
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Lemma C.6 (Change of variables). Let E(A) be any event that depends on the randomness of A.
Then,

P
A
[E(A)] ≤ max

B,N
P
A
[E(A) | TypeB,N (A)]

= max
B,N

P
AB,N ,Q,x⋆,y⋆,v

[E(A) | AB,Ny⋆
N ≥ v1 and A⊤

N,B
x⋆
B ≤ v1].

Indeed, the first inequality above is a consequence of Proposition C.5. The equality then follows from
noting that, when

c = Qỹ⋆, b = Q⊤x̃⋆, v = d− ⟨x̃⋆,Qỹ⋆⟩ ⇐⇒ AB,Ny⋆ = v1,A⊤
N,Bx

⋆ = v1,

the event TypeB,N (A) can be equivalently expressed as AB,Ny⋆
N ≥ v1 and A⊤

N,B
x⋆
B ≤ v1.

We first bound the probability that βP (A) := minj∈N (v − ⟨x⋆
B ,AB,j⟩) is close to 0; the proof for

βD(A) is then symmetric. The key ingredient is the following anti-concentration lemma pertaining
to a conditional Gaussian distribution [Spielman and Teng, 2003, Lemma 8.3].

Lemma C.7 (Spielman and Teng, 2003). Let g be a Gaussian random variable of variance σ2 and
mean of absolute value at most 1. For ϵ ≥ 0, τ ≥ 1 and t ≤ τ ,

P[g ≤ t+ ϵ | g ≥ t] ≤ ϵτ

σ2
e

ϵ(τ+3)

σ2 .

Proposition 3.8. Let βP (A) be defined as in Item 2. For any ϵ ≥ 0,

P
A

[
βP (A) ≤ ϵ

5∥A♭∥∞

]
≤ ϵ

emin(n,m)2

σ2
.

Proof. By Lemma C.6, it suffices to bound

max
B,N

P
AB,N ,Q,x⋆,y⋆,v

[βP (A) ≤ ϵ′ | AB,Ny⋆
N ≥ v1 and A⊤

N,B
x⋆
B ≤ v1].

By Proposition C.5, it suffices to prove that for all B,N,AB,N ,AB,N ,Q,x⋆,y⋆, v satisfying
AB,Ny⋆

N ≥ v1,

P
AB,N

[∃j ∈ N : v−⟨x⋆
B ,AB,j⟩ ≤ ϵ′ | ∀j ∈ N : v − ⟨x⋆

B ,AB,j⟩ ≥ 0] (30)

≤
∑
j∈N

P
AB,j

[v − ⟨x⋆
B ,AB,j⟩ ≤ ϵ′ | ∀j ∈ N : v − ⟨x⋆

B ,AB,j⟩ ≥ 0] (31)

≤
∑
j∈N

P
AB,j

[v − ⟨x⋆
B ,AB,j⟩ ≤ ϵ′ | v − ⟨x⋆

B ,AB,j⟩ ≥ 0] (32)

=
∑
j∈N

P
gj

[gj ≤ ϵ′ − v | gj ≥ −v]. (33)

where in (30) the distribution of AB,N after conditioning on AB,N ,AB,N , Q, x⋆, y⋆, v remains
the same, which is a consequence of independence per Definition 1.1; (31) is an application of the
union bound; (32) uses the fact that the events {v − ⟨x⋆

B ,AB,j⟩ ≥ 0}j∈N are pairwise indepen-
dent; and (33) defines gj := −⟨x⋆

B ,AB,j⟩, which is a Gaussian random variable with expectation
|E[gj ]| ≤ maxi∈B |Ai,j | and variance V[gj ] =

∑
i∈B(x

⋆
i )

2V[Ai,j ] = σ2
∑

i∈B(x
⋆
i )

2 (by in-
dependence). In particular, by Cauchy-Schwarz, V[gj ] ≥ 1

|B|σ
2. Further, by Lemma C.7 (for

τ = max(1, |v|/|E[gj ]|)), we have

P
gj

[gj ≤ ϵ′ − v | gj ≥ −v] ≤ ϵ′
max(|v|, |E[gj ]|)

V[gj ]
e
ϵ′

max(4|E[gj ]|,3|E[gj ]|+|v|)
V[gj ]

≤ ϵ′
min(n,m)max(|v|, |E[gj ]|)

σ2
eϵ

′ min(n,m)max(4|E[gj ]|,3|E[gj ]|+|v|)
σ2
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for any ϵ′ ≥ 0 and j ∈ N , where we note that we applied Lemma C.7 for gj/|E[gj ]| (since the
absolute value of the mean has to be at most 1), which has variance V[gj ]/(E[gj ])2. So, setting
ϵ := ϵ′(|v|+ 4|E[gj ]|),

P
gj

[
gj ≤

ϵ

|v|+ 4maxi∈B |Ai,j |
− v | gj ≥ −v

]
≤ P

gj

[
gj ≤

ϵ

|v|+ 4|E[gj ]|
− v | gj ≥ −v

]
≤ ϵ

min(n,m)

σ2
eϵ

min(n,m)

σ2 . (34)

Now, when ϵmin(n,m)
σ2 > 1 the proposition is vacuously true, while in the contrary case the claim

follows from (34) and (33).

