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Abstract

Grid cells in the medial entorhinal cortex create remarkable periodic maps of
explored space during navigation. Recent studies show that they form similar maps
of abstract cognitive spaces. Examples of such abstract environments include audi-
tory tone sequences in which the pitch is continuously varied or images in which
abstract features are continuously deformed (e.g., a cartoon bird whose legs stretch
and shrink). Here, we hypothesize that the brain generalizes how it maps spatial
domains to mapping abstract spaces. To sidestep the computational cost of learning
representations for each high-dimensional sensory input, the brain extracts self-
consistent, low-dimensional descriptions of displacements across abstract spaces,
leveraging the spatial velocity integration of grid cells to efficiently build maps
of different domains. Our neural network model for abstract velocity extraction
factorizes the content of these abstract domains from displacements within the
domains to generate content-independent and self-consistent, low-dimensional
velocity estimates. Crucially, it uses a self-supervised geometric consistency con-
straint that requires displacements along closed loop trajectories to sum to zero,
an integration that is itself performed by the downstream grid cell circuit over
learning. This process results in high fidelity estimates of velocities and allowed
transitions in abstract domains, a crucial prerequisite for efficient map generation in
these high-dimensional environments. We also show how our method outperforms
traditional dimensionality reduction and deep-learning based motion extraction
networks on the same set of tasks. This is the first neural network model to explain
how grid cells can flexibly represent different abstract spaces and makes the novel
prediction that they should do so while maintaining their population correlation and
manifold structure across domains. Fundamentally, our model sheds light on the
mechanistic origins of cognitive flexibility and transfer of representations across
vastly different domains in brains, providing a potential self-supervised learning
(SSL) framework for leveraging similar ideas in transfer learning and data-efficient
generalization in machine learning and robotics.

1 Introduction

Grid cells in the medial entorhinal cortex are of paramount importance for navigating and representing
spatial domains. Interestingly, a series of recent experiments have shown that the brain still uses the
same cells to represent non-spatial environments that are continuously traversed. These include free
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Figure 1: Conceptual understanding of learning velocities in abstract cognitive environments.
a. Grid cells generate hexagonal tuning in spatial navigation experiments (illustration borrowed
from [1]). b. Similar grid-like tuning has been found in auditory frequency space in rodents [2], (c.)
in visual space in monkeys [3], and (d.) in an abstract cartoon bird space in human experiments. e.
Example of an abstract, non-spatial domain called ‘Stretchy Blob’, a 2D Gaussian that can either
stretch or shrink along two axes. f. SR, CSCG, and TEM [4–7] learn transition structures of this
cognitive domain by traversing it. These models require one to build a set of representations for these
encountered states as well as structures enabling transitions between them. g. Our approach learns a
self-consistent movement (velocity) signal that is independent of the states traversed and encodes
the global transition structure of the environment in a minimally low-dimensional representation.
h. How can the brain initially extract a general notion of velocity within abstract, non-spatial
domains? Solving this important prerequisite challenge can show how grid cells flexibly map and
organize various abstract spaces. i. The actual movement signals in this particular example are
low-dimensional. These velocities are independent from the states they connect.

viewing of naturalistic images, listening to and modifying a sound changing in pitch, navigating a
conceptual ‘Stretchy Bird’ space (images of a bird that stretch or shrink via joystick input), or even
traversing an ‘odor’ space among many others [8–14, 3, 15, 2] (Fig. 1a-d).

How does the brain transfer its ability to represent space to these non-spatial environments? More
specifically, how does the brain infer a metric layout in these abstract domains? Answering this
question involves understanding how the brain perceives and processes structure in different domains
and modalities, and integrates them into coherent cognitive maps.

How the brain maps abstract cognitive environments has been a question of intense interest, with
several proposed approaches [4, 5, 7, 6]. These works propose that when the brain learns the transition
structure of a cognitive domain (such as the ‘Stretchy Blob’ space in Fig. 1e), it simultaneously
builds a set of representations for these states as well as structures enabling transitions between them,
Fig. 1f.

Our approach investigates how the brain exploits an existing scaffold of structured states, provided
by grid cells, to represent new cognitive domains by projecting them onto the invariant grid coding
space. We hypothesize that this projection involves anchoring a state in the cognitive domain to a
grid phase and then extracting a self-consistent movement signal to measure displacements in the
cognitive domain (Fig. 1g). This abstract velocity signal serves as the input to the grid cell network,
updating grid phases and encoding transitions between high-dimensional states using the existing
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low-dimensional transition mechanism within the grid cell circuit. Crucially, rather than building
a new set of continuous stable states for each explored cognitive domain — a process that is both
difficult and slow — this mechanism allows for the efficient reuse of a canonical scaffold of cognitive
states for the memory and coding of continuous variables.

In spatial domains, continuous attractor models of the grid cell circuit [16] efficiently reuse prestruc-
tured grid cell states to encode transitions between high-dimensional states. However, using such
models to map non-spatial, abstract domains (and by extension, explaining how grid cells can be effi-
ciently reused) requires the extraction of faithful representations of velocity in these domains. Thus,
the fundamental, prerequisite challenge lies in extracting a general notion of a minimal dimensional
velocity signal from high-dimensional, time-varying data from various abstract domains, Fig. 1h.
Crucially, the representations of this extracted velocity must be independent of the specific states,
and must be self-consistent with a net-zero velocity corresponding to a net identity transformation
in the abstract space. These constraints point towards a self-supervised learning paradigm, wherein
neither the coordinate system of the space nor the dimensionality of the estimated velocity are known
a priori.

