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ABSTRACT

Conformal prediction (CP) transforms any model’s output into prediction sets
guaranteed to include (cover) the true label. CP requires exchangeability, a re-
laxation of the i.i.d. assumption, to obtain a valid distribution-free coverage guar-
antee. This makes it directly applicable to transductive node-classification. How-
ever, conventional CP cannot be applied in inductive settings due to the implicit
shift in the (calibration) scores caused by message passing with the new nodes.
We fix this issue for both cases of node and edge-exchangeable graphs, recover-
ing the standard coverage guarantee without sacrificing statistical efficiency. We
further prove that the guarantee holds independently of the prediction time, e.g.
upon arrival of a new node/edge or at any subsequent moment.

1 INTRODUCTION

Graph Neural Networks (GNNs) are used in many applications however without a reliable estimation
of their output’s uncertainty. We can not rely solely on the predicted distribution of labels π(y | x)
(e.g. from the softmax) as it is often uncalibrated. Therefore, it is crucial to find confidence estimates
aligned with the true p(y | x). There is a rich literature on uncertainty quantification methods many
of which require retraining or modifications to the model architecture. Among them, almost none
come with a guarantee, and many rely on the i.i.d. assumption. Given the interdependency structure
(adjacency) we cannot easily adopt these methods for node classification. As a result, uncertainty
quantification methods for GNNs are very limited (Stadler et al., 2021).

Conformal prediction (CP) is an alternative approach that uses the model as a black box and returns
prediction sets guaranteed to cover the true label without any assumptions on the model’s architec-
ture or the data generating process. This guarantee is probabilistic and works for any user-specified
probability 1 − α. To apply CP, we need a conformity score function s : X × Y 7→ R that quan-
tifies the agreement between the input and the candidate label. Additionally, we need a held-out
calibration set. The only assumption for a valid coverage guarantee is exchangeability between the
calibration set and the test set. This makes CP applicable to non-i.i.d settings like transductive node
classification – Zargarbashi et al. (2023) and Huang et al. (2023) showed that with a permutation-
equivariant model (like almost all GNNs) CP obtains a valid coverage guarantee.

Given the dynamic nature of real-world graphs which evolve over time, inductive node classification
is more reflective of actual scenarios than transductive. In the inductive setting, we are given an
initial graph (used for training and calibration) which is progressively expanded by set of nodes
and edges introduced to the graph over time. Importantly test nodes are not present at the training
and calibration stage. For GNNs, updates in the graph cause an implicit shift in the embeddings
of existing nodes and consequently the softmax outputs and conformity scores. Therefore, in the
inductive setting, even assuming node/edge exchangeability (see § B for a formal definition), the
coverage guarantee is no longer valid. Intuitively, calibration scores are no longer exchangeable
with test scores, as soon as new nodes or edges are introduced (see Fig. 1 right).

To address this issue, Clarkson (2023) adapt the beyond exchangeability approach applying weighted
CP for inductive node-classification aiming to recover the guarantee up to a bounded (but unknown)
error (Barber et al., 2023). Unfortunately, this approach has an extremely limited applicability when
applied with a realistic (sparse) calibration set. In sparse networks and limited labels, the method
fails to predict any prediction set for a large number of nodes; and for the rest, the statistical effi-
ciency is significantly low (see § C for details).

1



Published as a conference paper at ICLR 2024

−1.0 −0.8 −0.6 −0.4 −0.2 0.0

Score

0

2

D
en

si
ty Standard CP

0 1000 2000 3000 4000

Timestep

0.
05

0.
10

E
M

D
D

is
t.

Cal
Test

0 1000 2000 3000

Timestep

0
10

00
20

00
30

00
40

00

NodeEx CP
Naive CP
Ground Truth −

0.
8

−
0.

6
−

0.
4

−
0.

2

Figure 1: [Left] Each vertical line on the heatmap shows sorted true test scores at each timestep. The
dashed line shows the true (unknown) α-quantile and the quantile from each approach is also shown
alongside. NodeEx CP (ours) closely tracks the true quantile, while naive CP deviates over time.
[Upper right] Distributions from selected timesteps marked by the same color on the heatmap. The
distribution shift is observable over time with new nodes appearing. [Lower right] The earth mover
distance (EMD) between naive CP calibration scores and shifted true scores, denoted as “Test”; and
EMD between naive and NodeEx CP scores, denoted as “Cal”. Details in § D.5.

We show that for a node or edge exchangeable graph sequence (without distribution shift), we can
adapt CP w.r.t. the implicit shift in score space, recovering the desired coverage guarantee. Node-
exchangeability assumes that the joint distribution of nodes is invariant to any permutation. In the
inductive setting, this means that any node is equally likely to appear at any timestep. We show
that under node-exchangeability, the effect of new coming nodes is symmetric to the calibration set
and the existing nodes. Hence, computing the conformity scores conditional to the subgraph at any
timestep recovers the guarantee. Previous works under the transductive setting (Zargarbashi et al.,
2023) and (Huang et al., 2023) also assume node-exchangeability.

While real-world graphs are sparse, all node-exchangeable generative processes produce either
empty or dense graphs (see § 3). Therefore, we extend our study to the edge-exchangeable set-
ting which can generate sparse graphs. In § 4.2 we show that w.r.t. scores, any edge-exchangeable
sequence is equivalent to a weighted node-exchangeable sequence. Therefore, through weighted
CP (weighted quantile lemma from Tibshirani et al. (2019)) we recover the 1− α coverage. Impor-
tantly, the improvement of our method is orthogonal to whether there is a distribution shift over time.
Therefore, to address shift, we can still apply the weighting scheme from Barber et al. (2023) on top.

We focus on inductive node-classification. We define node-exchangeable (NodeEx) CP, and we show
that (i) for node-exchangeable sequences, NodeEx CP obtains 1 − α guarantee by calibrating over
shifted conformal scores conditional to subgraphs in each timestep (Fig. 1 left), (ii) the 1− α guar-
antee is achievable via weighted CP on edge-exchangeable sequences, and (iii) The guarantee holds
independent of the prediction time – the prediction set for a node at any timestep after its appearance
benefits from the same coverage guarantee (e.g. prediction upon arrival or all nodes at once both
result in the same coverage). We justify our approach with both theoretical and empirical results.

2 BACKGROUND: CONFORMAL PREDICTION AND TRANSDUCTIVE GNNS

Here we recall the general guarantee of CP (e.g. for image dataset). Through this paper, we assume
a continuous score function without ties. This can apply to any function via adding noise. With
weights wi ∈ [0, 1], and the sorting permutation τ⋆, we define the weighted quantile Quant (·; ·; ·) as

Quant
Ä
α; {si}Ni=1 ; {wi}Ni=1

ä
= inf

{
sτ⋆(i) :

∑i
j=1 wτ⋆(j)∑N
j=1 wj + 1

≥ α

}
(1)
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Theorem 1 (Vovk et al. (2005)). Let {(xi, yi)}ni=1, and (xn+1, yn+1) be exchangeable. With any
continuous function s : X ×Y 7→ R measuring the agreement between x, and y, and user-specified
significance level α ∈ (0, 1), with prediction sets defined as Cα(xn+1) = {y : s(xn+1, y) ≥ q̂}
where q̂ := Quant (α̃; {s(xi, yi)}ni=1; 1). We have Prob [yn+1 ∈ C(xn+1)] ≥ 1− α.

The marginal coverage probability is upper-bounded by 1− α + 1/(n+ 1). With infinite samples,
the coverage is distributed as a Beta(n + 1 − l, l) with l = ⌊(n + 1)α⌋ (Vovk, 2012), while with
a fixed population |D| = n + m, and an exchangeable calibration set |Dcal| = n, the probability
of coverage Cov(D \ Dcal) := (1/m)1[yi ∈ C(xi)]i∈D−Dcal

derives from a collection of hyper-
geometric distributions (Huang et al., 2023).

