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Abstract
One of the core pillars of efficient deep learning
methods is architectural improvements such as
the residual/skip connection, which has led to sig-
nificantly better model convergence and quality.
Since then the residual connection has become
ubiquitous in not just convolutional neural net-
works but also transformer-based architectures,
the backbone of LLMs.

In this paper we introduce Learned Augmented
Residual Layer (LAUREL)—a novel generaliza-
tion of the canonical residual connection—with
the goal to be an in-situ replacement of the latter
while outperforming on both model quality and
footprint metrics. Our experiments show that us-
ing LAUREL can help boost performance for both
vision and language models. For example, on the
ResNet-50, ImageNet 1K task, it achieves 60% of
the gains from adding an extra layer, while only
adding 0.003% more parameters, and matches it
while adding 2.6× fewer parameters.

1. Introduction
Model efficiency is of critical importance in the age of
extremely large language and vision models. Even if a
given model’s quality is good, its footprint metrics such
as train-time compute required, inference latency, resident
memory size, etc. dictate if it can be experimented with
and/or deployed in real-world settings. These metrics are
directly tied to the financial costs of deploying the model
in production and user-perceived responsiveness of systems
dependent on these models.

Consequently, improving the Pareto-frontier of model qual-
ity vs footprint, via efficient deep learning methods has been
an area of active research in the past few years. Areas of in-
terests span from algorithmic techniques (Menghani, 2023),
to efficient hardware (Sze et al., 2017), to best practices
around model efficiency (Dehghani et al., 2022), etc.

One of the core pillars of efficient deep learning methods
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is architectural improvements such as the residual/skip con-
nection, which had led to significantly better model con-
vergence and quality (He et al.). Since then the residual
connection has become ubiquitous in not just convolutional
neural networks but also transformer-based architectures
(Vaswani et al., 2017), the backbone of LLMs.

In this paper we introduce learned augmented residual layer,
LAUREL, which generalizes the canonical residual connec-
tion. Recall that deep-learning models with residual con-
nections have a ‘block’ structure, with many blocks chained
together between the input and final output; these could be
convolution/identity blocks within a ResNet, a transformer
block in a transformer encoder/decoder, etc. Within a block,
a typical residual connection is given by:

xi+1 = f(xi) + xi. (1)

Here, f(·) can be any non-linear function such as attention,
MLP, multiple non-linear layers, etc., xi is the input to the
said non-linear function, and xi+1 is the combined output of
the non-linear function and the residual component. Refer
to Figure 1 for an illustration. To simplify exposition, we
ignore pre-processing functions such as layer norm, which
can be folded into f(·) without loss of generality.

2. Learned Augmented Residual Layer
In this section we describe the main idea behind LAUREL.
In its most general form, we reformulate the residual con-
nection to be the following:

xi+1 = α · f(xi) + g(xi, xi−1, . . . , x0). (2)

Here α is a learned scalar parameter, and g(·) is a learned
linear function with xi, xi−1, . . . , x0 as inputs, where xj

is the output of the jth residual connection. The intuition
behind LAUREL is that one can learn a richer set of (linear)
functions than just using xi as the residual component. One
motivation behind seeking these richer linear functions is the
concept of a “residual stream” (Elhage et al., 2021), where
the residual connection is considered to be part of a stream
of information that passes through each layer without being
exposed to any non-linearities. This allows the learning
process to focus on the non-linear components better.

Each layer / operation can read from, and subsequently write
to this residual stream based on what it read. Given that
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Figure 1. A standard residual connection. We assume the model
to be divided into logical ‘blocks’, which is true for most modern
architectures including transformers. The residual connection
combines the output of a non-linear function f and the input to the
said non-linear function. Here, f can be attention, MLP, or any
other combination of non-linear layers.

the residual connection has been shown to be important for
model quality and convergence, we designed LAUREL to
operate on this residual stream in a learned fashion, while
being light-weight in terms of the model size and latency
changes.

