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ABSTRACT

Spurious correlations in training data significantly hinder the generalization capa-
bility of machine learning models when faced with distribution shifts in real-world
scenarios. To tackle the problem, numerous debiasing approaches have been pro-
posed and benchmarked on datasets intentionally designed with severe biases.
However, it remains to be asked: 1. Do existing benchmarks really capture biases
in the real world? 2. Can existing debiasing methods handle biases in the real
world? To answer the questions, we revisit biased distributions in existing bench-
marks and real-world datasets, and propose a fine-grained framework for analyzing
dataset bias by disentangling it into the magnitude and prevalence of bias. We
observe and theoretically demonstrate that existing benchmarks poorly represent
real-world biases. We further introduce two novel biased distributions to bridge
this gap, forming a systematic evaluation framework for real-world debiasing. With
the evaluation framework, we focus on the practical setting of debiasing w/o bias
supervision and find existing methods incapable of handling real-world biases.
Through in-depth analysis, we propose a simple yet effective approach that can be
easily applied to existing debiasing methods, named Debias in Destruction (DiD).
Empirical results on real-world datasets in both image and language modalities
demonstrate the superiority of DiD, improving the performance of existing methods
on all types of biases within the proposed evaluation framework.

1 INTRODUCTION

With the rapid development of machine learning, machine learning systems are increasingly deployed
in high-stakes applications such as autonomous driving (Janai et al., 2021) and medical diagnosis
(Ibrahim & Abdulazeez, 2021), where incorrect decisions may cause severe consequences. As a
result, the robustness to distribution shift is crucial in building trustworthy machine learning systems.
One of the major reasons why machine learning models fail to generalize to shifted distributions in
the real world (Koh et al., 2021; Chu et al., 2023; Xue et al., 2023) is because the existence of spurious
correlation in training data (Wiles et al., 2022). Spurious correlation refers to the phenomenon that
two distinct concepts are statistically correlated in the training distribution, yet uncorrelated in the
test distribution for there is no causal relationship between them (Yao et al., 2021; Chu & Li, 2023).
For example, rock wall background may be correlated with the sport climbing in the training data,
but they are not causally related and climbing can be indoors or on ice as well (Lee et al., 2021; Chu
et al., 2021; 2020). Furthermore, such spurious correlations within the data tend to be captured during
training (Nam et al., 2020), resulting in a biased model that fails to generalize to shifted distributions.
In this work, we refer to spurious correlation and bias in datasets interchangeably.

To tackle the problem, various debiasing methods (Bahng et al., 2020; Nam et al., 2020; Kim et al.,
2021; Lee et al., 2021; Kim et al., 2022; Liu et al., 2021; Lim et al., 2023; Zhao et al., 2023) have
been proposed in recent years. And the effectiveness of the methods is benchmarked with synthetic
(Reddy et al., 2021; Nam et al., 2020; Liu et al., 2021) and semi-synthetic (Lee et al., 2021; Nam
et al., 2020; Lim et al., 2023) (referred as ”real-world dataset” in previous works) datasets designed
to be severely biased. However, while these benchmarks are indeed biased, they are rough and lack
thorough consideration of how data is truly biased in the real world. This raises two questions:

1. Do existing benchmarks really capture biases in the real world?
2. Can existing debiasing methods handle biases in the real world?
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To answer the first question, we revisit the biased distribution in existing benchmarks and real-world
datasets, and propose a fine-grained framework for dataset bias analysis. Inspired by the framework
proposed by Wiles et al. (2022), which assumes the data is composed of some set of attributes, we
further claim that analysis of dataset bias should be conducted on the more fine-grained feature
(or value) level rather than attribute level, according to our observation on real-world biases. From
the claim, we further propose our fine-grained framework that disentangles dataset bias into the
magnitude of bias and the prevalence of bias, where the magnitude of bias generally measures how
predictive (or biased) features are on the target task and the prevalence of bias generally measures
how many samples in the data contain any biased feature. With our framework, we observe that the
magnitude and prevalence of real-world biases are both low, in contrast with high magnitude and
high prevalence biases in existing benchmarks. In section 3, we theoretically show that two strong
assumptions are implicitly held by existing high bias prevalence benchmarks, which further validates
our observation that real-world biases are low in bias prevalence.

As for the second question, due to the complexity of real-world biases, debiasing methods should
be capable of handling various types of biased distributions rather than solely on the narrowed
distribution in existing benchmarks. Thus, we introduce two new biased distributions inspired by
real-world applications as a complement to the biased distribution in existing benchmarks, forming
a systematic evaluation framework for real-world debiasing. We focus on debiasing methods w/o
bias supervision(Nam et al., 2020; Lee et al., 2021; Liu et al., 2021; Kim et al., 2022; Lim et al.,
2023; Zhao et al., 2023; Lee et al., 2023), which is more practical as bias feature is expensive to
annotate and sometimes even hard to notice (Li & Xu, 2021). Those methods generally involves a
biased auxiliary model to capture the bias, along with techniques to learn a debiased model with the
captured bias. (See the related work section in Appendix F for details) We refer to such paradigm as
debiasing with biased auxiliary model (DBAM). Our empirical results show that existing methods
fail to handle real-world biases under various biased distributions.

We further conducted an in-depth analysis of the DBAM paradigm and found that the effectiveness
of existing methods is reliant on the high bias prevalence of existing benchmarks and thus fails to
handle real-world datasets with low bias prevalence. Finally, based on our analysis, we introduce a
simple yet effective enhancement to the DBAM paradigm. Experiments on real-world datasets in
both image and language modalities show that our approach significantly boosts the capability of
existing methods in handling real-world biases, improving their performances on both high and low
bias prevalence datasets. To sum up, this work makes the following contributions:

• Fine-grained analysis and evaluation framework. We propose a fine-grained framework
for analyzing bias in datasets. Based on the framework we further introduce a systematic
evaluation framework inspired by real-world applications for real-world debiasing.

• Theoretical insight. We derived the hidden strong assumptions held by existing benchmarks,
and testify our observation that real-world biases are low in bias prevalence.

• Principled approach. A principled approach is proposed based on our analysis, which can
be easily applied to not only the DBAM paradigm but bias detection methods as well.

• Empirical validation. Extensive empirical results on multiple real-world datasets, distribu-
tions, and modalities not only validate our analysis but also demonstrate the superiority of
the proposed approach.

2 A FINE-GRAINED ANALYSIS ON BIAS IN DATASETS

In this section, we first revisit the biases in existing debiasing benchmarks and biases in the real
world. Then, we propose a new framework for assessing dataset bias. Based on the framework we
show how existing benchmarks fail to represent bias in real-world conditions.

2.1 REVISITING SPURIOUS CORRELATION IN DATASETS

Bias in existing benchmarks. In the area of spurious correlation debiasing, multiple synthetic
(Reddy et al., 2021; Nam et al., 2020; Liu et al., 2021) and semi-synthetic datasets (Lee et al., 2021;
Nam et al., 2020; Lim et al., 2023) have been adopted to benchmark the effectiveness of the debiasing
methods. Generally, those synthetic datasets first select a target attribute as the learning objective (Liu
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(a) BFFHQ (b) MS COCO (c) BAR (d) COMPAS

Figure 1: Visualization of the joint distribution for datasets, where the y-axis is the target attribute
and the x-axis is the spurious attribute. Figure 1(a) and 1(c) visualise the distribution of existing
benchmarks. Figure 1(b) and 1(d) visualize the distribution of real-world datasets. The biased
distributions of existing benchmarks and real-world datasets are not alike.

et al., 2021), e.g. object, and another spurious attribute that could potentially cause the learned model
to be biased, e.g. background. Then, certain sub-groups jointly defined by the target and spurious
attributes, e.g. water birds with water background, are emphasized, i.e. synthesized or sampled from
real-world datasets with much higher probability (usually above 95%) than the others in the biased
dataset construction process, causing the corresponding spurious feature and target feature to be
spuriously correlated, e.g. water background correlated with water bird (Liu et al., 2021). Specifically,
one such dominating subgroup is selected for every possible value of the spurious attribute, forming a
”diagonal distribution”, as shown in Figure 1(a) and 1(c). However, it is critical to examine whether
this pattern truly aligns with the complexities of real-world biases.

Bias in the real world. We further investigated biases from the real world. COCO (Lin et al., 2015)
dataset is a large-scale dataset collected from the internet and widely used in various vision tasks.
COCO has been found to contain gender bias in web corpora (Tang et al., 2021), one of which is the
spurious correlation between males and skateboards. The joint distribution of gender and Skateboard
in COCO is plotted in Figure 1(b). COMPAS (Mattu) dataset consists of the results of a commercial
algorithm called COMPAS, used to assess a convicted criminal’s likelihood of reoffending. COMPAS
dataset is widely known for its bias against African Americans and is widely used in the research of
machine learning fairness (Goel et al., 2018; Hort et al., 2021; Li & Liu, 2022; Guo et al., 2023). The
joint distribution of Race and Risk Level in the COMPAS dataset is plotted in Figure 1(d). Note that
although COMPAS is a tabular dataset, it genuinely reflects the biased distribution in the real world. It
is quite obvious that the distribution of biases in existing benchmarks and real-world datasets diverges.
Additonally, CelebA (Liu et al., 2015) is another real-world image dataset. CivilComments-WILDS
(CCW) (Koh et al., 2021) and MultiNLI (Williams et al., 2018) are also real-world datasets in the
NLP domain. More visualizations of these additional datasets are shown in Appendix A. In the
following subsection, we will further discuss how to measure their differences.

