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Abstract

Recent work in computational psycholinguis-001
tics has revealed intriguing parallels between002
attention mechanisms and human memory re-003
trieval, focusing primarily on Transformer ar-004
chitectures that operate on token-level represen-005
tations. However, computational psycholinguis-006
tic research has also established that syntactic007
structures provide compelling explanations for008
human sentence processing that word-level fac-009
tors alone cannot fully account for. In this study,010
we investigate whether the attention mechanism011
of Transformer Grammar (TG), which uniquely012
operates on syntactic structures as representa-013
tional units, can serve as a cognitive model of014
human memory retrieval, using Normalized At-015
tention Entropy (NAE) as a linking hypothesis016
between model behavior and human process-017
ing difficulty. Our experiments demonstrate018
that TG’s attention achieves superior predictive019
power for self-paced reading times compared020
to vanilla Transformer’s, with further analy-021
ses revealing independent contributions from022
both models. These findings suggest that hu-023
man sentence processing involves dual mem-024
ory representations—one based on syntactic025
structures and another on token sequences—026
with attention serving as the general retrieval027
algorithm, while highlighting the importance028
of incorporating syntactic structures as repre-029
sentational units.030

1 Introduction031

Whether language models (LMs) developed in nat-032

ural language processing (NLP) are plausible as033

cognitive models of human sentence processing034

is a central question in computational psycholin-035

guistics. Over the past two decades, this ques-036

tion has been primarily addressed from the per-037

spective of expectation-based theories—one of the038

two major classes of human sentence processing039

theory—examining whether LMs’ next-word pre-040

diction can serve as a model of human predictive041

processing (Hale, 2001; Levy, 2008; Wilcox et al., 042

2020; Merkx and Frank, 2021; inter alia). 043

The recent success of Transformer architec- 044

tures (Vaswani et al., 2017) in NLP has unexpect- 045

edly opened a new avenue of investigation from the 046

perspective of memory-based theories, the other 047

major class of sentence processing theory. Re- 048

searchers have proposed that the attention mech- 049

anism, despite its engineering origins, can imple- 050

ment a human memory retrieval theory known as 051

cue-based retrieval (Van Dyke and Lewis, 2003). 052

Recent studies have revealed intriguing parallels 053

between the weighted reference patterns exhibited 054

by the attention mechanism and the elements that 055

humans may retrieve during online sentence com- 056

prehension (Ryu and Lewis, 2021; Oh and Schuler, 057

2022; Timkey and Linzen, 2023). 058

Computational psycholinguistics has also estab- 059

lished that human sentence processing cannot be 060

fully explained by word-level factors alone; rather, 061

syntactic structures have provided compelling ex- 062

planations for it. For instance, next-word predic- 063

tion from LMs that explicitly incorporate syntac- 064

tic structure building demonstrates superior per- 065

formance in accounting for human brain activity 066

compared to vanilla RNNs and Transformers (Hale 067

et al., 2018; Wolfman et al., 2024); the number 068

of syntactic nodes hypothesized to be constructed 069

per word correlates significantly with both reading 070

times (Kajikawa et al., 2024) and neural activity 071

patterns (Brennan et al., 2012). 072

Given these findings, if attention can serve as 073

a general algorithm for memory retrieval in hu- 074

man sentence processing, human memory retrieval 075

should be captured by the attention mechanism 076

operating on syntactic structures as well as that op- 077

erating on token sequences. In this study, we inves- 078

tigate whether the attention mechanism of Trans- 079

former Grammar (TG; Sartran et al., 2022), which 080

uniquely operates on syntactic structures as repre- 081

sentational units, can serve as a cognitive model of 082
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human memory retrieval, using Normalized Atten-083

tion Entropy (NAE; Oh and Schuler, 2022) as the084

linking hypothesis between model behavior and hu-085

man processing difficulty. Our experiments demon-086

strate that TG’s attention achieves superior predic-087

tive power for self-paced reading times compared088

to vanilla Transformer’s, with further analyses re-089

vealing independent contributions from both mod-090

els. These findings suggest that human sentence091

processing involves dual memory representations—092

one based on syntactic structures and another on093

token sequences—with attention serving as the gen-094

eral retrieval algorithm, while highlighting the im-095

portance of incorporating syntactic structures as096

representational units.097

2 Background098

2.1 Normalized Attention Entropy (NAE)099

Many psycholinguistic studies assume that human100

sentence processing involves memory retrieval,101

where based on the various cues provided by the102

current input word (e.g., verbs), elements (e.g.,103

their arguments) are retrieved from working mem-104

ory. For example, in (1), which is taken from105

Van Dyke (2002), when the verb was complaining106

is input, its subject the resident must be retrieved107

from working memory.108

(1) a. The worker was surprised that the resi-109

dent[subj,anim] [who was living near the dan-110

gerous warehouse] was complaining about111

the investigation.112

b. The worker was surprised that the113

resident[subj,anim] [who said that the114

warehouse[subj] was dangerous] was com-115

plaining about the investigation.116

According to the cue-based retrieval the-117

ory (Van Dyke and Lewis, 2003), such retrieval118

becomes more difficult when similar elements exist119

in the sentence because the cues are overloaded;120

for example, only in (1b), warehouse may interfere121

with resident since they both have the feature122

[subj] as a retrieval cue. Van Dyke (2002) showed123

that humans read was complaining more slowly in124

(1b) than in (1a), providing empirical support for125

the cue-based retrieval theory.126

In recent computational psycholinguistics, at-127

tempts have been made to interpret the attention128

mechanism—a weighted reference of preceding129

tokens based on Query and Key vectors—as a com-130

putational implementation of cue-based retrieval.131

Notably, Ryu and Lewis (2021) proposed Attention 132

Entropy (AE) as a linking hypothesis, where the 133

diffuseness of attention weights is assumed to quan- 134

tify the degree of retrieval interference. While AE 135

was initially proposed for modeling interference 136

effects in specific constructions, Oh and Schuler 137

(2022) extended it to naturally occurring text by 138

introducing two normalizations: (i) division by the 139

maximum entropy achievable given the number of 140

preceding tokens, and (ii) sum-to-1 renormaliza- 141

tion of attention weights over 1–(i− 1)-th tokens 142

(Normalized AE, NAE).1 143

NAEl,h,i = 144

a⊤l,h,i[1:i−1]