Conformity scores. The guarantee from Theorem 1 holds regardless of how the conformity score
function s : X × Y → R is defined. A wise choice of s(·, ·) is reflected in other metrics like
the prediction set size. We use adaptive prediction sets (APS) with a score function defined as
s(x, y) := − (ρ(x, y) + u · π(x)y). Here ρ(x, y) :=

∑K
c=1 π(x)c1 [π(x)c > π(x)y] is the sum of

all classes predicted as more likely than y, and u ∈ [0, 1] is a uniform random value that breaks
the ties between different scores to allow exact 1 − α coverage (Stutz et al., 2022). Our method is
independent of the choice of score function and we show its applicability on other (network-agnostic
and network-aware) scores in § D.3.

CP beyond exchangeability. For cases where the calibration and test points are not exchangeable,
there is a coverage gap ∆α, i.e. Prob [yn+1 ∈ Cα(xn+1)] ≥ 1−α−∆α. Barber et al. (2023) shows
that ∆α has an upper bound that depends on how far the data deviates from exchangeability. This
upper bound can be further controlled via weighted conformal prediction. For related works see § F.

2.1 CONFORMAL PREDICTION FOR TRANSDUCTIVE NODE-CLASSIFICATION

Consider a graph G(V, E ,A,y) with X ∈ Rn×d as node-features matrix, A ∈ Rn×n as adjacency
matrix, and y ∈ Rn as labels. V = Vtr ∪ Vcal ∪ Vu is the set of vertices (training, calibration, and
test). Let f be a black-box permutation-equivariant model (e.g. a GNN) trained on labels of Vtr,
and s be a continuous score function with access to the outputs of f . The score function s may or
may not use information about the graph structure (see § D.3). In the transductive setup the graph
G is fixed, and training and calibration is performed with all observed nodes (including features and
structure). The labels of Vtr and Vcal are used respectively for training and calibration, while all
other labels remain unseen. Here when Vcal and Vu are exchangeable, standard CP can be applied
(Zargarbashi et al., 2023; Huang et al., 2023). For a set with a fixed number of nodes V ′, we define
the discrete coverage as Cov(V ′) = 1

|V′|
∑

vj∈V′ 1
î
yj ∈ Ĉ(vj)

ó
. The following theorem shows that

under transductive calibration, CP yields valid prediction sets.

Theorem 2 (Rephrasing of Theorem 3 by Huang et al. (2023)). For fixed graph G, and a
permutation-equivariant score function s(·, ·), with Vcal = {(vi, yi)}Ni=1 exchangeably sampled
from V \ Vtr, and prediction sets Ĉ(v) =

¶
y : s(v, y) ≥ Quant

Ä
α; {s(vi, yi)}Ni=1 ; 1

ä©
we have

Prob [Cov(Vu) ≤ t] = 1− ΦHG(iα − 1;M +N,N, ⌈Mt⌉+ iα) (2)

where iα = ⌈(N + 1)(1 − α)⌉ is the unweighted α-quantile index of the calibration scores, and
ΦHG(·;N,n,K) is the c.d.f. of a hyper-geometric distribution with parameters N (population), n
number of samples, and K number of successful samples among the population.

The issue with inductive node-classification. The above approach does not directly translate to the
inductive setting. As soon as the graph is updated, the implicit shift in the nodes embeddings results
in a distribution shift w.r.t. the calibration scores that are computed before the update. This breaks
the exchangeability as shown by Zargarbashi et al. (2023) and in Fig. 1. To address this issue, Clark-
son (2023) adopts weighted CP (Barber et al., 2023) with neighborhood-dependent weights (NAPS),
limiting the calibration nodes to those inside an immediate neighborhood of a test node. Applying
NAPS on sparse graphs or with small (realistic) calibration sets, leaves a significant proportion of test
nodes with an “empty” calibration set. Hence, its applicability is limited to very special cases (see
§ C for details). Moreover, NAPS does not quantify the coverage gap ∆α. In contrast, when assum-
ing either node or edge-exchangeability, the gap for our approach is zero regardless of the weights.
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3 INDUCTIVE GNNS UNDER NODE AND EDGE EXCHANGEABILITY

In the inductive scenario, the graph changes after training and calibration. Therefore, the model f
is trained, and CP is calibrated only on a subgraph before the changes. We track these updates in a
sequence of graphs G1,G2, . . . where Gt = (Vt, Et) is a graph with a finite set of vertices and edges.
We focus on progressive updates meaning ∀t : Vt ⊆ Vt+1 and Et ⊆ Et+1. At timestep t in a node-
inductive sequence, the update adds a node vt with all its connections to existing vertices. In an edge-
inductive sequence, updates add an edge, which may or may not bring unseen nodes with it. W.l.o.g
update sets are singular. Node-inductive and edge-inductive sequences are formally defined in § B.

We call a node-inductive sequence to be node-exchangeable if the generative process is invariant to
the order of nodes, meaning that any permutation of nodes has the same probability. Analogously,
a sequence is edge-exchangeable if all permutations of edges are equiprobable. For both cases, the
problem is node-classification. Since split CP is independent of model training w.l.o.g. we assume
that we train on an initial subgraph G0. We do not need to assume that G0 is sampled exchangeably.
Formal definitions of node-exchangeability and edge-exchangeability are provided in § B.

For transductive GNNs, both Zargarbashi et al. (2023) and Huang et al. (2023) assume that the
calibration set is sampled node-exchangeably w.r.t. the test set, however the entire graph is fixed and
given. In contract, we assume that the sequence of graphs G1,G2, . . . itself, including calibration and
test nodes, is either node- or edge-exchangeable. Transductive setting can be seen as a special case.

Sparsity. Any node-exchangeable graph is equivalent to mixture of graphons (Aldous, 1981;
Hoover, 1979; Cai et al., 2016). A graphon (or graph limit) is a symmetric measurable function
W : [0, 1]2 7→ [0, 1] and the graph is sampled by drawing ui ∼ Uniform[0, 1] for each vertex vi,
and an edge between vi, and vj with probability W (ui, uj). We know that graphs sampled from a
graphon are almost surely either empty or dense (Orbanz & Roy, 2014; Cai et al., 2016) – the number
of edges grows quandratically w.r.t. the number of vertices. However, sparse graphs (with edges sub-
quadratical in the number of vertices) are more representative to real-world networks. Therefore, we
also consider edge-exchangeable graph sequences (Cai et al., 2016) that can achieve sparsity.

4 CONFORMAL PREDICTION FOR EXCHANGEABLE GRAPH SEQUENCES

The first N nodes of the sequence (and their labels) are taken as the calibration set, leaving the rest
of the sequence to be evaluated.1 For easier analysis, we record the coverage of each node at each
timestep. Let T0 be the time when the last calibration node arrived. Up to timestep T , let matrix C ∈
{0, 1}VT×T with C[i, t] indicate whether the prediction set for test node vi at timestep t covers the
true label yi. The time index in C is relative to T0 and w.l.o.g. we index nodes upon their appearance.
Hence, in each column C[·, t], the first |Vt| elements are in {0, 1} and the rest are N/A. Formally:

C[i, t] =

®
1
î
yi ∈

¶
y : s(vi, y) ≥ Quant

Ä
α; {s(vi, yi|Gt)}vi∈Vcal

; 1
ä©ó

i ≥ t

N/A o.w.
(3)
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Figure 2: 1−C for Cora. Details in § B

Here we assume that one can evaluate a node at any
timestep after its appearance. We define V(t)

eval ⊆ Vt as
the set of nodes evaluated at timestep t. For an edge-
exchangeable sequence, a node v is considered as active
(existing) upon the arrival of the first edge connected to
it. After T timesteps, we call the (recorded) sub-partition
∪Ti=1V

(i)
eval as an evaluation mask IT . Any node appears at

most once in IT (we do not re-evaluate a node). We define
the Cov(V(t)

eval) = (1/|V(t)
eval|)

∑
vi∈V(t)

eval

C[i, t] as the em-

pirical coverage over the mask V(t)
eval. Similarly, Cov(IT )

is the empirical coverage for IT (average over all records).
We visualize 1−C under node exchangeability on Fig. 2.

1All results can be trivially generalized to the case where the calibration nodes are scattered in the sequence.
This only affects the width of the coverage interval (the variance) as it is directly a function of the number of
available calibration nodes when computing prediction sets.
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4.1 NODE-EXCHANGEABLE SEQUENCES

A node-inductive graph sequence is node-exchangeable if any permutation of node appearance is
equally likely – at each step, any unseen node has the same probability of appearing (see § B).