In this paper we study three specific versions of the LAU-
REL framework; although as described in (2), the frame-
work can be generalized beyond these versions.

2.1. Residual Weights Version (LAUREL-RW)

In this version, we keep α learnable and set g(xi, . . . , x0) =
βxi. Therefore, (2) can be rewritten as:

xi+1 = αf(xi) + βxi.

Notice that this version assigns learnable weights to the
f(xi) and xi from (1). In practice, we found that we cannot
let α and β grow unbounded, and using a normalization
function such as softmax helps. Clearly, this version
will add only two new parameters per LAUREL layer. If
necessary, we can always replace these two parameters by a
single learnable parameter and use the sigmoid function
to define α, β in terms of this single parameter.

2.2. Low-Rank Version (LAUREL-LR)

In this version, we fix α = 1, and g(xi) = Wxi in (2) to
obtain

xi+1 = f(xi) +Wxi,

where W is learnable. Note that, as written, W is a D ×D
matrix, where D is the model dimension; hence this will
add D2 new parameters (per LAUREL layer) to the model.

Figure 2. An illustration of the LAUREL framework; see (2).
LAUREL can be used to replace the regular residual connection in
Figure 1. Again, f can be any non-linear function such as attention,
MLPs, and groups of multiple non-linear layers.

In practice, to reduce the number of new parameters added
to the model and to help with convergence, we consider a
low rank version of W . In particular, let W = A×B + I ,
where A and BT are D × r matrices and r ≪ D. Thus, we
can rewrite (2) as:

xi+1 = f(xi) +ABxi + xi. (3)

Here, both A and B matrices are learnable. The number of
new parameters is 2rD.

2.3. Previous Activations Version (LAUREL-PA)

In this version, we use use activations from previous
blocks. In particular, we set g(xi) =

∑j=i
j=0 γjh(xj), where

γ0, . . . , γj are learned parameters and h is another linear
function.1 This allows us to rewrite (2) as:

xi+1 = f(xi) +

i∑
j=0

γj · h(xj).

In practice, we replace h by a low-rank product similar to
the LAUREL-LR version. The number of new parameters
is 2rD +N , where N is the number of layers.

Note that, all three versions above are a combination of
scalar and/or low-rank products on top of the vanilla resid-
ual connection in (1). This makes LAUREL especially
light-weight in terms of its impact on model size and la-
tency. Moreover, the framework is generic enough to allow
combinations of the above versions, as well as new versions.

1For simplicity, we fix α = 1.
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3. Experiments
We experiment with LAUREL in two domains, namely,
vision and language. For the first case, our goal is to improve
the image classification accuracy of the ResNet-50 model
on the ImageNet-1K dataset (Deng et al., 2009). For the
second case our goal is to improve the performance of an
LLM, evaluated after the pre-training stage, on common
benchmarks.

The underlying motivation behind these experiments is not
necessarily to improve on the SOTA results, but to show
how LAUREL can be easily integrated on top of common
model architectures with residual/skip connections in order
to achieve a better model quality and footprint trade off.

3.1. ResNet-50 on ImageNet-1K

In this setup we train a standard ResNet-50 model on the
ImageNet 1K dataset (Deng et al., 2009) using 16 Cloud
TPUv5e chips over one epoch with data-augmentation
turned on. In order to obtain a strong baseline, we fine-tuned
the model learning rate schedule and picked a schedule that
maximized the average of the best accuracy@1 values over
5 trials (which we simply refer to as accuracy in this sub-
section). The baseline model that we obtained achieves an
accuracy of 74.95± 0.016%.

In addition, we also find that if we simply add another
layer to the ResNet-50 model (i.e., naive scaling), we can
increase the model’s accuracy by 0.25% to reach 75.20%,
while adding 4.37% new parameters. With that in context,
applying LAUREL on the model leads to better results (see
Table 1).

