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Abstract—Dynamic neural networks (DyNNs) have shown
promise for alleviating the high computational costs of pre-
trained language models (PLMs), such as BERT and GPT.
Emerging slowdown attacks have shown to inhibit the ability
of DyNNs to omit computation, e.g., by skipping layers that
are deemed unnecessary. As a result, these attacks can cause
significant delays in inference speed for DyNNs and may erase
their cost savings altogether. Most research in slowdown attacks
has been in the image domain, despite the ever-growing computa-
tional costs—and relevance of DyNNs—in the language domain.
Unfortunately, it is still not understood what language artifacts
trigger extra processing in a PLM or what causes this behavior.
We aim to fill this gap through an empirical exploration of the
slowdown effect on language models. Specifically, we uncover
a crucial difference between the slowdown effect in the image
and language domains, illuminate the efficacy of pre-existing and
novel techniques for causing slowdown, and report circumstances
where slowdown does not occur. Building on these observations,
we propose the first approach for mitigating the slowdown effect.
Our results suggest that slowdown attacks can provide new
insights that can inform the development of more efficient PLMs.

Index Terms—adversarial machine learning, pre-trained lan-
guage models, efficient machine learning

I. INTRODUCTION

PLMs such as GPT-4, Bard, or BERT, are large models
pre-trained on massive corpora of text with the intention of
learning a general understanding of language. Bolstered by this
base understanding, PLMs can be fine-tuned on task-specific
datasets to perform a wide range of language tasks. PLMs
have high parameter counts, ranging from 110 million to 345
million for BERT and exceeding 1.5 trillion for commercial
models like GPT-4 or Bard, suggesting high computational
expense is inherent to their utility [1]. To reduce the cost of
PLM inferences, researchers have proposed dynamic neural
networks (DyNNs), which adapt the processing performed
during the forward pass to individual input values, as some
inputs require less computation than others [2]. For example,
in multi-exit models (MEMs), during inference, textual inputs
can exit the model at various points that precede the final
output layer [3]–[5].

However, MEMs are vulnerable to the recently-introduced
concept of a slowdown attack, which was originally proposed
against vision models in [6] and has now found a sole, initial
implementation against language models in [7]. Slowdown
attacks are designed to delay the exits of inputs and have the
potential to completely negate all of the efficiency benefits
of MEMs. There are no known defenses against this threat;
in vision models, adversarial training was shown to be inef-
fective against slowdown attacks [6]. The research focus on
developing effective and powerful attacks has left missing a
deeper understanding of slowdowns, such as their sources and
implications. The goal of this paper is to provide a systematic
empirical exploration of these questions in the context of large
language models, where the cost savings promised by MEMs
are critical. A better understanding of the slowdown effect can
ultimately inform the development of language models that are
both more efficient and more robust in their efficiency.

We focus our exploration on studying an exemplar PLM,
BERT (Bidirectional Encoder Representations from Trans-
formers) [8], commonly used as a standard for NLP research,
and whose descendants achieve state-of-the-art performance
on natural language understanding benchmarks. In the first
part of the paper, Sec. IV, we explore a range of approaches
to understand the source of the slowdown effect. First, we
investigate if the PLM’s need for additional processing can
be explained by simple metrics related to the ease of com-
prehension of the input sentences. We empirically reject three
intuitive hypotheses about the origins of slowdown: increased
distances among sentences and words in BERT embedding
space, decreased cloze probabilities of tokens, and the use
of paraphrased text. Then, we analyze the efficacy of two
methods that do inflict slowdown. The first is the SlowBERT
slowdown attack [7] that has proven to be highly effective,
but in nuanced ways that we will uncover. The second is an
inadvertent slowdown effect that we are the first to identify
as being inherent to pre-existing text misclassification attacks,
which contrasts a prior observation on image misclassification
attacks [6]. After offering explanations for this contrast, which



we illustrate through experimental results, we introduce a
novel third method for causing slowdown that can additionally
cause inference speedup. This involves the development of a
ML model that, based on a new task we propose, learns a
unique understanding of what distinguishes texts that cause
slowdown from ones that do not. We use our insights from
the first part of the paper in conjunction with an additional set
of empirical results to propose an attack mitigation strategy.
To the best of our knowledge, this represents the first defense
against slowdown attacks against MEMs. This method, a
quicker, relaxed version of adversarial training that we refer
to as expedited adversarial training, we will show to be
effective in mitigating slowdown effects that are imposed
both intentionally and unintentionally through a diverse set
of strategies. Additionally, this can provide inference speedup
for benign text. In summary, we provide the following five
central contributions:

1) We evidence the fact that increasing distances between
words and sentences in BERT embedding space, low-
ering a sentence’s aggregate cloze probability, or para-
phrasing sentences does not exhibit association with the
slowdown effect.

2) We show that existing text misclassification attacks
cause slowdown as a side effect—unlike in the vision
domain where this does not occur—and we investigate
the sources of this effect.

3) We analyze the sole slowdown attack that has been
proposed in the text domain, SlowBERT, reporting a dis-
crepancy in the effectiveness of its modification methods
and highlighting the increased slowdown potential that
comes from SlowBERT’s word-selection strategy.

4) We demonstrate the novel idea that a machine learning
model can learn a unique understanding of the distinc-
tion between texts that amount to earlier or later exiting.
We use this learned model to drive a novel slowdown
attack generation process.

5) We demonstrate and offer an explanation behind the
effectiveness of a flexible expedited adversarial training
process in mitigating slowdown effects that come from
multiple distinct sources.

6) We provide a code library that includes implementations
of all the attacks and defenses that our work analyzes.1

II. RELATED WORK

a) Conventional Attacks against Language Models: The
goal of most pre-existing adversarial attacks against text
classification tasks is to cause misclassification. These attacks
find places in original input texts to replace original words
with new words (often synonyms) or to append/delete/swap
words or characters, with all modification choices being guided
by greedy or beam searches, genetic algorithms, and various
patterns in model gradients or token embeddings [9]–[21].

1https://github.com/KMVarma/SwiftBERT

b) Input-Adaptive Networks: Broadly, dynamic neural
networks (DyNNs) are any type of neural network that can
adapt its structure, computations, and parameters during infer-
ence in a way that is tailored to a specific input and offers
some sort of advantage. In our work, we focus on multi-exit
models (MEMs), which are models that increase inference
efficiency by allowing inputs to exit at layers preceding the
output layer. Essentially, [22] found that inputs can often be
accurately predicted before reaching the output layer, with
some inputs reaching this point earlier than others, so various
MEMs have been proposed to save on any extra computation
deemed unnecessary for a particular input in both the image
[22], [23] and text domains [3]–[5]. Specifically, inputs can
exit through internal classifiers (ICs) upon meeting some
exiting criteria. ICs were first introduced to vision models
in [22] and they take various approaches to, for a single
input, mapping a layer’s hidden state to a prediction value.
Finally, in the era of trillion-parameter language models, input-
adaptiveness has seen recent practical deployment. Related
ideas such as speculative decoding [24] or mixture-of-expert
models [25] have been reported to be implemented in GPT-
4 [26] for adaptively reducing its massive computational load.
This implies that there may be an imminent real-world threat
stemming from slowdown attacks, which brings forth the need
for a deeper exploration.