log2(i− 1)1⊤al,h,i[1:i−1]
(log2

al,h,i[1:i−1]

1⊤al,h,i[1:i−1]
),

(1)

145

where al,h,i represents the attention weight vector 146

when using the i-th token as the query in the h-th 147

head of layer l.2 In this paper, we employ this NAE 148

as a linking hypothesis between attention mecha- 149

nisms and human memory retrieval.3 150

2.2 Transformer Grammar (TG) 151

Transformer Grammar (TG; Sartran et al., 2022) 152

is a type of syntactic LM, a generative model that 153

jointly generates token sequences x and their cor- 154

responding syntactic structures y. TG formulates 155

the generation of (x,y) as modeling a sequence of 156

actions, a (e.g., (S (NP The blue bird NP) (VP 157

sings VP) S)), constructing both token sequences 158

and their syntactic structures in a top-down, left- 159

to-right manner. The action sequence a comprises 160

three types of operations: 161

• (X: Generate a non-terminal symbol (X, where 162

X represents a phrasal tag such as NP; 163

• w: Generate a terminal symbol w, where w 164

represents a token such as bird; 165

1Oh and Schuler (2022) showed that regression models for
predicting reading times fail to converge with vanilla AE.

2Oh and Schuler (2022) explored NAE calculation us-
ing various attention weight formulations, but in this study,
we adopt the norm-based attention weight formulation
(Kobayashi et al., 2020), which achieved the highest predictive
power on the self-paced reading time corpus.

3While Oh and Schuler (2022) also proposed other metrics
based on distances between attention weights at consecutive
time steps, we exclusively adopt NAE because (i) in TG, the
number of preceding elements varies with time, making dis-
tance definition non-trivial, and (ii) Oh and Schuler (2022)
demonstrated that NAE’s predictive power subsumes that of
distance-based metrics in the self-paced reading time corpus.
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Figure 1: TG’s attention mask with COMPOSE/STACK at-
tention mechanisms, adapted from Sartran et al. (2022).
COMPOSE generates a vector representation of the closed
phrase, while subsequent STACK operations reference
this single vector as the representation of the closed
phrase. Red boxes indicate the attention weights used
to calculate NAE for each word.

• X): Generate X) to close the most re-166

cent opened non-terminal symbol, where X167

matches the phrasal tag of the targeted non-168

terminal symbol.169

The probability of action sequence a =170

(a1, a2, · · · , an) is decomposed using the chain171

rule. Formally, TG is defined as:172

p(x,y) = p(a) =
n∑

t=1

p(at|a<t). (2)173

TG’s key innovation lies in its handling of closed174

phrases: immediately after generating X), it com-175

putes a vector representation of the closed phrase,176

which subsequent next-action predictions use as177

the representation for that phrase. Technically, this178

operation is realized via two components: X) ac-179

tion duplication and a specialized attention mask.180

The duplication process transforms a into a′ by181

duplicating all X) actions (e.g., (S (NP The blue182

bird NP) NP) (VP sings VP) VP) S) S)), while183

preserving the modeling space p(a) by preventing184

predictions for duplicated positions. The atten-185

tion mask implements two distinct attention mech-186

anisms: COMPOSE and STACK (Figure 1). COMPOSE187

operates exclusively at the first occurrence of each188

X) to generate the phrasal representation by attend-189

ing only to vectors between the corresponding (X190

and X) (without making predictions). STACK op-191

erates at all other positions to compute represen-192

tations for next-action prediction, with attention193

restricted to positions on the stack (comprising un- 194

closed non-terminals, not-composed terminals, and 195

closed phrases). 196

Previous research has demonstrated that TG’s 197

probability estimates align more closely with hu- 198

man offline grammaticality judgments (Sartran 199

et al., 2022) and online brain activity than vanilla 200

Transformers (Wolfman et al., 2024). This study in- 201

vestigates whether the attention mechanism of TG, 202

which uniquely operates on syntactic structures 203

as representational units, can serve as a cognitive 204

model of human memory retrieval. 205

3 Methods 206

3.1 NAE calculation with TG 207

The calculation of NAE with TG requires assump- 208

tions regarding two key perspectives: 209

1. What syntactic structures should be assumed 210

for a given token sequence? 211

2. How should the cognitive load of attention 212

from non-lexical tokens (i.e., (X and X)) be 213

attributed to words? 214

In response to these considerations, we make the 215

following assumptions: 216

1-A. We assume only the globally correct syntac- 217

tic structure (i.e., “perfect oracle”; Brennan, 218

2016). 219

2-A. We consider only attention from words, ex- 220

cluding attention from non-lexical tokens. 221

The adoption of 1-A. is motivated by two factors. 222

First, the self-paced reading time corpus we utilized 223

here provides gold-standard syntactic structures for 224

each sentence, and previous studies have developed 225

predictors based on these annotations (Shain et al., 226

2020; Isono, 2024). Using the same structural as- 227

sumptions enables fair comparison with these es- 228

tablished predictors, considering the possibility of 229

parsing errors. Second, TG’s current implemen- 230

tation lacks beam search procedure (Stern et al., 231

2017; Crabbé et al., 2019), an inference technique 232

commonly used in cognitive modeling to handle 233

local ambiguities through parallel parsing (Hale 234

et al., 2018; Sugimoto et al., 2024).4 235

4As a proof of concept, we also conducted experi-
ments using multiple syntactic structures generated by word-
synchronous beam search with Recurrent Neural Network
Grammar (Dyer et al., 2016; Kuncoro et al., 2017; Noji and
Oseki, 2021), obtaining similar results (Appendix D).
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Regarding 2-A., given the multiple possible ap-236

