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ABSTRACT

Temporal knowledge graph completion (TKGC) is a challenging task to infer the
missing component for quadruples. The key challenge lies at how to integrate time
information into the embeddings of entities and relations. Recent TKGC methods
tend to capture temporal patterns via linear or multilinear models, which are fast
but not expressive enough. In this study, we propose a novel time-aware con-
volutional embedding model (TaCE) to represent the time-dependent facts in the
task of TKGC. It highlights its novelty to feasibly convert timestamps as temporal
convolutional filters to fully interact with entities and relations and learn temporal
patterns in knowledge graphs (KGs). An extensive comparison proves that our
model outperforms the state-of-the-art models on three public benchmark datasets
of ICEWS14, ICEWS05-15 and GDELT. Results also demonstrate good temporal
expressiveness and computation efficiency performed by our TaCE.

1 INTRODUCTION

Knowledge graphs (KGs), storing facts in tuples, are often faced with incompletion. To solve this
problem, knowledge graph embedding (KGE), mapping the entities and relations into a continuous
vector space, has been developed to capture the semantic meanings for the task of KG reasoning
(KGR) or KG completion (KGC) (Bordes et al., 2013; Trouillon et al., 2016; Sun et al., 2019).
Both KGR and KGC aim at inferring the missing facts for a given knowledge graph (Chen et al.,
2020). Traditional KGE or KGC approaches usually treat KGs to be static, which means that the
nodes and edges of a KG would not evolve with the time (Kazemi et al., 2020; Ji et al., 2021).
However, in reality, most facts or events are only valid at a specific point or over a certain period.
For example, in “Franklin D.Roosevelt was in office during 1933-1945 and died on April 12th,
1945”, it indicates two facts (‘in office’ and ‘death’) related to the target person following different
time orders and spans. In that case, KGC should be implemented at the temporal scale, and KGE
models are supposed to have temporal awareness.

To better capture the knowledge evolution, recent temporal KG reasoning (TKGR) or temporal KG
completion (TKGC) researches try to integrate the temporal information into the KGE procedure.
Methods can be roughly divided into two categories: the structure-based methods and the sequence-
based methods. Acting as an extension of static KGE modelling, the former type aims to project
the entities and relations into a time-dependent vector space with the inherent KG structure pre-
served (Jiang et al., 2016; Dasgupta et al., 2018; Xu et al., 2020; Lacroix et al., 2020); they behave
to be time-efficient on account of linear or multi-linear transformations but face with the shallow
representation problem. The sequence-based methods (Jin et al., 2020; Wu et al., 2020; Li et al.,
2021), splitting the entire KG into a sequence of graph snapshots along the time, rely on the se-
quence models such as the recurrent neural network (RNN) (Jin et al., 2020; Trivedi et al., 2017;
Seo et al., 2018), long and short-term memory (LSTM) (Wu et al., 2020) or gated recurrent unit
(GRU) (Li et al., 2021) to inherently encode temporal features. Although the performances based on
the sequence models are reasonably good, they are computationally expensive when running over
a large-scale KG. Moreover, their prediction results would be undermined by temporal sparsity to
some extent due to the reason that only a small fraction of nodes and edges are activated at each time
(Wu et al., 2020).

In this paper, we are inclined to apply the structure-based method to manage TKGR or TKGC. In-
spired by the successful applications of convolutional networks on static KGE (Dettmers et al., 2018;
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Jiang et al., 2019; Balažević et al., 2019a), we hereby build a novel time-aware convolutional embed-
ding (TaCE) model to infer the missing facts for a temporal knowledge graph (TKG). It highlights
its advantage in generating the convolution filters constructed from timestamps and convolving the
time information into the embeddings of entities and relations. Such a convolutional design enables
the model to deeply, comprehensively and efficiently extract the temporal features and the static
ones and achieves a better link prediction for the TKGC task. Results demonstrate that TaCE has
the superiority in learning temporal information as well as its interactions with the entities and the
relations. It balances the tradeoff between expressiveness and training speed. The key contributions
of this article can be summarized as follows:

• We creatively propose time-aware convolution method to integrate the time information into the
embeddings of entities and relations for a better link prediction.