c) Slowdown Attacks: The concept of a slowdown attack
was first introduced to the vision domain in the work by [6]
that proposed the DeepSloth attack. DeepSloth attacks image
classification tasks, aiming to cause slowdown on MEMs, or in
other words, to perturb inputs in such a way that requires them
to exit through later ICs and therefore incur unnecessary addi-
tional computation. It accomplishes this through optimizing an
attack perturbation over an objective function that encourages
each IC to predict class confidence scores corresponding to
a uniform distribution over all possible class labels. Other
work in the image space also explores the idea of crafting
an attack with the intention of slowing down a model or
increasing a model’s latency in some fashion [27]–[33]. [34]
was published concurrently with the DeepSloth paper and it
introduced sponge examples to the text and image domains,
which are inputs that were designed with a novel threat vector
that aims to maximize latency and energy consumption for
neural networks (they have also been proposed in an imper-
ceptible form in [35]). To clarify, this is different from the
DeepSloth-proposed slowdown attack threat that specifically
aims to cause delayed exit in MEMs and is the threat model
that our work is considering. [7] is the first work, and to
our knowledge the only work, to explore the slowdown attack
in the context of language. Their proposed SlowBERT attack
considers a variety of modification types while searching for
the best modification to cause slowdown and the search is
guided by the strategy used in by the DeepSloth of pushing a
sample’s IC confidence scores towards a uniform distribution.
However, they have not presented a systematical treatment of
their attack’s results based on the type of modification. To fill
this gap, in Sec. IV-B2, we carefully investigate how effective



each type is in causing slowdown.
d) Increasing the Adversarial Robustness or Efficiency

of Language Models: Many works have explored a variety of
approaches to using adversarial training and similar methods to
increase the robustness of language models against adversarial
attacks [9], [15], [36]–[40]. There has also been research done
on language models to learn and exploit relationships sur-
rounding the inference speed, latency, and energy consumption
of language models in order to motivate solutions for increas-
ing and preserving model efficiency [41]–[43]. However, in
Sec. V, we present what is, to our knowledge, the first analysis
of the efficacy that a modified version of adversarial training
has in terms of mitigating slowdown attacks while additionally
provoking inference speedup for MEMs in the text domain.

III. PRELIMINARIES

1) Determining Exit Points for Multi-Exit Models: We con-
sider MEMs that use the same IC definition that is formalized
in [4]. Every layer of a MEM will be coupled with its own
IC. We can use these ICs to derive confidence scores at every
layer. Essentially, as an input passes through each layer of
the network, the layer will output a new hidden state. This
hidden state is then passed through the layer’s IC, and this
IC has been trained to map the layer’s hidden state to output
logits representing the unnormalized probablities associated
with each possible class labels. These logits are then utilized
as a confidence score. Specifically, for our work, we consider
confidence scores as the softmax score associated with the
output logits. In other words, we apply a softmax function to
the logits and are left with confidence scores that represent the
normalized probabilities associated with each class. Prior work
mainly utilizes some form of the following two exiting criteria:
confidence-based and patience-based criteria. According to
confidence-based exiting criteria, an input can exit at some
layer, layer P , if that layer’s IC predicts a confidence score
above some threshold, τ , for a single class that then becomes
the final predicted class. With patience-based exiting criteria,
an input exits at layer P if it marks the first point at which
p consecutive ICs have agreed on the same class prediction
(the class receiving the highest confidence score) [4]. For both
criteria types, if an input never meets the criteria required for
an early exit, then it will default to exiting at the output layer.

2) Identifying Tokens Most Vulnerable to Attacks: A com-
mon approach that text misclassification attacks will take to
identify the best places to modify the text is to use some
sort of heuristic to rank an input text’s tokens based on how
good of a candidate each one is for modification. As part of an
analysis in Paragraph IV-B2b of Sec. IV-B2, as a heuristic, we
will measure a simple version of saliency, S, for some token
ti, defined similarly to the way that an importance score is
defined in [19]:

S = F c(x)− F c(xti), (1)

where F c(·) is the model’s final confidence score correspond-
ing to the correct class label, x is the original text sample
that token ti is in, and xti is the sample with ti removed.

The most salient token (the one with the highest S value) in
an input text is the one whose modification would have the
most potential to move a model’s final class confidence scores
away from those produced before the modification. We will
compare the utility of S with that of exit status H , which
is the measure of efficiency relevance used in the SlowBERT
attack to identify the most slowdown-vulnerable words that
should be modified (SlowBERT is designed to modify words
as opposed to tokens). It is formalized as:

H = α · P − Lce(FP (x), ȳ), (2)

where x is a text sample (input), P is the exit layer taken by x,
Lce is the cross-entropy loss, FP is the output of the internal
classifier at exit layer P , and ȳ, the target for the internal
classifier’s output which is a uniform distribution across all
possible labels. α is a tunable, predetermined constant that
should be set high enough to allow H to favor a word’s impact
on the exit position.

A. Threat Model

We study a threat model similar to that defined in [7].
a) Adversary’s Goal: We consider an adversary whose

goal is to craft a slowdown attack by modifying an input text
such that the modified text exits later when passing through
a BERT-based MEM than the original text. This delay in
inference will impose additional costs on the model deployer
that could amount to detrimental consequences. For example,
if slowdown attacks cause a node in a distributed system to
incur longer response times, the system may lose information
from the node by mistakenly declaring it dead. In such attacks,
it has been shown that the addition additional cost the victim
suffers from due to the attack can surpass the adversary’s
crafting cost; making the threat practical [6].

b) Adversary’s Capabilities: The adversary has no re-
strictions on the way that they modify input texts. Such
capability is available to adversaries in modern ML practice as
oftentimes models are fed untrustworthy inputs scraped from
online sources, e.g., social media posts, that cannot be realisti-
cally vetted. These modifications can include adding, deleting,
or swapping any number of words, tokens, or characters.

c) Adversary’s Knowledge: We consider adversaries that
have any of three access levels, which we define as follows:

• White-box: The adversary has knowledge of the target
model’s IC count and the early-exit criteria in use, the
model’s parameters, and the exit positions and IC outputs
corresponding to the target input samples. This is used in
the version of the SlowBERT attack that we experiment
with.

• Grey-box: The adversary only has knowledge of the
layers at which each target input exits the target model.
We use this for the novel slowdown attack that we
introduce in Sec. IV-C3.

• Black-box: The adversary requires nothing beyond ac-
cess to the target input samples. This is essentially the
grey-box scenario, but the adversary can use exit layers



computed from a surrogate pre-trained (but not neces-
sarily fine-tuned) BERT model to estimate the exit layers
associated with a fine-tuned pre-trained BERT model that
the adversary is targeting. Therefore, this can also be used
for our novel slowdown attack in Sec. IV-C3.

B. Experiment Setup

Throughout this paper, we present a series of empirical
observations, each involving experiments whose setups in-
clude the following components. We consistently use 12-layer
BERT-based MEMs, where during inference, an input can exit
the model early through ICs positioned at every layer. We
focus on observing slowdown patterns surrounding patience-
based exiting criteria because, compared to other criteria, it
has proven to yield the best accuracy-speed trade-off and to
be the most robust. With the patience-based criteria, we mostly
consider p = 5 or p = 6. We find that, in most settings,
these values tend to be the smallest for which accuracy is not
significantly compromised (smaller values are favorable be-
cause they offer the most potential to reduce inference costs).
We source a pre-trained BERT model from Hugging Face
[44] and fine-tune it on two downstream classification tasks
from the popular General Language Understanding Evaluation
(GLUE) benchmark [45]. The Stanford Sentiment Treebank
(SST-2) [46] task assigns a binary sentiment classification to
individual sentences and the Microsoft Research Paraphrase
Corpus (MRPC) [47] task is a binary classification task
for identifying the semantic equivalence of a pair of input
sentences. In Appendix E, we provide results associated with
a third GLUE benchmark, the Multi-Genre Natural Language
Inference (MNLI) [48] task, which assigns one of three labels
based on a premise sentence’s entailment of a hypothesis
sentence. Any time we use synonyms in our work, we find
these using WordNet [49].