proaches to attributing processing load from non-237

lexical tokens to words, we adopt the most straight-238

forward and theoretically neutral approach. Fig-239

ure 1 denotes the attention weights used to calcu-240

late NAE for each word, with red boxes.241

3.2 Settings242

Language models We used 16-layer, 8-head TG243

and Transformer (252M parameters).5 All hyperpa-244

rameters followed the default settings described in245

Sartran et al. (2022) (see Appendix A). Following246

Oh and Schuler (2022), we computed NAE sepa-247

rately for each attention head at the topmost layers248

and then summed the values across heads.249

Training data We used BLLIP-LG, a dataset250

containing 42M tokens (1.8M sentences) from251

the Brown Laboratory for Linguistic Information252

Processing (BLLIP) 1987–89 WSJ Corpus Re-253

lease 1 (Charniak et al., 2000).6 The corpus254

was re-parsed using a state-of-the-art constituency255

parser (Kitaev and Klein, 2018) and split into train-256

val-test sets by Hu et al. (2020). BLLIP-LG has257

been widely used for training syntactic LMs, in-258

cluding TG. Following Sartran et al. (2022), we259

trained a 32K SentencePiece tokenizer (Kudo and260

Richardson, 2018) on the training set and seg-261

mented each sentence into subword units.262

Both TG and Transformer were trained at the263

sentence level: TG maximized the joint probability264

p(x,y) on action sequences, while Transformer265

maximized the probability p(x) on terminal sub-266

word sequences. For training hyperparameters, we267

largely followed the default settings in Sartran et al.268

(2022) but adjusted the batch size to fit within269

the memory constraints of our hardware (NVIDIA270

A100, 40GB). Accordingly, we tuned other hyper-271

parameters (e.g., learning rate) to maintain training272

stability. We trained three models with different273

random seeds and selected the checkpoint with the274

lowest validation loss for each run.275

Reading time data We used the Natural Stories276

corpus (Futrell et al., 2018)7 consisting of 10 sto-277

ries (485 sentences, 10,245 words) with self-paced278

reading times collected from 181 anonymized na-279

tive English speakers. Following Futrell et al.’s280

preprocessing, data points were removed if (i) a281

5https://github.com/google-deepmind/
transformer_grammars

6https://catalog.ldc.upenn.edu/LDC2000T43
7https://github.com/languageMIT/naturalstories

participant scored less than 5/6 on comprehen- 282

sion questions for a story or (ii) individual read- 283

ing times were less than 100 ms or greater than 284

3,000 ms. Following Oh and Schuler (2022), we 285

also excluded sentence-initial and sentence-final 286

data points. We further removed sentence-second 287

data points, as they lack a log trigram frequency 288

of the previous token required for our baseline re- 289

gression model. After preprocessing, 724,883 data 290

points from 180 participants remained for statistical 291

analysis, out of the original 848,747 data points. 292

Statistical analysis We evaluated each LM’s 293

NAE contribution to reading time prediction by 294

measuring improvements in regression model 295

fit when adding NAE as predictors. For each 296

model (TG/Transformer), we included both the 297

current word’s NAE (tg_nae/tf_nae) and the pre- 298

vious word’s NAE (tg_nae_so/tf_nae_so) to ac- 299

count for spillover effects.89 Model improvement 300

was quantified as the increase in log-likelihood 301

(∆LogLik). This evaluation was conducted for 302

each random seed, and we report the mean 303

∆LogLik with standard deviation. 304

The baseline regression model included standard 305

predictors from the Natural Stories corpus: 306

• zone and position: word position in the 307

story and sentence; 308

• wordlen: number of characters in the word; 309

• unigram, bigram, and trigram: log- 310

transformed n-gram frequencies. 311

We additionally included the following predictors: 312

• tg_surp and tf_surp: surprisal from TG and 313

Transformer; 314

• stack_count: number of elements in the 315

stack (comprising unclosed non-terminals, 316

not-composed terminals, and closed phrases). 317

Following Oh and Schuler (2022), we included 318

surprisal to test NAE’s significance in the pres- 319

ence of surprisal predictors from the same LMs.10 320

Stack count was included to isolate the cost of 321

holding elements (Joshi, 1990; Abney and Johnson, 322

1991; Resnik, 1992) from their interference effects, 323

which TG’s NAE was designed to capture. 324

8_so indicates spillover.
9Following Oh and Schuler (2022), we summed the sub-

word NAE values for each word.
10For an experiment on the predictive power of surprisal

itself, see Appendix E.
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Model ∆LogLik (↑) Predictor Effect size [ms] p-value range Significant seeds

TG 96.3 (±3.0)
tg_nae 2.91 (± 0.1) <0.001 3/3
tg_nae_so 0.655 (± 0.1) <0.05 3/3

Transformer 35.2 (±7.0)
tf_nae 1.77 (± 0.2) <0.001 3/3
tf_nae_so 0.293 (± 0.2) 0.04–0.38 1/3

Table 1: TG’s and Transformer’s NAE contribution to reading time prediction (∆LogLik). The effect size per
standard deviation is shown for each model-derived predictor, along with the p-value range across random seeds and
the number of seeds showing significant contributions. Standard deviations across seeds for ∆LogLik and effect
sizes are shown in parentheses. The mean reading time in the analysis is 335 ms.