If we only use the LAUREL-RW version, we get an im-
provement of 0.15% on average with only 0.003% extra
parameters, which is essentially negligible. When we try
the LAUREL-RW+LR version with r = 16, we achieve an
accuracy of 75.20% while adding only 1.68% extra param-
eters; this matches the performance of the baseline with an
extra layer, while using 2.6× fewer extra parameters. Addi-
tionally, when we use the combined LAUREL-RW+LR+PA
version we improve the accuracy to 75.25% while still us-
ing 1.82× fewer extra parameters than the baseline with
one extra layer, demonstrating that LAUREL is superior to
naively scaling the model. Notably even though we make
fundamental changes to the residual connection we did not
find any training instabilities when using LAUREL.

3.2. Decoder-only LLM Pre-training

In this setup, our goal is to test the performance of LAUREL
with Large Language Models (LLMs). For our baseline, we
chose a 3B parameter decoder-only model based on the
Transformer architecture. We pre-trained both the baseline,

Table 1. Applying LAUREL on a ResNet-50 trained on the Ima-
geNet 1K classification dataset.

MODEL AVG. BEST PARAMS ADDED
ACCURACY@1 VS BASELINE
(%), 5 TRIALS (%)

BASELINE 74.95± 0.01 -
BASELINE + 1 LAYER 75.20± 0.12 4.37
(NAIVE SCALING)

LAUREL-RW 75.10± 0.10 0.003
LAUREL-RW+LR 75.20± 0.07 1.68
LAUREL-RW+LR+PA 75.25± 0.09 2.40

and our experiment with LAUREL, from scratch; we use
the LAUREL-RW and LAUREL-LR versions (with r =
4). Both the models were trained using 1024 Cloud TPU
v5e chips for approximately two weeks each, using a pre-
training mixture consisting of only text tokens.

It is worth noting that the combined LAUREL-RW+LR
variant adds only 0.012% more parameters as compared to
the baseline model. Since we chose r = 4, the total number
of parameters added by LAUREL-LR is 8ND. Typically
N ∈ [10, 100] and D ∈ [500, 5000]. Thus, the number of
new parameters is dwarfed by that of the original model.

We evaluated both the pre-trained baseline and LAUREL
models on a host of common LLM tasks such as Q&A,
NLU, Math, Code, etc; see Table 2 for the results. LAUREL
outperforms the baselines on all tasks except on the MBPP
dataset where it was neutral. Interestingly, these can be
achieved with only 0.012% extra parameters.

Since the pre-training was computationally expensive, we
tried a single value of r and did not try the LAUREL-PA
version. It is possible that trying different variants similar to
the ResNet experiments might improve the results further.

3.3. LAUREL-LR: Rank vs Accuracy

We note that for the LAUREL-LR version on the ResNet-
50/ImageNet combination, there is a pattern in terms of
the best accuracy achieved with different values of r. In
the combined LAUREL-RW+LR version we experimented
with different values of r, and computed the average of the
best accuracy@1 achieved over 5 trials; see Figure 3. From
Table 1, with the LAUREL-RW version alone we already
achieve an average best accuracy@1 of 75.10%, therefore
for the combined LAUREL-RW+LR version we would like
to see the accuracy exceeding that.

We observe that when r is small (r ∈ {4, 8}), there is not
a significant improvement over the baseline LAUREL-RW
experiment. This could be because a very small r acts
as an information bottleneck in the low-rank product in
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Table 2. Evaluation results of a Decoder-only LLM pre-trained
from scratch with (a) the baseline model architecture, and (b)
using LAUREL. We evaluated both the models on a number of
common eval benchmarks (higher is better for all task and dataset
combinations listed below). The LAUREL variant outperforms
the baseline on all but one dataset while adding only 0.012% extra
parameters.