IV. DEMYSTIFYING THE SLOWDOWN EFFECT ON
PRE-TRAINED LANGUAGE MODELS

In this first part of the paper, we undertake a methodical
exploration of the slowdown effect in MEMs in an attempt to
better understand what causes slowdown in the text domain
and why. We present three distinct phases of our exploration.
First, in Sec. IV-A, we explore hypotheses based on our
intuitions about the patterns that we expect to align with the
slowdown effect, but interestingly, our findings do not support
these hypotheses. This leads us to Sec. IV-B, where we analyze
existing attack strategies that either intentionally or uninten-
tionally cause slowdown in order to better understand where
the slowdown effect is coming from. Finally, in Sec. IV-C,
we present a third approach to understanding the slowdown
effect, where we make the novel observation that a machine
learning (ML) model can learn a unique understanding of
the distinction between earlier and later-exiting text. We then
show how this model can be used in a novel slowdown attack
generation method.

A. Places in Which Evidence of Slowdown is Unexpectedly
Absent

1) Increased Distance Between Token and Sentence Embed-
dings is not Associated with More Pronounced Slowdown:
We initially expected the slowdown effect to somehow be
evident in BERT embedding space. Specifically, we hypoth-
esized that, for some sentence that has had words replaced
in a way that leads to slowdown, the distance between the
replacement words’ embeddings and the sentence embedding
would be greater than the distance between the original words’
embeddings and the sentence embedding. This supposition
was rooted in the idea that an increased distance from the
sentence embedding would imply that the replacement words
do not have contextual relevance to the rest of the sentence
that is as high as the relevance of the original words. In
other words, after the replacement, the consistency among the
words’ contexts is decreased, hence making the sentence as a
whole more confusing for BERT to reason about. To test this
theory, we extracted word embeddings associated with Slow-
BERT attacks on the SST-2 dataset and compared the distances
between the original words and the full sentence embedding
against the replacement words and the full sentence embed-
ding. Interestingly, our analysis revealed that, using patience-
based exiting criteria with p = 6, only 41.5% of attacked
sentences exhibited greater euclidean distances in replacement
word embeddings from the sentence embedding and 54.1%
experienced increased cosine distances. This observation leads
us to conclude that increased distance between a sentence’s
words embeddings to the overall sentence embedding is not
indicative of a slowdown effect.

2) Lower Cloze Probability Does Not Necessarily Indicate
Greater Slowdown: Cloze probability is a widely recognized
concept in psycholinguistics, serving as a measure of a word’s
predictability within a specific context. In their work, [50]
addresses the challenges associated with measuring cloze
probabilities through direct surveys of human subjects, mo-
tivating their use of GPT-2 to generate reliable estimates of
cloze probabilities. Our initial hypothesis was that a greater
slowdown effect may be associated with lower cloze proba-
bilities. This is because we expect BERT to be able to more
easily comprehend sentences with patterns that best align with
the texts it was trained on. These texts were online-sourced,
human-written, and would therefore likely have high GPT-
2-estimated cloze probabilities. To investigate the potential
link between slowdown and lower cloze probabilities, we
crafted an attack that modifies the SlowBERT implementation
(original implementation summarized in Sec. IV-B2). In this
modified attack, during the process of selecting a single
modification from the set of candidate modifications, we chose
the modification that resulted in the lowest aggregate cloze
probability for the sentence. Aggregate cloze probabilities
were computed by averaging the sentence’s GPT-2-computed
individual word cloze probabilities. This attack was carried
out using the SST-2 dataset and a fine-tuned BERT MEM that
use patience-based exiting criteria with p = 5. The resulting



attacked sentences produced an average exit layer of 8.425, or
a 16.90% increase from the original average exit of 7.207. In
contrast, using the original SlowBERT implementation led to
an average exit layer of 11.940, which represents a 65.67%
increase. It is also worth noting that later, in Table III of
Sec. IV-B1, we will present results associated with an MRPC
dataset wherein randomly-selected words were replaced with
randomly-selected synonyms, which leads to a 13.26% in-
crease in average exit layer. In fact, throughout this paper,
we will provide results and explanations that can ultimately
support the idea that a small slowdown effect can easily be
instantiated by almost any means of modifying an input text.
Hence, we conclude that the slowdown effect caused by cloze-
informed text modifications is not great enough to indicate
a notable, direct association between cloze probabilities and
ability that texts have to exit early in a MEM.

3) Paraphrasing Models Do Not Prove Effective in Inducing
Slowdown: Prior work has demonstrated the potential that
paraphrasing models have to function as adversaries in the
language domain [51]. Consequently, we hypothesized that
paraphrasing texts using a paraphrasing model may induce
a slowdown effect. To investigate this, we conducted experi-
ments using two publicly-available, state-of-the-art, distinctly-
structured paraphrasing models, Pegasus [52] and Parrot [53],
to rephrase sentences from the SST-2 dataset. We randomly
selected 100 sentences and paraphrased them with each model,
but each model’s paraphrasing only caused negligible change
in average exit layer (3.108% change for Pegasus and 4.234%
for Parrot), thus implying that paraphrasing text does not cause
slowdown.

B. Explaining the Efficacy of Existing Attacks That Cause
Slowdown

1) Investigating the Inadvertent Slowdown Effect Caused by
Misclassification Attacks: [6] observed that with vision tasks,
adversarial attacks that intend to cause misclassification will
not cause slowdown. In contrast, we observe that adversarial
attacks aiming to cause misclassification for language tasks do
inadvertently cause a significant slowdown effect. In Table I,
using the SST-2 and MRPC datasets (results for MNLI are
in Table VII in Appendix E), we report slowdown effects
caused by TextFooler, PWWS, and BAE attacks, whose imple-
mentations we source from the TextAttack library [54]. These
attacks range between causing 8.96% and 24.72% increases
in average exit layer. We posit that this occurrence is due to
the fact that forcing the output layer towards an incorrect label
will naturally cause patterns in the class confidence scores of
the hidden layers that indicate model confusion or indecision
and can therefore be linked to slowdown. To reiterate, the
confidence scores that we refer to in our work are computed
as explained in Sec. III-1 (the softmax scores associated with
the logits that are output buy ICs that are coupled with every
MEM layer and are trained to map the layer’s output hidden
state to a classification prediction).

One way we observe this confusion is through confidence
scores that center around a uniform distribution across all

possible class labels, which [6] and [7] have shown provokes
slowdown. Some misclassification attacks stop their search for
effective modifications on a text as soon as a modification
causes the output label to become incorrect, which in practice,
is often a point at which the confidence score for this incorrect
class just barely exceeds 1/n for an n-class classification task.
Moreover, attacking text is generally difficult, more difficult
than attacking images, because the attack generation is highly
constrained by requirements such as preserving semantics and
logical grammar. Thus, even near-optimal modification choices
do not often result in high confidence towards an incorrect
classification. It is not normal to see a trajectory where the
confidence scores are consistently favoring a single class until
suddenly ending near 1/n (confusion) at the output layer, so
if the model is confused at the output layer, then it is likely
too confused in prior layers to achieve the consistency that is
required to satisfy patience-based exiting criteria. Fig. 1 ex-
emplifies these aforementioned phenomena because, compared
to before the attack, after a successful TextFooler attack, the
class confidence scores corresponding to 100 SST-2 samples
are leaning more towards the incorrect classification, but are
also generally more centered around the .5 mark. Fig. 8b in
Appendix B also illustrates this pattern of consistent model
confusion.

Even when we see confidence scores more highly favoring
an incorrect class at the output layer, we often observe model
indecision, with confidence scores initially favoring the correct
class. This implies that there is a point of switching predictions
that breaks the consistency needed to satisfy patience-based
exiting criteria. Fig. 8 in Appendix B separates samples
according to how certain the post-attack confidence scores
are in order to elucidate this pattern. Basically, the reason we
see inadvertent slowdown with text misclassification attacks
is because of a variety of behaviors that we see in layerwise
confidence scores, which are different from what we typically
see with images. On one hand, with images, misclassification
attacks are known to exhibit adverse behaviors mainly at or
near the output layer of a model. However, unique to language
models is the fact that the adverse effects of attacks are
evident throughout middle layers of a model. Works such
as [55] and [56] suggest that this is because different high-
level characteristics of a text input, such as syntax, semantics,
and task-specific attributes, are processed at different layers
within a model. An attack can directly modify any of these
characteristics and a single modification can likely affect
multiple characteristics, thus it makes sense the attack can
take effect throughout the full span of the model as opposed
to adhering towards the output layer.