All predictors were z-transformed, and we also325

included the previous word’s values as predictors326

to model spillover, except for the positional infor-327

mation. The baseline regression model was a linear328

mixed-effects model (Baayen et al., 2008) with329

these fixed effects and by-subjects and by-story330

random intercepts:331

log(RT) ∼ zone+ position+ wordlen +332

unigram+ bigram+ trigram +333

tf_surp+ tg_surp +334

stack_count+ wordlen_so +335

unigram_so+ bigram_so +336

trigram_so+ tf_surp_so +337

tg_surp_so+ stack_count_so +338

(1 | participant) + (1 | story) (3)339

To assess each LM’s independent contribution340

to reading time prediction, we also conducted like-341

lihood ratio tests by extending Equation 3 in two342

ways: adding both LMs’ NAE versus adding only343

one LM’s NAE. Note that a larger ∆LogLik from344

one LM does not necessarily indicate that it con-345

tributes above and beyond the other LM, nor does a346

smaller ∆LogLik indicate no unique contribution.347

Following Aurnhammer and Frank (2019), we used348

NAE and surprisal values averaged across random349

seeds for these nested model comparisons.350

4 Results351

4.1 Does TG’s NAE have predictive power for352

reading times?353

Table 1 presents the contributions of TG’s and354

Transformer’s NAE to reading time prediction.355

First, Transformer’s NAE exhibited significant pre-356

dictive power for reading times, independent of357

baseline predictors such as surprisal. The effect358

size was in the expected positive direction (higher359

NAE values corresponding to longer reading times), 360

primarily showing the immediate effect. This cor- 361

roborates the arguments of Ryu and Lewis and 362

Oh and Schuler that the attention mechanism—the 363

weighted reference of preceding tokens—functions 364

as a cognitive model of human memory retrieval, 365

despite its engineering-oriented origins. 366

Second, TG’s NAE exhibited robust predictive 367

power, demonstrating significant positive effects 368

in both immediate and spillover contexts. This 369

finding not only provides additional evidence for 370

incremental construction of syntactic structures in 371

human sentence processing (e.g., Fossum and Levy, 372

2012), but also suggests that TG’s attention mech- 373

anism effectively models memory retrieval from 374

these constructed syntactic representations. 375

Finally, TG’s NAE made a substantially 376

stronger contribution to reading time prediction 377

(∆LogLik=96.3) compared to Transformer’s NAE 378

(∆LogLik=35.2). This finding suggests that 379

retrieval from syntactic memory representations 380

plays a more dominant role in human sentence 381

processing than retrieval from lexical memory rep- 382

resentations. This underscores the importance of 383

incorporating syntactic structures as a unit of mem- 384

ory representation, which we implemented through 385

the integration of TG and NAE here. 386

4.2 Do TG’s and Transformer’s NAE have 387

independent contributions? 388

Figure 2 presents the results of likelihood ratio tests 389

examining the independence of TG’s and Trans- 390

former’s NAE contributions. The regression model 391

incorporating NAE from both LMs (‘TG & Trans- 392

former’) demonstrated significantly higher predic- 393

tive power than the models containing NAE from 394

either LM alone (‘TG’ or ‘Transformer’). This re- 395

veals that TG’s NAE certainly captures variance in 396

reading times that Transformer’s NAE cannot ex- 397

plain, while Transformer’s NAE, despite its lower 398
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Figure 2: Likelihood ratio test results examining the
independence of NAE’s predictive power

overall predictive power, accounts for unique vari-399

ance not captured by TG’s NAE. This finding400

aligns with psycholinguistic literature, where cog-401

nitive models of memory retrieval encompass both402

syntax-based approaches (e.g., verb-argument rela-403

tionships; Lewis and Vasishth, 2005) and semantic-404

based approaches (e.g., bag-of-words-like similar-405

ity; Brouwer et al., 2012), suggesting that the atten-406

tion mechanisms of TG and Transformer serve as407

complementary cognitive models, each capturing408

distinct aspects of human memory retrieval.409

4.3 What aspect of memory retrieval do TG’s410

and Transformer’s NAE capture?411

To investigate the aspects of human memory re-412

trieval captured by TG’s and Transformer’s NAE,413

we analyzed differences in prediction improvement414

across part-of-speech (POS) tags annotated in the415

Natural Stories corpus. Our analysis followed three416

steps: (i) selecting POS tags with more than 1,000417

occurrences, (ii) for each POS tag, testing the sig-418

nificance of improvement from the baseline regres-419

sion model (measured in ∆ Root Mean Squared420

Error, ∆RMSE) when adding NAE of the current421

and previous word as fixed effects,11 and (iii) ex-422

amining the significance of differences in ∆RMSE423

between TG and Transformer for POS tags where424

either model showed significant improvement. We425

assessed significance using Wilcoxon signed-rank426

tests with Bonferroni correction (p < 0.05).427

Figure 3 presents the differences in predic-428

tion improvement across POS tags.12 Consis-429

tent with the larger ∆LogLik value, TG’s NAE430

11We used the same regression models as in Section 4.2,
where surprisal and NAE values were averaged across seeds.