• An extensive comparison has been conducted between TaCE and the state-of-the-art models to
verify their performances on different public datasets.

• Further analyses have been done to prove that our model, TaCE, is able to capture the semantic
meanings for the timestamps and learn facts with proper time order and consistency.

2 RELATED WORK

Static KG representation learning To discover the unknown facts in KGs, substantial static KGE
methods have been proposed in the last decade. These methods commonly convert entities and re-
lations into continuous vector spaces, and employ a scoring function to measure the plausibility of
each candidate for KGC. TransE (Bordes et al., 2013), is one of the most widely-used transitional
distance models, to embed entities and relations. Motivated by TransE, a series of similar models
including TransH (Wang et al., 2014), TransR (Lin et al., 2015), and TransD (Ji et al., 2015) are
developed to achieve better link predictions. RESCAL (Nickel et al., 2011) and its extensions (Dist-
Mult (Yang et al., 2014), ComplEx (Trouillon et al., 2016), and TuckER (Balažević et al., 2019b))
represent typical semantic matching models using tensor/matric factorization. Apart from them,
ConvE (Dettmers et al., 2018), ConvR (Jiang et al., 2019) and HypER (Balažević et al., 2019a)
recently ignite the passions of using convolution networks for KGE; they successfully prove their
feature expressiveness better than those linear ones in link prediction. However, there is no study by
far introducing convolution modelling into TKGC.

Temporal KG representation learning As forementioned, representation learning for TKG can be
roughly categorized into two classes: structure-based models and sequence-based models. The for-
mer represent the quadruples in TKG by building time-sensitive embedding models. TTransE (Jiang
et al., 2016) and DE-SimplE (Goel et al., 2020) integrate timestamp information into the corre-
sponding the embeddings of relations and entities to infer the missing knowledge. HyTE (Dasgupta
et al., 2018) projects the entities and relations to the temporal hyperplanes. ChronoR (Sadeghian
et al., 2021) and TeRo (Xu et al., 2020), the most recent works, treat the timestamped relations as a
temporal rotation from the head entity to the tail entity. Sequence-based models, including Know-
Evolve (Trivedi et al., 2017), GCRN (Seo et al., 2018), RE-NET (Jin et al., 2020) and RE-GCN (Li
et al., 2021), attempt to use the sequential networks such as RNN, LSTM and GRU to learn time-
dependent facts. However, they are designed for the task of graph extrapolation and “not compatible
with TKGC settings (Wu et al., 2020). TeMP (Wu et al., 2020) is one of the sequence-based models,
designed for TKGC tasks using graph neural network (GNN) and LSTM to capture the intra-graph
patterns and inter-graph relationships, respectively. Therefore, we group TeMP, as the representative
for the sequence-based model, into our baselines.

3 PROBLEM FORMULATION

Before going to the details of our TaCE model, we formally define the key notations and TKGC
task.

Temporal Knowledge Graph (TKG) A TKG G is composed by a set of real-world facts G =
{(s, r, o, t) | s, r ∈ E , r ∈ R, t ∈ T }, where, in each quadruple, s denotes the head entity, r is the
relation, o is the tail entity, t is a discretized timestamp; E , R and T stand for the all the entities,
relations and timestamps belong to the TKG.
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Temporal Knowledge Graph Completion (TKGC) The task of TKGC or TKGR is to infer the
missing component, (?, r, o, t), (s, r, ?, t) or (s, ?, o, t), given that the other three elements of the
quadruple are known. It is supposed that the missing part exists in E , R. In this article, our job
focuses on predicting the missing head or tail entity, but we only take (s, r, ?, t) as the example for
modelling expression in later section.

4 METHOD: TACE
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Figure 1: A framework of the proposed TaCE model for TKGC tasks.