With the arrival of new nodes, the distribution of embeddings (and consequently scores) shifts (as
shown in Fig. 1). This is why calibrating prior to the update fails to guarantee coverage for new
nodes. However, with node-exchangeability, calibration and evaluation scores computed conditional
to a specific subgraph are still exchangeable. We extend Theorem 2 to inductive GNNs on node-
exchangeable graph sequences for any subset of evaluated vertices.
Proposition 1. At time step t, with graph Gt = (Vt, Et) from a node-exchangeable sequence, and a
calibration set Vcal consisting of the first n nodes in Gt, for any vj ∈ V(t)

eval ⊆ Vt \ Vcal define

C(t)(vj) =
¶
y : s(vj , y | Gt) ≥ Quant

Ä
α; {s(vi, yi | Gt)}i∈Vcal

; 1
ä©

(4)

Then Prob
î
yj ∈ C(t)(vj) | vj ∈ V(t)

eval

ó
≥ 1− α. Moreover with m := |V(t)

eval|,

Prob
î
Cov(V(t)

eval) ≤ β
ó
= 1− ΦHG(iα − 1;m+ n, n, iα + ⌈βt⌉) (5)

We deffer proofs to § B. Here we provide an intuitive justification of the theorem. First, if V(t)
eval

includes all vertices the problem reduces to the transductive case, for which Theorem 2 applies with
scores conditional on the current graph. Otherwise, V ′ := Vt \ V(t)

eval is not empty. Here the effect
of V ′ is symmetric to Vcal and V(t)

eval. For instance, consider a linear message passing Z = AXW
with weight matrix W (our results hold in general). From standard CP we know that for row-
exchangeable matrix X , XW is also row-exchangeable (a linear layer is permutation equivariant).
Hence, we just question the row-exchangeability of AX . Split X into [X⊤

cal | X⊤
eval | X⊤

V′ ]⊤, and
similarly split A into nine blocks based on the endpoints of each edge. We have that AX equals

[
Acal·cal Acal·eval Acal·V′

Aeval·cal Aeval·eval Aeval·V′

AV′·cal AV′·eval AV′·V′

]
X =

[
Acal·calXcal +Acal·evalXeval

AevalcalXcal +Aeval·evalXeval

· · ·

]
︸ ︷︷ ︸

Mat(1)

+

[
Acal·V′XV′

Aeval·V′XV′

· · ·

]
︸ ︷︷ ︸

Mat(2)

For the guarantee to be valid, the first |Vcal| + |Veval| rows should be exchangeable. For Mat(1),
this already holds due to node-exchangeability and Theorem 2. With XV′ being common in both
blocks of Mat(2), we only need Acal·V′ and Aeval·V′ to be row-exchangeable which again holds
due to node exchangeability. Hence, the effect of V ′ is symmetric to calibration and evaluation
sets. In other words, the shifted embedding still preserves the guarantee conditional to the graph
at timestep t. The only requirement is to compute the conformal scores for all nodes including the
calibration set and dynamically update the quantile threshold – the threshold depends on t. Another
way to understand the theorem is that for any column in C, the expectation of any subset of elements
≥ 1− α. Next, we generalize this guarantee to any evaluation mask independent of time.
Theorem 3. On a node-exchangeable graph sequence, with exchangeably sampled Vcal consisting
of the first n nodes in Gt, for any valid partition IT = ∪Ti=1V

(i)
eval we have

Prob
î
yi ∈ C(t)(vi) | vi ∈ V(t)

eval

ó
≥ 1− α (6)

Moreover, it holds that Prob [Cov(IT ) ≤ β] = 1− ΦHG(iα; |IT |+ n, n, iα + ⌈|IT | · β⌉)

Theorem 3 indicates that CP applies to inductive GNNs conditional to the subgraph in which each
node is evaluated. We will leverage this insight in § 5. In conclusion, with a node-exchangeable
graph sequence, for any node vi appearing at timestep t, and evaluated at any timestep t′ ≥ t, it
holds that Prob

î
yi ∈ C(t

′)(vi)
ó
≥ 1 − α. Two special cases of this result are evaluation upon

appearance (the diagonal of C) and evaluation all at once (the last column of C) which follows
from Theorem 2. The latter is also equivalent to the simultaneous-inductive setting in Zargarbashi
et al. (2023). The user is flexible to delay the prediction to any time, still preserving the guarantee.
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4.2 EDGE-EXCHANGEABLE SEQUENCES

In an edge-inductive sequence at each timestep an edge is added, Gt+1 = (Vt∪V (et+1), Et∪et+1).2
This edge may introduce new nodes or connect existing ones. When all permutations µ of the
edge-sequence are equally likely, Prob [(e1, . . . em)] = Prob [(µ(e1), . . . µ(em))], the sequence is
edge-exchangeable (see § B for a formal definition). We address this setting using a special case of
weighted quantile lemma (Tibshirani et al., 2019) with weights defined by the frequency of elements.
Lemma 1. Let X = {x1, · · · , xm} be exchangeable random variables and f : 2X 7→ R be a
mapping defined on subsets of X . For any partitioning ∪n+1

i=1 Xi = X and zi := f(Xi) we have:

Prob

ñ
zn+1 ≤ Quant

Ç
β; {zi}ni=1 ∪ {∞} ;

ß
1

|Xi|

™n+1

i=1

åô
≥ β

We introduce the edge-exchangeable (EdgeEx) CP and prove its guarantee by showing that at any
timestep t, an edge exchangeable sequence, is decomposed into weighted node exchangeable subse-
quences with weights equal to 1/deg(v). Then, on each subsequence weighted CP maintains a valid
guarantee. In this setup, there are no isolated nodes, any node can be evaluated upon appearance.
Theorem 4. At each timestep t, given graph Gt = (Vt, Et) from an edge-exchangeable sequence
and with a calibration set Vcal, define q = Quant

Ä
α; {si}vi∈Vcal

;
¶
1/deg(vi)vi∈Vcal

©ä
, and for

any vj ∈ V(t)
eval define C(t)(vj) := {y : s(vj , y) ≥ q}. We have Prob

[
yj ∈ C(t)(vj)

]
≥ 1− α.

Via Theorem 4, EdgeEx CP is guaranteed to provide 1 − α coverage. The result holds for each
timestep t, conditional to that timestep.

5 NODE EXCHANGEABLE AND EDGE EXCHANGEABLE CP

Building upon the theory in § 4, for node-exchangeable graph sequences we define node-
exchangeable (NodeEx) CP with coverage guarantee conditional to the subgraph at each timestep.
Recall that the shift in scores upon changes in the graph is symmetric for calibration and evalua-
tion nodes. Hence, NodeEx recomputes the calibration scores with respect to the additional con-
text. In an edge-exchangeable sequence via Theorem 4, EdgeEx CP – weighted NodeEx CP with
wi = 1/deg(vi), results in a similar valid guarantee. Any further details about NodeEx also gener-
alizes to the EdgeEx via Theorem 4.

With both settings at each timestep t we have seen a set of nodes Vt. Let V(t)
eval ⊂ Vt be the set

of nodes evaluated at timestep t. This set can contain any node from the past as long as they are
not already evaluated. Specifically, we cannot use the prediction sets of a particular node multiple
times to compare and pick a specific one (see § D.1 for a discussion). We always assume that the
calibration set is the union of all nodes appeared up to timestep t = T0 and the test set contains the
remaining nodes. For a sequence of timesteps and corresponding evaluation sets

{
(ti,Vti

eval)
}T

i=T0+1

where ∪Ti=T0+1V
ti
eval = VT −Vcal, NodeEx CP (see § A for algorithm) returns valid prediction sets.

We use EdgeEx CP for edge-exchangeable sequences.

CP on node-conditional random subgraphs. Another application of Proposition 1 is to produce
subgraph conditional prediction sets even for transductive node-classification. For each node vtest,
we define K subgraphs each including {vtest}, Vcal and randomly sampled V ′ ⊂ VG . Then, we
average the scores and return prediction sets. In another approach, we can run K concurrent CPs,
each resulting in a prediction set. Then we combine them with a randomized voting mechanism to
a final prediction set. The resulting prediction sets include true labels with 1 − α probability. This
approach works for any number of subgraphs. See § D.1 for further explanations.