12For a complete list of POS tags in the Natural Stories
corpus, see Appendix C.

Model ∆LogLik Predictor p-value

TG
96.1 *_nae ∗∗∗ (3/3)
(± 15.9) *_nae_so ∗∗ (3/3)

TG−comp
86.3 *_nae ∗∗∗ (3/3)
(± 31.8) *_nae_so n.s. (0/3)

Table 2: TG’s and TG−comp’s contribution to reading
time prediction. The rightmost column shows the p-
value range across random seeds (∗∗∗ p < 0.001, ∗∗ p <
0.01, and n.s. not significant), along with the number
of seeds showing significant contributions. Due to the
potential multicollinearity between the Transformer’s
NAE and TG/TG−comp’s NAE, the column of the effect
size is omitted.

demonstrated advantages over Transformer’s NAE 431

across a broader range of POS tags. Notably, 432

TG’s NAE exhibited superior improvement across 433

verbs (VB, VBD, VBG, VBP), while Transformer’s 434

NAE excelled only for possessive pronouns ($PRP). 435

These findings indicate that different types of re- 436

trieval operations—verb-triggered retrieval (e.g., 437

subject retrieval) and possessive pronoun-triggered 438

retrieval (e.g., antecedent retrieval)—are better 439

modeled by distinct cognitive mechanisms: atten- 440

tion with syntactic and token memory representa- 441

tions, respectively. This pattern supports our earlier 442

argument regarding the complementary nature of 443

these models (Section 4.2). 444

5 Follow-up analysis 445

5.1 Do TG’s advantages stem from the 446

COMPOSE attention? 447

As described in Section 2.2, TG’s key feature is 448

the COMPOSE attention, which explicitly gen- 449

erates single vector representations for closed 450

phrases. Here, we investigate whether TG’s pre- 451

dictive power derives from merely considering syn- 452

tactic structures or from explicitly treating closed 453

phrases as single representations (see Hale et al., 454

2018; Brennan et al., 2020). To address this ques- 455

tion, we developed TG−comp, a TG variant that 456

processes each action in the action sequence a as 457

an individual token (i.e., Choe and Charniak’s ap- 458

proach), without the COMPOSE attention. We 459

trained TG−comp with identical hyperparameters 460

as TG. The baseline regression model (Equation 3) 461

was augmented with (i) TG−comp’s surprisal and 462

(ii) Transformer’s NAE to (i) ensure a fair compari- 463

son between TG and TG−comp and (ii) distinguish 464
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Figure 3: Differences in reading time prediction improvement (∆RMSE) between TG and Transformer across POS
tags (TG - Transformer). The y-axis shows the mean differences per word, with the error bars representing standard
errors. Only POS tags showing significant improvement in either model and significant differences between models
are displayed. Statistical significance after Bonferroni correction: ** p < 0.01, *** p < 0.001.

Figure 4: Differences in ∆RMSE between TG and
TG−comp across POS tags (TG - TG−comp)

between the effects of direct terminal token access465

and syntactic structure consideration in TG−comp.466

Table 2 presents the ∆LogLik values obtained467

when incorporating either TG’s or TG−comp’s NAE468

as fixed effects into the baseline regression model.469

Note that due to the potential multicollinearity470

between Transformer’s NAE and TG/TG−comp’s471

NAE, we focus on the ∆LogLik values and sig-472

nificance of the contribution rather than individual473

effect sizes. Our analysis reveals two key find-474

ings. First, TG−comp’s NAE demonstrates signifi-475

cant predictive power for reading times, even in the476

presence of Transformer’s NAE, implying that con-477

sideration of syntactic structures alone captures cer-478

tain memory retrievals based on syntactic informa-479

tion. Second, although we should note that the stan-480

dard deviation across seeds is relatively large, TG’s481

NAE outperforms TG−comp’s, suggesting that the 482

attention mechanism operating on syntactic mem- 483

ory representations more effectively captures vari- 484

ance in syntax-based memory retrieval. Likelihood 485

ratio tests further revealed that TG’s NAE captured 486

reading time patterns unexplainable by TG−comp 487

(‘TG & TG−comp’>‘TG−comp’, p <0.001). How- 488

ever, we also found that TG−comp, despite its lower 489

overall predictive power, also explained unique 490

variance (‘TG & TG−comp’>‘TG’, p <0.001). 491

To investigate the underlying mechanisms of 492

this complementary relationship, we analyzed the 493

∆RMSE differences across POS tags (Figure 4). 494

The results showed that TG’s NAE demonstrated 495

advantages over TG−comp’s NAE across most POS 496

tags, with notable exceptions for VBG, VBP, and WP— 497

POS tags that typically involve immediate modi- 498

fication of the previously composed phrase (e.g., 499

(NP (NP ... NP) (SBAR (WHNP (WP who). This 500

pattern leads us to hypothesize that memory re- 501

trieval based on syntactic cues typically operates on 502

composed representations for efficiency, but in con- 503

texts where immediate modification of a composed 504

phrase occurs (e.g., relative clauses), humans may 505

strategically retrieve individual lexical elements 506

within the composed phrases. 507

5.2 Does TG’s NAE capture interference 508

effects? 509

Psycholinguistic research has identified two pri- 510

mary types of memory retrieval costs: interference 511

effects, which NAE aims to capture, and decay 512
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effects—the cognitive load associated with access-513