2.2 PREVIOUS MEASURES OF SPURIOUS CORRELATION

We first revisit measures of spurious correlation in previous works, then point out their insufficiency.

Background. We assume a joint distribution of attributes y1, y2, ..., yK with yk ∈ Ak where Ak is
a finite set. One of these K attributes is the target of learning, denoted as yt, and a spurious attribute
ys with t ̸= s. The definition of spurious correlation or the measure of bias magnitude is rather vague
or flawed in previous works. We summarize the measures in previous works into three categories.

Target attribute conditioned probability. Previous works (Wang & Russakovsky, 2023; Reddy
et al., 2021) measure spurious correlation according to the probability of a biased feature as within the
correlated class at: Corrtcp = P (ys = as|yt = at). A higher value indicates a strong correlation.

Spurious attribute conditioned probability. Some (Tang et al., 2021; Lee et al., 2021; Yenamandra
et al., 2023; Hermann et al., 2024) measure spurious correlation according to the probability of the
correlated class at within samples with biased feature as: Corrscp = P (yt = at|ys = as). A higher
value of the measure indicates a strong correlation.
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Spurious attribute conditioned entropy. Nam et al. (2020) defined an entropy-based measure
of bias. They use conditional entropy to measure how skewed the conditioned distribution is:
Corrsce = H(yt|ys), where H is entropy. Values close to 0 indicate a strong correlation. This is an
attribute-level measure, yet it is based on information theory.

We then point out the following requirements a proper measure of spurious correlation should satisfy.

Spurious correlation should be measured at the feature level. As shown in Figure 1(a) and 1(c), the
predictivity of every value in the spurious attribute is similar in existing benchmarks. However, this
is not the case for real-world datasets, where it is clear that the predictivity of values in the spurious
attribute varies greatly, as shown in Figure 1(b) and 1(d). Therefore, to deal with real-world biases,
analysis of bias should be conducted on a more fine-grained value level, i.e. feature level, rather
than attribute level in previous works (Nam et al., 2020). Note that though Corrtcp and Corrscp are
defined at the feature level, it is assumed by previous works (Lee et al., 2021; Reddy et al., 2021;
Hermann et al., 2024) that it is consistent cross features in spurious attribute during benchmark
construction, i.e. viewed as an attribute level measure.

The spurious attribute rather than the target attribute should be given as a condition. It is well
recognized that the spurious attribute should be easier than the target attribute for the model to learn
(Nam et al., 2020; Hermann et al., 2024). Thus the spurious attribute should be more available to
the model when learning its decision rules (Hermann et al., 2024) and given as a condition when we
define spurious correlation.

The marginal distribution of the target attribute should be accounted for. In Corrtcp and Corrscp
measure of spurious correlation, the marginal distribution of the target attribute is not taken into
account. This is inaccurate for even if the spurious and the target attribute are statistically independent,
the value of Corrtcp and Corrscp could be high if the marginal distribution of spurious and target
attribute is highly skewed, e.g. long-tail distributed (Zhang et al., 2021; 2023b).

Diverge rather than predictivity should be used. While Corrsce satisfies the above requirements, it
measures the entropy difference between the conditional and marginal distribution of the target at-
tribute, i.e. the predictivity difference. This is still inaccurate for when the entropy of the distributions
is the same, the conditional distribution could still be highly diverged from the marginal distribution,
thus highly correlated with the spurious attribute. However, using divergence of the distributions
accurately measures how the given condition affects the distribution shift of the target attribute.

2.3 THE PROPOSED ANALYSIS FRAMEWORK

Given the above requirements that need to be satisfied when measuring spurious correlations, we first
propose the following feature-level measure, i.e. bias magnitude.

Bias Magnitude: spurious attribute conditioned divergence. We propose a feature-level measure
of spurious correlation that measures the KL divergence between the conditional and marginal
distribution of the target attribute:

ρ∗a = Corrscd = KL(P (yt), P (yt|ys = a)) (1)

where a is the biased feature (or value) in the spurious attribute. The proposed measure satisfies all
the requirements above. The above measure only describes the bias of a given feature in the dataset,
i.e. feature-level bias. To further describe the bias level of a dataset, i.e. dataset or attribute level bias,
we further define the prevalence of bias.

Bias Prevalence. Consider a set of biased features whose magnitude of the bias is above a certain
threshold θ, i.e. B = {a|ρ∗a > θ}. We define the dataset-level bias by taking not only the number but
also the prevalence of the biased features:

Prv =
∑
a∈B

P (ys = a) (2)

Here, we further claim and define the existence of Bias-Neutral (BN) samples, referring to samples
that do not hold any biased feature defined in B. Bias-Neutral sample is a complement to the
previous categorization of samples into Bias-Align (BA) and Bias-Conflict (BC) samples, which is
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only accurate when all samples in the dataset contain a certain biased feature, assumed by existing
synthetic benchmarks (Nam et al., 2020; Liu et al., 2021; Lee et al., 2021; Lim et al., 2023). We
elaborate on the categorization of samples in Appendix D.

2.4 OBSERVATION ON REAL-WORLD BIASES
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Figure 2: With our analysis
framework, we can see that the
bias magnitude and prevalence
of real-world datasets are signif-
icantly smaller than that of exist-
ing benchmarks.

Given the dataset assessing framework proposed above, we are
now able to analyze how are dataset biases in existing benchmarks
different from that in the real world.

The magnitude of biases in real-world datasets is low. As
shown in Figure 2(a), the magnitude of biases in real-world
datasets is significantly lower than that in existing benchmarks,
consistent across various modalities. It is surprising to see how
low the magnitude of biases in the real-world dataset is, yet still
captured by models (Li & Liu, 2022).

The prevalence of bias in real-world datasets is low. As shown
in Figure 2(b), the bias prevalence of real-world datasets is also
lower than that in existing benchmarks across all thresholds. Con-
sidering the bias magnitude of real-world datasets is generally
low, it seems fair to set the threshold sufficiently low when cal-
culating the bias prevalence of existing datasets. However, even
if we set the threshold to 0.1, the bias prevalence of COCO (Lin
et al., 2015) and COMPAS (Mattu) dataset, i.e. 0.08 and 0.15
respectively, are still significantly lower than that of the exist-
ing benchmarks, i.e. 1. In section 3, we further theoretically
show that the above observation is not a mere exception but a
manifestation of underlying principles with broader implications.

2.5 SYSTEMATIC EVALUATION FRAMEWORK FOR REAL-WORLD DEBIASING

Based on our analysis, we further introduce two novel bias distributions inspired from real-world
applications. Together with high magnitude high prevalence (HMHP) distribution in existing bench-
marks (Nam et al., 2020; Liu et al., 2021; Lee et al., 2021; Lim et al., 2023), we form a systematic
evaluation framework for real-world debiasing.

Low Magnitude Low Prevalence (LMLP) Bias. Inspired by the distribution of the COMPAS
(Mattu) dataset shown in Figure 2(a), bias in the real world might be low in both magnitude and
prevalence. To take it even further, we should not even assume the dataset is biased at all when
applying debiasing methods, because we usually lack such information in practice. Thus, unbiased
data distribution can be considered as a special case of the distribution.

High Magnitude Low Prevalence (HMLP) Bias. As shown in Figure 2, the COCO (Lin et al.,
2015) dataset may contain features with relatively high bias magnitude, yet low bias prevalence in
the dataset due to the sparsity of the biased feature, i.e. low feature prevalence.

Note that datasets with low magnitude high prevalence (LMHP) bias do not exist due to the fact that
high bias magnitude is the premise of high bias prevalence. Also, the bias distributions proposed are
applicable to existing synthetic and semi-synthetic datasets mentioned in section 2. More details on
how biased distributions are defined and how to synthesize datasets with given distributions can be
found in Appendix B. In section 5, We further examine existing methods and our proposed method
under real-world biases with the evaluation framework.

3 THEORETICAL ANALYSIS

In this section, we theoretically show that the high bias prevalence (HP) distribution requires two
strong assumptions implicitly held by existing benchmarks. Furthermore, the invalidity of the
assumptions in real-world scenarios results in low bias prevalence (LP) distributions.
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Data distribution. Consider a classification task on binary target attribute yt ∼ {−1,+1} and a
binary spurious attribute ys ∼ {−1,+1}. Let the marginal distribution of the target and spurious
attribute be pt+ = P (yt = +1) and ps+ = P (ys = +1). Then the joint distribution between yt and
ys can be defined according to the conditional distribution of yt given ys = +1, i.e. τ+ = P (yt =
+1|ys = +1). We assume that feature ys = +1 and ys = −1 is correlated yt = +1 and yt = −1
respectively, i.e. τ+ > pt+, in the following analysis.

Definition 1 (Simplified Magnitude of Bias). For the simplicity of theoretical analysis, we propose
a simplified version of bias magnitude defined in section 1. Instead of using KL divergence as the
measure of distance, we use total variation distance as a proxy for the sake of simplicity:

ρ+ = τ+ − pt+, ρ− = τ− − pt− (3)

The simplification is consistent for it satisfies all the conditions proposed in section 2.

Definition 2 (Biased Feature). We consider a feature ys = a biased if the ratio of its bias magnitude
ρa to its theoretical maximum ρmax

a = 1− pta is above certain threshold 0 ≤ θ ≤ 1:

ϕa =
ρa

ρmax
a

> θ

Definition 3 (High Bias Prevalence Distribution). We consider distribution as a high bias prevalence
distribution only if both of the features in the spurious attribute are biased, i.e. ϕ+ > θ, ϕ− > θ.

Note that the definitions above are adjusted and different from those defined in section 2.3 for
the simplicity of the analysis. We then propose the two assumptions implied by high prevalence
distributions, whose proof can be found in Appendix C.