Relation to full conformal prediction. In our paper, we technically adopted the split conformal3
approach where model training is separate from calibration due to its computational efficiency. An
alternative is full conformal prediction, where to obtain a score for a (calibration) node vi ∈ Vcal and
any candidate label y′ w.r.t. a test node vtest we train a model from scratch on Vcal∪{(vtest, y′)} and

2Similar results apply for updates with more than one edge.
3Sometimes called inductive conformal prediction. However, this is an orthogonal use of the word inductive.
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consider its prediction for vi. This involves training |Vcal|+1 models for each y′ and each test node,
which is extremely expensive but can use all4 available labels. Transductive node classification can
be seen as a middle ground between split and full conformal as explained by Huang et al. (2023). Our
approach is similarly in between – instead of retraining the model from scratch we simply update the
embeddings (and thus scores) by performing message-passing with the newly arrived nodes/edges.

6 EXPERIMENTAL EVALUATION

6.1 EXPERIMENTAL SETUP AND DISCUSSION OF METRICS

We evaluate our approach for both node and edge exchangeable sequences where we have three
options to make predictions: (i) upon node arrival, (ii) at a given fixed timestep shared for all nodes,
(iii) at an arbitrary node-specific timestep (we choose at random). We compare our approach with
naive CP where the coverage guarantee will not hold. Later we discuss why both over- and under-
coverage are invalid. For completeness, we compare NodeEx CP with NAPS in § C in addition to a
detailed overview of its drawbacks. However, as discussed in § 2.1, NAPS is not a suitable baseline.
We use APS (Romano et al., 2020) as the base score function while other scores are tested in § D.

Models and datasets. We consider 9 different datasets and 4 models: GCN Kipf & Welling (2017),
GAT Veličković et al. (2018), and APPNPKlicpera et al. (2019) as structure-aware and MLP as a
structure-independent model. We evaluate our NodeEx, and EdgeEx CP on the common citation
graphs CoraML McCallum et al. (2004), CiteSeer Sen et al. (2008), PubMed Namata et al.
(2012), Coauthor Physics and Coauthor CS Shchur et al. (2018), and co-purchase graphs
Amazon Photos and Computers McAuley et al. (2015); Shchur et al. (2018) (details in § E).
Results for Flickr (Young et al., 2014), and Reddit2 (Zeng et al., 2019) (with GCN model and their
original split) datasets are in § D.5. Here, the model only affects the efficiency and not the validity.

Evaluation procedure. For any of the mentioned datasets, we sample 20 nodes per class for training
and 20 nodes for validation with stratified sampling. For the node-exchangeable setup, the calibra-
tion set has the same size as the training. For the edge-exchangeable sequence, the same number of
edges are sampled. Therefore, each round of simulation has a potentially different number of cali-
bration nodes for the edge-exchangeable setup. First, we take a random sample of nodes as train/val
set and train the model on the resulting subgraph G0. Then, for the node-exchangeable sequence,
we first sample a calibration set randomly from the remaining nodes. Then, at each timestep, we
add a random unseen node to the graph (with all edges to the existing nodes) and predict the class
probability given the updated subgraph. We use the updated conformal scores to create prediction
sets for all existing test nodes until time t and record the empirical coverage results in column t
of the coverage matrix C. Similarly, for the edge-exchangeable sampling, we sample calibration
edges, and take both ends as calibration nodes. The remaining edges are sampled one at a time. The
rest of the procedure is the same as node-exchangeable setting and results in an analogous C.

Challenges with small calibration sets. With a limited number of samples in the calibration set,
there will be an additional error in the coverage due to the discrete quantile function with a low
sample rate. In practice, we take the ⌊n/(n + 1) · α⌋ index of a discrete array as the conformal
threshold which is often not exactly equal to 1 − α quantile in the continuous domain. Therefore,
we expect 1/(|Vcal|+ 1) error around 1− α. This error is in addition to the variance of the Beta or
Hyper-geometric distribution and will converge to 0 with increasing calibration set size.

Distance from target coverage. Our main evaluation criteria is the distance of empirical coverage
w.r.t. the target 1 − α. For all datasets we set the desired coverage to 90%, and we report the
(absolute) distance w.r.t. this value (see § E). Each reported result is an average of 10 different
random node-exchangeable sequences and 15 different random edge-exchangeable sequences. Note
that due to homophily, we observe a higher empirical coverage in the non-exchangeable case which
can wrongly be interpreted as being better. To address any potential confusion, first the guarantee
is invalid if it breaks either the lower or the upper-bound. In real-world deployment we do not
have ground-truth labels to calculate empirical coverage, and if the guarantee is broken (in either
direction) the output is unreliable – nullifying the main goal of CP. Second, a higher empirical
coverage also results in larger set sizes making the prediction sets less useful (see also Fig. 4).

4This is unlike split conformal that needs to split the available labels into training and calibration sets.
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Figure 3: [Upper left] Coverage over time under node exchangeability when predicting upon node
arrival (diagonals of C). [Upper right] Coverage when we instead predict at a fixed time (columns of
C). [Lower right] Same as upper right but under edge-exchangeability. [Lower left] The empirical
distribution of coverage when we predict at node-specific times (fixed entries of C), compared to
the theoretical distribution. Sample size results in a slight expected shift. The transparent lines show
a particular sequence, and the thick solid lines shows the average over 10 (15) sequences.

Efficiency and singletons. In addition to coverage, which is the main goal of our work, we also
briefly study the efficiency (average set size) and the singleton hit – fraction of correct sets of size 1.
As we will see in § 6.2, our NodeEx and EdgeEx CP improve these metrics as a byproduct. Some
scoring functions such as RAPS (Angelopoulos et al., 2021) and DAPS (Zargarbashi et al., 2023)
directly target these metrics and can be used on top of our approach. We explore DAPS in § D.3.

6.2 EVALUATION OF EMPIRICAL COVERAGE, SET SIZE AND SINGLETON HIT

Table 1 shows the deviation from the coverage guarantee for different datasets when the label of each
node is predicted upon its arrival. As shown in the table, while naive CP shows a significant shift
from the 1 − α = 0.9 coverage, NodeEx CP maintains the empirical coverage close to the desired
value. In Fig. 3 (upper left) we show the temporal evolution of coverage. We show the coverage
for all nodes that arrived until time t and see that the guarantee is preserved for each timestep t.
As mentioned before, the goal is to achieve near 1 − α empirical coverage, the over-coverage of
standard CP might misleadingly appear as a better result. Not only does over-coverage come at
the cost of less efficiency as shown in Fig. 4 (see § D.2 for details), but the empirical coverage of
non-guaranteed prediction sets is not predictable apriori.

Fig. 3(lower left) shows the same experiment for edge-exchangeability. While NodeEx CP guaran-
tees coverage under node-exchangeability, the weights specified in our EdgeEx CP are necessary for
the guarantee to hold on an edge-exchangeable sequence. Standard CP fails again.

As explained in § 4 any node can be evaluated at any timestep after its appearance. Fig. 3 (upper
right) shows the result when predicting at a fixed time (instead of upon arrival). Additionally, Fig. 3
(lower right) shows the empirical distribution of coverage for node-specific times (random subsets
of nodes, each node predicted at a random time after appearance). For NodeEx CP, the empiri-
cal distribution matches the theoretical one, while the coverage of naive CP substantially diverges.
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Node Exch. Sequence Edge Exch. Sequence

Dataset Acc NodeEx CP Naive CP EdgeEx CP NodeEx CP Naive CP

Cora-ML 0.800 0.280 5.860 1.929 3.883 6.860
PubMed 0.777 1.254 4.649 1.241 3.405 5.315

CiteSeer 0.816 0.039 4.150 0.335 1.572 3.460
Coauth-CS 0.914 0.397 4.082 3.024 4.662 7.835

Coauth-Phy. 0.940 0.555 2.689 2.240 4.378 6.123
Amz-Comp. 0.788 0.263 6.373 2.687 5.727 7.036
Amz-Photo 0.868 0.127 3.483 2.546 4.130 6.613

Table 1: Average absolute deviation from guarantee (in %, for GCN model and 1 train/val split).