ing elements at greater linear distances (e.g., Gib-514

son, 1998, 2000). Here, we examine whether515

TG’s NAE genuinely captures interference effects516

by testing its independence from variables that517

model memory decay effects. For modeling decay518

effects, we employed Category Locality Theory519

(CLT; Isono, 2024),13 which treats phrases in syn-520

tactic structure14 as representational units of mem-521

ory and quantifies decay effects using the distance522

(measured in content words) between an input and523

the phrases to be composed with it.524

To assess independence, we tested whether TG’s525

NAE and CLT maintain their contributions when526

simultaneously included in the baseline regression527

model (Equation 3), and examined their indepen-528

dence through likelihood ratio tests.15 The results529

(Table 3) show that TG’s NAE exhibited significant530

effects in both immediate and spillover conditions,531

and CLT demonstrated a significant immediate ef-532

fect (with a marginally significant spillover effect).533

A nested model comparison confirmed that these534

effects were independent (‘TG & CLT’>‘CLT’,535

p < 0.001; ‘TG & CLT’>‘TG’, p < 0.05).536

These results provide empirical evidence that537

NAE quantifies interference rather than decay538

in memory retrieval—extending beyond previous539

studies on NAE (Ryu and Lewis, 2021; Oh and540

Schuler, 2022). This finding is significant because,541

as far as we are aware, while psycholinguistics has542

developed various implementations of memory de-543

cay effects, it has lacked broad-coverage implemen-544

tations of interference effects applicable to natu-545

rally occurring texts. Our results suggest that NAE546

represents a promising approach for quantifying547

interference effects in a broad-coverage manner.548

6 Level of description549

In cognitive modeling studies based on surprisal550

theory, explanations typically follow the form “if551

these LMs were models of human prediction, the552

difficulty of next-word disambiguation that humans553

solve would be approximated as follows.” Such ex-554

13Although Dependency Locality Theory (DLT; Gibson,
1998, 2000) is widely recognized as one of the most prominent
models for capturing decay effects, we opted for CLT in this
study, following Isono’s finding that DLT-based predictors fail
to achieve statistical significance in explaining reading times
in the Natural Stories corpus.

14CLT assumes syntactic structure based on Combinatory
Categorial Grammar (Steedman, 2000).

15As in other likelihood ratio tests, we used surprisal and
NAE values averaged across random seeds.

Model Predictor Effect size [ms]

TG & CLT

tg_nae 2.93∗∗∗

tg_nae_so 0.69∗∗

clt 0.32∗

clt_so 0.25.

Table 3: Effect sizes per standard deviation are shown
for TG’s NAE and CLT predictors. Significance levels:
∗∗∗ p < 0.001, ∗∗ p < 0.01, ∗ p < 0.05, . p < 0.1.

planations typically operate at the most abstract of 555

Marr’s three levels of description—the computa- 556

tional level. Recently, Futrell et al. (2020) proposed 557

lossy-context surprisal to integrate memory repre- 558

sentation perspectives into surprisal theory. How- 559

ever, as they explicitly stated, this theory remains 560

at the computational level, relaxing assumptions 561

about memory representations in human predictive 562

processing. In contrast, cognitive models of human 563

memory, such as cue-based retrieval, generally pro- 564

vide explanations about mechanisms that deal with 565

specific mental representations. These explanations 566

typically move down one level to the algorithmic 567

level of description. While not explicitly stated by 568

the authors, we argue that the work of Ryu and 569

Lewis and Oh and Schuler—conceptualizing atten- 570

tion mechanisms as implementations of cue-based 571

retrieval—also operates at the algorithmic level, 572

similar to cue-based retrieval itself. Our research 573

can be characterized as an investigation into the 574

nature of memory representations, addressing fun- 575

damental questions at this level (see Hale, 2014). 576

7 Conclusion 577

In this paper, we have demonstrated that attention 578

can serve as the general algorithm for modeling 579

human memory retrieval from two representational 580

systems. Furthermore, we have shown that among 581

the LMs examined in this study (TG, TG−comp, 582

and Transformer), TG—whose attention mecha- 583

nism uniquely operates on syntactic structures as 584

representational units—best captures dominant fac- 585

tors in human sentence processing. Our results sug- 586

gest that the integration of attention mechanisms 587

(developed in NLP) with syntactic structures (the- 588

orized in linguistics) constitutes a broad-coverage 589

candidate implementation for human memory re- 590

trieval. We hope these findings will foster greater 591

collaboration between these two fields. 592
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Limitations593