The following are the key contributions of the paper:

• First neural network model for abstract velocity extraction. We present the first neural
network model explaining how grid cells flexibly represent different abstract spaces through
providing a learning framework for velocity estimation in arbitrary spaces. This reuse of
grid cells across domains leads to cognitive flexibility in mapping spaces, providing insights
towards transfer learning and data-efficient generalization in machine learning and robotics.

• State-independent velocity extraction. Our framework for abstract velocity extraction gen-
erates state-independent, self-consistent low-dimensional velocity estimates by separating
the content of abstract domains from their displacements (Fig. 1g,i).

• Self-supervised geometric consistency constraint. We show how consistent metric rep-
resentations of velocity can be learned through a self-supervised geometric consistency
constraint requiring displacements along closed loop trajectories to sum to zero — an
operation facilitated by the downstream grid cell circuit.

• Superior dimensionality reduction performance. Our method surpasses traditional di-
mensionality reduction and deep learning-based motion extraction networks, specifically in
environments characterized by underlying low-dimensional transitions and motions between
states.

• Preservation of cell-cell relationships. The model predicts that cell-cell relationships
between grid cells are preserved across different spatial and non-spatial domains. For
example, if two grid cells are co-active in a spatial task, they should remain co-active
in a non-spatial task. This prediction critically relies on the same continuous attractor-
based grid module performing integration across domains — a capability that can only be
realized through extraction of a state-independent velocity from abstract domains. This
prediction aligns with the observed invariance of internal neural representations across
different spatial environments and brain states [17–23]. This forms a testable hypothesis for
future experimental studies on neural representations in abstract cognitive domains.

1.1 Related work

Our work on learning velocities and transition operators in abstract cognitive spaces can be compared
to two key areas: neuroscience models of spatial mapping and dimensionality reduction models for
high-dimensional data. We first discuss cognitive space mapping models and then relate them to
dimensionality reduction work.

The Tolman-Eichenbaum Machine (TEM) [7] learns a map of a ‘cognitive domain’ via a recurrent
neural network, predicting sensory observations based on given actions. However, TEM does not
infer transition structures or affordances, relying instead on predefined actions at each time step.
When presented with a new environment, TEM requires re-learning these affordances along with grid
cell-like representations from scratch. Similarly, the successor representation (SR) [4, 5] predicts
future states as a weighted sum of expected future occurrences and uses an underlying discrete
action space. State-action variants of SR are dependent on these discrete action inputs to construct
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cognitive maps. Clone-structured cognitive graphs (CSCG) [6] learn hidden Markov models of
sensory representations from observational inputs without prior domain structure assumptions but are
limited to only discrete domains. By construction, these models are not guaranteed to preserve cell-
cell correlations across domains and modalities and are unable to efficiently reuse the prestructured
states and transition operators provided by grid cells.

More generally, these models posit that the brain simultaneously learns representations of the external
states and the transition structures to form cognitive maps. Here, we propose that approaching
the cognitive mapping problem from a velocity-extraction-first perspective offers key benefits. By
learning a low-dimensional velocity that captures transitions between external inputs, mapping the
environment to reusable grid cell states can be performed simply by a continuous attractor network,
instead of something more complex like TEM. More generally, via our self-supervised learning
framework that infers velocity solely from sensory inputs in continuous domains, we can entirely
avoid the computationally expensive task of representation and transition learning through capturing
the minimal low-dimensional structure of these abstract observations.

Our work thus bridges the tasks of building cognitive maps of abstract domains and dimensionality
reduction. Previous dimensionality reduction methods [24–29] focus on preserving proximity in
high-dimensional spaces on low-dimensional manifolds but do not take advantage of the structure
imposed on the tangent spaces of these manifold (i.e., velocity spaces) through transitions between
states. As a result, while these methods learn low-dimensional mappings, they often fail to reproduce
the underlying metric space of abstract domains. Unlike these methods, our framework learns a
global velocity operator applicable to any input within the environment’s state manifold. Our work
also relates to the task of motion decomposition and next-frame prediction of temporally varying
inputs [30–35]. However, these works have not attempted to decipher a minimally low dimensional
description of velocity, making their learned representations unsuitable for grid cells to effectively
map observed environments.

2 Self-supervision for velocity extraction

Learning action primitives purely through self-supervision, without access to true velocities in
the space, requires careful consideration of the data generation process, the loss terms to extract
meaningful neural representations, and the chosen neural network architecture. We will discuss each
of these aspects in detail.

2.1 Task setup

The initial step in our methodology involves the construction of tasks designed to facilitate the
model’s inference of the lowest-dimensional representations of velocity within cognitive domains.

We revisit the ‘Stretchy Blob’ environment that we previously introduced. This environment can be
procedurally generated where state transitions are characterized by changes in the blob’s width and
height. As seen in Fig. 2a, given two images, i1 and i2, we aim to learn a function f that infers a
low-dimensional velocity v̂ representing the transition from i1 to i2 (Fig. 2b).

To ensure that v̂ is a useful and faithful metric representation of the transition between two inputs, we
demand that it satisfy two properties.

First, the estimated transition velocity v̂ can be used to transform a given input, i.e., there exists a
function g that uses v̂ to transform i1 to predict i2. In practice, to ensure that f does not merely
memorize image features of i2, we demand that g predict an unseen i3 obtained by transforming i2
using the same transition v̂. More generally, this ensures that the estimates of displacements, v̂, in
this space must be independent of the route taken, ensuring both path and state independence. We
refer to this requirement as ‘next-state prediction’.