Proposition 1 (High bias prevalence distribution assumes matched marginal distributions). Assume
feature ys = +1 is biased. The high bias prevalence distribution, i.e. feature ys = −1 is biased as
well, implying that the marginal distribution of yt and ys is matched, i.e. pt+ = ps+. Specifically, as θ
approaches to 1, the marginal distribution of ys approaches to that of yt, i.e. limθ→1p

s
+ = pt+.

Proposition 2 (High bias prevalence distribution further assumes uniform marginal distributions even
if they are matched). Given that the marginal distribution of ys and yt are matched and not uniform,
i.e. p = ps+ = pt+ < 0.5. The bias magnitude of sparse feature, i.e. ρ∗+, is monotone decreasing at p,
with limp→0+ ρ∗+ = −log(1 − ϕ+).The bias magnitude of the dense feature, i.e. ρ∗−, is monotone
increasing at p, with limp→0+ ρ∗− = 0.

Remark 1. Proposition 2 reveals the fact that as the distribution of attributes becomes increasingly
skewed, i.e. p approaches 0, the magnitude of bias for features diverges, the magnitude of sparse
increases while the magnitude of dense bias approaches 0. This results in biased sparse features and
unbiased dense features, resulting in LP distributions.

4 METHODOLOGY

In this section, we dive into how real-world biases would raise a challenge to existing debiasing
methods. Specifically, we first set up the debiasing with biased auxiliary model (DBAM) paradigm
that existing methods generally adopt in section 4.1. Then we claim the insufficiency of existing
DBAM paradigm when facing real-world biases in section 4.2. Finally, aiming at the insufficiency,
we proposed our approach in section 4.3.

4.1 DEBIASING WITH BIASED AUXILIARY MODEL

In recent years, research in the field of debiasing has been more focused on the practical setting of
debiasing w/o bias supervision (Nam et al., 2020; Lee et al., 2021; Kim et al., 2022; Lim et al., 2023;
Zhao et al., 2023; Lee et al., 2023). Though different in technical details, they generally adopt a
biased auxiliary model to capture the bias, followed by techniques to learn a debiased model with the
captured bias. The bias capture process is based on the assumption that the spurious attributes are
easier and learned more preferentially than the target attribute, thus a variant version of cross entropy
(CE) that emphasizes easier samples has been widely adopted, i.e. generalized cross entropy (GCE)
(Zhang & Sabuncu, 2018), to train a biased auxiliary model Mb. To utilize Mb for debiasing, sample
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Figure 3: The bias capture process of biased models on LP and HP datasets. Assuming the red
background is spuriously correlated with digit 6, and only the major learning of the biased models is
illustrated with arrows. DiD eliminates the undesired learning of BN samples on the LP dataset in
Figure 3(a) by destroying the target feature, as shown in Figure 3(b).

re-weighing schemes have been a major approach to train the debiased model Md, one common
implementation of which is loss-based re-weighing W (x) (Nam et al., 2020):

W (x) =
CE(Mb(x), y)

CE(Md(x), y) + CE(Mb(x), y)
(4)

where (x, y) are samples from the training data and CE(·, ·) is the cross entropy loss. We note that
while the above design is widely adopted in many debiasing methods, we do not limit the scope
of DBAM to only methods that adopt the design of GCE and W (x), but rather more generally as
we name it: Debiasing methods that adopt a biased auxiliary model for debiasing, including other
variants such as JTT (Liu et al., 2021) and B2T (Kim et al., 2024).

4.2 RELIANCE OF DBAM METHODS ON HIGH BIAS PREVALENCE

We claim that the bias capture module of the DBAM paradigm relies on the high bias magnitude
of existing benchmarks, which causes failure in real-world debiasing. It is assumed by the DBAM
paradigm that the biased model Mb predicts according to the bias within the training data, giving high
loss to BC samples and low loss to BA samples (Nam et al., 2020; Lee et al., 2021; Kim et al., 2022;
Lim et al., 2023; Zhao et al., 2023; Lee et al., 2023). Existing works attribute this loss difference
to the fact that spurious attributes are easier (Nam et al., 2020; Lim et al., 2023), i.e. learned more
preferentially by models, making BA the easy sample. While such a claim is true, we claim that the
dominance of BA samples in the HP datasets is another vital causing factor of the loss difference, for
dominant/major samples are learned more frequently than others, as shown in Figure 3(a).

However, on LP datasets, while BA samples are still easier to learn due to the biased feature, the
dominant/major samples in the training data are no longer BA samples, but rather BN samples. This
not only results in the loss difference between BA and BC samples decreasing but also causes low
loss on BN samples, as shown in Figure 3(a). According to sample weighing scheme 4, such low loss
on BN samples further leads to low weights for BN samples when training the debiased model, which
is unintended because BN samples carry an abundant amount of knowledge concerning the target
attribute without the interference of the spurious features. The overlooking of BN samples results in
server utility degradation when DBAM methods are applied to LP datasets. We further empirically
testify our claim in section 5.

4.3 BIAS CAPTURE WITH FEATURE DESTRUCTION

Based on our analysis in section 4.2, we introduce a minor yet effective enhancement to the bias
capture module in the existing DBAM framework. We name the refined framework as Debias in
Destruction (DiD). As shown in Figure 3(b), the problem with the existing bias capture method comes
from the side branch learning on BN samples of the biased auxiliary model, which not only captures
the bias but also learns the target feature. This is undesired for this further causes the overlooking of
BN samples when training the debiased model, as discussed in section 4.2.

To prune the side branch learning of the target features, it is intuitive to destroy the target feature
and make them unlearnable when training the biased model, as shown in Figure 3(b). Such action is
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practical because the target features we intend to learn are usually clear, and no information on the
biased feature is required. Specifically, we can achieve this by applying target feature destructive data
transformation when training the biased model:

Lossb = GCE(Mb(Tfd(x)), y)

where Tfd(·) is the feature destruction transformation. As an example, in visual recognition tasks,
the shape of objects is a basic element of human visual perception (Geirhos et al., 2019). Therefore,
the patch-shuffle destruction of shape (Lee et al., 2024) when capturing bias from visual recognition
datasets is a feasible approach. As for NLP tasks, we adopt a word shuffling approach which we will
elaborate on in Appendix D.5.

5 EXPERIMENTS

In this section, with the systematic evaluation framework proposed in section 2.5, we design our
experiments to answer the following questions: 1) How do existing DBAM methods and DiD perform
on real-world biases? 2) Does DiD really emphasize BN samples as we intend? 3) How do debiasing
methods perform on unbiased datasets? 4) How do the magnitude and prevalence of bias in datasets
affect debiasing? 5) How sensitive is DiD to the hyper-parameters? (see Appendix E.2) 6) Is DiD
effective on bias detection tasks as well? (see Appendix E.3) More analytical results in Appendix E.

5.1 EXPERIMENTAL SETTINGS

Metrics. Following previous works (Nam et al., 2020; Lee et al., 2021; 2023), we adopt the
accuracy of BC samples (BC), the average accuracy on the balanced test set (Avg), and the worst
group accuracy (Worst Acc.) as the evaluation metrics. We note that DiD is not a self-contained
method but rather a plug-in module for existing debiasing methods to improve from their original
performances. Thus, the effectiveness of DiD should be measured as the performance gain from the
base method for debiasing.

Datasets. We adopt 8 datasets in various modalities for evaluation. Specifically, we adopt the basic
setting of Colored MNIST (Reddy et al., 2021) and Corrupted CIFAR10 (Nam et al., 2020) to
implement the distributions within the proposed systematic evaluation framework. We also evaluated
our method on more existing synthetic benchmarks who is more complex in terms of the target and
spurious feature: BAR (Nam et al., 2020), NICO (Kim et al., 2022), and WaterBirds (Sagawa*
et al., 2020). We also adopt 2 real-world NLP datasets MultiNLI (Williams et al., 2018) and
CivilComments-WILDS (Koh et al., 2021), and 1 real-world image dataset CelebA (Liu et al.,
2015).

Baselines. We adopt 7 baselines, covering classic and recently proposed DBAM methods. ERM
directly applies standard training on the biased datasets. LfF (Nam et al., 2020) is the first work in
the DBAM paradigm. DisEnt (Lee et al., 2021) disentangles bias and intrinsic features and applies
feature augmentation when training the debiased model. BE LfF and BE DisEnt were recently
proposed by Lee et al. (2023), and is based on LfF and DisEnt, respectively. JTT (Liu et al., 2021) is
a classic DBAM method adapted to both the image and NLP domain. Group DRO (Sagawa* et al.,
2020) is a classic debiasing method with bias supervision used as an upper bound. Detailed settings
can be found in Appendix D.

5.2 MAIN RESULTS

Evaluation on various bias distributions. As shown in Table 1, while performing decently on
HMHP distributed datasets, existing methods (Nam et al., 2020; Lee et al., 2021; 2023) fail to handle
both LMLP and HMLP biases. Generally, for existing methods, the accuracy of BC samples and the
average accuracy on the balanced test set is lower than the ERM baseline. This indicates the failure of
exiting DBAM paradigm on the task of debiasing with low bias prevalence datasets, sacrificing utility,
i.e. average accuracy, without improving worst group performance, i.e. BC accuracy. We further
tested the effectiveness of DiD by combining DiD with existing DBAM methods (Nam et al., 2020;
Lee et al., 2021; 2023). As shown in Table 1, when combined with DiD, the BC and average accuracy
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both improve on existing HMHP benchmarks. On LMLP and HMLP datasets, the superiority of DiD
is even more prominent, where BC and average accuracy both improve significantly, achieving an
average of +16.6 and +11.7 for LfF and DisEnt respectively.