Next, we proceed with the bound on γP (A). The key ingredient is the observation that a random
variable with a slowly changing density function cannot be too concentrated on any any interval
(Lemma 3.7 due to Spielman and Teng [2003, Lemma 8.2]; we restate it below for convenience). Gaus-
sian random variables have this property, as pointed out by Spielman and Teng [2003, Lemma 8.1].

Lemma C.8 (Spielman and Teng, 2003). Let µ be the probability density function of a Gaussian
random variable in Rd of variance σ2 centered at a point of norm at most 1. If dist(r, r′) ≤ ϵ ≤ 1,
then

µ(r′)

µ(r)
≥ e−

ϵ(∥r∥+2)

σ2 .

Lemma 3.7 (Spielman and Teng, 2003). Let ρ be the probability density function of a random
variable X . If there exist δ > 0 and c ∈ (0, 1] such that

0 ≤ t ≤ t′ ≤ δ =⇒ ρ(t′)

ρ(t)
≥ c, (7)

then
P[X ≤ ϵ | X ≥ 0] ≤ ϵ

cδ
.

Proposition 3.9. Let γP (A) be defined as in Item 3. For any ϵ ≥ 0,

P
A

[
γP (A) ≤ ϵ

4maxj∈Ñ ∥Q:,j∥+ 20∥A♭∥∞ + 3

]
≤ ϵ

4emin(n,m)3

σ2
.

Proof. Let µA(A) be the probability density function of A, which, by independence (Definition 1.1),
can be expressed as

∏
i∈[n],j∈[m] µAi,j

, where µAi,j
is a Gaussian random variable. We first perform

a change of variables from AB,N ,AB,N to AB,N ,Q, b, c, d, in accordance with (5); this can be
understood through the (non-singular; Claim C.2) linear transformation A♭

B,N = T(Q♭, b, c, d).
To express the density in the new variables, we first note that the Jacobian of the change of
variables is |det(T)| = 1 (Claim C.2), and so the density on Q, b, c, d can be expressed as
µAB,N

(T(Q♭, b, c, d))µAB,N
(AB,N ).

Next, we perform a change of variables from AB,N ,Q, b, c, d to AB,N ,Q, x̃⋆, ỹ⋆, v according to
the transformations Qỹ⋆ = c; Q⊤x̃⋆ = b; and v = d−⟨x̃⋆,Qỹ⋆⟩. It is easy to see that the Jacobian
of the change of variables is∣∣∣∣∣det

(
∂(AB,N ,Q, b, c, d)

∂(AB,N ,Q, x̃⋆, ỹ⋆, v)

)∣∣∣∣∣ =
∣∣∣∣det( ∂(b, c, d)

∂(x̃⋆, ỹ⋆, v)

)∣∣∣∣ = det(Q)2.

So, the density on AB,N ,Q, x̃⋆, ỹ⋆, v reads

µAB,N
(T(Q♭,Q⊤x̃⋆,Qỹ⋆, v + ⟨x̃⋆,Qỹ⋆⟩))µAB,N

(AB,N ) det(Q)2.

By Lemma C.6, it suffices to upper bound

max
B,N

P
AB,N ,Q,x⋆,y⋆,v

[γP (A) ≤ ϵ | AB,Ny⋆
N ≥ v1 and A⊤

N,B
x⋆
B ≤ v1].
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Further, by Proposition C.5, it is in turn enough to bound PQ[γP (A) ≤ ϵ] for all B, N (for the
non-trivial case where B̃, Ñ ̸= ∅), AB,N , x̃⋆, ỹ⋆, v such that AB,Ny⋆

N ≥ v1 and A⊤
N,B

x⋆
B ≤ v1,

where the induced distribution on Q is

µAB,N
(T(Q♭,Q⊤x̃⋆,Qỹ⋆, v + ⟨x̃⋆,Qỹ⋆⟩)) det(Q)2.