2) Understanding Where the Success of the SlowBERT
Attack Comes From: In this section, our objective is to analyze
SlowBERT’s impact on model slowdown to gain a deeper
understanding of the attack’s effectiveness. Once an input
sentence’s words are ranked based on the exit status H, the
attack proceeds through an iterative modification process that
considers five distinct modification methods: Insert (Inserting a
space), Delete (Deleting a random character), Swap (Swapping



TABLE I: Comparing the average exit layer taken by 100 SST-2 or MRPC samples before and after the execution of three
pre-existing misclassification attacks (TextFooler [19], probability weighted word saliency (PWWS) [17], and BERT-based
Adversarial Examples (BAE) [11]) and the SlowBERT attack [7] (whose intention is to cause delayed exit) in order to
demonstrate the inadvertent slowdown effect that misclassification attacks cause. Each of the 100 samples were selected from
a task’s test dataset based whether the specific attack could be successfully generated from the sample input, therefore each
attack uses a slightly different set of 100 samples. Patience-based exiting criteria was used, with p = 5.

Task TextFooler avg. exits PWWS avg. exits BAE avg. exits SlowBERT avg. exits

Before After % change Before After % change Before After % change Before After % change

SST-2 8.59 9.36 8.96 8.20 9.32 13.66 8.05 8.90 10.56 8.37 11.47 37.04

MRPC 7.20 8.98 24.72 7.49 8.60 14.82 7.84 8.13 3.77 7.43 10.39 39.84

(a) Before attack. (b) After attack.

Fig. 1: Confidence scores associated with class 0 for 100 SST-2 samples (one line per sample, color-coded according to correct
class label) at each layer. These values are compared before (a) and after (b) a successful TextFooler attack in order to illustrate
patterns of model confusion that likely contribute to the inadvertent slowdown effect that misclassification attacks cause.

random two adjacent characters), Sub-C (Replacing characters
with visually similar characters), and Sub-W. While the first
four methods induce character-level modifications, Sub-W
stands apart as it replaces a word with its nearest synonym
in the word embedding space. The algorithm picks the best
modification among them by leveraging the exit status H and
continues modifying the words until the attacked text achieves
the last exit layer.

a) Impact of Individual Modification Types on Slowdown:
While the SlowBERT attack has proven highly successful
in causing slowdown, the paper in which it was introduced
does not present separate evaluation results for each individual
word modification method that the attack uses. However, we
observe a noteworthy variation in success across the different
modification methods, which we illustrate through three dif-
ferent experiments. In our first experiment, we performed the
SlowBERT attack five times for each modification method,
with each attack involving a single method while excluding
the others. We used the SST-2 dataset and a patience-based
exiting criterion with p = 6 during this phase. Our results
that we depict in Fig. 2 indicate that among the five modifi-
cation methods, Sub-W exhibited the least impact on model
slowdown, with an average exit layer of 10.11. The Insert

method showed the highest potential to induce slowdown
compared to other character modification methods, with an
average exit layer of 11.8076. For context, the baseline mean
exiting layer of the SST-2 dataset without modifications was
8.3094. In Appendix A, we include results associated with a
second experiment in which we vary the allowed number of
modifications that the attack can make. This is to see how
the added constraint may affect the efficacy of the different
modification types. We consistently find that Insert is again
the most successful and that character-level modifications have
higher potential than Sub-W to cause slowdown.

Because inserting, deleting, and swapping characters intro-
duce new tokens and lengthen the sequence, while synonym
replacement causes a comparatively smaller increase in token
count, we question whether the rise in token count drives
the slowdown, independently of the modification performed.
For our third experiment, we conducted the SlowBERT attack
differently. Instead of choosing the substitution method with
the highest exit status H, we opted for the modification that
resulted in the most significant increase in tokens. Addition-
ally, we restricted the number of allowable modifications to
four, aiming to reduce the likelihood of randomly discovering
an effective approach. We assessed the effectiveness of this



modified attack against the original SlowBERT, limiting the
allowable modifications to four. Based on the findings, while
the original SlowBERT achieves the mean exiting layer of
11.410, the modified attack targeting the highest token number
achieves an average exiting layer of 9.612. The results of this
experiment indicate that simply targeting the highest token
increase does not guarantee a significant slowdown. This
suggests that the superiority of character-level modifications
over synonym replacement is not solely due to the rise in
token count.

Fig. 2: Average exit layer resulting from the use of five
different versions of the SlowBERT attack executed on SST-2
data, with each version solely able to use one modification
type (listed as the substitution method on the x-axis), using
patience-based exiting criteria with p = 6, and comparing
against a baseline average exit layer computed on benign SST-
2 data. Error bars represent standard deviation. The first four
methods (the character-level modifications) generally cause
more slowdown than Sub-W (a word-level modification), with
Insert being the most successful.

b) Illustrating the Utility of the Exit Status H: Now, we
will explain the results of an experiment comparing saliency
(Equation 1) and exit status H (Equation 2), primarily to
illustrate the fact that the exit status H maximally exploits
words’ potential to cause slowdown when modified. We take
100 SST-2 samples, delete various numbers of their least
vulnerable words according to saliency or exit status H, and
evaluate them on a fine-tuned BERT-based MEM that uses
patience-based exiting criteria with p = 5. As evidenced in
the plot in Fig. 3 (and in Table V in Appendix C, we include
the associated values), we find that deleting the words from
a text sample that are assumed to have the least potential
to either cause the sample to be misclassified or delay the
sample’s inference, results in inference speedup without sig-
nificantly compromising accuracy. Using saliency to guide
the word deletion is slightly more favorable to prediction
accuracy, while exit status H leads to more speedup, which

Fig. 3: Accuracy and average exit layer corresponding to SST-
2 test data where various numbers of tokens with either the
lowest saliency or smallest exit status H were deleted from
the inputs, compared to baseline values associated with the
original dataset (no deleted words). Exits were determined
using patience-based criteria (p = 5). It is evident that saliency
is more relevant to accuracy while exit status H is more
relevant to exit layer, but both heuristics effect both metrics.

are understandable results considering the objectives (either
misclassification or slowdown) that inspired these metrics’
definitions. Still, the two metrics’ similar effects provide
additional support of the idea posed in Sec. IV-B1 that in
the text domain, the misclassification and slowdown attack
objectives are entangled. In Fig. 4, we plot the layerwise class
confidence scores associated with class 0 for the 100 SST-2
samples that had class label 1 and had three words from the
input text deleted according to either saliency or exit status
H. For both the deletion of the least salient and the highest
exit status H words, we see in Fig. 4 and that confidence
scores are being pushed away from .5. As we explained in
Sec. IV-B1, this is the value near which confidence scores
would be representing the model’s confusion in deciding on a
classification. However, saliency favors samples being pushed
towards the correct class label (for class 1 samples, this means
class 0 confidence scores are pushed towards 0), while exit
status H pushes samples towards either a correct or incorrect
class, solely favoring a sample’s minimized confusion. This
means that using exit status H offers greater potential for
creating more confident samples because it is not burdened
by additional objectives. Additionally, it appears to inherently
favor earlier high-confidence than saliency does, enabling a
quicker establishment of the prediction consistency required
for exiting with patience-based criteria. Many Fig. 9b confi-
dence scores do not settle until around layers 5-8 with the use
of saliency, compared to around 4-7 from use of exit status H
in Fig. 4c. In Appendix C we include results associated with
the deletion of the most salient and lowest exit status H words.