Table 1: The performance of our approach is presented in absolute accuracy increase of existing
methods. Results show that existing DBAM methods perform poorly on LP distributions, yet our
method effectively boosts the performance of existing methods across all types of biases.

Colored MNIST Corrupted CIFAR10

LMLP HMLP HMHP LMLP HMLP HMHP

Algorithm BC Avg BC Avg BC Avg BC Avg BC Avg BC Avg

ERM 91.1 91.7 85.2 89.8 48.5 53.4 62.5 64.3 55.9 65.1 29.4 35.4

LfF 68.4 69.7 58.0 63.3 65.6 64.6 55.0 55.4 47.7 54.1 35.3 39.0
+ Ours +22.6 +21.4 +32.6 +25.8 +1.3 +3.4 +7.0 +7.3 +7.1 +8.9 +1.8 +2.5
DisEnt 73.9 74.9 66.5 72.2 68.3 67.4 55.5 56.1 52.5 54.5 36.0 39.5
+ Ours +17.2 +16.5 +22.0 +16.8 +0.8 +3.1 +5.4 +5.9 +2.8 +7.1 +3.0 +3.3
BE LfF 83.6 83.5 80.0 82.3 66.9 67.6 52.1 54.0 51.0 54.0 31.5 36.6
+ Ours +5.7 +6.1 +9.1 +4.9 -0.5 +0.7 +1.1 +0.2 -0.8 +0.1 +1.4 +0.8
BE DisEnt 81.1 81.0 77.6 80.2 67.5 68.5 56.6 57.2 49.1 56.3 34.2 38.6
+ Ours +8.7 +9.0 +11.7 +5.5 +2.0 +2.5 +4.3 +4.2 +4.9 +5.1 +3.5 +3.2

Table 2: Our approach consistently demonstrated the effectiveness on real-world datasets in both
image and language modality. Group DRO is a supervised debiasing method, acting as an upper
bound for worst-group accuracy.

Bias
supervision?

MultiNLI CivilComments-WILDS CelebA

Avg Worst Acc. Avg Worst Acc. Avg Worst Acc.

ERM No 80.1 76.41 92.06 50.87 95.75 45.56

JTT No 80.51 73.02 91.25 59.49 80.49 73.13
+Ours No +1.06 +2.71 +0.38 +6.41 +6.43 +8.50
Group DRO Yes 82.11 78.67 83.92 80.20 91.96 91.49

Evaluation on complex visual features. As shown in Table 3, our approach is not merely effective
under the setting of Colored MNIST and Corrupted CIFAR10, but rather consistently demonstrating
its superiority on datasets with more complex sets of target and spurious features. This shows the
adaptability of DiD to more sophisticated visual data. Refer to Appendix D.2 for the metrics used.

Evaluation on real-world datasets in various modalities. We choose JTT as the baseline for this
part of the experiment for it is a classic method adopted to both the image and NLP domain. As
shown in Table 2, our approach is consistently effective on real-world datasets in various modalities,
further demonstrating its generalizability.

5.3 ANALYSIS

Emphasis on BN samples. We further validate our method by tracking the weights of samples
to see if they match the purpose of our design. Figure 4(a) and 4(b) plots the average weights of
all kinds of samples on HMLP distributed Colored MNIST dataset, which shows that the failure of
existing methods is indeed caused by the overlooking of BN samples when training the debiased
model Md, as claimed in section 4.2. Figure 4(c) and 4(d) track the sample weight of BN samples
when training LfF on HMLP distribution. As we can see, our proposed approach significantly raise
the weights of the BN sample, which further demonstrates the effectiveness of our design.

Debias on unbiased datasets. As we do not know how biased or is the training data biased at all in
real-world scenarios, it is important to evaluate the performance of debiasing methods on unbiased

9
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Figure 4: Figure 4(a) and 4(b) support our claim in section 4 that existing DBAM methods tend to
overlook BN samples when training on LP distributions. Figure 4(a) and 4(b) show that our approach
effectively emphasizes BN samples by raising its weights.
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Figure 5: The performance of debiasing methods under various bias magnitudes and prevalence.

training data to ensure that they do not cause severe performance degradation, if not improving the
performance. As shown in Table 4, existing DBAM methods perform poorly on unbiased training
data, causing severe performance degradation, yet our approach greatly boosts their performances.

Effect of bias magnitude and prevalence in debiasing. As shown in Figure 5, we use the
correlation Corrscp defined in section 2 as a proxy for the bias magnitude and vary it from low
to high. With the increase of the bias magnitude, the performance of LfF first increases as the
data become biased, and then decreases as the bias magnitude becomes extremely high, while DiD
consistently improves the performance. As shown in 5, we vary the prevalence of bias by controlling
the number of biased features, which can also be viewed as an interpolation between HMLP and
HMHP distribution. With the increase of the bias prevalence, the performance of LfF generally
keeps increasing for its reliance on high prevalence as discussed in section 4, while DiD consistently
improves the performance. Those experiments are conducted on Colored MNIST dataset.

Table 3: Results on 3 datasets with more complex
and realistic sets of features further show the
effectiveness of our approach.

Algorithm BAR NICO WaterBirds

ERM 35.32 ±0.27 42.61 ±0.33 56.53 ±0.27

LfF 37.73 ±1.00 51.69 ±3.06 50.02 ±0.00

+ Ours +3.34 ±1.69 +2.80 ±3.10 +4.47 ±0.13

DisEnt 59.11 ±1.75 39.73 ±0.58 56.75 ±4.19

+ Ours +3.92 ±0.62 +16.55 ±1.29 +11.29 ±0.69

BE LfF 38.40 ±0.65 44.09 ±1.95 52.98 ±0.28

+ Ours +1.08 ±1.67 +8.23 ±1.49 +1.92 ±0.12

BE DisEnt 62.74 ±1.23 39.58 ±0.91 53.85 ±2.14

+ Ours +0.70 ±1.20 +13.50 ±1.62 +1.99 ±3.65

Table 4: Existing DBAM methods perform
poorly on unbiased training data, while DiD
greatly boosts the performance.

Algorithm Colored MNIST Corrupted CIFAR10

ERM 94.14 ± 0.21 67.91 ± 0.13

LfF 70.19 ± 1.50 52.04 ± 2.14

+ Ours 93.18 ± 0.26 57.29 ± 0.22

DisEnt 75.24 ± 3.40 58.50 ± 0.20

+ Ours 92.24 ± 0.44 64.58 ± 0.02

BE LfF 84.14 ± 0.61 55.64 ± 0.66

+ Ours 90.02 ± 0.54 56.28 ± 0.45

BE DisEnt 80.66 ± 0.90 58.57 ± 0.12

+ Ours 89.10 ± 1.28 62.97 ± 0.16

6 CONCLUSIONS AND DISCUSSION

In this work, we emphasize the importance of debias within the real world. To tackle real-world
biases, we first proposed a fine-grained analysis framework to analyze dataset biases, based on
which we further proposed a systematic evaluation framework for benchmarking debiasing methods
under real-world biases. According to our result, we identified the insufficiency of existing methods
and proposed a new approach to resolve it. Our experiments demonstrate the effectiveness of our
approach. In Appendix G, we further discuss the limitations and future directions of this work.
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A MORE VISUALIZATIONS OF BIASED DISTRIBUTIONS

We plot the biased distributions of more existing benchmarks as follows:

WaterBirds. WaterBirds Liu et al. (2021) is a synthetic dataset with the task of classify images of
birds as ”waterbird” and ”landbird”, which is adopted as a benchmark for debiasing methods. The
label of WaterBirds is spuriously correlated with the image background, i.e. Place attribute, which is
either ”land” or ”water”. The joint distribution between the Place and Bird attribute of the WaterBirds
dataset is plotted in Figure 6a.

Additional visualization of the biased distribution within real-world datasets is also plotted as follows:

CelebA. CelebA Liu et al. (2015) is a dataset for face recognition where each sample is labeled
with 40 attributes, which has been adopted as a benchmark for debiasing methods. Following the
experiment configuration suggested by Nam et al. [32], we focus on HeavyMakeup attributes that are
spuriously correlated with Gender attributes, i.e., most of the CelebA images with heavy makeup
are women. As a result, the biased model suffers from performance degradation when predicting
males with heavy makeup and females without heavy makeup. Therefore, we use Heavy Makeup
as the target attribute and Male as a spurious attribute. The joint distribution between the Male
and Heavy Makeup attribute of the CelebA dataset is plotted in Figure 6b. It is clear that the
biased distribution of CelebbA aligns with that in other existing benchmarks, forming a ”diagonal
distribution”.

Adult. The Adult Becker & Kohavi (1996) dataset, also known as the ”Census Income” dataset,
is widely used for tasks such as income prediction and fairness analysis. Each sample is labeled
with demographic and income-related attributes. The dataset has been adopted as a benchmark for
debiasing methods, particularly focusing on the correlation between race and income. The joint
distribution between Race and Income attributes of the Adult dataset is plotted in Figure 6c. It is clear
that the biased distribution of Adult does not align with that of other existing benchmarks.

German. The German Hofmann (1994) dataset, also known as the ”German Credit” dataset, is
commonly used for credit risk analysis and fairness studies. Each sample is labeled with various
attributes related to creditworthiness. The dataset serves as a benchmark for debiasing methods,
emphasizing the correlation between age and creditworthiness. The joint distribution between Age
and Creditworthiness attributes of the German dataset is plotted in Figure 6d. It is clear that the
biased distribution of German does not align with that of other existing benchmarks.