We will prove that for any j ∈ Ñ and Q:,Ñ−j ,

P
Q:,j

[
dist(Q:,j , span(Q:,Ñ−j)) ≤

ϵ

4∥Q:,j∥+ 4|v|+ 4∥Q♭
:,Ñ−j

∥∞ + 3

]
≤ ϵ

4emin(n,m)2

σ2
, (35)

and then apply a union bound over j ∈ Ñ . Having fixed Q:,Ñ−j , we can express Q:,j as q∥ + tq⊥,

where RB̃ ∋ q∥ ∈ span(Q:,Ñ−j) and RB̃ ∋ q⊥ is the unit vector orthogonal to span(Q:,Ñ−j). Then,
|t| = dist(Q:,j , span(Q:,Ñ−j)) and |det(Q)| = tC(Q:,Ñ−j), where C(Q:,Ñ−j) does not depend
on Q:,j (this can be obtained by expressing the determinant using the formula for parallelepipeds).
By symmetry, we can prove (35) by bounding the probability that t is at most ϵ given that t is at least
0. We can thus focus on proving

max
q∥∈span(Q

:,Ñ−j
)
P
t
[t ≤ ϵ | t ≥ 0] ≤ ϵ

4emin(n,m)2(4∥q∥∥∞ + 4|v|+ 4∥Q♭
:,Ñ−j

∥∞ + 3)

σ2
, (36)

and then (35) follows from the fact that ∥Q:,j∥ ≥ ∥q∥∥. Now, the induced distribution on t is
proportional to

ρ(t) := t2
∏

(i,j)∈B×N

µAi,j
(⟨Ti,j , ri,j(t)⟩)

for ri,j(t) defined as

(q∥ + tq⊥,Q♭
:,Ñ−j

,Q⊤
Ñ−j,:

x̃⋆, ⟨x̃⋆, q∥ + tq⊥⟩,Q:,Ñ−j ỹ
⋆
Ñ−j

+ ỹ⋆
j (q

∥ + tq⊥),

v + ⟨x̃⋆,Q:,Ñ−j ỹ
⋆
Ñ−j

⟩+ ỹ⋆
j ⟨x̃⋆, q∥ + tq⊥⟩).

We now want to apply Lemma 3.7. To that end, we have

|⟨Ti,j , ri,j(t)− ri,j(t
′)⟩|2 ≤ ∥Ti,j∥2∥ri,j(t)− ri,j(t

′)∥2

≤ 4(t− t′)2∥(q⊥, ⟨x̃⋆, q⊥⟩, ỹ⋆
j q

⊥, ỹ⋆
j ⟨x̃⋆, q⊥⟩)∥2 (37)

≤ 16(t− t′)2, (38)

where (37) follows from ∥Ti,j∥2 ≤ 2 (Claim C.2), and (38) follows from the fact that
∥q⊥∥, ∥x̃⋆∥, ∥ỹ⋆∥ ≤ 1. Moreover, again by Claim C.2,

|⟨Ti,j , ri,j(t)⟩| ≤ ∥Ti,j∥1∥ri,j(t)∥∞ ≤ 4(∥q∥∥∞ + |v|+ ∥Q♭
:,Ñ−j

∥∞ + t).

Let 0 ≤ t ≤ t′ ≤ δ ≤ 1
4 for δ = σ2

4|B||N |(4∥q∥∥+4|v|+4∥Q♭

:,Ñ−j
∥∞+3)

. Lemma C.8 then implies that

µAi,j
(⟨Ti,j , ri,j(t

′)⟩)
µAi,j

(⟨Ti,j , ri,j(t)⟩)
≥ e−

1
|B||N| .

Thus,
ρ(t′)

ρ(t)
≥
(
t′

t

)2 ∏
(i,j)∈B×N

µAi,j
(⟨Ti,j , ri,j(t

′)⟩)
µAi,j (⟨Ti,j , ri,j(t)⟩)

≥ e−1.

We conclude that (36) can be obtained from Lemma 3.7, and the theorem follows.

Finally, we bound the probability that αP (A) (Item 1) is close to 0; αD(A) can be bounded in a
similar fashion.
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Proposition 3.10. Let αP (A) be defined as in Item 1. For any ϵ ≥ 0,

P
A

[
αP (A) ≤ ϵ

25(∥A♭∥∞ + 1)2

]
≤ ϵ

8e2mnmin(n,m)

σ2
.

Proof. By Lemma C.6, it suffices to bound

max
B,N

P
AB,N ,Q,x⋆,y⋆,v

[αP (A) ≤ ϵ | AB,Ny⋆
N ≥ v1 and A⊤

N,B
x⋆
B ≤ v1],

where we recall that the induced probability density function on AB,N , Q, x⋆, y⋆, v reads

µAB,N
(T(Q♭,Q⊤x̃⋆,Qỹ⋆, v+⟨x̃⋆,Qỹ⋆⟩))µAB,N

(AB,N )µAB,N
(AB,N )µAB,N

(AB,N ) det(Q)2.