TASK TYPE DATASET BASELINE LAUREL

Q&A BOOLQ 58.07 65.66
TYDI QA 67.98 72.58
(GOLDP)

MULTI-TASK MMLU 25.72 25.89
NLU

MATH MATH 3.54 3.70
GSM8K-COT 8.34 8.79

SENTENCE HELLASWAG 64.84 65.06
COMPLETION

CODE HUMANEVAL 18.29 18.90
MBPP 27.00 27.00

GSM8K-PAL 10.31 11.37

(3). As r increases, the accuracy reaches the maximum for
r = 16, 32; beyond this, the accuracy seems to drop though
still higher than the LAUREL-RW baseline. We believe
this unimodal phenomenon could be due to the number of
parameters added to the model, which increases linearly in r,
which would require appropriate tuning of hyper-parameters
such as the learning rate as well as the regularization penalty.

4. Related Work
Since our larger goal is to improve the training and inference
efficiency of deep learning models, we briefly discuss some
research directions aimed at improving model efficiency.

Figure 3. Trend of accuracy as r is varied in the LAUREL-RW+LR
version.

Architectural Changes: Our work is inspired by recent
model architecture improvements such as LoRA (Hu et al.,
2022) and AltUp (Baykal et al., 2023) amongst others. How-
ever, they are not directly relevant to LAUREL. Indeed,
LoRA is designed to efficiently fine-tune large pre-trained
models and it works directly on the model weight matri-
ces level by introducing low-rank ‘adapter’ weights that
are learned during the fine-tuning stage, while other model
weights are held constant. In contrast, LAUREL works at
the residual connection level, which likely spans multiple
weight matrices involved in the function f ; furthermore, it
is applied during the pre-training stage.

AltUp (Baykal et al., 2023) is designed to replicate the qual-
ity improvements of a model with a large model dimension,
without having to pay the additional cost. It operates at the
transformer-block level, constructing parallel ‘lightweight’
transformer blocks to approximate the model dimension
scaling effect. In contrast, LAUREL operates at the residual
connection level and does not aim to replicate the dimension
scaling effect.

Interestingly, LAUREL can be applied in conjunction with
both LoRA (during fine-tuning) and AltUp (during pre-
training and fine-tuning).

He & Hofmann (2023) proposes several changes to trans-
former blocks to help improve model convergence; however
these proposals are limited to transformer blocks.

Compression Techniques: Model compression techniques
(Buciluǎ et al., 2006) such as quantization (Krishnamoorthi,
2018; Jacob et al., 2018), including ternary networks (Li
et al., 2016; Ma et al., 2024) are commonly used to reduce
model size and inference latency. Similarly, pruning and
model sparsity (Gale et al., 2019; Liu et al., 2019) techniques
have also been explored and implemented in hardware.

Learning Techniques: Distillation (Hinton et al., 2014)
is a popular technique for improving a smaller (student)
model quality using “soft-labels” from a larger, impractical
(teacher) model (Sanh et al., 2019). Some distillation vari-
ants propose learning intermediate representations as well
(Zagoruyko & Komodakis, 2016; Kim et al., 2023). Other
techniques include works like Stacking (Reddi et al., 2023)
and RaPTr (Panigrahi et al., 2024), which progressively
grow and train the network to achieve an improved model
quality while reducing model training time.

5. Conclusion
In this paper we introduce the LAUREL framework, which
is a novel architectural change and a generalization of the
residual / skip connection aimed at improving the model
quality without significantly increasing the model size or
latency. We study three versions (LAUREL-RW, LAUREL-
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LR, LAUREL-PA) that can be mixed-and-matched together,
as we show in our experiments.

Through experiments, we demonstrate the efficacy of replac-
ing the conventional residual connection with LAUREL on
both vision and language tasks, while also providing evi-
dence for its advantages over naive model scaling methods.
In the future, we would like to try LAUREL and its variants
on other architectures such as Vision Transformers (ViT)
(Dosovitskiy et al., 2020) and related tasks.
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