The description of MultiNLI and CivilComments-WILDS can be found in Appendix E.

B FINE-GRAINED EVALUATION FRAMEWORK

In this section, we elaborate on the proposed evaluation framework by mathematically and visually
demonstrating the biased distribution within the biased distribution.

Assume a set of biased features asi ∈ B whose correlated class in the target attribute is defined by
a function g : ys → yt, which is an injection from the spurious to the target attribute. The bias
magnitude of each biased feature is controlled by corri = P (yt = g(asi )|ys = asi ). Then, the
empirical distribution of the biased train distribution satisfies the following equations.

For samples with biased feature asi within B:

P (ys = asi , y
t = at) =

{
P (ys = asi ) ∗ corri if g(asi ) = at,
P (ys=as

i )∗(1−corri)
|yt|−1 otherwise,

For samples without biased features and a set of correlated classes C = {g(asi ) : asi ∈ B}:

P (ys = as, yt = at) =
P (yt = at)−

∑
as
i∈B P (ys = asi , y

t = at)

|ys| − |B|
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Figure 6: Visualization of the joint distribution for datasets, where the y-axis is the target attribute
and the x-axis is the spurious attribute. Figure 6(a) visualize the distribution of existing benchmarks.
Figure 6(b), 6(c), 6(d), 6(e), and 6(f) visualize the distribution of real-world datasets. The biased
distribution of existing benchmarks and real-world datasets is not alike.
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Table 5: Configurations for biased distributions within the proposed evaluation framework

Distribution |yt| |B| corri

LMLP 10 10 0.5
LMLP’ 10 5 0.5
HMLP 10 1 0.98
HMHP 10 10 0.98

Unbiased 10 0 0.1
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Figure 7: Visualization of biased distributions within the proposed evaluation framework under
ten-class classification task. The left, middle, and right plots are visualizations for LMLP, HMLP,
and HMHP distribution respectively.

Following the above equations, we further designed LMLP, HMLP, and HMHP biased distributions
with the configurations in Table 5. The visualizations of the distributions when the target is a ten-class
attribute are in Figure 7.

C THEORETICAL PROOFS

C.1 PRELIMINARY

Consider a classification task on binary target attribute yt ∼ {−1,+1} and a binary spurious attribute
ys ∼ {−1,+1}. Let the marginal distribution of the target and spurious attribute to be pt+ = P (yt =
+1) and ps+ = P (ys = +1). Then the joint distribution between yt and ys can be defined according
to the conditional distribution of yt given ys = +1, i.e. τ+ = P (yt = +1|ys = +1). Specifically,
we can derive the probability of each subgroup in the distribution:

P (ys = +1, yt = +1) = ps+ · τ+, (5)

P (ys = +1, yt = −1) = ps+(1− τ+), (6)

P (ys = +1, yt = −1) = pt+ − ps+ · τ+, (7)

P (ys = −1, yt = −1) = 1− pt+ − ps+(1− τ+) (8)

We assume that feature ys = +1 and ys = −1 is correlated yt = +1 and yt = −1 respectively, i.e.
τ+ > pt+, in the following analysis.

C.2 PROOF OF PROPOSITION 1

Proposition 1 shows that high bias prevalence distribution assumes matched marginal distributions.

Proposition 1. Assume feature ys = +1 is biased. Then high bias prevalence distribution, i.e.
feature ys = −1 is biased as well, implying that the marginal distribution of yt and ys is matched,
i.e. pt+ = ps+. Specifically, as θ approaches to 1, the marginal distribution of ys approaches to that
of yt, i.e. limθ→1p

s
+ = pt+.
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Proof. We first derive the upper and lower bound of the ps+, and then we can prove the proposition
with the squeeze theorem Stewart (2012).

According to the condition that both features in the spurious attribute are biased and the definition of
biased feature in ref, we can have the following inequalities:

ρ+ > θ · ρ+max = θ · (1− pt+), (9)

ρ− > θ · ρ−max = θ · pt+ (10)

where 0 < θ ≤ 1 is the threshold.

We can also derive the simplified bias magnitude of feature ys = −1 based on the conditional
distribution, and find its relationship with ρ+:

ρ− = τ− − pt− (11)

=
1− pt+ − ps+(1− τ+)

1− ps+
− (1− pt+) (12)

=
ps+(τ+ − pt+)

1− ps+
(13)

=
ps+

1− ps+
ρ+ (14)

We can then derive the lower bound of ps+ with the above equation and inequalities:

ps+
1− ps+

(1− pt+) ≥
ps+

1− ps+
ρ+ = ρ− ≥ θ · pt+ (15)

ps+ ≥
θ · pt+

1− pt+ + θ · pt+
≥ θ · pt+ = LB(θ) (16)

We can also derive the following equation and inequalities of τ+ according to its definition.

τ+ =
ps+ · P (ys = +1|yt = +1)

ps+
≤

pt+
ps+

(17)

τ+ = pt+ + ρ+ ≥ θ(1− pt+) + pt+ (18)

Then we can derive the upper bound of ps+:

θ(1− pt+) + pt+ ≤ τ+ ≤
pt+
ps+

(19)

ps+ ≤
pt+

θ(1− pt+) + pt+
= UB(θ) (20)

We then demonstrate the convergence of the LB(θ) and UB(θ) as θ → 1:

lim
θ→1

LB(θ) = lim
θ→1

θ · pt+ = pt+ (21)

lim
θ→1

UB(θ) = lim
θ→1

pt+
θ(1− pt+) + pt+

= pt+ (22)

Finally, we can prove the proposition according to the squeeze theorem Stewart (2012):

LB(θ) ≤ ps+ ≤ UB(θ) (23)

lim
θ→1

ps+ = lim
θ→1

LB(θ) = lim
θ→1

UB(θ) = pt+ (24)
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C.3 PROOF OF PROPOSITION 2

Proposition 2 shows that high bias prevalence distribution implies uniform marginal distributions.

Proposition 2. Given that the marginal distribution of ys and yt are matched and not uniform, i.e.
p = ps+ = pt+ < 0.5. The bias magnitude of sparse feature, i.e. ρ∗+, is monotone decreasing at p,
with limp→0+ ρ∗+ = −log(1 − ϕ+).The bias magnitude of the dense feature, i.e. ρ∗−, is monotone
increasing at p, with limp→0+ ρ∗− = 0.

Proof. Given the distribution proposed in section C.1 and the condition p = ps+ = pt+ < 0.5, we
further use ϕ+ = ρ+

ρmax
+

to express τ :

τ+ = p+ ϕ+(1− p) (25)
τ− = 1− p+ ϕ+ · p (26)

We can then derive the bias magnitude of the sparse feature ys = +1, given p = ps+ = pt+ < 0.5,
and warp it with a function t(p).

ρ∗+ = KL(P (yt), P (yt|ys = +1)) (27)

= p · log( p

τ+
) + (1− p) · log( 1− p

1− τ+
) (28)

= p · log( p

p+ ϕ+(1− p)
) + (1− p) · log( 1− p

1− p− ϕ+(1− p)
) (29)

= p · log( p

p+ ϕ+(1− p)
) + (1− p) · log( 1

1− ϕ+
) (30)

= p · log( p(1− ϕ+)

p+ ϕ+(1− p)
) + log(

1

1− ϕ+
) = t(p) (31)

We further derive the partial derivative of ρ∗+ on p as follows:

∂t(p)

∂p
= p · log( p(1− ϕ+)

p+ ϕ+(1− p)
) + 1− p(1− ϕ+)

p+ ϕ+(1− p)
(32)

Here we apply substitution method to replace p(1−ϕ+)
p+ϕ+(1−p) with x:

∂t(p)

∂p
= f(x) = logx− (x− 1) (33)

0 < x =
p(1− ϕ+)

p+ ϕ+(1− p)
≤ 1 (34)

We then show that f(x) is monotone increasing in the interval 0 < x ≤ 1 and the critical point is at
x = 1.

f ′(x) =
1

x
− 1 ≥ 0 (35)

f(1) = 0 (36)

Thus, we have f(x) < 0 in the interval 0 < x ≤ 1, proving ρ∗+ = t(p) to be monotone decreasing at
p.

∂ρ∗+
∂p

=
∂t(p)

∂p
< 0 (37)

Similarly, we can derive the bias magnitude of the dense feature ys = −1, and see that it is just
t(1− p)

ρ∗− = KL(P (yt), P (yt|ys = −1)) (38)

= (1− p) · log( (1− p)(1− ϕ+)

1− p+ ϕ+ · p
) + log(

1

1− ϕ+
) (39)

= t(1− p) (40)
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As a result, we can prove the monotonicity of ρ∗− with the chain rule.