Second, the estimated velocities in the abstract space, v̂, must be geometrically self-consistent, i.e.,
the start and end point of a trajectory in the abstract space are identical if, and only if, the sum of
estimated velocities is zero (Fig. 2c). (Note that this also ensures that the identity transformation
should be represented by the zero-vector.) We refer to this requirement as ‘loop-closure’. This
summation of velocities must be performed by a neural integrator, such as grid cells, which results in
a calibrated velocity input for grid cells to then themselves use to map out the input abstract domain.
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Figure 2: Task and fundamental problem setup. a. Two states in the ‘Stretchy Blob‘ task that have
a low-dimensional velocity representing the transition between them. b. If two consecutive images in
this space i1 and i2 are separated by a velocity v1→2, can we learn a function f that estimates this
velocity and a function g that ‘applies’ this quantity to i1 to predict i2? c. The key self-consistency
constraint we introduce called ‘loop-closure’: estimated velocities along a closed-loop trajectory
must sum to zero. This computation is performed by a neural integrator, such as grid cells. d. Our
various procedurally generated abstract cognitive domains: Stretchy Blob (2D), Moving Blobs (2D),
Stretchy Bird (2D), Stretchy Bird (3D), and Frequency Modulation (1D).

These self-consistency constraints on v̂ suggests a self-supervised learning paradigm, obviating the
need for a specific coordinate system within the explored abstract space.

To rigorously evaluate our system, we procedurally generate random trajectories across five different
“abstract cognitive domains.” These trajectories are generated by starting from an initial random state
on the image manifold and then taking random velocities to determine the subsequent states on the
same manifold. We assume for simplicity that states are unique at each point in space within these
domains. We visualize a randomly sampled trajectory of each of these domains in Fig. 2d:

1. A 2D Stretchy Blob environment (discussed above) where a blob in the center of the visual
field stretches or shrinks in height and/or width.

2. A 2D Stretchy Bird environment where a bird’s legs and neck stretch and shrink. This
environment is specifically constructed to mimic its experimental counterpart [15].

3. A 3D variant of Stretchy Bird where the two bird legs can independently transform.

4. A 2D Moving Blobs environment where a set of Gaussian blobs uniformly translate, moving
in and out of the visual field.

5. A 1D Frequency Modulation task that emulates the experimental sound modulation task
created by [2] with a sum of sine waves uniformly changing in frequency.

Detailed information regarding the generated data is provided in SI Sec. C.

2.2 Encoder-Decoder architecture

We construct an encoder-decoder architecture, wherein the encoder f and decoder g are both multi-
layer perceptrons (MLPs) (Fig. 3a). The encoder f processes two adjacent inputs it and it+1 from
any of our procedurally generated trajectories and maps them to a low-dimensional velocity space. It
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Figure 3: Self-supervised learning framework. a. Model diagram consisting of an encoder,
decoder, and an integrator which acts on the low-dimensional velocity latent space. The model takes
in two consecutive input frames and predicts an unseen frame with the learned velocity. b. Our
various self-supervised loss terms. The two critical loss terms (top) are ‘next-state prediction’ and
‘loop-closure’. The auxiliary loss terms (bottom) which further refine the solution space are ‘shortcut
estimation’ and ‘isotropy’.

is important to note that the low-dimensional velocity signal is not known a priori. The decoder g
then upsamples this latent velocity representation and combines it with the last input to generate the
subsequent ît+2 which remains unseen to the model.

A single sample in a batch of data for this model comprises a trajectory of states T = {it | 1 ≤ t ≤ N}
and velocities V = {vt→t+1 | 1 ≤ t ≤ N − 1} (individual velocities abbreviated as vt for ease). The
model is trained through triplets of frames of the input trajectory, using it and it+1 to predict it+2 for
1 ≤ t ≤ N − 1. As discussed above, we train our models on triplets of states solely to ensure that the
encoder does not memorize features of the image to be predicted. Training on pairs of images instead
of triplets does not affect any of our results (SI Sec. B.2).

Detailed experimental procedures regarding the training of this model across various constructed
domains are provided in SI Sec. C. We note that the same architectural motif was employed for
training in all our experiments.

2.3 Loss functions

We formalize our two requirements of the extracted low-dimensional velocity signal into two critical
loss terms, a next-state prediction loss, and a loop-closure loss. These losses from the core of our
self-supervised learning framework. To further refine the solution space, we also employ auxiliary
losses in addition to our primary constraints. Our loss terms are visualized in Figure 3b and are
described in detail in SI Sec. C.

• Next-State Prediction Loss. We quantify this based on the difference between the next-
state prediction ît+2 and the ground-truth frame it+2. This loss term operates on individual
samples of the generated trajectory, and ensures decodability of the estimated velocity v̂.

• Loop-Closure Loss. We quantify this as a norm of the sum of velocities along a closed
loop trajectory T , i.e., the model must produce velocity estimates such that

∑
v̂∈V̂ v̂ = 0⃗.

The error signal for this loss operates at the scale of the entire generated trajectory. For
convenience, we construct all trajectories of our training data as random loops in the
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considered abstract spaces, such that the start and end state of trajectories are identical. See
SI Sec. B.2 for training data that is not solely loops.