We consider the non-trivial case where B̃, Ñ ̸= ∅. We will perform a further change of variables.
Namely, let a = AN,i for i ∈ B \ B̃. We map AB,N to AB̃,N

:= AB̃,N − 1a⊤, a, so that

A⊤
N,B

x⋆
B ≤ v1 can be equivalently expressed as A

⊤
N,B̃x̃

⋆ ≤ v1− a. The induced density function
is now proportional to

µAB,N
(T(Q♭,Q⊤x̃⋆,Qỹ⋆, v + ⟨x̃⋆,Qỹ⋆⟩))µa(a)µAB̃,N

(AB̃,N + 1a⊤)ν(·),

where ν(·) does not depend on x̃⋆ and a. By Proposition C.5, it is enough to show that for any
B,N,AB̃,N ,AB,N ,AB,N ,Q,y⋆, v satisfying AB,Ny⋆ ≥ v1,

P
x̃⋆,a

[
αP ≤ ϵ

max((∥Q♭∥∞ + 1)2, (1 + ∥A♭
B̃,N

∥∞)(5∥A♭
B̃,N

∥∞ + |v|+ 4))
| A⊤

N,B̃x̃
⋆ ≤ v1− a

]

≤ ϵ
8e2mnmin(n,m)

σ2
,

where the induced distribution on x̃⋆ and a is proportional to

µAB,N
(T(Q♭,Q⊤x̃⋆,Qỹ⋆, v + ⟨x̃⋆,Qỹ⋆⟩))µa(a)µAB̃,N

(AB̃,N + 1a⊤). (39)

We see that x̃⋆ is independent of a and {aj}j∈N are pairwise independent. Thus, conditioning on

the event A
⊤
N,B̃x̃

⋆ ≤ v1− a, the induced distribution on x̃⋆ is proportional to

µAB,N
(T(Q♭,Q⊤x̃⋆,Qỹ⋆, v + ⟨x̃⋆,Qỹ⋆⟩))

∏
j∈N

Paj
[⟨AB̃,j , x̃

⋆⟩ ≤ v − aj ].

We can proceed by showing that for any fixed i ∈ B̃ and x̃⋆
B̃−i

,

P
x̃⋆

i

[
x̃⋆
i ≤ ϵ

max((∥Q♭∥∞ + 1)2, (1 + ∥A♭
B̃,N

∥∞)(5∥A♭
B̃,N

∥∞ + |v|+ 4))
| A⊤

N,B̃x̃
⋆ ≤ v1− a

]

≤ ϵ
8e2mmin(n,m)

σ2
,

and then applying the union bound over all i ∈ B̃. Having fixed x̃⋆
B̃−i

, the induced density on x̃⋆
i ,

say ρ(t), is proportional to ρ1(t) · ρ2(t), where

ρ1(t) := µAB,N
(T(Q♭,Q⊤

:,B̃−i
x̃⋆
B̃−i

+ tQ⊤
:,i,Qỹ⋆, v + ⟨x̃⋆

B̃−i
,QB̃−i,:ỹ

⋆⟩+ t⟨Qi,:, ỹ
⋆⟩))

and
ρ2(t) :=

∏
j∈N

Paj
[⟨Aj,B̃−i, x̃

⋆
B̃−i

⟩+Ai,jt ≤ v − aj ].

We will first apply Lemma 3.7 to bound ρ1(t
′)/ρ1(t) for 0 ≤ t ≤ t′ ≤ δ ≤ 1 and a sufficiently small

δ. We define

ri,j(t) := (Q♭,Q⊤
:,B̃−i

x̃⋆
B̃−i

+ tQ⊤
:,i,Qỹ⋆, v + ⟨x̃⋆

B̃−i
,QB̃−i,:ỹ

⋆⟩+ t⟨Qi,:, ỹ
⋆⟩),
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so that ρ1(t) =
∏

(i,j)∈B×N µAi,j (⟨Ti,j , ri,j(t)⟩). Then, we have

|⟨Ti,j , ri,j(t)− ri,j(t
′)⟩| ≤ 4|t− t′|∥Q♭∥∞,

where we used Claim C.2. Further,

|⟨Ti,j , ri,j(t)⟩| ≤ (t+ 1)∥Q♭∥∞,

and so Lemma C.8 implies that for δ ≤ 1
4∥Q♭∥∞

,

µAi,j (⟨Ti,j , ri,j(t
′)⟩)

µAi,j
(⟨Ti,j , ri,j(t)⟩)

≥ e−
8δ∥Q♭∥∞(∥Q♭∥∞+1)

σ2 .