(a) Baseline (no words deleted). (b) Least salient words deleted. (c) Words with highest exit status H deleted.

Fig. 4: The confidence scores associated with class 0 for 100 SST-2 samples from class 1 (one line per sample) that had three
words deleted, which were either those with the lowest saliency (b) or the highest exit status H (c), which we compare to the
baseline confidence scores associated with the original data (a). The trajectories of these confidence scores demonstrate the
fact that deletions corresponding either to saliency or exit status H will push confidence scores towards or away from a point
of confusion (.̃5 confidence), but saliency also considers label correctness while exit status H favors having an early effect.

Fig. 5: Comparing increases in F1 score and average exit
layer for SST-2 samples resulting from either modifications
made by a TextFooler attack, SlowBERT, or modifications
determined by an exit classifier to either slow down samples
assigned exit label 0 or speed up samples assigned exit label
1. The classifier-determined slowdown modifications and the
SlowBERT attack both cause more slowdown and less of a
drop in F1 score than TextFooler, with SlowBERT causing the
smallest F1 drop as it either maintains or increases baseline
F1 scores. The classifier-determined speedup causes a decrease
in exit layer and drop in F1 score only slightly less than that
caused by classifier-determined slowdown. Figs. 10 and 11 in
Appendix D display exit and F1 results separately.

C. Using Machine Learning to Study the Distinction between
Slow and Fast Inputs

1) Defining a Novel Exit-Classification Task: In this sec-
tion, we explore the idea of using a ML model to understand
the slowdown effect for us. We show how the model’s un-
derstanding can be exploited to generate a slowdown attack
that can target a separate, fine-tuned, BERT-based MEM.
Specifically, we train a model, which we refer to as an exit

classifier, on the novel concept of an exit prediction task,
which is a binary classification task where a model is provided
with input text that it needs to classify as either an earlier-
exiting sample (label 0) or later-exiting sample (label 1). For a
specific downstream task, we craft a dataset wherein the input
values are BERT embeddings (the penultimate hidden layer
state taken from a pre-trained BERT base model that has not
undergone any fine-tuning) of the text input from the original
task. For the output values, we assign label 0 to samples with
exit layers 1 through M and label 1 to samples with exit
layers M +N through K. Exit layers are determined by the
target fine-tuned model and using the confidence-based exiting
criterion using some threshold τ . K corresponds to the total
number of layers in the target fine-tuned model, and M and N
are tunable hyperparameters. The choice of M and N should
enable each class to have sufficient data for the exit classifier to
learn from. It is beneficial to maximize N , hence maximizing
the gap in exits between the two classes, because the task
should be easier to learn if the samples are more definitive
examples of early-exiting and late-exiting texts.

2) Training an Exit Classifier for SST-2: For SST-2, to
craft the exit prediction dataset, we used a threshold of τ =
.9, assigned the original input samples’ BERT embeddings
associated with exit layers 1-4 to label 0, which equated to
37% of the original SST-2 training set and 29% of the test
set, and embeddings associated with layers 8-12 were assigned
to label 1, which was 5% of the original training set and
7% of the test set. We discarded all samples associated with
any other exit layer. These choices of τ , M , and N , were
deemed optimal based on a hyperparameter search. Essentially,
assigning layer 1-4 to label 0 and 8-12 to label 1 appeared
to be an option that resulted in a decent amount of samples
for each class, but it also offered a wide gap between the
two classes’ exit layers, which should make the distinction
between the classes more obvious and easier to learn. We used
the resulting dataset to train a simple multi-layer perceptron



with one hidden layer followed by one dropout layer. After
20 epochs of training, the exit classifier converged at .8198
train AUC (area under the ROC curve) and .8344 test AUC.
It is important to note that we evaluated SlowBERT-attacked
SST-2 samples on the learned SST-2 exit classifier, expecting
the model to classify them with exit label 1 to indicate that
these samples are relatively late-exiting, but the performance
was poor (resulted in 0.4346 AUC). This implies that what the
exit classifier understands as distinguishing features between
early-exiting and late-exiting samples are different from what
is exploited by SlowBERT to cause slowdown. However, in the
next subsection (IV-C3), we will use the SST-2 exit classifier
not only to successfully cause slowdown, but also to cause
speedup, therefore justifying the fact that the model does
actually understand something that can be attributed to the
relative speed at which texts can exit a MEM.

3) Crafting a Slowdown Attack Using an Exit Classifier: If
an adversary can learn an exit classifier, then they can use it to
craft a slowdown attack, though they would first need to craft
an exit-classification dataset as described previously, which
requires them to have knowledge of the exit layers that the
target inputs take on the target model. However, for fine-tuned
pre-trained BERT-based models, the adversary can likely use a
pre-trained BERT model to estimate a fine-tuned model’s exits.
In Fig. 5, we plot results associated with a simple slowdown
attack that was generated using the SST-2 exit classifier. We
simply used the TextFooler attack generation process, but
instead of aiming to misclassify original SST-2 samples, the
goal of the attack was to misclassify label 0 (earlier-exiting)
samples from the SST-2 exit prediction dataset as label 1 (later-
exiting) samples. This means that the modifications made to
the label 0 samples are theoretically turning earlier-exiting
samples into late-exiting samples. Note that these modifica-
tions solely include synonym replacements. To be clear, the
goal of this attack is not necessarily to cause misclassification
for the exit-classification task. Rather, the misclassification
objective is being used to guide a loss computation that will
correspond with our true aim of modifying texts in such a
way that early-exiting samples become later-exiting samples.
In order to support the claim that the exit classifier is truly
learning the distinction between early and late exiting samples,
we also executed a sort of ’attack’ (though not technically an
attack because the intention is not to cause adverse effects)
with the opposite objective to achieve the opposite result. In
other words, we launched a TextFooler attack with the aim to
misclassify label 1 (later-exiting) samples as label 0 (earlier-
exiting) samples, which led to modifications that caused
inference speedup. Examples from both the slowdown and
speedup ’attacks’ are included in in Table II. Fig. 5 compares
both of these attack results to the traditional TextFooler attack
that aims to cause misclassification and to SlowBERT, which
aims to cause slowdown. However, our intention here is not
necessarily to present an attack method that leads to a maximal
slowdown effect, but rather to demonstrate the fact that an exit
classifier has the potential to acquire its own understanding of
what kinds of features contribute to some texts necessitating

more inference than others.

V. INCREASING ROBUSTNESS AGAINST SLOWDOWN
THROUGH EXPEDITED ADVERSARIAL TRAINING

In this section, we show that a modified version of adver-
sarial training, which we refer to as expedited adversarial
training, can both mitigate inference slowdown on attacked
samples and cause inference speedup on benign examples. [6]
found that adversarial training was unsuccessful in mitigating
slowdown attacks in the image domain, but we will explain
how some of the behaviors associated with text slowdown that
we discussed in Sec. IV-B1 can help explain why expedited
adversarial training is effective in the text domain. Results in
Sec. V-B show that this method, which is attack-agnostic, can
mitigate slowdown effectively in six diverse attack settings.

A. Our Proposed Expedited Adversarial Training

Our expedited adversarial training process involves fine-
tuning a BERT base model with a training dataset that has been
augmented with synthetic samples. We refer to the resulting
model as a robust model. The synthetic samples are created
by taking original data samples, choosing words in their input
texts, and swapping those words with new words. In the
next section, V-B, we explain the specific ways in which we
choose words to replace and their replacements, but we will
later demonstrate the fact that the specific means of choosing
and replacing words is flexible and inconsequential. Note that
in our experiments, we consistently choose to replace 20%
of words because we have found that traditional text-based
adversarial attacks often modify around 20% of tokens in a
text in order to effectively attack it. These synthetic samples
are not necessarily attacked samples because we do not ensure
that the modifications we are making to inputs are leading to
slower inference, which is why this process is not quite a
traditional adversarial training.