• Shortcut Estimation Loss. The first of our two auxiliary loss terms is a shortcut estimation
loss, which further tests the generalization ability of our decoder g. From it+1, we predict
future states it+3 or it+4 by directly modifying v̂. Specifically, if v̂2→3 is inferred from it+2

to it+3 and v̂3→4 is inferred from it+3 to it+4, then ît+4 should be v̂2→3 + v̂3→4 away from
it+2. This loss is important for further refining our velocity estimates and ensuring their
validity during generalization.

• Isotropy Loss. The loss terms considered so far do not ensure isotropy in the inferred
velocity space, allowing differential scaling factors for transformations in different input
space directions. To induce isotropy, we introduce an auxiliary isotropy loss term that acts
on the norm of the velocities, independent of direction. Since we don’t assume access to the
global velocity distribution in the training data, the isotropy loss is applied only near zero
velocity. In particular, we minimize the variance of {∥v̂t→t+1∥ | d(it, it+1) < θ}, where
d(it, it+1) is a similarity metric in the input image space, and θ is some small threshold. In
practice, we use 1− cosine similarity as our distance metric d.

There is no direct supervision signal regressing the model outputs onto a known distribution of
velocities; instead, the velocities are extracted and inferred automatically. Further, we do not a
priori assume knowledge of the dimensionality of the underlying transition structure of the training
domains.

Regardless of the training environment, the relative weighting ratio of the two critical loss terms
remains consistent, with loop-closure loss always weighted ten times higher than next-state prediction
loss. To stabilize the training of models with three-dimensional latent spaces, we include a small L1

regularization during training. All models are evaluated on an unseen testing dataset consisting of
random walks within the domain. To prevent overfitting, all models are deliberately underparame-
terized relative to the training dataset. We conduct ablation studies on our loss terms, which can be
found in SI Sec. B.1.

3 Experimental results
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Figure 4: Model results. a. Our model produces low-dimensional velocity latents that are similar
to the ground truth (g.t.) distribution without knowing this distribution across a variety of cognitive
environments. b. In cases where the model’s latent dimensionality is higher than the intrinsic velocity
dimensionality of the environment, our model still identifies the lowest-dimensional representations
embedded in higher-dimensional space.

3.1 Single learning framework infers geometrically consistent representations of velocity
across cognitive domains

For each abstract environment, we compare the model-inferred velocity representations (Fig. 4a) to
the true distribution of velocities. Note that the self-supervised framework does not result in an exact
identity mapping between the ground truth velocities and the model outputs — it suffices for the
obtained output to be a linear transformation of the ground-truth velocity space. Correspondingly, we
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Task Our Model MCNet Autoencoder PCA Isomap UMAP

Stretchy Blob (2D) 0.05 ± 0.01 1.95 ± 0.14 (1.59 ± 3.40) ×103 0.63 0.42 0.79
Stretchy Bird (2D) 0.07 ± 0.03 2.01 ± 0.01 20.90 ± 38.04 0.21 0.36 0.46
Stretchy Bird (3D) 0.07 ± 0.02 2.96 ± 0.10 (2.66 ± 5.08) ×102 0.31 0.64 1.05
Moving Blobs (2D) 0.02 ± 0.01 2.00 ± 0.01 2.03 ± 0.05 1.94 0.66 0.62
Freq. Modulation (1D) 0.02 ± 0.02 2.01 ± 0.01 2.00 ± 0.01 1.97 2.00 2.00

Table 1: Mean and standard deviation of errors for various tasks and models. Mean and standard
deviation of errors are computed across 6 different runs for each experiment. Each run was seeded
to ensure reproducibility. The 6 seeds were picked randomly and are the same seeds used across
different experiments where multiple runs were run.

construct an error metric on the inferred velocities as the mean squared error in mapping the predicted
velocities to the ground-truth via a single linear transformation, after removing a small number of
outliers via the DBSCAN clustering algorithm [36]. More details about this error metric can be found
in SI Sec. C.

In all cases, irrespective of the dimensionality of the input manifold space or the detailed statis-
tics and structure of the environment states, we see that the inferred velocities are faithful metric
representations of the ground-truth velocities, quantified in Table 1.

While we primarily consider cases where the latent dimensionality of the encoder output matches the
underlying dimensionality of transitions in the input space, this is not a necessity. In Fig. 4b, we set
up our framework to have latent dimensionalities larger than the true data manifold dimensionality.
In all cases, the model outputs automatically occupy a subspace of dimensionality that corresponds
to the actual input manifold transition space, with a PCA of the inferred velocities capturing greater
than 97% of the variance within the correct number of dimensions (cf. Fig. 4b). Thus, our model can
effectively identify the appropriate low-dimensional structure within the high-dimensional embedding
space of the inputs. Results from the other synthetic cognitive domains can be found in SI Sec. A.

3.2 Comparison to existing dimensionality reduction methods

a
Moving Blobs
(2D)

Frequency
Modulation
(1D)

b

Our model PCA Isomap UMAP Autoencoder MCNet

g.t.

g.t.

Figure 5: Comparison to baselines. We show our model comparisons to various dimensionality
reduction and motion-prediction baselines in the a. 2D Moving Blobs and b. 1D Frequency Modula-
tion tasks. Existing baselines cannot identify the low-dimensional velocity signals between arbitrary
transitions in this space, even failing to do so in a simple one-dimensional domain. Meanwhile, our
model produces results that closely match the true, underlying velocity distribution.

Our model estimates low-dimensional velocities between successive high-dimensional states. These
velocities can then be integrated to determine a low-dimensional representation for each state. In this
sense, it is possible to view our work as a dimensionality reduction method for continuously varying
inputs. Traditional dimensionality reduction methods rely on the statistics of distances between points
across an ensemble of states. In contrast, our approach finds a structured tangent manifold around
each state that captures the low-dimensional transitions to successive states.