As a result, for δ ≤ σ2

8|B||N |∥Q♭∥∞(∥Q♭∥∞+1)
,

ρ1(t
′)

ρ1(t)
=

∏
(i,j)∈B×N

µAi,j (⟨Ti,j , ri,j(t
′)⟩)

µAi,j
(⟨Ti,j , ri,j(t)⟩)

≥ e−1.

Next, we focus on lower bounding ρ2(t
′)/ρ2(t). From (39), it is not hard to see that aj is a Gaussian

random variable with expectation |E[aj ]| ≤ 1 + ∥A♭
B̃,N

∥∞ and variance V[aj ] ≥ σ2

min(n,m) . Also,

ρ2(t
′)

ρ2(t)
=
∏
j∈N

Paj
[⟨AB̃−i,j , x̃

⋆
B̃−i

⟩+Ai,jt
′ ≤ v − aj ]

Paj [⟨AB̃−i,j , x̃
⋆
B̃−i

⟩+Ai,jt ≤ v − aj ]

≥
∏
j∈N

Paj
[⟨AB̃−i,j , x̃

⋆
B̃−i

⟩+Ai,jt
′ ≤ v − aj | ⟨AB̃−i,j , x̃

⋆
B̃−i

⟩+Ai,jt ≤ v − aj ].

By Lemma C.7 (for τ = (2∥A♭

B̃,N∥∞ + |v|+ 1)/(1 + ∥A♭

B̃,N∥∞)),

Paj [⟨AB̃−i,j ,x̃
⋆
B̃−i

⟩+Ai,jt
′ ≤ v − aj | ⟨AB̃−i,j , x̃

⋆
B̃−i

⟩+Ai,jt ≤ v − aj ]

≥ 1− δ
min(n,m)∥A♭

B̃,N∥∞(2∥A♭

B̃,N∥∞ + |v|+ 1)

σ2
eδ

min(n,m)∥A♭
B̃,N

∥∞(5∥A♭
B̃,N

∥∞+|v|+4)

σ2 .

Thus, for δ ≤ 1
2em

σ2

min(n,m)∥A♭
B̃,N∥∞(5∥A♭

B̃,N∥∞+|v|+4)
,

Paj
[⟨AB̃−i,j , x̃

⋆
B̃−i

⟩+Ai,jt
′ ≤ v − aj | ⟨AB̃−i,j , x̃

⋆
B̃−i

⟩+Ai,jt ≤ v − aj ] ≥ 1− 1

2m
,

which in turn implies that

ρ2(t
′)

ρ2(t)
≥
(
1− 1

2m

)N

≥ e−1.

We conclude that ρ(t′)
ρ(t) ≥ e−2, and the proof follows from Lemma 3.7 by lower bounding the value

of δ.

Armed with Propositions 3.8 to 3.10, Theorem 1.4 can be obtained from Theorem 3.6, in conjunction
with a union bound and the fact that ∥A♭∥∞ ≤ poly(n,m) with high probability (by Gaussian
concentration).

C.3 Proof of Theorem 1.2

Having established Theorem 1.4, here we explain how existing results imply Theorem 1.2. We
first focus on OGDA. We also take the opportunity to explain in more detail how Wei et al. [2021]
established Definition 1.3, which was sketched earlier in Section 3.1. Our treatment of the rest of the
algorithms will be more brief.
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Metric subregularity A central ingredient in the approach of Wei et al. [2021] is what they refer to
as saddle-point metric subregularity, stated below as Definition C.9. For the sake of generality, we
give the definition for a general objective function f : X × Y ∋ (x,y) 7→ f(x,y), assumed to be
continuously differentiable; (1) corresponds to the bilinear case f(x,y) = ⟨x,Ay⟩. We use again the
notation F (z) := (∇xf(x,y),−∇yf(x,y)), where Rn+m ∋ z := (x,y). We also let L ∈ R>0 be
a Lipschitz continuity parameter for F with respect to ∥ · ∥, so that ∥F (z)− F (z′)∥ ≤ L∥z − z′∥;
in the context of (1), one can always take L := ∥A∥.