B. Inference Speedup and Attack Mitigation Results

In Fig. 6a and Fig. 7a, across 30 total training epochs, we
compare the test accuracy, training loss, and average exit layer
associated with three different models fine-tuned on SST-2
data. The first is a baseline model that was trained on 5,000
original training samples. The second is a robust model that
trained on a 11,413-sample dataset consisting of 5,000 original
samples that each contributed an additional 1-2 synthetic sam-
ples through the replacement of their most salient words (using
equation 1) with randomly-selected synonyms. The third is a
baseline model that was trained on 11,413 original training
samples. In Fig. 6b and Fig. 7b, across 75 training epochs,
we compare the test accuracy, training loss, and average exit
layer associated with six different models fine-tuned on MRPC
data. We asses two baseline models, one trained on 1,000
original training samples and one trained on 3,000, and four
robust models trained on datasets that include 1,000 origi-
nal samples and 1-2 additional synthetic samples that were
generated from the original 1,000 using different strategies.
The first model replaced the most salient words with random



TABLE II: Examples of benign SST-2 input sentences paired with a version that was modified using an exit classifier in order
to either cause slowdown or speedup.

Slowdown Sample 1
Benign allows us to hope that nolan is poised to embark a major career as a commercial yet inventive filmmaker.

Modified allows ourselves to hope that nolan is loaning to embark a major career as a commercial yet inventive filmmaker.

Slowdown Sample 2
Benign you don’t have to know about music to appreciate the film’s easygoing blend of comedy and romance.

Modified you maken’t owns to know about musica to appreciate the stills’s easygoing blend of comedy and romance.

Speedup Sample 1
Benign the emotions are raw and will strike a nerve with anyone who’s ever had family trauma.

Modified the sentiments are raw and dedication strike a nerve with anyone who’s ever made family trauma.

Speedup Sample 2
Benign we know the plot’s a little crazy, but it held my interest from start to finish.

Modified we realizing the plot’s a little wack, but it possessed my interest from opened to finish.

(a) SST-2 (b) MRPC

Fig. 6: Comparison of train loss and test accuracy associated with various baseline models (trained only using original data)
and robust models (trained with a mix of original data and synthetic data) throughout training. All of the robust models exhibit
slightly lower accuracy and loss than the baseline for both SST-2 and MRPC.

synonyms, the second model replaced randomly-chosen words
with random synonyms, the third replaced randomly-chosen
words with random words (thus compromising the sentence’s
meaning), and the fourth deleted the most salient words from
the sentence. We can draw three main conclusions from these
results. First, training with synthetic samples leads to inference
speedup (decreased average exit layer) for benign samples
without causing a notable drop in accuracy. Second, this effect
is comparable across all sample-creation strategies, including
replacing either salient words or randomly-chosen words and
using either synonyms and random words as replacements.
Lastly, the beneficial decreased average exit reaped through the
use of these augmented datasets cannot simply be attributed
to an increased training dataset size.

In Table III, we show results associated with SST-2 and
MRPC that compare a baseline model and two robust models
in terms of the F1 score and average exit layer computed

on each task’s benign test dataset and on three different
’attacked’ datasets per task. Results associated with MNLI
are in Table VIII in Appendix E. These attacked datasets
consist of samples that have modified original samples in
some way that either intentionally or unintentionally induces
slowdown. For this table, the baseline models are models
that were trained on the original SST-2 and MRPC training
datasets. For both tasks, we report results associated with a
robust model whose synthetic training samples made random
replacements for randomly-selected words and a robust model
whose synthetic samples replaced the most salient words with
random synonyms. For all attacks and for both datasets, the
average exit layer is drastically smaller for both robust models
than for the baseline mode. In fact, all average exit layers
associated with the robust models only barely surpass 6.00.
Since we set p to 5 in these experiments, the minimum possible
exit layer that any sample can take is 6, which means the robust



(a) SST-2 (b) MRPC

Fig. 7: Comparison of the average exit layer taken by all test samples when being evaluated on various baseline models (trained
only using original data) and robust models (trained with a mix of original data and synthetic data) throughout training. For
both SST-2 and MRPC, the robust models generally experience earlier exiting than the baseline.

TABLE III: Comparing the F1 score and average exit layer when evaluating a variety of attacked SST-2 and MRPC datasets on
a baseline model trained on the original training datasets and two robust models that were trained with expedited adversarial
training (trained on augmented datasets). The attacked datasets were produced using either the SlowBERT attack, the exit-
classification based slowdown attack introduced in Sec. IV-C3, pre-existing text misclassification attacks (TextFooler [19] or
PWWS [17]), or replacing a random 20% of words with randomly-selected synonyms. We consistently use patience-based
exiting criteria with p = 5. The results show that, compared to the baseline model, both robust models for both datasets exhibit
decreased F1 score on the benign data, either increased or decreased F1 score across the various ’attacks’, but consistently
decreased exit layer that nearly reaches the minimal possible value of 6 (p = 5 does not enable exiting earlier than layer 6).

SST-2

Model Benign SlowBERT-attacked Exit-classification slowdown TextFooler-attacked

F1 score Avg. exit F1 score Avg. exit F1 score Avg. exit F1 score Avg. exit

Baseline 0.87 8.23 0.90 11.49 0.81 8.60 0.87 8.79
Robust (salient words, synonym replacement) 0.79 6.16 0.96 6.13 0.91 6.14 0.68 6.20
Robust (random words, random replacement) 0.80 6.22 0.74 6.42 0.88 6.16 0.61 6.25

MRPC

Model Benign SlowBERT-attacked Random replacement PWWS-attacked

F1 score Avg. exit F1 score Avg. exit F1 score Avg. exit F1 score Avg. exit

Baseline 0.86 7.24 0.76 10.39 0.75 8.20 0.65 8.03
Robust (salient words, synonym replacement) 0.77 6.33 0.79 6.21 0.75 6.16 0.82 6.26
Robust (random words, random replacement) 0.75 6.24 0.75 6.34 0.75 6.20 0.78 6.20

models are nearly allowing for the maximal efficiency benefit
that the MEM is capable of providing.

C. Linking the Expedited Adversarial Training Success to the
Overlap between Misclassification and Slowdown Objectives

The results from Sec. V-B show that, regardless of the
specific augmentation strategy chosen, augmenting a training
dataset with samples that have had words swapped in the
input text will lead to quicker inference time on benign data
without notably compromising accuracy and will mitigate the
slowdown effect of attacked data. The similarity of results

from the various augmentation strategies is crucial because
traditional adversarial training is characteristically expensive,
but we’ve shown that the quick process of replacing random
words with new random words can be sufficient for achieving
robustness against slowdown in the text domain.

We suppose that the efficacy is largely due to a unique sort
of regularization effect. The synthetic training samples can
be considered noise, and it is known that training a model
with more noisy samples biases the model towards ignoring
extra noise terms in its hypothesis function. In this scenario,



when we introduce the ’noisy’ synthetic samples to the training
data, which we can assume is slightly less-accurate, harder-
to-learn-from data than the original samples, it makes sense
that the ’robust’ model trained on these synthetic samples
will yield slightly less-accurate predictions on benign samples
than the baseline model. Yet, the incurred regularization effect
will mean that the robust model is more confident in its
predictions, more quickly than the baseline model. This aligns
with the observation we made in Paragraph IV-B2b that word
deletion guided by the exit status H leads to less potential for
achieving maximal accuracy and more potential for causing
speedup because it favors a model’s confidence in assigning
predictions to a sample over its correctness in the assignments.
Not only is the regularization effect causing increased model
confidence when running inference on benign samples, but
it seems logical that it would also offer less opportunity for
an attacker to craft an adversarial sample that confuses the
model. Since we addressed in Sec. IV-B1 the fact that the
slowdown effect comes from model confusion as opposed to
a model’s prediction oscillating between confidently leaning
towards different classes, the lessened opportunity for an
attacker to confuse a model would understandably lead to
the mitigation of the slowdown effect of adversarial samples.
Lastly, it’s worth noting that the robust models did slightly
mitigate the accuracy degradation that the attacks in Table III
caused, but not as effectively as the slowdown was mitigated.
This supports the idea that text slowdown is both easier
to cause, therefore is sometimes caused unintentionally, and
easier to defend against, therefore benefiting from a simplified
version of adversarial training that is not sophisticated enough
to combat misclassification.