Unsurprisingly, under node exchangeability, in Fig. 4 we see that our NodeEx CP improves both
additional metrics – has smaller sets and larger singleton hit ratio. The same holds for other settings.

In all experiments, we consider a sparse (and thus realistic) calibration set size, e.g. for PubMed
we sample 60 nodes for calibration, which is a significantly lower number compared to other tasks
like image classification with 1000 datapoints for same purpose (Angelopoulos et al., 2021). The
calibration size controls the concentration (variance) around 1 − α as reflected by the transparent
lines on Fig. 3. Increasing the set size reduces the variance but the mean is always 1− α.

Limitations. We identified three main limitations. First, the guarantee is marginal. Second, real-
world graphs may not satisfy node- or edge-exchagability. This can be partially mitigated by the
beyond exchangeability framework. Finally, the guarantee does not hold for adversarially chosen
evaluation sets Veval. In other words, the choice of which nodes is evaluated at which timesteps must
be prior to observing the prediction set. We provide a longer discussion on each of these limitations
in § A. Our main focus is on the validity. However, we also reported other metrics such as the
average set size, singleton hit ratio and other score functions in § D.

7 CONCLUSION

We adapt conformal prediction to inductive node-classification for both node and edge exchangeable
graph sequences. We show that although introducing new nodes/edges causes a distribution shift
in the conformity scores, this shift is symmetric. By recomputing the scores conditional to the
evaluation subgraph, we recover the coverage guarantee. Under edge-exchangeability, we need to
also account for the node degrees to maintain validity. Importantly, our approach affords flexibility
– the guarantee holds regardless of prediction time which can be chosen differently for each node.
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Figure 4: [Left] Average set size (lower is better) and [Right] singleton hits ratio (higher is better)
of naive CP vs. NodeEx CP for CiteSeer and GCN. Our approach improves both metrics.
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REPRODUCIBILITY STATEMENT

All datasets of our experiments are publicly available and referenced in § 6.1 in addition to details
on experimental setups. The pseudocode of our approach is provided in § A. The hyperparameters
of models are given in § E. The code of experiments is also uploaded as supplementary material.
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A ALGORITHM FOR NODEEX CP AND WEIGHTED EDGEEX CP

At each timestep t with node-exchangeable graph Gt, we first run the GNN model to extract con-
formity scores for all nodes in Vt. We compute the α-quantile of the conformity scores conditional
to the current graph, and for each new test node vtest ∈ V(t)

eval we return any candidate label with a
score larger than the conditional threshold. For an edge-exchangeable graph, the algorithm is still
the same unless we compute the conditional weighted quantile with weights equal to 1/d(v) for all
calibration vertices v. Algorithm 1 shows the pseudocode for NodeEx CP. The code is accessible at
github.com/soroushzargar/conformal-node-classification.

Algorithm 1: NodeEx and EdgeEx CP for inductive node classification
Data: Graph Gt at timestep t.
Calibration vertex set Vcal,
Permutation equivariant score function s (e.g. a function of GNN),
Evaluation vertex set V(t)

eval

Result: Ct(vj) : vj ∈ V(t)
eval

1 St ← s(Gt) ; // Get score functions for all vertices
2 if node-exchangeable sequence then
3 Set τt ← Quant

Ä
α; {St[i, yi]}vi∈Vcal

; 1
ä

;
4 else if edge-exchangeable sequence then
5 Set τt ← Quant

Ä
α; {St[i, yi]}vi∈Vcal

; 1/deg(vi | Gt)
ä

;

6 ∀vj ∈ V(t)
eval, set Ct(vj) = {y : St[j, y] ≥ τ t} ;

Naive CP. In naive CP we compute calibration scores before the arrival of any new node, on the
inductive subgraph over Vtr ∪ Vcal. Prior to the evaluation of any node, we compute the calibration
quantile q from calibration scores. For any test node, the conformity score of all its classes is
compared to q. Clarkson (2023) shows that this approach fails to provide valid prediction sets (the
guarantee is broken due to the shift caused by the arrival of new nodes).

Computational complexity. Conformal prediction has two main computational routines in addition
to model’s inference: computing scores and quantiles. For the calibration set we only need the
scores of the true class, but for test nodes, we should compute scores for all classes. Depending on
the score function the complexity can be different. For standard CP we compute calibration scores
once, but for NodeEx CP for each evaluation (timestep) we need to recompute the predictions and
the conformity scores. Hence, Node(Edge)Ex CP has an overhead of O(n× ts × t) for t timesteps,
n calibration nodes, and ts the time for computing a conformity score for one class and one node.
At each step we should also evaluate the model once if the model’s prediction changes across time.
Computing the quantile threshold takes O(n) steps. For standard CP we have to compute this value
once, but in NodeEx CP this values is updated upon each evaluation. The total wall-clock overhead
is less the a second. Additionally all mentioned complexities are for serial computation and some of
CP procedures can run significantly faster via parallel computation.

Limitations of NodeEx and EdgeEx CP. Our study mainly focuses on approaches that can pro-
vide a valid CP for changing subgraphs under certain assumptions of node-or edge-exchangeability.
There are three main limitations for using NodeEx (or EdgeEx) CP (i) The guarantee provided
by NodeEx (and EdgeEx) CP is marginal. However, it is shown that exact conditional coverage
Prob [y ∈ C(x) | x] is not achievable. Still, there are methods that tend to get better approximations
of conditional coverage. (ii) In real-life graph sequences, it is hard to determine whether the graph
sequence is node- or edge-exchangeable or neither. Here a follow-up works is to use the beyond ex-
changeability approach (Barber et al., 2023) to achieve valid coverage guarantees without the need
for node- or edge-exchangeability assumption. (iii) Our result maintains validity as long as the se-
lection evaluation timestep for each node is done without any knowledge of the prediction set. An
adversarial selection can cause a significant deviation from the guaranteed coverage. For instance,
an adversary can observe prediction sets for a particular node during various timesteps and pick the
timestep of the smallest prediction set similar to the two false examples in § D.1. This results can
lead to a significant miscoverage rate compared to the guarantee.
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B ADDITION TO THE THEORY

Matric C. For timestep t and index i, C[i, t] indicates that whether node vi if evaluated at timestep
t is going to be covered or not. Hence this value can be either 1, indicating CP covers node vi at
timestep t, 0 showing that CP does not cover this node, or N/A showing that this node has not
appeared at this timestep. This matrix is constructed using ground-truth labels and is shown only for
the purpose of sanity check and evaluation. The matrix C is a very dense matrix since 1−α entities
at each column should be 1. That is why in Fig. 2 we showed 1−C where each column is expected
to have α-percentage of ones. A valid CP approach should result in a similar percentage of ones in
each column. For an invalid CP, if the trend is gradually moving toward over-coverage, the matrix
1−C becomes more sparse in later columns.

Node- and edge- exchangeability. A sequence Z = (z1, . . . , zn) is called exchangeable if
for any permutation µ, the joint probability of the permuted sequence remains the same, i.e.
Prob [(z1, . . . , zn)] = Prob [(µ(z1), . . . , µ(zn))]. Before considering inductive graph sequences,
we first define node- and edge-exchangeability on a fixed given graph G.

Definition 1 (Node-exchangeability). Let G(V, E ,X,y) be a graph where i-th row of X is the
feature vector for node vi, and similarly, i-th element of y is the label of that node. Let µV :
{1, . . . , n} × {1, . . . , n} with n = |V| be a permutation. We define µV (G) to be a relabeling
of vertices V with µV (E) = {(µV (vi), µV (vj)) : ∀(vi, vj) ∈ E}, µV (X)[i, ·] = X[µV (i), ·], and
µV (y)[i] = y[µV (i)]. The permuted graph is µV (G)(µV (V), µV (G), µV (X), µV (y)). G is called
node exchangeable if Prob [G = G] = Prob [G = µV (G)], where G is sampled from a generative
graph distribution.