Our NAE calculation comprised three steps: (i)594

computing NAE for each attention head in the top-595

most layers, (ii) adding the values across heads, and596

(iii) summing subword-level values into word level.597

While this procedure strictly adhered to Oh and598

Schuler (2022), alternative approaches to handling599

layers, attention heads (Ryu and Lewis, 2021), and600

subword tokens (Oh and Schuler, 2024; Giulianelli601

et al., 2024) warrant investigation.602

While our study provides an in-depth investiga-603

tion using the Natural Stories corpus—an English604

self-paced reading time dataset—the breadth of605

our analysis has certain limitations. The generaliz-606

ability of our findings to different languages (e.g.,607

Japanese self-paced reading time corpus from Asa-608

hara, 2022) and other cognitive load (e.g., gaze609

duration from Kennedy et al., 2003 or EEG and610

fMRI from Bhattasali et al., 2020) remains to be611

investigated.612

As discussed in Section 3.1, we employed “per-613

fect oracles” as syntactic structures behind token614

sequences. This idealization leaves the resolution615

of local ambiguities, which humans encounter dur-616

ing actual sentence processing, outside the scope617

of our study (for a conceptual case study, see Ap-618

pendix D). By incorporating these kinds of entirely619

new factors, more detailed models could emerge.620

Following prior work (Wolfman et al., 2024),621

we adopted the default TG implementation of a622

top-down parsing strategy. However, psycholin-623

guistic literature has suggested that a left-corner624

parsing strategy might be more plausible for hu-625

man sentence processing (Abney and Johnson,626

1991; Resnik, 1992). While previous studies627

have primarily evaluated the plausibility of pars-628

ing strategies from a memory capacity perspective629

(cf. stack_count), TG’s NAE might offer a new630

opportunity to revisit the question of cognitively631

plausible parsing strategies from the perspective of632

memory interference.633

Finally, while this paper focused on investigat-634

ing the attention mechanism of TG through the635

lens of memory-based theory, exploring TG as an636

integrated implementation for expectation-based637

theory (via surprisal) and memory-based theory638

(via NAE) represents a promising future direc-639

tion (Michaelov et al., 2021; Ryu and Lewis, 2022).640

Specifically, future work could investigate the at-641

tention mechanism of TG as the underlying driver642

of surprisal’s predictive power (Appendix E), ana-643

lyzing the relationship between surprisal and NAE. 644

Ethical considerations 645

We employed AI-based tools (Claude, ChatGPT, 646

GitHub Copilot, and Grammarly) for writing and 647

coding assistance. These tools were used in compli- 648

ance with the ACL Policy on the Use of AI Writing 649

Assistance. 650
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A Hyperparameters949

The hyperparameters are shown in Table 4. All950

model hyperparameters follow Sartran et al. (2022);951

Wolfman et al. (2024), while training hyperparam-952

eters were adjusted to accommodate the batch size953

suitable for our computational resources (NVIDIA954

A100, 40GB). The total computational cost re-955

quired for all experiments was approximately 225956

GPU hours.957

B Correlations between predictors958

The correlations between predictors in our statis-959

tical analysis are shown in Table 5. While the960

NAE from different LMs shows a very high corre-961

lation with each other, their predictive power for962

the self-paced reading times remains independent963

(see Section 4.2 and 5.1).16964

16_mcomp indicates −comp.

C Part-of-speech tags 965

Table 5 presents the complete list of part-of-speech 966

(POS) and symbol tags in the Natural Stories cor- 967

pus. As reading times are annotated for each 968

whitespace-delimited region, for data points con- 969

taining symbol tags (e.g., NNP.), we used the 970

stripped version (e.g., NNP) in our analysis. Ad- 971

ditionally, we excluded from our analysis any data 972

points containing multiple POS tags (e.g., NNP 973

POS). 974

D Parallel parsing experiment 975

As a conceptual case study for the local ambi- 976

guity resolution in syntactic structures behind to- 977

ken sequences, we implemented TG’s NAE cal- 978

culation using 10 syntactic structures obtained 979

through word-synchronous beam search (Stern 980

et al., 2017) with Recurrent Neural Network Gram- 981

mar (RNNG; Dyer et al., 2016; Kuncoro et al., 982

2017; Noji and Oseki, 2021).1718 NAE was com- 983

puted individually for each syntactic structure and 984

then aggregated as a weighted average: 985

NAE_TGl,h,i :=

∑
t∈Beami

p(t) ·NAEt
l,h,i∑

t∈Beami
p(t)

, (4) 986

where Beam represents the set of syntactic struc- 987

tures synchronized at the i-th word (|Beam|= 988

10).19 989

The analysis revealed patterns consistent with 990

those observed when considering only the globally 991

correct syntactic structure: both LMs’ NAE demon- 992

strated significant predictive power for reading 993

times, with TG’s NAE showing stronger contribu- 994

tions compared to Transformer’s (Table 6).20 The 995

likelihood ratio test further confirmed independent 996

contributions from both LMs (p < 0.001 for both 997

comparisons: ‘TG & Transformer’>‘Transformer’ 998

and ‘TG & Transformer’>‘TG’). 999

E Surprisal experiment 1000

We analyzed each LM’s surprisal contribution to 1001

reading time prediction using a baseline regres- 1002

sion model that excluded both LMs’ surprisal from 1003

Equation 3 but included their NAE (Table 7). While 1004

17https://github.com/aistairc/rnng-pytorch
18RNNG was trained on BLLIP-LG using default hyperpa-

rameters. For inference, action beam size and fast track were
set to 100 and 1, respectively.

19stack_count was similarly calculated as the weighted
average across syntactic structures in Beam.

20_bs indicates beam search.
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Model architecture Transformer-XL (Dai et al., 2019)
Vocabulary size 32,768
Model dimension 1,024
Feed-forward dimension 4,096
Number of layers 16
Number of heads 8
Segment length 256
Memory length 256

Optimizer Adam (β1 = 0.9, β2 = 0.999) (Kingma and Ba, 2015)
Batch size 16
Number of training steps 400,000
Learning rate scheduler Linear warm-up & cosine annealing
Number of warm-up steps 32,000
Initial learning rate 2.5× 10−8

Maximum learning rate 3.75× 10−5

Final learning rate 7.5× 10−8

Dropout rate 0.1

Table 4: Model and training hyperparameters
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Figure 5: Correlations between predictors in our statistical analysis
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CC Coordinating conjunction PRP$ Possessive pronoun
CD Cardinal number RB Adverb
DT Determiner RBR Adverb, comparative
EX Existential there RBS Adverb, superlative
FW Foreign word RP Particle
IN Preposition or subordinating conjunction TO to
JJ Adjective UH Interjection
JJR Adjective, comparative VB Verb, base form
JJS Adjective, superlative VBD Verb, past tense
MD Modal VBG Verb, gerund or present participle
NN Noun, singular or mass VBN Verb, past participle
NNS Noun, plural VBP Verb, non-3rd person singular present
NNP Proper noun, singuler VBZ Verb, 3rd person singular present
NNPS Proper noun, plural WDT Wh-determiner
PDT Predeterminer WP Wh-pronoun
POS Possessive ending WP$ Possessive wh-pronoun
PRP Personal pronoun WRB Wh-adverb
-LRB- Left round bracket , Comma
-RRB- Right round bracket . Period
“ Open double quotes : Colon
” Closing double quotes