4.1 FRAMEWORK OF TACE

The model of TaCE is mainly composed of four components: the temporal convolution module aims
to construct temporal convolution filters to go through the input entities and relations to obtain the
time-aware representations for all the input; the static convolution module, as the name suggests, is
to facilitate the convolution across all the entities and relations again to learn the context information
changed without the time; the deep learning module, made up of several hidden layers, is responsible
for comprehensively and deeply drawing the representations carried both from the temporal and
static modules; after that, the prediction layer delivers the probability for each tail entity candidate
to suggest the most likely answer for the incomplete G. Figure 1 displays the architecture of TaCE.

4.2 TEMPORAL CONVOLUTION MODULE

In this module, the temporal information formed by the timestamp t ∈ T is fully integrated into the
subject entity s ∈ E and the relation r ∈ R via the convolution filters adaptively constructed from
the timestamp t.

• Firstly, to integrate the time information into the entity s and the relation r, the temporal convolu-
tion filters are developed. They are constructed from the timestamp embedding et ∈ Rdt , where
dt is the embedding size of the timestamps. Originally derived from the timestamp t, et is the
input into a fully connected layer fc to get a vector vt with a proper length for further processing;
then et is further split into a set of 1D convolution filters Ft =

{
k
(1)
t ,k

(2)
t , . . . ,k

(c)
t

}
sharing

the same size, where k
(l)
t ∈ Rw represents the lth convolution filter, w denotes the embedding
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size of the filters and c denotes the number of the filters. The procedure of constructing temporal
convolution filters is illustrated in Figure 2.

Fully Connected 
Layer 

...

Split

Figure 2: Construction of temporal convolution filters.

Add

Convolve

Figure 3: Convolution with temporal convolution filters.

• Secondly, before filtered by temporal convolutional filters Ft, the subject entity embedding
es ∈ Rde and the relational embedding er ∈ Rdr are stacked up like an ‘image’ with multi
channels, with de = dr arepresenting the embedding size of entities and relations respec-
tively. Such a stacking operation enables both the entity information and relation informa-
tion to feasibly act with Ft. After convolved by Ft, the corresponding temporal feature maps
Mtemp =

{
m

(1)
t ,m

(2)
t , . . . ,m

(c)
t

}
, where m

(l)
t ∈ Rde−w+1 is the lth feature map convolved

from the subject entity embedding es and the relational embedding er, and c is equal to the num-
ber of filters. The convolution with temporal convolution filters is illustrated in Figure 3. hs and
hr denote the convolved es and er respectively in Figure 3.

• Finally, the matrix Mtemp feed into a fully connected layer ftemp to obtain the flatten knowledge
feature of atemp ∈ Rde .

The equation of the temporal block is formulated as follow:

atemp = ftemp

(
[es; er]3 ∗ vec

−1 (fc(et))
)

(1)

where, vec−1 is a splitting operator to reshape the embedding et of the timestamp t into a set of
filters, ∗ represents the convolutional operations, and [es; er]3 represents the stacked tensor made up
of the embedding es and the embedding er.

4.3 STATIC CONVOLUTION MODULE

To capture the potential static information from a TKG, all the nodes and edges to form a TKG will
go through the same set of the time-independent convolutional filters F =

{
k(1),k(2), . . . ,k(c)

}
with timestamps omitted. Each filter k(l) ∈ Rw in F is randomly initialized rather than constructed
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from timestamps, as so to make filters time-irrelevant. The procedure of static embedding is de-
scribed as:

astat = fstat ([e
′
s; e
′
r]3 ∗ F) (2)

where, e′s ∈ R′de and e′r ∈ R′dr represent the static embeddings for the subject s and the relation r,
respectively. fstat is a fully connected layer; astat presents the final extracted static KGs patterns.