As a final possible explanation, it is plausible that the
expedited adversarial training process offers a model more
experience with processing and deriving predictions for more
confusing texts. The synthetic samples are created in a rela-
tively haphazard way and with no assurance that the resulting
sentences are logical. Even when synonyms are used as
replacements for words, simply choosing a replacement word
with a similar meaning as the original word does not mean
that the new word will be coherent in the context it is placed
in. This means that a model, after training on these samples,
may learn to be more adept in processing confusing samples,
thus explaining the earlier exiting that we see with the robust
models. Recent works explain that BERT processes different
attributes of a text at different layers [55], [56]. Therefore,
we hypothesize that expedited adversarial training leads to
a model whose layerwise considerations are more favorable
to deriving confident predictions for confusing samples early
in the network. For instance, perhaps a model will see these
synthetic samples with confusing syntax and grammar and
therefore attribute fewer layers to processing these attributes,
consequently shifting the task-specific processing that usually
happens later up to earlier layers in the network. With task-
specific processing occurring earlier in the network, a model
can come to a decision about the task earlier in the network
and therefore allow inputs to exit earlier.

VI. DISCUSSION

We have presented an investigation of the ways in which a
slowdown effect can be inflicted upon and observed within
BERT-based MEMs and we used our findings to justify a
surprisingly simple, yet highly effective means of combating
the slowdown. Our results can serve as a basis for further
study towards better understanding the phenomena that are
confusing to language models. A fundamental distinction
between slowdown attacks and traditional adversarial attacks
(i.e. misclassification attacks) that is worth emphasis is as
follows. Typical adversarial attacks aim to fool a model into
some incorrect output, while slowdown attacks do not care
about the specific output and are instead concerned with a
model’s quickness and certainty in its derivation of the output.
This distinction is likely at the root of all of the unique
patterns that we see with slowdown attacks. Essentially, our
empirical findings suggest that slowdown can be associated
with any vague notion of confusion or uncertainty, which
is easy to impose in such a constrained, nuanced domain
(text), yet also means that the simple act of forcing a model
to be more confident can be highly effective in mitigating
slowdown. On one hand, this contrasts traditional text-based
attacks whose goals are harder to impose and thus harder
to mitigate. This also contrasts patterns of slowdown that
occur in the vision domain because the slowdown effect has
shown to require more specific intention to impose, which
could also explain the failure of adversarial training as a
mitigation strategy for image-based slowdown. One area we
find particularly worthy of further exploration is the way
that different sources of slowdown are present in layerwise
confidence score patterns. Recent works suggest that BERT
considers different qualities of text input across different layers
of the model in a way that doesn’t align with the understanding
that image models consider simpler image features in earlier
layers and more complex features in later layers [55], [56].
Linking the knowledge of what BERT understands at each
layer with knowledge of what causes slowdown and how
is evidenced across model layers can inform new slowdown
attack generation approaches and more slowdown-robust meth-
ods. As mentioned previously, we expect there to be some
interplay between a model’s vulnerability to slowdown and
the layers at which the model processes certain attributes
of a text, and our proposed expedited adversarial training
may be taking advantage of or adapting this interplay. Still,
it will be important for future work to identify new attack
methods that are resilient to any form of adversarial training.
Ultimately, as we continue to broaden our understanding of
what causes inference slowdown in the language domain, we
can continue to improve the design of models in a way that
favors efficiency, which is vital to a field with models and
datasets that experiences relentless expansion.
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APPENDIX

A. Comparing the Effectiveness of SlowBERT Modification
Types While Varying the Modification Allowance

As an additional experiment to help us identify the most
effective SlowBERT modification types, we executed the
SlowBERT attack with a constraint on the maximum number
of words that could be altered. A summary of the results of
this experiment, using both SST-2 and MRPC data, is visually
depicted in Table IV. These results align with the conclusions
we made in Sec. IV-B2. We see that, across all numbers
of allowed modifications, character-level modifications have
higher potential to cause slowdown than Sub-W (a word-level
modification) and Insert is the most effective character-level
modification.

B. Comparing the Most Certain Confidence Scores to the
Least Certain Confidence Scores

Here, we include two additional plots to help illustrate part
of the reasoning we used in Sec. IV-B1 to explain why misclas-
sification attacks lead to an inadvertent slowdown effect due
to the fact that the achieving the misclassification objective
often happens through some form of model confusion. With
Fig. 8a we see that, especially with label 0 samples, even the
eventual misclassification (low confidence score for class 0 at
the output layer) involves correct classification in earlier layers
(high confidence scores for class 0 around layers 3-7). This
pattern of switching from favoring one class to favoring the
other impedes the model’s ability to establish consistency in
its prediction that is required for a sample to exit early. With
Fig. 8b, we see that, especially compared to the more-certain
samples, the less-certain samples both have confidence scores
around .5 at the output layer and at earlier layers. This is
demonstrating the fact that samples that are confusing to the
model (in other words, the model cannot confidently assign

them to either class) at the final output layer will usually also
be confusing to the model in preceding layers. This again
means that the model is unable to establish the consistent
confidence in a single classification that would enable early
exiting.

C. Results Associated with Heuristic-Guided Token Deletion

In this section, we include results to accompany those in
Fig. 4 of Sec. IV-B2b. In Fig. 4 we can observe that, compared
to the baseline, deleting words with either the smallest saliency
or highest exit status H causes samples’ confidence scores
to be pushed towards higher confidence. Saliency evidently
favors higher confidence towards an incorrect classification
while exit status H is solely maximizing confidence in one
classification’s direction with no care about the correctness of
the classification. Now, in Fig. 9, we present results associated
with deletion of the most salient or words or those with
the smallest exit status H and see that both scenarios are
pushing confidence scores towards the middle of the plot (.5
confidence) thereby avoiding confident assignment to either
label.

D. Additional Classifier-Based Slowdown Attack Results

In the main text, when comparing our novel, exit-
classification-based slowdown attack to TextFooler and Slow-
BERT baselines, we combine the average exit results and F1
score results into a single plot. Here, we present the exit results
and F1 results in separate plots in case these plots provide
more clarity.

E. Multi-Genre Natural Language Inference Results

Here, we provide a variety of results associated with the
Multi-Genre Natural Language Inference dataset [48] from the
General Language Understanding Evaluation (GLUE) bench-
mark. MNLI is a task where two sentences, a premise sentence
and a hypothesis sentence, are assigned an ’entailment’ label
if the premise entails the hypothesis, a ’contradiction’ label if
the hypothesis contradicts the premise, or a ’neutral’ label if
neither aforementioned case is true.



TABLE IV: The percentage of attack executions in which each SlowBERT modification type was chosen (due to offering the
most slowdown) by SlowBERT attacks on the SST-2 and MRPC test datasets. We consider versions of the attack that limit the
number of modifications that can be made to the input text in addition to the default version of the attack, which continues
making modifications until the resulting attacked sample exits at the last possible exit layer or there are no words left to modify.
All experiments used patience-based exiting criteria with p = 6. Generally, character-level modifications cause more slowdown
than Sub-W (a word-level modification) and the increase in exit layer increases as more modifications are allowed.