Definition C.9 (Metric subregularity for saddle-point problems [Wei et al., 2021]). A saddle-point
problem satisfies metric subregularity if there exists a problem-dependent parameter κ′ ∈ R>0 such
that for any z ∈ Z and z⋆ := ΠZ⋆(z),

sup
z′∈Z

⟨F (z), z − z′⟩
∥z − z′∥

≥ κ′∥z − z⋆∥. (40)

The nomenclature of Definition C.9 can be justified by the fact that (40) is equivalent to a common type
of metric subregularity [Wei et al., 2021, Appendix F]; for more background, we refer to Dontchev
and Rockafellar [2009]. We further remark that Wei et al. [2021] introduced (40) in a more general
form by allowing an exponent β ∈ R≥0 in the right-hand side, but that additional flexibility is not
relevant for our purposes.6

Now, there an obvious connection between Definition 1.3 and Definition C.9 in bilinear problems
with bounded domain; namely, we have

sup
z′∈Z

⟨F (z), z − z′⟩
∥z − z′∥

≥ 1

2
Φ(z),

where we used the fact that ⟨F (z), z) = 0 and ∥z − z′∥ ≤ DZ = 2. So, Definition 1.3 with respect
to parameter κ implies Definition C.9 with parameter κ′ := κ/2.

Linear convergence of OGDA Under metric subregularity, in the sense of Definition C.9, Wei et al.
[2021] were able to establish that OGDA converges to the set Z⋆ at a linear rate:

Theorem C.10 (Wei et al., 2021). Consider a saddle-point problem (1) satisfying metric subregularity
with respect to some κ′ ∈ R>0. For any η ≤ 1

8L , the iterates (z(τ))1≤τ≤t of OGDA satisfy

dist(z(t),Z⋆) ≤ 8

(
1 +

16η2(κ′)2

81

)−t/2

dist(ẑ(1),Z⋆). (41)

As a result, Theorem C.10 implies that OGDA guarantees dist(z(t),Z⋆) ≤ ϵ so long as

t ≥ 2

 log
(
8DZ
ϵ

)
log
(
1 + (κ′)2

324∥A∥2

)
 . (42)

In conjunction with Theorem 3.6 and Propositions 3.8 to 3.10, this immediately implies that OGDA
has a polynomial smoothed complexity with high probability, as claimed earlier in Theorem 1.2.

Before we proceed, it is instructive to explain how Wei et al. [2021] treated the error bound in bilinear
problems where X and Y are polyhedral sets. As we explained earlier, it is enough to show that for
any x ∈ X and y ∈ Y ,

max
y∈Y

x⊤Ay − v ≥ κ∥x−ΠX⋆(x)∥,

v − min
x∈X

x⊤Ay ≥ κ∥y −ΠY⋆(y)∥.

We focus on the first inequality, which is with respect to Player x. We let X := {x ∈ Rn : c⊤i x ≤
bi ∀i ∈ [ℓx]}, where ℓx denotes the number of vertices of X . We also let oj := Ayj , where yj

denotes the jth vertex of Y; for simplicity, we will denote by ky ∈ N the number of vertices of Y .
We consider a fixed x ∈ X \ X ⋆ and x⋆ = ΠX⋆(x).

6Wei et al. [2021] impose (40) only for points z ∈ Z \ Z⋆, which is easily seen to be equivalent.

31



It is easy to see that the set of optimal strategies for Player x, X ⋆ := {x ∈ X : maxy∈Y⟨x,Ay⟩ ≤ v},
can be expressed as

X ⋆ :=
{
x ∈ Rn : c⊤i x ≤ bi,o

⊤
j x ≤ v ∀(i, j) ∈ [ℓx]× [ky]

}
.

Indeed, any point y ∈ Y is a convex combination of the vertices of Y , and the converse direction is
also obvious. A feasibility constraint i ∈ [ℓx] is said to be tight if c⊤i x

⋆ = bi; similarly, an optimality
constraint j ∈ [ky] is tight if o⊤

j x
⋆ = v. We let Lx = Lx(x

⋆) ⊆ [ℓx] be the set of tight feasibility
constraints and Ky = Ky(x

⋆) ⊆ [ky] be the set of tight optimality constraints. We can assume
without any loss that Lx,Ky ̸= ∅. It is well-known (e.g., [Rockafellar, 2015]) that the normal cone
of X ⋆ at x⋆ with respect to X ⋆ can be expressed as

Nx⋆ :=

∑
i∈Lx

pici +
∑
j∈Ky

qjoj ∀(p, q) ∈ RLx

≥0 × RKy

≥0

 .

Wei et al. [2021] also define Mx⋆ ⊆ Nx⋆ as

Nx⋆ ∩
{
c⊤i x ≤ 0 ∀i ∈ Lx

}
.

Now, the main parameter of interest that relates to Definition 1.3 in the analysis of Wei et al. [2021]
stems from the following quantity.
Definition C.11. We let C ∈ R>0 be defined as the infimum over (0,∞) so that∑

i∈Lx

pici +
∑
j∈Ky

qjoj , 0 ≤ pi, qj ≤ C

 ⊇ Mx⋆ ∩ B∞, (43)

where B∞ ⊆ Rn is the set of points with ℓ∞ norm upper bounded by 1.