We can compare standard dimensionality reduction techniques such as PCA, Isomap, UMAP, and deep
autoencoders with our method. To do so, we use these techniques to embed the inputs into the known
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Figure 6: Dimensionality reduction through our model, versus PCA. a. Schematic of the raw
input states from a random trajectory of the 2D Moving Blob task, showing the states as points in
a 16x16 dimensional space. b. We estimate 3-dimensional velocities between states, and integrate
these estimated velocities to obtain a low-dimensional representation of the initial input states. A
2-dimensional plane is shown in gray for perspective, demonstrating our model-produced low-
dimensional representations are approximately in a 2D subspace. c. Left: Computing PCA on the
same dataset shows representations occupying a volume in a 3-dimensional space. Right: Around 24
dimensions are required for PCA to capture 95% of the variance in the data, indicating that PCA is
unable to find a low-dimensional space describing the dataset.

latent dimensionality of the data manifold, then compute an estimated low-dimensional velocity
between states by taking the difference of their corresponding low-dimensional representations.
Fig. 5 compares our model’s estimated velocities with those produced by these standard baselines.
Since our self-supervised framework uses a next-step prediction component, we also compared our
results to MCNet [30] (a flexible deep network designed specifically for future frame prediction) and
constrained the model to use low-dimensional representations of the transitions between frames. In
all cases, our model significantly outperformed other baseline models (cf. Table 1) and produced
velocities that were closely aligned with the true velocity distributions. Remarkably, for even one-
dimensional manifolds embedded in high-dimensional spaces (as in our 1D Frequency Modulation
task), existing dimensionality reduction techniques struggle to find a coherent representation for
velocity and produce errors that are two orders of magnitude larger than our model.

We also examine dimensionality reduction through constructing representations of the original data
via integrating the model velocity estimates, Fig. 6. For a sample trajectory through the high-
dimensional states of the 2D Moving Blob environment, our models representation collapses onto a
two-dimensional plane (consistent with the data, since the states can be minimally described through
transitions in R2). PCA of the same set of states fails to capture this low-dimensional description,
with ∼ 24 principal components necessary to capture > 95% of the variance.

3.3 Model outputs allow reuse of grid cells in mapping abstract domains
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Figure 7: Model outputs can be used to generate grid-like firing fields. Our model’s outputs can
be used as input to a synthetic grid cell network across a variety of cognitive domains. We predict a
clear hexagonal-like firing field when traversing these environments, illustrating how the grid cell
circuit is crucial to building these cognitive maps.

We hypothesize that the brain can map abstract cognitive domains to the manifold of grid cell states by
learning low-dimensional velocity representations of the input space. Extracting this low-dimensional
signal allows the brain to reuse continuous attractor dynamics and path integration functionalities to
stably represent and traverse along the manifold of inputs in the mapped domain.
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To verify that the model inferred velocities are faithful enough for accurate path integration, we
construct the tuning curve of a random neuron from a synthetic grid cell module (details of which are
briefly described in SI Sec. C) that is fed these inferred velocities (up to a best-fit linear transformation;
for simplicity we choose our transformation to map to aligned velocities across environments, leading
to orientation-aligned grid tuning curves — this need not hold in experimentally observed tuning
curves) as the path integration inputs. As seen in Fig. 7, our model results in hexagonal tuning
curves in the abstract cognitive domains, consistent with previous work on grid representations [8–
14, 3, 15, 2] (grid firing fields from baseline models explored in SI Sec. A). Through extracting
faithful low-dimensional representations of velocities across abstract domains, the same continuous
attractor-based grid modules can be used across tasks. As a result, if two grid cells fire in an
overlapping (or non-overlapping) way in one mapped domain, they continue to be overlapping (or
non-overlapping) in all other domains. Thus, cell-cell relationships are preserved between grid cells
across abstract domains. This forms a testable hypothesis for future experimentation, that may be
falsified if the brain were to use distinct, independent grid cell modules to organize information from
different modalities, or if grid cells were not prestructured networks that function independently of
the nature of the inputs.

We also note that while each grid cell module is a two-dimensional toroidal manifold, enabling
integration of two-dimensional velocities, the grid cell system consisting of multiple modules can
integrate velocities in higher dimensions[37]. Thus, higher dimensional velocities extracted by our
model (e.g., 3D Stretchy Bird) do not pose a problem for integration by grid cells.

4 Discussion

Our work introduces the first neural network model that can infer velocities within abstract cognitive
domains. This enables circuits like grid cells to encode transitions between high-dimensional sensory
states through low-dimensional path integration, mapping sensory inputs to prestructured states
instead of learning independent representations for each state. Our velocity extraction mechanism
itself requires path-integration (via the ‘loop-closure’ loss), necessitating a grid-cell-like neural model,
highlighting how grid cells form the foundation of mapping abstract spaces.

Future Work. Our research offers new perspectives for neuroscientists on the flexible utilization
of grid cells to organize and map non-spatial domains. Future neuroscience research may test our
hypothesis on the conservation of cell-cell relationships across cognitive domains and identify brain
regions that generate velocity signals, along with their experimental signatures. Future machine
learning research directions include scaling our framework for naturalistic environments, learning
non-Euclidean spaces like family trees, and possibly using our framework to augment existing
cognitive space-mapping models like TEM or CSCG.