Definition 2 (Edge-exchangeability). Let G(V, E ,X,y) where E = {e1, . . . em} is the set of edges.
Each edge ek is defined as a pair ek = ((vi,xi, yi), (vj ,xj , yj)). For each node vi ∈ V let X be
the feature matrix with rows xi, and y be the vector of labels with entries yi. Let µ : {1, . . . ,m} ×
{1, . . . ,m} with m = |E| be a permutation. We define µ(G) to be a relabeling of edges E with
µE(E) =

{
eµE(i) : ∀ei ∈ E

}
. The permuted graph is µE(G)(V, µE(E),X,y). G is called edge

exchangeable if Prob [G = G] = Prob [G = µE(G)], where G is sampled from a generative graph
distribution.

By an inductive sequence, we refer to a progressive sequence of graphs meaning that for each
timestep t, the graph Gt−1 is a subgraph of Gt. Node- and edge-inductive sequences are defined
as follows:

Definition 3 (Node-inductive sequence). A node-inductive sequence G0,G1, . . . is a sequence start-
ing from an empty graph G0 = (∅,∅). For each timestep t, the graph Gt is defined by adding
a vertex vt with all its connections to the vertices in the previous timestep. The vertex set is then
Vt = Vt−1 ∪ {vt} and the edge set is the union of all previous edges Et−1 and any edge between vt
and Vt−1; Et = Et−1 ∪ (∩∞i=1 {e = (vt, vi) : e ∈ Ei, vi ∈ Vi−1}).

Similarly an edge-inductive sequence is defined as follows:

Definition 4 (Edge-inductive sequence). An edge inductive sequence G0,G1, . . . starts from an
empty graph G0 = (∅,∅). For each timestep t, the graph Gt is defined by adding an edge et =
(vi, vj) to the graph at the previous timestep. Hence Et = Et−1 ∪ {et}, and Vt = Vt−1 ∪ {vi, vj}.

A node-inductive sequence is called node-exchangeable if for all graphs Gt in the sequence, Gt is
node-exchangeable. Similarly, if all graphs in the sequence are edge-exchangeable, the sequence is
also edge-exchangeable.

Note, an inductive sequence could be equivalentlty defined with respect to a “final” graph Gn, where
n can be infinity, by starting from an empty graph and adding a random node/edge at each timestep.
If the final graph is node-exchangeable any node-inductive subgraph of it G′ ⊆ Gt, G′ is also node ex-
changeable. A similar argument holds for edge-inductive subgraphs of a “final” edge-exchangeable
graph.

Permutation invariance and equivariance. A permutation invariant function f returns the same
output for any permutation applied on its inputs, f(z1, . . . , zn) = f(zµ(1), . . . zµ(n)) for any per-
mutation µ. A function f is permutation-equivariant if permuting the input results in the same
permutation on the output, i.e. for any f(x1, . . . , xn) = (y1, . . . , yn) we have f(xµ(1), . . . xµ(n)) =
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(yµ(1), . . . yµ(n)) for any µ. A permutation-equivariant GNN assigns the same predictions (and thus
the same scores) to each node even when nodes/edges are relabeled.

Proof for Proposition 1. First assume V(t)
eval = Vt meaning that any node appeared at timestep t

is either in the calibration or the evaluation set. Due to node-exchangeability, Vt and Vcal are
exchangeable. Hence, we adapt the proof of Theorem 2. Now consider the general case where
V ′ := Vt \ Vcal ̸= ∅. Any subset A′ of an exchangeable set A is still exchangeable. For any permu-
tation of A′ there are k permutations in A all having the same ordering over elements of A′. Since
k is a constant for all permutations and function of |A| and |A′|, any permutation inA′ has the same
probability. Which implies the exchangeability of its elements. This implies that with non-empty
set V ′, Vcal and Vt \V ′ are still exchangeable. As a result, again we adapt Theorem 2 with the effect
of V ′ being symmetric to the calibration and evaluation sets.

Proof for Theorem 3. We break the proof to two parts.

Part 1. For a fixed node vi at timestep t1 let αi := E[ci,t1 ]. For any timestep t2 with which vi is
existing in, we have E[ci,t2 ] = αi.

Note that since vi is fixed its expected coverage probability is not exactly 1− α. As in definition,

αi = Prob
î
Quant

Ä
α; {s(vj , yj | Gt1)}vj∈Vcal

; 1
ä
≤ s(vi, yi | Gt1)

ó
Let V ′

j = Vtj \ (Vcal ∪ {vi}). Node-exchangeability implies that V ′
1 and V ′

2 have same and also
symmetric effect on all scores. Hence, with either of sets as context, the expected order of elements
remains similar and E[ci,t2 ] = αi. Moreover, for each node vi and all t, ci,t ∼ Bernoulli(αi).

Part 2. The coverage of any sub-partitioning IT can be written as an average over a set of elements
in CT . In other words define ι(vi) = j ⇔ (vi ∈ Vj

eval) we have

Cov(IT ) =
1

|IT |

|IT |∑
i=1

C[i, ι(vi)]
Part 1
=

|IT |∑
i=1

C[i, T ]

Following Proposition 1 we have

Prob [Cov(IT ) ≤ β] =
1

|IT |

|IT |∑
i=1

C[i, ι(vi)] = 1− ΦHG(iα; |IT |+ n, n, iα + ⌈|IT | · β⌉)

Proof for Theorem 4. We divide the proof into two cases:

Graph where all nodes have degree 1. In this case Gt is a union of disjoint edges (e1, . . . em)
We divide Vt = V1 ∪ V2 including one and only one endpoint of each edge decided at random.
The vertex set in this case has the same size as the edge set, and there is a one-to-one mapping
between any permutation µ over the edge set to vertices in V1 or V2 since only one endpoint is
present in each set. Hence Prob [E ] = Prob [Eµ] implies Prob [Vi] = Prob [Vi,µ]i∈{1,2}. Similarly,
selection Vcal decomposes to Vcal,1 ∪ Vcal,2 and again Vcal,i, and Vi \ Vcal,i are exchangeable due
to node-exchangeability in Vi. Any test node belongs to either of the subsequences which means is
guaranteed via the CP applied to that subset.

The vertex set is divided into two subsets, and the intersection of the calibration set to each subset
is exchangeable. Hence calibrating on each subset result in 1 − α coverage for all the nodes in
the subset. Both calibrations have the same expected quantile threshold q. This is because each
calibration node has 1/2 probability of being included in each of the sets.

General graphs. We follow the same approach. We divide the endpoints of edges into two multi-
sets. For each edge we run this division and this decision is made for each vertex deg(vi) times.
In each partition, each node vi has the expected frequency deg(vi)/2. Via Lemma 1 we show that
weighted CP is valid for each subsequence Vi and hence for Vt.
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Figure 5: [Left] The proportion of nodes without a prediction set due to empty calibration on
CoraML dataset. The plot shows the inapplicability of k-hop NAPS with k ∈ {1, 2}. [Right] The
average size of each node’s filtered calibration set. Note that this plot excludes non-applicable nodes.
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Figure 6: [Left] Comparison of NAPS and NodeEx CP in empirical coverage for CoraML dataset
and GCN model across different permutations of nodes. [Right] The number of nodes without pre-
diction set for different permutations on the same dataset/model.

C LIMITATIONS OF NAPS

For the inductive scenario, NAPS (Clarkson, 2023) adapts the beyond exchangeability approach
(Barber et al., 2023) without any computed bounds on the coverage gap (the distance between the
coverage of the given non-exchangeable sequence and 1−α). For each test node, calibration weights
are assigned equal to 1 in case they are in the immediate neighborhood of the test node and 0 other-
wise. In other words, this approach filters out the non-neighbor calibration nodes for each test node.
This weight assignment is generalized to any k-hop neighbor while it is originally suggested to use
k = 1 or 2. In a sparse graph, or with a limited calibration set, the probability of having calibra-
tion points in the immediate neighborhood is significantly low which leaves many of the test nodes
with empty calibration sets. Fig. 5 shows that for our experimental setup, until the end of the graph
sequence, a notable proportion of the nodes are left without a prediction set. For the same reason,
even for nodes in the neighborhood of the calibration set, the statistical efficiency is very low. Since
this inapplicability is reported on a node-exchangeable sequence, it is independent of the prediction
timestep – a node disconnected from the calibration set will remain disconnected as the graph grows.