Task Max number of
modifications allowed

Usage percentage by modification type (%) Avg. exit
Original Insert Delete Swap Sub-C Sub-W

SST-2

1 3.19 38.25 20.98 13.68 19.12 4.78 9.950

2 5.66 37.52 18.55 13.14 18.97 6.16 10.727

3 8.34 36.00 18.03 12.72 18.30 6.59 11.168

4 9.66 35.00 17.29 12.58 18.66 6.79 11.410

Unlimited 16.95 33.01 15.31 10.69 16.05 7.98 11.932

MRPC

1 10.49 33.76 14.76 20.58 12.64 7.73 9.06

2 13.93 31.79 14.16 18.99 12.56 8.56 9.721

3 16.66 30.11 13.68 18.24 12.69 8.61 10.204

4 19.25 29.19 13.02 17.31 12.55 8.67 10.554

Unlimited 35.75 21.93 10.04 11.29 11.13 9.87 11.589

(a) Samples with the most certain confidence scores (class 0
confidence > .8 or < .2).

(b) Samples with the least certain confidence scores (class 0 confi-
dence > .2 and < .8).

Fig. 8: The confidence scores associated with class 0 for 100 SST-2 samples (one line per sample, color-coded according to
correct class label), taken from each layer. We compare the most certain (a) and uncertain (b) values resulting from a successful
TextFooler attack in order to demonstrate the patterns of model confusion that we observe as a side effect of misclassification
attacks and that can explain the inadvertent slowdown that accompanies misclassification attacks.



(a) Baseline (no words deleted). (b) Most salient words deleted. (c) Words with lowest exit status H deleted.

Fig. 9: The confidence scores associated with class 0 for 100 SST-2 samples from class 1 (one line per sample) that had 3
words deleted, which were either those with the highest saliency (a), lowest saliency (b), lowest exit status H (c), or highest
exit status H (d). The trajectories of these confidence scores demonstrate the fact that deletions corresponding either to saliency
or exit status H will push confidence scores towards or away from a point of confusion (.̃5 confidence), but saliency also
considers label correctness while exit status H favors having an early effect.

TABLE V: Accuracy (Acc.) and average exit layer (Ext.)
corresponding to versions of the SST-2 test dataset where
various numbers of tokens were deleted according to the
following heuristics: either the words with the lowest saliency
or smallest exit status H were deleted from the text inputs. We
compare these values to the baseline values associated with the
original dataset (no tokens deleted). Exits were determined
using patience-base criteria with p = 5. It is evident that
saliency is more relevant to accuracy while exit status H is
more relevant to exit layer, but both heuristics effect both
metrics. Note that without any deletions, this dataset achieves
an average exit of 8.37 and 90% accuracy.

Heuristic Metric # of tokens deleted

1 2 3 4 5 6 7

Saliency Ext. 8.65 8.6 8.45 8.33 8.34 8.32 8.31

Acc. 94 97 98 98 98 97 96

Exit status Ext. 8.52 8.31 8.21 8.09 8.24 8.25 8.36

H Acc. 87 82 83 82 82 83 82

Fig. 10: Comparison of percent increase in average exit
layer for SST-2 samples resulting from either modifications
made by a TextFooler attack, SlowBERT, or modifications
determined by an exit classifier to either slow down samples
assigned exit label 0 or speed up samples assigned exit label
1. The classifier-determined slowdown modifications and the
SlowBERT attack both cause more slowdown than TextFooler
while the classifier-determined speedup causes a decrease in
exit layer.



TABLE VI: In order to communicate crucial differences between saliency and exit status H, we compare confidence scores
associated with class 0 at each layer for samples where the three words with either the lowest exit status H, highest exit status
H, lowest saliency, or highest saliency were deleted. We report the percentage of total samples that are ’near .5’ (confidence
> .2 or < .8), the percentage of samples that are ’far from .5’ (confidence < .2 or > .8), and the percentage of samples whose
confidence score is indicating a correct classification.

Deleted Metric Layer #

3 4 5 6 7 8 9 10 11

Baseline
% near .5 34.62 15.38 23.08 17.31 9.62 9.62 7.69 5.77 1.92

% far from .5 65.38 84.62 76.92 82.69 90.38 90.38 92.31 94.23 98.08
(no deletion) % correct 80.77 73.08 80.77 80.77 84.62 92.31 94.23 92.31 92.31

Lowest exit status H
% near .5 57.69 23.08 26.92 21.15 25.0 26.92 25.0 21.15 23.08

% far from .5 42.31 76.92 73.08 78.85 75.0 73.08 75.0 78.85 76.92
% correct 36.54 34.62 44.23 55.77 59.62 69.23 73.08 75.0 76.92

Highest exit status H
% near .5 36.54 15.38 13.46 17.31 7.69 9.62 11.54 9.62 13.46

% far from .5 63.46 84.62 86.54 82.69 92.31 90.38 88.46 90.38 86.54
% correct 65.38 65.38 73.08 80.77 82.69 82.69 84.62 84.62 86.54

Lowest saliency
% near .5 57.69 25.0 30.77 30.77 19.23 13.46 13.46 11.54 11.54

% far from .5 42.31 75.0 69.23 69.23 80.77 86.54 86.54 88.46 88.46
% correct 46.15 48.08 59.62 71.15 75.0 76.92 80.77 78.85 80.77

Highest saliency
% near .5 48.08 21.15 19.23 15.38 11.54 13.46 7.69 5.77 3.85

% far from .5 51.92 78.85 80.77 84.62 88.46 86.54 92.31 94.23 96.15
% correct 69.23 65.38 80.77 86.54 92.31 98.08 98.08 98.08 98.08

Fig. 11: Comparison of percent increase in F1 score for
SST-2 samples resulting from either modifications made by
a TextFooler attack or modifications determined by an exit
classifier to either slow down samples assigned exit label 0
or speed up samples assigned exit label 1. The classifier-
determined slowdown modifications and the SlowBERT attack
both cause less of a drop in F1 score than TextFooler, with
SlowBERT causing the smallest F1 drop as it either maintains
or increases baseline F1 scores. The classifier-determined
speedup causes only a slightly smaller drop in F1 score than
the classifier-determined slowdown.

TABLE VII: Comparing the average exit layer taken by
100 MNLI test samples before and after the execution of
three pre-existing misclassification attacks (TextFooler [19],
probability weighted word saliency (PWWS) [17], and BERT-
based Adversarial Examples (BAE) [11]) and the SlowBERT
attack [7] in order to demonstrate the inadvertent slowdown
effect that misclassification attacks cause. Each of the 100
samples were selected from a task’s test dataset based whether
the specific attack could be successfully generated from the
sample input, therefore each attack uses a slightly different
set of 100 samples. Patience-based exiting criteria was used,
with p = 5.

Attack Avg. exit pre-attack Avg. exit post-attack % change

TextFooler 7.13 8.16 14.45

PWWS 7.20 8.50 18.06

BAE 7.14 8.46 18.49

SlowBERT 7.40 12.00 62.16



TABLE VIII: Comparing the accuracy and average exit
layer when evaluating the benign MNLI test dataset and a
SlowBERT-attacked version of the MNLI test dataset on a
baseline model trained on the original training dataset and a
robust model that was trained with expedited adversarial train-
ing (trained on an augmented dataset that included synthetic
samples where, in this case, randomly-selected words were
replaced with randomly-selected synonyms). We consistently
use patience-based exiting criteria with p = 5. The results show
that, compared to the baseline model, the robust model exhibits
decreased accuracy on the benign data, increased accuracy on
the attacked data, and decreased average exit layers for both
the benign and attacked datasets.

Model Benign SlowBERT-attacked

Accuracy Average exit Accuracy Average exit

Baseline 0.89 7.40 0.62 12.00
Robust 0.71 7.06 0.60 8.14