Limitations. While our core SSL loss terms (next-state prediction and loop-closure) are biologically
plausible and may align with sensory prediction error and neural integration, the auxiliary losses
(shortcut and isotropy) are less biologically supported. Additionally, we assume velocity vectors
in our latent space commute, which prevents them from directly representing tangent vectors in
non-Euclidean spaces like a sphere. However, non-Euclidean spaces can be represented by embedding
them in a higher-dimensional Euclidean space where velocities commute (e.g., a sphere embedded in
three-dimensional space)[38, 39].

Broader Impact to AI. Our novel SSL framework can be applied for invertible dimensionality
reduction (by virtue of a generative decoder which generates high-dimensional states corresponding to
points in a low-dimensional latent) and manifold learning tasks. Our model significantly outperforms
non-invertible dimensionality reduction baselines on datasets that contain relatively lower-dimensional
transitions (suggesting applications to video data, for example). Our method also naturally lends itself
to manifold alignment-related challenges, which is particularly effective when the data exhibits a
small number of continuous modes of variability. Moreover, with a small number of “gluing” points,
our method allows for building one-to-one correspondences between different domains. Our work
also shows how a fixed integrator circuit can leverage common velocity representations to navigate
between abstract spaces efficiently. For example, in a complex maze where learning action strategies
is costly, our model maps transitions and actions to the grid-cell representational space, enabling
strategies learned in a simpler, topologically similar space to be effectively applied to the complex
domain — a relevant challenge in robotics.
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A Additional experiments

A.1 Additional results across domains

Fig. 8 includes further experiments of our framework across different domains and also compare
them to more baselines. Fig. 9 visualizes the grid firing fields using our model outputs as input to a
synthetic grid cell network and compares them to the same baselines. Our model produces the most
faithful representations of velocity across various domains.

a
Stretchy Bird
(2D)

Stretchy Bird
(3D)

b

Our model PCA Isomap UMAP Autoencoder MCNet

Stretchy Blob
(2D)

c

Figure 8: Continued, comparison to baselines. a. Model inferred velocity space in the 2D Stretchy
Bird environment compared with baselines. b. Model inferred velocity space in the 3D Stretchy Bird
environment compared with baselines. c. Model inferred velocity space in the 2D Stretchy Blob
environment compared with baselines.

Stretchy Bird
(2D)

Stretchy Blob
(2D)

Moving Blobs
(2D)

Frequency
Modulation
(1D)

Our model PCA Isomap UMAP Autoencoder MCNet

Figure 9: Can baseline models produce faithful representations of velocity? We pipe the
outputs of our baselines into the same synthetic grid cell network to observe grid firing rates along a
trajectory. Qualitatively, our model produces the most hexagonal grid firing field in comparison to
other baselines.
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A.2 Decoder implicitly learns boundaries of training data manifold

While the encoder is state-independent and infers a generalized notion of velocity between any two
high-dimensional states within our abstract domains, the decoder is state dependent by construction
as it outputs a predicted state given a state and velocity. We investigate how the decoder performs at
boundaries in the 2D Stretchy Bird environment, as illustrated in Fig. 10. We find that the decoder
implicitly understands the boundaries of the training data’s underlying manifold. That is, once a
velocity produces a bird state that is unseen in the training distribution, i.e. a bird that cannot further
shrink its legs or extend its neck, further transitions in the same direction do not produce any changes
in the predicted state. Thus, the decoder understands the boundaries observed in the training data.

training data 
domain

�xed velocity

time leg length

ne
ck

 le
ng

th

a b

Figure 10: Decoder respects boundaries inferred from the extent of the training data. a. Starting
from a random point in the 2D Stretchy Bird environment, we use the decoder to estimate the state
after applying a velocity v. We then iteratively apply this same velocity v to the generated state
estimate from the previous step, generating a series of states obtained by traversing the environment
while following this fixed velocity. We find that once the neck and leg length have maximally shrunk
to the extent observed in the training data, the decoder arrives at a fixed point. Thus, the decoder
performs state-dependent transformations: after reaching an inferred boundary of the training data,
further velocities along the same direction do not continue to transform the data along that dimension.

B Ablation studies

B.1 Loss Ablations
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Figure 11: Loss Ablation studies. Loss ablation studies in the 2D Moving Blobs environment show
that most of velocity estimation learning process comes from our two critical loss terms, ‘next-state
prediction’ and ‘loop-closure’. Further loss terms refine the solution space. Grid cell firing rates
show that model generated velocities are faithful representations of the true, underlying velocity
distribution.

We ablate our various loss terms in order to identify which losses are critical for faithful velocity
extraction. As seen in Fig. 11 left, if we are interested in extracting some nonlinear low-dimensional
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velocity between states in any abstract domain, the next-step prediction loss is enough (representation
error of 0.134). However, since grid cells are doing path integration through linear addition of
velocity vectors, constraining our latent space to also be a linear function of the true velocity
signals is essential. Thus, to demand that the estimated velocities be linear functions of the ground
truth velocities, we require the loop-closure loss, the addition of which is visualized in Fig. 11
middle (representation error of 0.044). If we require further refinement and guaranteed isotropic
representations of velocities, we include our isotropy and shortcut losses, the addition of which
is visualized in Fig. 11 right (representation error of 0.02). Examining the grid cell tuning curve
within this domain reveals that using only the next-step prediction loss results in non-hexagonal firing
fields. In contrast, incorporating the loop-closure loss results in hexagonal tuning curves, with further
refinement achieved by adding auxiliary losses.