Table 5: POS and symbol tags in the Natural Stories corpus

Model ∆LogLik (↑) Predictor Effect size [ms] p-value range Significant seeds

TG 76.6 (±6.6)
tg_bs_nae 2.53 (± 0.2) <0.001 3/3
tg_bs_nae_so 0.849 (± 0.1) <0.001 3/3

Transformer 28.0 (±6.9)
tf_nae 1.58 (± 0.2) <0.001 3/3
tf_nae_so 0.457 (± 0.2) 0.006–0.13 1/3

Table 6: TG’s and Transformer’s NAE contribution to reading time prediction, where TG’s NAE was calculated
with multiple syntactic structures generated by word-synchronous beam search with RNNG

Model ∆LogLik (↑) Predictor Effect size [ms] p-value range Significant seeds

TG 265 (±11)
tg_surp 4.63 (± 0.1) <0.001 3/3
tg_surp_so 1.64 (± 0.1) <0.001 3/3

Transformer 299 (±30)
tf_surp 5.31 (± 0.2) <0.001 3/3
tf_surp_so 1.68 (± 0.2) <0.001 3/3

Table 7: TG’s and Transformer’s surprisal contribution to reading time prediction

14



both LMs’ surprisal demonstrated significant pre-1005

dictive power for reading times, Transformer’s sur-1006

prisal exhibited a stronger contribution compared to1007

TG’s. Additionally, our likelihood ratio test using1008

the averaged surprisal revealed that the regression1009

model incorporating both LMs’ surprisal showed1010

significantly higher predictive power compared to1011

models with only one LM (p < 0.001 for both1012

comparisons: ‘TG & Transformer’>‘Transformer’1013

and ‘TG & Transformer’>‘TG’). These findings1014

suggest that (i) unlike attention mechanisms, next-1015

word prediction based solely on token sequences1016

more effectively captures dominant factors of hu-1017

man prediction processing, but (ii) similar to1018

attention mechanisms, both types of next-word1019

prediction—those based on token sequences alone1020

and those leveraging both syntactic structures and1021

token sequences—may coexist as models that cap-1022

ture distinct aspects of human predictive process-1023

ing.1024

F Comparision between TG and TG−comp1025

with a weak baseline regression model1026

In Section 5.1, we explored the advantage of treat-1027

ing closed phrases as single representations beyond1028

explicit syntactic structure consideration. Our anal-1029

ysis incorporated Transformer’s NAE in the base-1030

line regression model to distinguish between two1031

effects in TG−comp: syntactic structure considera-1032

tion and direct terminal token access.1033

To evaluate which model—TG or TG−comp—1034

better captures more dominant factors in hu-1035

man sentence processing as a single model, we1036

assessed their predictive power without Trans-1037

former’s NAE in the baseline regression model1038

(Table 8). The analysis revealed TG’s superior1039

predictive power (∆LogLik=97.3) compared to1040

TG−comp (∆LogLik=92.2). Additionally, TG1041

demonstrated both immediate and spillover ef-1042

fects, while TG−comp primarily showed an im-1043

mediate effect. These results highlight that TG,1044

which explicitly treats closed phrases as sin-1045

gle representations, outperforms TG−comp, even1046

when considering TG−comp’s advantage in di-1047

rect terminal token access. Consistent with1048

findings in Section 5.1, likelihood tests con-1049

firmed TG’s independent predictive power from1050

TG−comp (‘TG & TG−comp’>‘TG−comp’, p <1051

0.001); TG−comp, despite its lower overall pre-1052

dictive power, accounted for unique variance1053

(‘TG & TG−comp’>‘TG’, p < 0.01).1054

G License 1055

Table 9 summarizes the licenses of the data and 1056

tools employed in this paper. All data and tools 1057

were used under their respective license terms. 1058
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Model ∆LogLik (↑) Predictor Effect size [ms] p-value range Significant seeds

TG 97.3 (±4.0)
tg_nae 2.93 (± 0.1) <0.001 3/3
tg_nae_so 0.657 (± 0.1) <0.01 3/3

TG−comp 92.2 (±10)
tg_mcomp_nae 2.88 (± 0.2) <0.001 3/3
tg_mcomp_nae_so 0.416 (± 0.1) 0.01–0.17 1/3

Table 8: TG’s and TG−comp’s NAE contribution to reading time prediction with Transformer’s NAE excluded from
the regression baseline model

Dataset/Tool License

BLLIP (Charniak et al., 2000) BLLIP 1987–89 WSJ Corpus Release 1
Natural Stories corpus (Futrell et al., 2018) CC BY-NC-SA 4.0

transformer_grammar (Sartran et al., 2022) Apache 2.0
rnng-pytorch (Noji and Oseki, 2021) MIT License
SentencePiece (Kudo and Richardson, 2018) Apache 2.0
R (version 4.4.2) (R Core Team, 2024) GNU GPL ≥ 2
lme4 (version 1.1.34) (Bates et al., 2015) GNU GPL ≥ 2
lmerTest (version 3.1.3) (Kuznetsova et al., 2017) GNU GPL ≥ 2

Table 9: Licenses of datasets and tools
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