∂ρ∗−
∂p

=
∂t(1− p)

∂p
(41)

=
∂t(1− p)

∂(1− p)
· ∂(1− p)

∂p
(42)

= −∂t(1− p)

∂(1− p)
(43)

= −∂t(p)

∂p
> 0 (44)

We can then derive the convergence of sparse feature bias magnitude ρ∗+ when p approaches 0 with
L’Hôpital’s Rule Stewart (2012).

lim
p→0+

ρ∗+ = lim
p→0+

t(p) (45)

= lim
p→0+

(p · log( p(1− ϕ+)

p+ ϕ+(1− p)
)) + log(

1

1− ϕ+
) (46)

= lim
p→0+

(p · log(p)) + lim
p→0+

(p · log( 1− ϕ+

p+ ϕ+(1− p)
)) + log(

1

1− ϕ+
) (47)

= lim
p→0+

log(p)
1
p

+ log(
1

1− ϕ+
) (48)

= lim
p→0+

(log(p))′

( 1p )
′ + log(

1

1− ϕ+
) (49)

= lim
p→0+

1
p

− 1
p2

+ log(
1

1− ϕ+
) (50)

= log(
1

1− ϕ+
) (51)

Similarly, we can derive the convergence of dense feature bias magnitude ρ∗− when p approaches to 0.

lim
p→0+

ρ∗− = lim
p→0+

t(1− p) (52)

= lim
p→1−

(p · log( p(1− ϕ+)

p+ ϕ+(1− p)
)) + log(

1

1− ϕ+
) (53)

= log(1− ϕ+) + log(
1

1− ϕ+
) (54)

= 0 (55)

D EXPERIMENT DETAILS

D.1 EVALUATION METRICS

Following previous works Nam et al. (2020); Lee et al. (2021); Kim et al. (2022); Lim et al. (2023);
Zhao et al. (2023); Lee et al. (2023), we use the accuracy of BC samples and the average accuracy on
balanced test set as our main metrics. As a complement, we also present the accuracy of BN and BA
samples when analyzing the performance of methods. Formally, we categorize samples according to
the attributes (ys, yt) and a function g : ys → yt that maps the biased features to its correlated class.

BA = {i|ys[i] ∈ B, yt[i] = g(ys[i])} (56)

BC = {i|ys[i] ∈ B, yt[i] ̸= g(ys[i])} (57)
BN = {i|ys[i] /∈ B} (58)

where ys[i] and yt[i] the attribute value of sample i, and B = {a|ρ∗a > θ} is the set of biased features.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.2 DATASETS

Colored MNIST (Reddy et al., 2021). We construct the Colored MNIST dataset based on the
MNIST Lecun et al. (1998) dataset and set the background color as the bias attribute. Different from
Colored MNIST used in previous work that simply correlates each of the 10 digits with a distinct
color, where the strength of the correlation is controlled by setting the number of bias-aligned samples
to {0.95%, 0.98%, 0.99%, 0.995%}, we proposed a more fine-grained generation process that is
capable of various biased distributions, including LMLP, HMLP, HMHP. See Appendix B for more
details.

Corrupted CIFAR10 (Nam et al., 2020). We construct the Corrupted CIFAR10 dataset based on
the CIFAR10 Krizhevsky (2009) dataset and set the corruption as the bias attribute. Different from
Corrupted CIFAR10 used in previous work that simply correlates each of the 10 objects with a distinct
corruption, where the strength of the correlation is controlled by setting the number of bias-aligned
samples to {0.95%, 0.98%, 0.99%, 0.995%}, we proposed a more fine-grained generation process
that is capable of various biased distributions, including LMLP, HMLP, HMHP. See Appendix B for
more details.

BAR (Nam et al., 2020). Biased Action Recognition (BAR) is a semi-synthetic dataset deliberately
curated to contain spurious correlations between six human action classes and six place attributes.
Following Nam et al. (2020), the ratio of bias-conflicting samples in the training set was set to 5%,
and the test set consisted of only bias-conflicting samples. We report the accuracy of bias-conflicting
samples following Nam et al. (2020).

NICO (Kim et al., 2022) NICO is a real-world dataset for simulating out-of-distribution image
classification scenarios. Following the setting used by Wang et al. (2021), we use a curated animal
subset of NICO that exhibits strong biases (thus still semi-synthetic), which is labeled with 10 object
and 10 context classes for evaluating the debiasing methods. The training set consists of 7 context
classes per object class and they are long-tailed distributed (e.g., dog images are more frequently
coupled with the ‘on grass’ context than any of the other 6 contexts). The validation and test sets
consist of 7 seen context classes and 3 unseen context classes per object class. We verify the ability
of debiasing a model from object-context correlations through evaluation on NICO. We report the
average accuracy on the test set following Kim et al. (2022).

WaterBirds (Sagawa* et al., 2020). The task is to classify images of birds as “waterbird” or
“landbird”, and the label is spuriously correlated with the image background, which is either “land”
or “water”. We report the worst group accuracy following Liu et al. (2021).

MultiNLI (Williams et al., 2018). Given a pair of sentences, the task is to classify whether the
second sentence is entailed by, neutral with, or contradicts the first sentence. We use the spurious
attribute from Sagawa* et al. (2020), which is the presence of negation words in the second sentence;
due to the artifacts from the data collection process, contradiction examples often include negation
words.

CivilComments-WILDS (Koh et al., 2021). The task is to classify whether an online comment
is toxic or non-toxic, and the label is spuriously correlated with mentions of certain demographic
identities (male, female, White, Black, LGBTQ, Muslim, Christian, and other religion). We use
the evaluation metric from Koh et al. (2021), which defines 16 overlapping groups (a, toxic) and (a,
non-toxic) for each of the above 8 demographic identities a, and report the worst-group performance
over these groups.

D.3 BASELINES

LfF (Nam et al., 2020). Learning from Failure (LfF) is a debiasing technique that addresses
the issue of models learning from spurious correlations present in biased datasets. The method
involves training two neural networks: one biased network that amplifies the bias by focusing on
easily learnable spurious correlations, and one debiased network that emphasizes samples the biased
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network misclassifies. This dual-training scheme enables the debiased network to focus on more
meaningful features that generalize better across various datasets.

DisEnt (Lee et al., 2021) . The DisEnt method enhances debiasing by using disentangled feature
augmentation. It identifies intrinsic and spurious attributes within data and generates new samples by
swapping these attributes among the training data. This approach significantly diversifies the training
set with bias-conflicting samples, which are crucial for effective debiasing. By training models with
these augmented samples, DisEnt achieves better generalization and robustness against biases in
various datasets.

BE (Lee et al., 2023). BiasEnsemble (BE) is a recent advancement in debiasing techniques that
emphasizes the importance of amplifying biases to improve the training of debiased models. BE
involves pretraining multiple biased models with different initializations to capture diverse visual
attributes associated with biases. By filtering out bias-conflicting samples using these pre-trained
models, BE constructs a refined bias-amplified dataset for training the biased network. This method
ensures the biased model is highly focused on bias attributes, thereby enhancing the overall debiasing
performance of the subsequent debiased model.

JTT (Liu et al., 2021). JTT is a classic DBAM method that has been applied to both the image
and NLP domains. JTT identifies challenging examples by training an initial model using standard
empirical risk minimization (ERM) and collecting misclassified examples into an error set. The
second stage involves re-training the model while upweighting the error set to prioritize examples that
the first-stage model struggled with. This approach aims to address performance disparities caused
by spurious correlations, leading to better generalization across groups with minimal additional
annotation costs.

Group DRO (Sagawa* et al., 2020). Group DRO is a supervised debiasing method aiming to
improve the worst group accuracy. It is commonly used as an upper bound in the worst group accuracy
for unsupervised methods.

D.4 IMPLEMENTATION DETAILS

Reproducibility. To ensure the statistical robustness and reproducibility of the result in this work,
we repeat each experiment within this work 3 times with consistent random seeds [0, 1, 2]. All results
are the average of the three independent runs.

Architecture. Following Nam et al. (2020); Lee et al. (2021), we use a multi-layer perceptron
(MLP) which consists of three hidden layers for Colored MNIST. For the Corrupted CIFAR10, BAR,
NICO, WaterBirds dataset, we train ResNet18 He et al. (2015) with random initialization. For CelebA
dataset, we train ResNet50 with random initialization, following Liu et al. (2021). For MultiNLI and
CivilComments-WILDS datasets, we use Bert for training, following Liu et al. (2021).

Training hyper-parameters. We set the learning rate as 0.001, batch size as 256, momentum as
0.9, and number of steps as 25000. We used the default values of hyper-parameters reported in the
original papers for the baseline models.

Data augmentation. The image sizes are 28×28 for Colored MNIST and 224×224 for the rest of
the datasets. For Colored MNIST, we do not apply additional data augmentation techniques. For
Corrupted CIFAR10, we apply random crop and horizontal flip transformations. Also, images are
normalized along each channel (3, H, W) with the mean of (0.4914, 0.4822,0.4465) and standard
deviation of (0.2023, 0.1994, 0.2010).

Training device. We conducted all experiments on a workstation with an Intel(R) Xeon(R) Gold
5220R CPU at 2.20GHz, 256 G memory, and 4 NVIDIA GeForce RTX 3090 GPUs. Note that only a
single GPU is used for a single task.
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D.5 DESIGN OF FEATURE DESTRUCTING METHODS

For in visual recognition tasks, the shape of objects is a basic element of human visual perception
(Geirhos et al., 2019). Therefore, the patch-shuffle destruction of shape (Lee et al., 2024) when
capturing bias from visual recognition datasets is a feasible approach. We adopt the patch-shuffle
approach for all the visual dataset within the paper except for CelebA. We apply a gray-scale
transformation for CelebA as its recognition task is hair color. Anyhow, the feature destruction
method could be highly flexible for different tasks.

For NLP tasks, we first introduce the common biases within the NLP domain followed by a simple
design of feature destruction method in the NLP domain. The commonly used NLP datasets for
debiasing are MultiNLI and CivilComments-WILDS dataset. Specifically, the bias within the
MultiNLI dataset is the correlation between the negation words and the entailment task and the bias
within the CivilComments-WILDS dataset is the correlation between words implying demographic
identities and the toxicity task. The target features of both datasets are semantic information of the
sentences where the position of words matters, and the spurious features are the individual words
which is insensitive to positions. Furthermore, such position sensitivity difference between target and
spurious features within NLP biases is not limited to these two datasets but rather quite common. For
example, CLIP has also been found with the ”bag of words” phenomenon (Yuksekgonul et al., 2023),
which ignores the semantic meaning of the inputs and relies on words individually for prediction.
As a result, a straightforward approach for feature destruction is to shuffle the words within the
sentences.