By definition of Mx⋆ , it is evident that there always exists a finite problem-dependent parameter
C ∈ R>0 such that Definition C.11 is satisfied. It is then not hard to show that

max
y∈Y

x⊤Ay − v ≥ 1

C|Ky|
∥x−ΠX (x⋆)∥.

Assuming that the number of vertices is polynomial in the dimensions,7 this shows that Definition C.11
essentially captures the complexity of satisfying Definition 1.3. As we explained earlier in Section 3.1,
the constraint matrix of the linear program induced by Definition C.11 depends both on the payoff
matrix A as well as the set of constraints. It is thus unclear how to use existing results in the model of
smoothed complexity [Dunagan et al., 2011] to bound C. The second and more important challenge
revolves around the fact that Definition C.11 depends solely on the tight constraints of the optimal
solution, which in turn depends on the randomness of A. Under our characterization, the latter
challenge was addressed earlier in Section 3.3.

Continuing for OMWU, we again rely on the analysis of Wei et al. [2021], which relates the rate of
convergence of OMWU to three quantities. The first one [Wei et al., 2021, Definition 3] is similar
to Definition C.9, but with the difference that the maximization is now constrained to be over points
whose support is a subset of the support of the equilibrium; namely,

κx := min
x∈X\{x⋆}

max
y∈V⋆(Y)

⟨x− x⋆,Ay⟩
∥x− x⋆∥1

, (44)

where V⋆(Y) := {y ∈ ∆m : supp(y) ⊆ supp(y⋆)}. A symmetric definition is to be considered
with respect to Player y. To connect this to (8), we note that, when y ∈ V⋆(Y), ⟨x⋆,Ay⟩ = v. We
are thus left to lower bound maxy⟨x,Ay⟩ − v in terms of ∥x− x⋆∥1, but under the constraint that
y ∈ V⋆(Y). An inspection of our proof of Theorem 3.6 (and in particular the proof of (8)) reveals that
its conclusion holds even when the maximization is subject to the above constraint, and so our analysis

7In fact, by virtue of Carathéodory’s theorem, one can refine Definition C.11 so that this holds even when
the number of vertices is exponential in the dimensions. Namely, a point v ∈ Mx⋆ ∩ B∞ can be written as the
conical combination of at most n of the vectors describing the cone in (43), thereby maintaining feasibility. This
observation can be used to refine the (worst-case) analysis of Wei et al. [2021] to, for example, extensive-form
games wherein the number of vertices is typically exponential in the dimensions.
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immediately lower bounds (44) as well. The second quantity introduced by Wei et al. [2021, Definition
2] corresponds exactly to Item 2, which was bounded in Proposition 3.8. The third quantity [Wei et al.,
2021, Definition 4] is where the exponential overhead is introduced. Namely, the iteration complexity
of OMWU in their analysis depends on exp

(
min(αP (A), αD(A))−1

)
, where we recall the definition

in Item 1.8 Unfortunately, for any game, it holds that αP (A) ≤ 1/n and αD(A) ≤ 1/m, and so
even if the geometry of the problem is favorable, the obtained bound is exponential. (The reason the
above quantity is crucial in their analysis is because it lower bounds the probability of playing any
action through the trajectory of OMWU.) Nevertheless, using Proposition 3.10, our analysis provides
instead a bound of exp(poly(n,m, 1/σ)) with high probability, which is still a major improvement
over the worst-case bound of Wei et al. [2021], which can be doubly exponential in the number of
bits L describing the game—one can easily make sure that αP (A) ≈ 1/2L (Proposition 3.1).

Next, for EGDA, Tseng [1995] established linear convergence under the error bound

dist(z, z⋆) ≤ τ∥z −ΠZ(z − ηF (z))∥

for some τ > 0 and a suitable η > 0 [Tseng, 1995, Corollary 3.3]. It is easy to make the following
connection.

Lemma C.12. It holds that Φ(z) ≤ 2
η∥z −ΠZ(z − ηF (z))∥.

Proof. Indeed, by the first-order optimality condition for the optimization problem associated with

z′ := ΠZ(z − ηF (z)) = arg min
z′∈Z

{
∥z′ − (z − ηF (z))∥2 := h(z′)

}
,

we get ⟨ẑ− z′,∇h(z′)⟩ ≥ 0 for any ẑ ∈ Z , or equivalently, minẑ∈Z⟨ẑ− z′, z′ − z+ ηF (z)⟩ ≥ 0.
Observing that minẑ∈Z⟨ẑ, F (z)⟩ = −Φ(z) and bounding

⟨z − z′, ẑ − z′⟩ ≥ −∥z − z′∥∥ẑ − z′∥ ≥ −DZ∥z − z′∥ = −2∥z −ΠZ(z − ηF (z))∥

leads to the claim.