4.4 DEEP LEARNING MODULE

Deep learning module brings the temporal feature atemp (derived from the temporal block) and the
static feature astat (derived from the static block) into the multiple hidden layers to extract a better
representation of a ∈ Rde for all knowledge. The hidden layers are defined as follows:

u1 = σ1(f1([atemp;astat]))

u2 = σ2(f2(u1))

. . .

un = σn(fn(un−1))

(3)

where, n is the number of hidden layers, fn denotes the linear operation for the hidden layer n, σn
is the activation function of the hidden layer n, ui is the result of the ith hidden layer, and we use
LeakyReLU as the activation function for hidden layers.

4.5 LINK PREDICTION MODULE

The sigmoid is chosen as the scoring function ϕ to predict the missing object entity o for the quad-
tuple (s, r, ?, t):

ϕ(s, r, o, t) = f(eoun) (4)

where f is the sigmoid function; un is the hidden representation from the deep learning module.
The complete formulation of ϕ for the task of TKGC is defined as:

ϕ (s, r, o, t) =

f(eoσn(fn(. . . (σ1(f1([ftemp([es; er]3 ∗ vec−1fc(et); fstat([e′s; e′r]3 ∗ F))])))))) (5)

TaCE is capable of providing scores for all candidate object entities contained by E , by employing
an 1-N strategy. Such the 1-N strategy can speed up the entire scoring procedure which can be
referenced to Dettmers et al. (2018) and Balažević et al. (2019a). We apply the binary cross entropy
(BCE) loss function L to train the model:

L = − 1

n

n∑
i=1

yilog(pi) + (1− yi)log(1− pi) (6)

where n presents the number of candidate entities; yi labels the true (yi = 1) or false (yi = 0)
prediction for the ith candidate tail entity; pi denotes the probability of the ith candidate object
entity upon the score function ϕ.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets We test TaCE on six public benchmarks, namely, ICEWS14, ICEWS05-15, GDELT,
YAGO11k, WIKIDATA12k and YAGO15k. Among them ICEWS14 and ICEWS05-15 are col-
lected from the Integrated Crisis Early Warning System (ICEWS) with different time spans (Ward
et al., 2013); the GDELT dataset is obtained from the Global Database of Events, Language, and
Tone (GDELT) (Leetaru & Schrodt, 2013), spanning from April 1st, 2015 to March 31st, 2016;
YAGO11k and WIKIDATA12k are extracted from YAGO3 (Mahdisoltani et al., 2014) and Wikidata
(Erxleben et al., 2014) with time intervals (Xu et al., 2020); YAGO15k is the only one among the
six that has incomplete time information, with 73.4% of the total number having no timestamps
(Lacroix et al., 2020). Data details can be referred to Table 1.
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Table 1: Statistics of the datasets. (‖E‖, ‖R‖ and ‖T ‖ are the total number of entities, relations
and timestamps, respectively. ‖train‖, ‖validation‖ and ‖test‖ are the number of quadruples in
training, validation and test sets. ‖G‖ is the sum of ‖train‖, ‖validation‖ and ‖test‖)

Dataset ‖E‖ ‖R‖ ‖T ‖ ‖train‖ ‖validation‖ ‖test‖ ‖G‖
ICEWS14 7,128 230 365 72,826 8,941 8,963 90,730

ICEWS05-15 10,488 251 4017 368,962 46,275 46,092 461,329
GDELT 500 20 366 2,735,685 341,961 341,961 3,419,607

YAGO11k 10,622 10 398 16,408 2,050 2,051 20,509
WIKIDATA12k 12,554 24 614 32,497 4,062 4,062 40,621

YAGO15k 15,403 34 170 110,441 13,815 13,800 138,056

Evaluation Metrics Metrics including Hits@1, Hits@3, Hits@10, and Mean Reciprocal Rank
(MRR) are involved to measure the performances of TaCE against the baseline models. Metric
formulations can be found in Appendix A.2.