D.6 APPLYING DID TO DBAM METHODS

As aforementioned in the main paper, when applying our method to the existing DBAM methods
Nam et al. (2020); Lee et al. (2021; 2023), we do not modify the training procedure of the debiased
model Md. For both methods, we train the biased model Mb with target feature destroyed data.
This is done by simply adding a feature destructive data transformation during data processing, with
minimal computational overhead.

Note, for BE Lee et al. (2023), such feature destructive data transformation is not applied when
training the bias-conflicting detectors.

E ADDITIONAL EMPIRICAL RESULTS

E.1 DETAILED RESULTS AND EXPLANATIONS OF THE MAIN EXPERIMENTS

The main results in the main paper are presented in the form of performance gain and only contain
results of BC accuracy and average accuracy on the unbiased test set, here we present the results in
their original form, together with error bars, detailed results of accuracies for BA and BN samples of
each dataset as well. Results on the Colored MNIST and Corrupted CIFAR10 datasets can be found
in Table 6 and Table 7, respectively. It shows that combining DiD not only boosts the performance of
existing DBAM methods but also achieves the best performances.

The performance generally varies between different datasets, different types of biased distribution, and
algorithms with and without BiasEnsemble, e.g. between LfF and BE LfF. Firstly, the inconsistency
between datasets is likely to depend on how thoroughly the target feature is destroyed within the
dataset. The target features of Colored MNIST, i.e. digits, are destroyed more completely by patch
shuffling, for shape is the only feature within digits. In comparison, the target feature of Corrupted
CIFAR10 is more complicated (including shape, texture, color, etc.), and thus can not be thoroughly
destroyed by patch shuffling, causing relatively lower performance gain. Secondly, the performance
inconsistency between different biased distributions is due to the reliance of existing DBAM methods
on the high bias prevalence assumption for bias capturing as discussed in section 4.2. Specifically, as
the bias prevalence of the training distribution becomes higher, better bias capture can be achieved by
existing DBAM even without our method, thus making our improvement on the performance less
significant. This conclusion is supported by our experimental results shown in Figure 5. As for the
performance inconsistency between algorithms with and without BiasEnsemble, it is due to the fact
that BiasEnsemble is also a method targeted to enhance the bias capture procedure of the debiasing
framework. As we can see that BiasEnsemble is much more robust to the change in the bias magnitude
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and prevalence from Table 1. In other words, certain overlap between the goals of BiasEnsemble and
our method resulted in smaller improvement of our method on BiasEnsemble-based baselines.

Table 6: Results on Colored MNIST dataset show that combining DiD not only boosts the performance
of existing DBAM methods but also achieves the best performances. The accuracy of BN samples is
marked as ’-’ in LMLP and HMHP distribution for there is no BN sample within the dataset according
to our evaluation setting in Appendix D.

Distr. Algorithm Accuracy

BA acc BC acc BN acc Avg acc

LMLP

ERM 97.73 ± 0.09 91.13 ± 0.17 - 91.73 ± 0.16

LfF 80.25 ± 4.86 68.41 ± 2.01 - 69.74 ± 2.41

+ DiD 92.16 ± 0.35 91.03 ± 0.15 - 91.15 ± 0.17

BE LfF 82.95 ± 1.68 83.60 ± 0.85 - 83.53 ± 0.75

+ DiD 93.49 ± 0.81 89.25 ± 0.64 - 89.67 ± 0.54

DisEnt 84.45 ± 1.72 73.87 ± 2.52 - 74.93 ± 2.44

+ DiD 94.03 ± 0.66 91.09 ± 0.24 - 91.38 ± 0.28

BE DisEnt 80.18 ± 1.94 81.07 ± 2.50 - 80.98 ± 2.29

+ DiD 91.89 ± 0.26 89.80 ± 0.97 - 90.01 ± 0.89

HMLP

ERM 99.32 ± 0.34 85.25 ± 1.62 90.30 ± 0.56 89.82 ± 0.70

LfF 87.76 ± 4.12 57.98 ± 3.58 63.72 ± 3.22 63.35 ± 3.02

+ DiD 82.99 ± 5.08 90.54 ± 0.74 89.04 ± 0.84 89.12 ± 0.77

BE LfF 57.65 ± 32.14 80.02 ± 1.10 82.84 ± 1.68 82.33 ± 1.93

+ DiD 63.95 ± 15.64 89.11 ± 1.29 87.28 ± 1.54 87.22 ± 1.58

DisEnt 77.55 ± 7.93 66.52 ± 8.75 72.69 ± 5.91 72.18 ± 6.05

+ DiD 88.78 ± 7.24 88.52 ± 1.47 89.04 ± 1.13 88.99 ± 1.16

BE DisEnt 41.84 ± 6.21 77.59 ± 0.69 80.87 ± 1.78 80.19 ± 1.71

+ DiD 31.97 ± 7.08 89.33 ± 1.07 85.88 ± 0.86 85.66 ± 0.89

HMHP

ERM 99.57 ± 0.07 48.54 ± 1.22 - 53.38 ± 1.10

LfF 57.16 ± 8.27 65.62 ± 2.87 - 64.59 ± 3.31

+ DiD 77.84 ± 2.49 66.91 ± 1.73 - 68.00 ± 1.80

BE LfF 73.61 ± 1.03 66.90 ± 0.43 - 67.57 ± 0.47

+ DiD 85.65 ± 2.53 66.37 ± 2.54 - 68.30 ± 2.50

DisEnt 59.89 ± 4.19 68.29 ± 1.43 - 67.45 ± 1.28

+ DiD 83.65 ± 0.13 69.05 ± 0.38 - 70.51 ± 0.33

BE DisEnt 77.74 ± 2.51 67.51 ± 1.33 - 68.53 ± 1.45

+ DiD 84.62 ± 1.16 69.50 ± 1.23 - 71.01 ± 1.08

E.2 HYPER-PARAMETER SENSITIVITY

As shown in Table 9, we examine three feature destruction methods: pixel-shuffling, patch-shuffling,
and center occlusion, to destroy object shapes. We observed that patch-shuffle with patch-size 8
exhibits the best performance on Corrupted CIFAR10 which is of size 32x32.

E.3 APPLICATION OF DID ON THE BIAS DETECTION TASK

Some recent work (Yenamandra et al., 2023; Kim et al., 2024) has focused on the task of detecting
biases rather than debiasing directly. Such methods also involve a biased auxiliary model for the
detection. To test the effectiveness of DiD on bias detection tasks, we apply DiD to the recently
proposed B2T (Kim et al., 2024) method. Specifically, B2T detects bias keywords by calculating their
CLIP score, whose calculation involves a biased auxiliary model to define an error dataset, similar to
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Table 7: Results on Corrupted CIFAR10 dataset show that combining DiD not only boosts the
performance of existing DBAM methods but also achieves the best performances. The accuracy of
BN samples is marked as ’-’ in LMLP and HMHP distribution for there is no BN sample within the
dataset according to our evaluation setting in Appendix D.

Distr. Algorithm Accuracy

BA acc BC acc BN acc Avg acc

LMLP

ERM 80.40 ± 0.81 62.50 ± 0.15 - 64.29 ± 0.06

LfF 59.13 ± 0.68 55.03 ± 0.04 - 55.44 ± 0.09

+ DiD 69.47 ± 0.96 62.04 ± 0.21 - 62.78 ± 0.10

BE LfF 70.87 ± 1.30 52.10 ± 0.30 - 53.98 ± 0.40

+ DiD 63.23 ± 2.10 53.21 ± 0.20 - 54.21 ± 0.38

DisEnt 61.58 ± 0.57 55.45 ± 0.23 - 56.06 ± 0.17

+ DiD 72.23 ± 0.74 60.84 ± 0.40 - 61.98 ± 0.30

BE DisEnt 62.73 ± 0.61 56.59 ± 0.08 - 57.20 ± 0.13

+ DiD 65.98 ± 0.40 60.92 ± 0.20 - 61.42 ± 0.21

HMLP

ERM 84.67 ± 0.64 55.85 ± 0.17 65.75 ± 0.00 65.05 ± 0.13

LfF 73.33 ± 1.67 47.70 ± 0.58 54.58 ± 0.49 54.15 ± 0.41

+ DiD 78.67 ± 2.14 54.81 ± 2.26 63.71 ± 2.69 63.06 ± 2.63

BE LfF 70.33 ± 2.19 50.96 ± 2.35 54.14 ± 0.25 54.02 ± 0.36

+ DiD 68.80 ± 0.88 50.20 ± 0.79 54.39 ± 0.18 54.15 ± 0.15

DisEnt 61.67 ± 1.67 52.48 ± 0.56 54.65 ± 0.56 54.53 ± 0.49

+ DiD 73.67 ± 2.64 55.26 ± 0.93 62.11 ± 0.17 61.61 ± 0.13

BE DisEnt 75.33 ± 5.21 49.15 ± 1.54 56.86 ± 0.30 56.35 ± 0.35

+ DiD 78.40 ± 1.00 54.09 ± 1.07 62.05 ± 0.34 61.50 ± 0.38

HMHP

ERM 89.97 ± 0.34 29.37 ± 0.30 - 35.43 ± 0.24

LfF 72.70 ± 0.81 35.30 ± 0.33 - 39.04 ± 0.33

+ DiD 82.07 ± 1.09 37.05 ± 0.31 - 41.55 ± 0.19

BE LfF 82.73 ± 0.92 31.48 ± 0.82 - 36.61 ± 0.65

+ DiD 78.30 ± 0.47 32.90 ± 1.79 - 37.44 ± 1.61

DisEnt 70.77 ± 2.27 36.04 ± 0.62 - 39.51 ± 0.36

+ DiD 76.60 ± 0.70 39.05 ± 0.35 - 42.80 ± 0.25

BE DisEnt 78.60 ± 1.56 34.20 ± 0.43 - 38.64 ± 0.38

+ DiD 78.70 ± 1.47 37.72 ± 0.96 - 41.82 ± 0.91

JTT. A keyword is identified as biased if it has a higher CLIP score and the subgroup defined by it
should have lower accuracy.