For completeness, we prove that the loop-closure loss exacts a strong linearity constraint on its inputs.

Proof: Let the function e : vt→t+1 → v̂t→t+1 represent the mapping from the true velocity to the
model estimated one. The loop-closure loss, applied on trajectories that form loops, applies the
following constraint: ∑

0≤t≤T−1

vt→t+1 = 0 =⇒
∑

0≤t≤T−1

e(vt→t+1) = 0.

We wish to show that this constraint implies that e must be a linear function over the reals. To show
this, we first prove homogeneity, i.e., e(αv) = αe(v) for all α ∈ R. Then we will prove additivity,
i.e., e(v1 + v2) = e(v1) + e(v2).

1. Homogeneity:

Consider a trajectory where T = 2, such that v0→1 = −v1→2 = v, and hence v0→1 + v1→2 = 0.
Loop-closure implies:

e(v) + e(−v) = 0 (1)
=⇒ −e(v) = e(−v). (2)

This shows that e is an odd function, so e(0) = 0.

Now, consider a trajectory where T = n+ 1 for any n ∈ N:

vt→t+1 =

{
v for 0 ≤ t ≤ n− 1,

−nv for t = n.

Loop-closure implies:

ne(v) + e(−nv) = 0 =⇒ −ne(v) = e(−nv).

Using Eq. 2, we thus obtain
e(nv) = ne(v), ∀n ∈ Z (3)

Thus, e is homogeneous over the integers.

To show that e is homogenous over the rationals, consider the loop with T = 2 given by v0→1 = mv
for m ∈ Z, and v1→2 = −nw for n ∈ Z+ with w = mv

n . The loop-closure condition implies to:

e(mv) + e(−nw) = 0 (4)

=⇒ me(v) = ne
(m
n
v
)

(5)

=⇒ m

n
e(v) = e

(m
n
v
)
. (6)

Thus e(αv) = αe(v) for α ∈ Q. Assuming that e is a continuous function, and since the rationals
are dense in the reals, e(αv) = αe(v) for α ∈ R, i.e., e is homogeneous over the reals.

2. Additivity:

Assume T = 3 with v0→1 = v, v1→2 = w, and v2→3 = −(v + w). Loop-closure implies:

e(v) + e(w) + e(−(v + w)) = 0 (7)
=⇒ e(v) + e(w) = −e(−(v + w)) (8)
=⇒ e(v) + e(w) = e(v + w), (9)
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for all velocity vectors v and w.

Conclusion: Since e is both homogeneous and additive, e is linear over the reals. Thus, the loop-
closure loss constrains the estimated velocities to be a linear function of the true velocities, thereby
inducing a global metric structure in this estimated space.

B.2 Data Ablations

g.t.

a b

Figure 12: Data Ablation studies. a. Data ablation studies in the 2D Stretchy Bird environment show
that training data does not need to consist only of loops. We created a dataset with 50% of trajectories
as loops and 50% as independent random walks. The loop-closure loss applies only on loops while
other loss terms apply on all trajectories. We report a transformation error of 0.035, comparable to
models trained on only closed-loop trajectories. b. The training paradigm we previously employed
asked the model to predict ît+2 given v̂t→t+1 and it+1, assuming that vt+1→t+2 = vt→t+1. This
was done by construction to ensure that image features of it+2 were not memorized in the velocity
latent space. This paradigm is not necessary. We retrain our network on the 2D Moving Blobs task
with trajectories that vary in velocity randomly at each time-step. We predict an estimated v̂t→t+1

from it and it+1, and then predict ît+1 from v̂t→t+1 and it. We report a transformation error of 0.02,
comparable to models trained under our earlier training paradigm.

We conduct two ablation studies on our data generation process.

First, we note that while our models are trained with data consisting of closed-loop trajectories, this
training paradigm is for convenience and not a necessity of our framework. If arbitrary random walks
were selected instead for training samples, self-intersections would automatically lead to loops within
subsequences of the walks. These loops could then be used for the loop-closure loss, with all other
losses applied on all loop and non-loop trajectories. As a simple proof of concept, we generated a
dataset of 2D Stretchy Bird trajectories with 50% of the trajectories as loops and the remainder as
independent random walks. While the next-state prediction, isotropy, and shortcut losses applied
to all trajectories, the loop-closure loss only applied to trajectories that formed loops. Training on
this modified dataset achieves a transformation error of 0.035 (cf. Fig. 12a), comparable to the error
reported in Table 1 (corresponding to models trained on only closed-loop trajectories). In greater
generality, we note that the loop closure loss can also work on trajectories that are “almost loops” –
i.e., a loss whose coefficient scales with how close a trajectory forms a closed loop.

Second, to ensure that our model velocity latent space did not memorize image features, we estimate
a velocity vt→t+1 from it to it+1, and predict an unseen it+2 that is vt→t+2 = vt→t+1 away from
it+1. Fig. 12b shows that this training paradigm is not a necessity. We train on trajectories from the
Moving Blob environment whose velocities vary at each timestep. Training our model to estimate
a velocity vt→t+1 from it to it+1 and predicting it+2 from vt→t+1 from it also results in similar
performance. We obtain a transformation error of 0.02, again comparable to the error reported in
Table 1 (corresponding to models trained under our earlier paradigm).

C Experimental Details

Code All experiments were run on a single NVIDIA Titan RTX GPU. Each experiment
took anywhere from 1-5 hours to train. Code and all experimental runs can be found
here: https://github.com/abhi-iyer/velocity_extraction.
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Dataset construction. Details about our dataset construction can be found in Table 2. Each sample
in the dataset is described as x ∈ RT×frame size, which is a state consisting of two parts where T is the
trajectory length:

• x1 ∈ R T
2×frame size, is a random walk.