It can thus be shown that Definition 1.3 is again sufficient to dictate the rate of convergence of EGDA.

Finally, for IterSmooth, Gilpin et al. [2012] introduced a “condition measure” of the payoff
matrix A, which in fact corresponds precisely to Definition 1.3. Thus, Theorem 1.2 with respect
to IterSmooth follows readily from [Gilpin et al., 2012, Theorem 2].

C.4 Proof of Theorem 4.2

Finally, we conclude with the proof of Theorem 4.2, which is restated below.

Theorem 4.2. Any δ-support-stable game (per Definition 4.1) satisfies the error bound for any
sufficiently small modulus

κ ≥ poly

(
1

n
,
1

m
, δ

)
.

Proof of Theorem 4.2. We treat each parameter separately.

• Let us start from βP (A) (Item 2). We let j′ ∈ argminj∈N (v − ⟨x⋆
B ,AB,j⟩), where we

assume that N ̸= ∅. We consider a perturbed matrix A′ such that

A′
i,j =

{
Ai,j − βP (A) if i ∈ B, j = j′,

Ai,j otherwise.

8More specifically, the proof of Wei et al. [2021, Theorem 3] upper bounds the Kullback-Leibler

divergence KL(z(t),z⋆) by a quantity that is at least as large as
(
1 + 15η2C2

32

)−t

, where C2 ≤
exp

(
min(αP (A), αD(A))−1

)
. Thus, to guarantee KL(z(t),z⋆) ≤ ϵ using the analysis of Wei et al.

[2021] one needs at least log(1/ϵ)/log
(
1 + 15η2C2

32

)
iterations. When C2 ≪ 1, this grows with 1/C2 ≥

exp (min(αP (A), αD(A))).
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Then, the game described by A′ cannot be non-degenerate with the same support as A.
Indeed, in the contrary case it would follow that the (unique) equilibrium (x⋆

B ,y
⋆
N ) remains

the same since A′
B,N = AB,N . But then, v−⟨x⋆

B ,A
′
B,j′⟩ = v−⟨x⋆

B ,AB,j′⟩−βP (A) = 0,
by definition of j′ and βP (A), which is a contradiction. Further, ∥A−A′∥ = βP (A). In
turn, this implies that δ ≤ βP (A). Similar reasoning yields that δ ≤ βD(A).

• Continuing for γP (A) (Item 3), we assume that B̃, Ñ ̸= ∅. We let UΣV⊤ be a
singular value decomposition (SVD) of Q. Then, a perturbation to Q of the form
Udiag(0, 0, . . . , σmin(Q))V⊤ leads to a singular matrix Q′, which cannot be the case
if the perturbed game is non-degenerate with the same support. This perturbation can be cast
in terms of A′

B,N through transformation T in (5). This lower bounds σmin(Q) in terms of
δ, and Proposition C.4 can in turn lower bound γP (A) in terms of σmin(Q).

• Finally, we treat αP (A) (Item 1). The non-trivial case is again when B̃, Ñ ̸= ∅. Let
i′ ∈ argmini∈B(x

⋆
i ). If i′ ∈ B̃, we define

RB̃ ∋ x̃′
i =

{
0 if i = i′,

x⋆
i otherwise.

We know that Q⊤x̃⋆ = b. We then consider the perturbed vector b′ := Q⊤x̃′. If the
perturbed game was non-degenerate with the same support, it would follow that (x̃′, ·) is
the unique equilibrium, which is a contradiction since x̃i′ = 0. Further, the norm of the
perturbation ∥b− b′∥ is upper bounded in terms of αP (A), which can be again expressed
in terms of AB,N through transformation (5). Similarly, if i′ /∈ B̃, we define

RB̃ ∋ x̃′
i = x⋆

i +
αP (A)

|B̃|
,

and we consider the perturbed vector b′ := Q⊤x̃′. If the perturbed game was non-degenerate
with the same support, it would follow that (x̃′, ·) is the unique equilibrium, which is a con-
tradiction since

∑
i∈B̃ x̃′

i =
∑

i∈B̃ x⋆
i +αD(A) = 1. The norm of the perturbation is again

upper bounded in terms of αP (A). Overall, we have shown that δ ≤ αP (A)poly(n,m).
Similar reasoning applies with respect to αD(A). This completes the proof.
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For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: The full set of assumptions and proofs are given in Appendices C.1 to C.4.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The contribution of the paper is theoretical, and conforms in every respect with
the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The contribution of the paper is theoretical, and we do not foresee any societal
impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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