Setting aside non-applicable nodes we compared NAPS with NodeEx CP in empirical coverage.
Fig. 6 shows that NAPS is significantly far from the coverage guarantee compared to NodeEx CP.
Note that this experiment is very biased in favor of NAPS as it excludes nodes without a prediction
set while evaluating the same nodes for NodeEx CP.
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D ADDITIONAL EXPERIMENTS

D.1 CP WITH SUBGRAPH SAMPLING
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Figure 7: Comparison between standard CP, Bernoulli
prediction sets from NodeEx CP on random subgraphs,
the union, and intersection of CPs.

Although the theory in § 4 concerns induc-
tive graph sequences, we can leverage its
results to transductive node-classification
via subgraph sampling. For each test node
vtest, we sample K inductive subgraphs
all including {vtest} ∪ Vcal. Considering
Theorem 3, in each subgraph, calibration
scores and test scores are exchangeable.
This leaves K prediction sets all with a
coverage guarantee of 1− α. We consider
each prediction set as a vote for all its ele-
ments. Each label y′ will be selected in the
final prediction set with a Bernoulli exper-
iment with parameter p =

∑K
i=1 1[yj ∈

Ci(vtest)]/K. Again the resulting predic-
tion set contains the true label with 1 − α
probability. It is important to note that
Theorem 3 does not imply any result about
the probability of a node being covered in
all of K prediction sets. Specifically, the
probability of a node being covered in all
prediction sets simultaneously is less than
(or equal to) the probability of the same event in each single CP. As shown in Fig. 7 the sub-
graph Bernoulli prediction sets result in the same coverage as standard CP for transductive node-
classification. Additionally, the union and intersection of CPs respectively result in over-coverage
and under-coverage.

D.2 SET SIZE AND SINGLETON HIT RATIO

In § 6 we focused on empirical coverage as the main evaluation criteria since our goal is to recover
the conformal guarantee. When the guarantee holds, this metric is often reported as a sanity check.
In that case, the average prediction set size (efficiency) is considered as a direct indicator of how
efficient (and therefore useful) prediction sets are. Another important metric called singleton hit
ratio is the frequency of singleton sets covering the true label. In Fig. 8 we show the coverage
matrix alongside the prediction set size and singleton hits indicator for each node at each timestep.
As shown in the figure, since the standard CP breaks the guarantee toward over-coverage, it results
in larger prediction sets on average and hence, a lower number of singleton hits. The same result is
also shown in Fig. 4 over different timesteps.

D.3 DIFFERENT SCORE FUNCTIONS

The threshold prediction sets (TPS) approach (Sadinle et al., 2018) directly takes the softmax output
as a conformity score s(x, y) = π(x)y , where π(x)y is the predicted probability for class y. Al-
though TPS produces small prediction sets, its coverage is biased toward easier examples leaving the
hard examples under-covered (Angelopoulos & Bates, 2021b). Romano et al. (2020) define adap-
tive prediction sets (APS) with a score function defined as s(x, y) := − (ρ(x, y) + u · π(x)y). Here
ρ(x, y) :=

∑K
c=1 π(x)c1 [π(x)c > π(x)y] is the sum of all classes predicted as more likely than y,

and u ∈ [0, 1] is a uniform random value that breaks the ties between different scores to allow exact
1 − α coverage (Stutz et al., 2022). APS returns the smallest prediction sets satisfying conditional
coverage if the model returns the ground truth conditional probability p(y | x), otherwise Barber
et al. (2019b) show that achieving conditional coverage is impossible without strong unrealistic as-
sumptions. Here we use APS as baseline scoring function, but our method is orthogonal to this
choice and works with any score.

16



Published as a conference paper at ICLR 2024

0
1000

2000
3000

0

1000

2000

3000

N
od

es

0
1000

2000
3000

0

1000

2000

3000

0
1000

2000
3000

0

1000

2000

3000

0
1000

2000
3000

Timestep

0

1000

2000

3000

N
od

es

0
1000

2000
3000

Timestep

0

1000

2000

3000

0
1000

2000
3000

Timestep

0

1000

2000

3000

0

2

4

0

2

4

Figure 8: [Left column] The coverage matrix 1 − C (colored points show miscoverage). [Middle
column] The prediction set size for each point at each timestep. [Right column The matrix of
singleton hits. A cell is colored if the node at the timestep is predicted with a singleton set covering
the true label. [Upper row] The NodeEx CP approach. [Lower row] The standard CP. The result is
shown for CiteSeer dataset and GCN model.

Although we used APS as the base score function for evaluation, our results are general to any other
scoring function. Here we evaluate our approach with two other score functions called threshold
prediction sets (TPS) (Sadinle et al., 2018), and diffused adaptive prediction sets DAPS Zargarbashi
et al. (2023). TPS (Fig. 9 - left) simply applies the softmax function on model’s results (logits)
and uses it as the conformity score. Although it produces small prediction sets its coverage is
biased toward easier examples (Angelopoulos & Bates, 2021b). DAPS (Fig. 9 - right) works as a
structure-aware extension scoring over APS. It diffuses conformity scores over the network structure
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Figure 9: [Left] Comparison of naive CP and NodeEx CP with TPS score function and [Right]
DAPS score function. Results are for CiteSeer dataset and GCN model.
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to leverage the uncertainty information in the neighborhood and produce a more efficient prediction
set. Since DAPS also incorporates the structure in the scores’ space (in addition to the implicit effect
via message passing) it is even more influenced by the changes in the graph structure while using
standard CP. However, as shown in the Fig. 9, we can recover the coverage guarantee via NodeEx
CP regardless of the utilized score function.

D.4 DIFFERENT MODELS AND INITIAL SPLITS

The coverage guarantee in CP holds regardless of the model structure. CP uses the model as a
black-box and just performs the quantile calibration over the output of the model which is the input
conformity score function. However, better model structure, training procedure, etc are reflected in
other metrics like set size and singleton hits. As shown in Fig. 10, NodeEx CP results in similar
coverage values for all the models while standard CP results in different coverage for each model
(note the significant distance between structure-aware models and MLP). As MLP does not take the
adjacency structure into account, its empirical coverage is still guaranteed even with the standard
CP. Note that different models result in different efficiencies in the prediction sets. Fig. 11 shows
the same experiment conducted on edge-exchangeable sampling. Again similar results are observed
for edge-exchangeable sequences.

As pointed out in (Shchur et al., 2018), GNNs are sensitive to the initial train/validation sampling.
This however does not impact the coverage of NodeEx (and EdgeEx) CP as it is guaranteed agnostic
to the model and the initial split. However similar to different model architectures, different initial
splits also affect the model’s accuracy which is reflected in the efficiency of the prediction set.
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Figure 10: [Left] The empirical coverage for different models. [Right] The average set size. The
results are shown for the CoraML dataset with node-exchangeable sampling.
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Figure 11: [Left] The empirical coverage for different models. [Right] the average set size. The
results are shown for the CoraML dataset with edge-exchangeable sampling.

Fig. 12 verifies this fir the node-exchangeable sampling. We also evaluated our method compared to
standard CP for edge-exchangeable sequences over different initial sampling. The result is in Fig. 13.

D.5 OTHER EXPERIMENTS

Experiment corresponding to Fig. 1. We performed a node-exchangeable sampling on CiteSeer
dataset. At each timestep, we ran the model (GCN trained on the train/val nodes) on the existing
subgraph extracting conformal scores for all existing test nodes. The heatmap in Fig. 1 (left) shows
the distribution of test scores (sorted) at each timestep. An oracle CP (with access to test nodes and
their label) will choose the line labeled as “ground truth” as the conformal threshold since it is the
exact α quantile of existing test scores. This is shown as the ideal reference to evaluate each CP
approach with respect to it. We draw the threshold computed by standard CP and NodeEx CP. It is
shown that the NodeEx CP picks thresholds close to the ideal line while the naive CP shifts from it
due to the message passing with the new nodes.