Following Kim et al. (2024), we use CelebA as the dataset for bias detection, where the keyword
”Actor” (a proxy for Male) is considered ground truth for class Blond, and the keyword ”Actress” (a
proxy for Female) is considered ground truth for the class not Blond. As we can see in Table ??, by
applying DiD to the training of the auxiliary model, we effectively improve both metrics CLIP score
and subgroup accuracy, enhancing B2T’s bias detection ability.

To further validate the effectiveness of DiD in improving the quality of the error dataset, we adopt the
worst group precision and recall metrics proposed by Liu et al. (2021) for evaluation. Specifically, the
worst group precision and recall indicate how accurately the error dataset represents the worst group
samples. As shown in Figure 8, DiD improves both worst group precision and recall, demonstrating
better bias identification ability.
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Table 8: DiD effectively improves the bias identification ability of B2T, improving both CLIP Score
and Subgroup Accuracy on the ground truth bias keywords of CelebA dataset.

Blond: Actor Not Blond: Actress

CLIP Score↑ Subgroup Acc.↓ CLIP Score↑ Subgroup Acc.↓
B2T 0.125 86.71 2.188 97.11
B2T + DiD 0.188 85.29 2.297 95.81

0 20 40
Epoch

0.11

0.12

0.13

Pr
ec

is
io

n

ERM
DiD

(a) Worst group precision

0 20 40
Epoch

0.5

0.6

0.7

0.8

R
ec

al
l

ERM
DiD

(b) Worst group recall

Figure 8: DiD consistently improves the worst group precision and recall in the error dataset across
the epochs.

Table 9: We experiment with three feature destruction methods with various hyper-parameters on
HMLP distributed dataset with LfF.

Tfd param BC Avg

N/A N/A 47.70 ± 3.58 54.15 ± 3.02

pixel-shuffle 1 51.44 ± 1.01 55.43 ± 0.20

patch-shuffle

2 51.07 ± 0.48 55.29 ± 0.27

4 49.41 ± 0.26 55.40 ± 0.26

8 54.81 ± 0.74 63.06 ± 0.77

16 49.74 ± 1.10 53.69 ± 0.31

center-occlusion

8 45.19 ± 1.41 51.61 ± 1.31

16 47.26 ± 0.54 50.94 ± 0.59

24 49.00 ± 0.80 52.60 ± 0.55

32 52.44 ± 0.87 55.76 ± 0.16
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Figure 9: DiD consistently emphasizes BN samples in LMLP distributions across datasets and
algorithms. Our approach is marked with solid lines.

Table 10: Results demonstrate that DiD is consistently effective regardless of different experimental
settings of WaterBirds. The results are based on the ResNet50 architecture.

Bias supervision WaterBirds

Avg Acc. Worst-group Acc.

ERM No 78.82 31

JTT No 90.99 65.26
+DiD No +3.45 +17.45
Group DRO Yes 92.89 83.49

E.4 RESULTS OF BN SAMPLES UNDER LMLP SETTINGS

To further examine the correctness of our analysis and the effectiveness of our design, we show the
weights of BN samples under the LMLP settings. As the LMLP distribution defined in the main paper
contains biased features with similar levels of bias magnitude, the choice of threshold for identifying
BN samples becomes not so intuitive. Thus a threshold of 0 is selected for the categorization in the
main paper, defining all samples either BA or BC samples. Consequently, we define another version
of LMLP distribution named LMLP’ where the magnitude of bias for each feature is low but at the
same time distinguishable from each other. (Please refer to Appendix B for details) Based on LMLP’
we are able to confidently define BN samples for the BN weights analysis. As shown in Figure 9,
DiD consistently emphasizes BN samples in the LMLP distribution across datasets and debiasing
algorithms.

E.5 ADDTIONAL RESULTS ON THE WATERBIRDS DATASET

As mentioned in Appendix D, the evaluations on the WaterBirds dataset are based on the ResNet18
architecture, which is the architecture widely adopted by many previous works (Nam et al., 2020;
Lee et al., 2021; 2023). However, there are also some other works (Liu et al., 2021) that evaluate
the WaterBirds dataset based on the ResNet50 architecture with better baseline performances. To
demonstrate that our approach is consistently effective regardless of the experimental settings, we
further test our approach with the exact same setting in Liu et al. (2021). As shown in Table 10, DiD
is consistently effective regardless of different experimental settings of WaterBirds.

F RELATED WORKS

Model Bias. The tendency of machine learning models to learn and predict according to spurious
Arjovsky et al. (2020) or shortcut Geirhos et al. (2020) features instead of intrinsic features, i.e.
model bias, is found in a variety of domains Heuer et al. (2016); Tang et al. (2021); Gururangan
et al. (2018); McCoy et al. (2019); Sagawa* et al. (2020) and is of interest from both a scientific and
practical perspective. For example, visual recognition models may overly rely on the background of
the picture rather than the targeted foreground object during prediction. One subtopic of model bias
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is model fairness, which generally refers to the issue that social biases are captured by models Hort
et al. (2021), where the spurious features are usually human-related and annotated, such as gender,
race, and age Mattu; Hofmann (1994;?).

Data Bias: spurious correlation. Generally, spurious correlation refers to the phenomenon that
two distinct concepts are statistically correlated within the training distribution, though there is no
causal relationship between them, e.g. background and foreground object ?. The spurious correlation
is a vital aspect of understanding how machine learning models learn and generalize Arjovsky et al.
(2020). Specifically, studies on distribution shift Wiles et al. (2022) claim that spurious correlation is
one of the major types of distribution shift in the real world, and thus an important distribution shift
that a reliable model should be robust to. Furthermore, studies on fairness and bias Mehrabi et al.
(2021) have demonstrated the pernicious impact of spurious correlation in classification Geirhos et al.
(2019), conversation Beery et al. (2020), and image captioning Tang et al. (2021). However, despite
its broad impact, spurious correlation is generally used as a vague concept in previous works and
lacks a proper definition and deeper understanding of it. This is also the major motivation of this
work.

Debiasing without bias supervision. In this work, we focus only on debiasing methods that do
not require bias information, i.e. without annotation on the spurious attribute, for it is more practical.
Existing work Nam et al. (2020); Lee et al. (2021); Kim et al. (2022); Hwang et al. (2022); Lim et al.
(2023); Zhao et al. (2023); Lee et al. (2023); Park et al. (2024) in the area generally involve a biased
auxiliary model to capture biases within the training data, according to which the debiased is trained
with various techniques. We call such paradigm debiasing with biased auxiliary model (DBAM).
Specifically, Nam et al. (2020) is the first work that follows the DBAM paradigm, proposing to use
GCE for bias capture, and the loss-based sample re-weighing scheme to train the debiased model.
Lee et al. (2021) further proposed a feature augmentation technique to further utilize the captured
bias, enhancing the BC samples. Hwang et al. (2022) proposed to augment biased data identified
according to the biased auxiliary model by applying mixup Zhang et al. (2018) to contradicting pairs.
Lim et al. (2023) proposed to conduct adversarial attacks on the biased auxiliary model to augment
BC samples aiming to increase the diversity of BC samples. Lee et al. (2023) proposed to first
filter out BC samples before training the biased auxiliary model aiming to enhance the bias capture
process of the biased model. Liu et al. (2021) regard the samples misclassified by the biased auxiliary
model as BC samples and emphasize them during training of the debiased model. Recently, Park
et al. (2024) proposed to provide models with explicit spatial guidance that indicates the region of
intrinsic features according to a biased auxiliary model. Kim et al. (2021) create images without bias
attributes using an image-to-image translation model Park et al. (2020) built upon a biased auxiliary
model. A recent pair-wise debiasing method χ2 model Zhang et al. (2023a) based on biased auxiliary
models encourages the debiased model to retain intra-class compactness using samples generated via
feature-level interpolation between BC and BA samples.

G LIMITATIONS AND FUTURE WORK

We uncover the insufficiency of existing debiasing benchmarks theoretically and empirically, highlight-
ing the importance of debiasing on real-world biases. We further proposed a feature-destruction-based
method that focuses on DBAM methods. However, there are still a few limitations of this work: As
shown in section E, while our proposed approach effectively improves the performance of existing
DBAM methods on all biased distributions from the real world, the performance is still far from
satisfactory, which remains to be further improved in future works. We see potential within those
limitations and leave them for future research.

H BOARDER IMPACT

From a technical standpoint, our research provides a comprehensive framework for analyzing and
mitigating biases in datasets. The proposed fine-grained analysis framework and evaluation bench-
marks offer a new perspective on how biases manifest in real-world data and how existing debiasing
methods can be improved. Our approach, which involves the destruction of target features during
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bias capture, demonstrates significant improvements in handling real-world biases, as evidenced by
our extensive experimental results.

By advancing the understanding of dataset biases and improving the performance of debiasing
methods, our research contributes to the development of more robust and generalizable AI models.
This is particularly relevant in an era where AI systems are increasingly deployed in dynamic and
diverse environments, necessitating models that can adapt and maintain high performance across
different contexts and populations.
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