• x2, which is a negative permutation of x1 such that the velocities between states satisfy∫ T

0
v(t) dt = 0.

Loss function details. The loss terms, whose specific coefficients are also described in Table 2, are
explicitly written out here:

• Next-state prediction loss. Given two states it and it+1, the next-state prediction loss
minimizes the distance between the predicted state and the true state: min ||it+2 − ît+2||2.

• Loop-Closure Loss. The loop-closure loss ensures that all the predicted velocities in a
given trajectory sum to zero given that the trajectory is a loop: min

∑
0≤t≤T−1 v̂t→t+1 =

min ||
∮
v̂dt||.

• Shortcut Loss. The shortcut loss ensures that the decoder g can generalize given a state and
a velocity. For instance, min ||g(it+2, v̂2→3 + v̂3→4)− ît+4||.

• Isotropy loss. Finally, the isotropy loss induces an isotropy in the inferred velocity space:
min var [ ||v̂t→t+1|| | d(it, it+1) < θ ], where d is a similarity function in the input image
space and θ is some small threshold.

Best-fit linear transform as an error metric. We aim for the estimated velocities V̂ to be a linear
function of the true velocities V . Correspondingly, we first estimate the best-fit linear transformation
T from V̂ to V via a pseudoinverse, T = VV̂†. Then, we compute our error metric as a normalized
mean-squared error between the transformed points and the true distribution: e = ||T V̂−V||2

Nvar{V} . The
presence of outliers, particularly in some of the poorly performing baseline methods, can lead to
particularly poor best-fits T . To alleviate this, we find the transformation T after removing a small
number of outliers in V̂ via the DBSCAN clustering algorithm (any outlier rejection tool will suffice);
however, we report the error e evaluated on the entire dataset including outliers.

Grid cell model. To visualize grid firing fields given inputs from our model, we use an approximation
of a continuous attractor model for a module of grid cells: we simulate patterned activity on a
lattice of neurons as the sum of three plane waves, resulting in a hexagonal pattern of activity. Input
velocities are used to update the state of the activity on the lattice of neurons through updating the
phases of the plane waves, leading to accurate integration of the input velocities.
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Hyperparams Stretchy
Blob (2D)

Stretchy
Bird (2D)

Stretchy
Bird (3D)

Moving
Blobs (2D)

Frequency
Modulation
(1D)

Frame size 16× 16 32× 12 32× 12 16× 16 1× 100
Trajectory
length

81 81 81 81 81

Velocity dis-
tribution

U2(0.05, 0.6) U2(−1.5, 1.5) U3(−1.5, 1.5) U2(−20, 20) U(0.1, 10)

Max velocity
step

0.08 1.5 1.5 1.0 0.05

Optimizer Adam Adam Adam Adam Adam
Learning
Rate

5e-4 5e-4 5e-4 5e-4 5e-4

Epochs
Trained

800 800 800 800 1200

Batch size 256 192 192 256 256
Learnable Pa-
rameters

536e3 622e3 622e3 536e3 544e3

State Predic-
tion Weight

1 1e1 1e1 1 1

Loop-
Closure
Weight

1e1 1e2 1e2 1e1 1e1

Shortcut
Estimation
Weight

1 1e1 1e1 1 1

Isotropy
Weight

1e2 1e2 1e2 1e2 1e2

Isotropy
Threshold

1e-4 6e-3 6e-3 1e-2 1e-4

Training Set
Size

800e3 800e3 800e3 800e3 800e3

Testing Set
Size

200e3 200e3 200e3 200e3 200e3

Table 2: Hyperparameters used for generating the datasets and training the networks.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, the scope of what our paper tries to solve is clearly explained in several
sections. We are clear about what challenges our paper solves and what future challenges
can be solved as a result of this work.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, limitations to this paper, including proposals to address them in future
directions of research, have been explained in the discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Theoretical motivations for one of our SSL loss terms (‘loop-closure’) has
been presented in the Supplementary Section. Assumptions for empirical experiments have
been provided in various sections of the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, all necessary information (code, experimental runs, etc.) has been
provided to reproduce the main results. Please see the Supplementary Material section for
hyperparameters related to model training and dataset generation.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Link to the code, Wandb runs, and hyperparameters have been provided in the
Supplementary Section.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Hyperparams for running the experiments and generating the data we have
used are in the Supplementary Materials section. Experiments are fully reproducible.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Results include a table with mean and std of errors across a variety of experi-
ments. These experiments, as mentioned in the paper, were across 6 random runs that are
seed controlled (and thus fully reproducible).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Discussion about the computer resources used to run these experiments are
discussed in the Supplementary Section.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we have taken into account these ethics considerations. Our work follows
the NeurIPS Code of Ethics fully.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work does not have any immediate societal impact. We build a theoretical
model of how grid cells can be used to map abstract cognitive spaces. Our model does not
interact with any users nor does it collect real-world data.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our models pose no such risks. We do not train large models like LLMs that
do pose risks to its users, nor do we collect real data for training our models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, we implemented baselines described by other papers and have cited them
in our work properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the code for generating the synthetic tasks/datasets that we trained
our models on. This generation process is well documented.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.
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• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper did not crowdsource experiments nor collect nor train on real-world
or human data.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper did not crowdsource experiments nor collect or train on real-world
or human data.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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