We drew the distribution of conformity score for calibration nodes at some selected times (sampled
with equal distance across from all timesteps) and compared it with calibration scores used by stan-
dard CP in Fig. 1(upper right). A distribution shift is clearly observable. We showed this shift in
Fig. 1(upper right) by plotting the distibutions across various timesteps. The corresponding timestep
for each distribution is marked in the left subplot with the same color. Here we computed the EMD
(earth mover distance) between the scores of standard CP and conformity scores (of true labels) for
calibration and test points. It is shown that the distribution shift is increasing by the number of new
nodes introduced to the graph. This shift is almost similar in calibration and test. One source of
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Figure 12: [Left] The empirical coverage of standard CP and NodeEx CP with different initial
train/val splits. [Right] The average set size. The result is shown for CoraML dataset and GCN
model for node-exchangeable samplings.
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Figure 13: [Left] The empirical coverage of standard CP and EdgeEx CP with different initial
train/val splits. [Right] The average set size. The result is shown for CoraML dataset and GCN
model for edge-exchangeable samplings.

the noise in thresholds and EMD is the uniform random value in APS scoring function. EMD is
smoothed over 10 steps.

Large Datasets. We ran NodeEx CP and compared it with the baseline for two large datasets: Flickr
(Young et al., 2014), Reddit2 (Zeng et al., 2019). Our results for Flicker and Reddit2 datasets under
node exchangeable sampling are shown in Fig. 14. Both NodeEx CP and naive CP show similar
results. In the edge-exchangeable sampling Fig. 15 shows a significant deviation from the guarantee
for NodeEx CP and naive CP, while EdgeEx CP maintains a valid coverage.

Class-conditional coverage. Conformal prediction comes with a marginal guarantee which means
that it does not guarantee conditional to group or class. In Fig. 16 we compare this metric. In most
of the classes, we observe the standard CP to be closer to the guaranteed line.

Effect of calibration set size. In non-graph data as mentioned in § 2 the coverage probability
follows a Beta distribution. In graph data with a fixed number of test nodes (see Theorem 2) the
distribution of coverage over test nodes follows a collection of hyper-geometric distributions. In
both scenarios, there is a possible variance around predefined 1− α probability which is a function
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Figure 14: Coverage Results for [Left] Flickr, and [Right] Reddit2 dataset under node-
exchangeable sampling. The results are shown for GCN model.
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Figure 15: Coverage Results for [Left] Flickr, and [Right] Reddit2 dataset under edge-
exchangeable sampling. The results are shown for GCN model.

of calibration set size. As the number of calibration nodes increases, the distribution of coverage
probability concentrates around 1 − α. Since in our experiments we followed a realistic setup
(not allowing calibration set to be larger than training set) there is a variance observed around the
guarantee line – each line converges to a value close to but not exactly equal to 1−α. Fig. 17 shows
that as we increase the calibration set size the result concentrates around the guarantee.

E SUPPLEMENTARY DETAILS OF EXPERIMENTS

Datasets. Table 2 provides specifications of datasets used in our experimental evaluations, including
the number of nodes, edges, and homophily. The details of label sampling are provided in § 6. For
each experiment, we ran each CP approach on 10 different sequences in node-exchangeable and 15
different sequences on edge-exchangeable setup. All transparent lines in plots show the result for
one sequence. In those experiments, the solid line shows the average of sequences at each timestep.

Models. For all architectures, we built one hidden layer of 64 units and one output layer. We applied
dropout on the hidden layer with probability 0.6 for GCN, and GAT, 0.5 for APPNPNet, and 0.8 for

21



Published as a conference paper at ICLR 2024

0 1000 2000 3000
0.80

0.85

0.90

0.95

1.00

C
ov

er
ag

e

Naive. CP
NodeEx. CP
Guarantee

0 1000 2000 3000
0.80

0.85

0.90

0.95

1.00

0 1000 2000 3000

Timestep

0.80

0.85

0.90

0.95

1.00

C
ov

er
ag

e

0 1000 2000 3000

Timestep

0.80

0.85

0.90

0.95

1.00

Figure 16: NodeEx CP and standard CP in class-conditional coverage. The result is for CiteSeer
dataset and GCN model. Plots show classes 1 and 2 [Upper row left to right], 3 and 4 [Lower row].
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Figure 17: Effect of different calibration set sizes on the concentration of coverage probability. The
results are on Cora-ML dataset and for 200 [Left] and 1000 [Right] calibration nodes.

MLP. For GAT we used 8 heads. We trained all models with categorical cross-entropy loss, and
Adam optimizer with L2 regularization.

Adaptive and constant coverage. Despite many studies on CP, Zargarbashi et al. (2023) chooses an
adaptive value for 1− α which is conditional to the model accuracy. This is a suitable choice when
the main comparison is based on set size and other efficiency-related metrics. The main supporting
idea is that efficiency should be compared with a guarantee that is not trivially achievable by the
normal model prediction. However, our main concern is to recover the guarantee meaning that the
empirical coverage is the main comparison criteria. Hence we choose 0.9 as the required coverage
for all datasets and models regardless of the accuracy. Furthermore, NodeEx CP works for any
user-specified coverage guarantee including model-conditional values.
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Table 2: Statistics of the datasets.

Dataset Name Vertices Attributes Edges Classes Homophily
CoraML 2995 2879 16316 7 78.85%
PubMed 19717 500 88648 3 80.23%
CiteSeer 4230 602 10674 6 94.94%
Coaut. CS 18333 6805 163788 15 80.80%
Coauth. Physics 34493 8415 495924 5 93.14%
Amz. Comp. 13752 767 491722 10 77.72%
Amz. Photo 7650 745 238162 8 82.72%

F RELATED WORKS

Standard conformal prediction. CP is introduced by Vovk et al. (2005) and further developed
in Lei & Wasserman (2014); Shafer & Vovk (2008); Barber (2020). Different variants of CP are
yet defined ranging in the trade-off between statistical and computational efficiency. While full
conformal prediction requires multiple training rounds for each single test point, Jackknife+ Barber
et al. (2019a), and split conformal prediction sacrifice statistical efficiency, defining faster and
hence more scalable CP algorithms. A comprehensive survey of CP can be found in Angelopoulos
& Bates (2021a). In this study, we focus on split conformal prediction.

Further contributions in this area include generalization of the guarantee from including the true
label to any risk function Angelopoulos et al. (2024), improving the efficiency (reducing the average
set size) by simulating calibration during training Stutz et al. (2022), limiting the false positive rate
Fisch et al. (2022), etc.

CP without exchangeability. Standard CP requires exchangeability for datapoints and assumes
the model to treat datapoints symmetrically. The latter assumption ensures the exchangeability of
datapoints even after observing the fitted model. Tibshirani et al. (2019) extend CP to cases where
exchangeability breaks via different p(X) for calibration set and the test data, given p(Y | X) is
still the same. In this case, CP is adapted via reweighing the calibration set using the likelihood
ratio to compare the training and test covariate distributions. This requires the high-dimensional
likelihood to be known or well-approximated. Barber et al. (2023) does neither rely on known
likelihood between the original and shifted distribution nor the symmetry in the learning algorithm
and proposes a coverage gap based on the total variation distance between calibration points and the
test point. The main upperbound on the coverage requires a predefined fixed weight function. To
adapt this bound to data-dependent weights, the dTV-distance must be computed conditional to the
assigned weights.

CP for graphs. Recently adapting CP to graphs got increasing attention. Wijegunawardana et al.
(2020) adapted conformal prediction for node classification to achieve bounded error. Clarkson
(2023) assumed exchangeability violated for node classification hence adapting weighted exchange-
ability without any lowerbound on the coverage, however, Zargarbashi et al. (2023) and Huang
et al. (2023) proved the applicability of standard CP for transductive setting in GNNs. Moreover,
Huang et al. (2023) proposed a secondary GNN trained to increase the efficiency of prediction sets,
and Zargarbashi et al. (2023) stated that in homophily networks, diffusion of conformal score can
increase the efficiency significantly.

For the inductive GNNs, the only work we are aware of is the neighborhood APS (NAPS) approach
which is an adaptation of weighted CP Clarkson (2023), however, it is shown that NAPS can not
be applied on a significant fraction of nodes if the network is sparse or the quantity of calibration
nodes are limited Zargarbashi et al. (2023) (this number increases to over 70% in some benchmark
datasets). As our approach is adaptable to sparse networks and works for any calibration set size,
we do not compare our approach with NAPS.
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