Baselines For a broad comparison, we collect as many KGE models as we can find. These baseline
models are grouped into two: 1) the static ones, including TransE (Bordes et al., 2013), DistMult
(Yang et al., 2014), ComplEx Trouillon et al. (2016), ConvE (Dettmers et al., 2018) and HypER
(Balažević et al., 2019a); 2) the temporal ones, covering TTransE (Jiang et al., 2016), HyTE (Das-
gupta et al., 2018), TA-DistMult (Garcı́a-Durán et al., 2018), DE-SimplE (Goel et al., 2020), TIME-
PLEX (Jain et al., 2020), TNTComplEx (Lacroix et al., 2020), TeRo (Xu et al., 2020), TeMP (Wu
et al., 2020), and ChronoR (Sadeghian et al., 2021). The latter three, TNTComplEx, TeMP and
ChronoR, to the best of our knowledge, are most recent models.

Parameter Settings For training and evaluation, the embedding size for entity, for relation and for
timestamp are set equally the same, de = dr = dt = 200; the batch size is set to 512. We adopt
Adam Optimizer (Kingma & Ba, 2015) for parameter training. More details about the parameter
settings can be found in Appendix A.3.

5.2 RESULTS AND COMPARISON

The experimental results associated with each model are summarized: the results on ICEWS14,
ICEWS05-15 and GDELT are shown in Table 2; the results on YAGO11k, WIKIDATA12k and
YAGO15k are shown in Table 5 in Appendix A.1 due to the page limitation. In general, our TaCE
achieves the better performances on the datasets. When driving five traditional static models over the
six TKG datasets, it is not surprising that none of them can provide satisfactory link predictions due
to incapability of considering temporal information. Impressively, TaCE generally achieves better
performances against its temporal opponents. On ICEWS14 and ICEWS05-15, TaCE delivers the
upmost improvement of 4.9% on MRR and 6.5% on Hits@1 against the latest competitor, ChronoR.
Although TaCE does not outperform TeMP on Hits@10, the rest marks on ICEWS14 and ICEWS05-
15 indicate the superiority of TaCE. On GDELT dataset, TaCE leverages the rates of four metrics
by at least 7% against its temporal opponents. Compared with our compellers, TaCE achieves the
best on YAGO11k and WIKIDATA12k in terms of MRR, Hits@1 and Hits@3; results on YAGO15k
are also acceptable, with Hits@1 reaching the highest and MRR and Hits@3 slightly lower than the
SOTA (ChronoR). Overall, TaCE presents its effectiveness on link prediction by employing temporal
convolutional filters to represent its interactions with entities and with relations.

5.3 EMBEDDING VISUALIZATION

To demonstrate the temporal expressiveness learned by TaCE, we use T-SNE to project the trained
embeddings of et (for timestamps) and atemp (for entity+relation) onto a 2D plane. Results are
displayed in Figure 4&5.

Visualization of et According to Figure 4, the dimension-reduced et representing for the times-
tamps shows a good clustering pattern at different time scales: (a) and (b) demonstrate that the et
points for ICEWS05-15 within the same year are clustered well together, transitioning from one
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Table 2: Link prediction results on ICEWS14, ICEWS05-15 and GDELT datasets. The best results
for each metric are marked in bold. All numbers of results are multiplied by 100%. Missing scores
not reported are denoted by “–”. Due to limited space, we use H@1, H@3 and H@10 to represent
Hits@1, Hits@3 and Hits@10, respectively.

Model ICEWS14 ICEWS05-15 GDELT

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE(2013) 32.6 15.4 43.0 64.4 33.0 15.2 44.0 66.0 15.5 6.0 17.8 33.5
DistMult(2014) 44.1 32.5 49.8 66.8 45.7 33.8 51.5 69.1 21.0 13.3 22.4 36.5
ComplEx(2016) 44.2 40.0 43.0 66.4 46.4 34.7 52.4 69.6 21.3 13.3 22.5 36.6
ConvE(2018) 46.2 34.2 52.5 70.0 46.7 34.4 53.1 70.5 18.1 9.9 19.3 33.9
HypER(2019) 47.0 35.1 53.3 70.6 48.2 35.8 54.9 72.0 19.7 11.2 21.2 36.4

TTransE(2016) 25.5 7.4 - 60.1 27.1 8.4 - 61.6 11.5 0.0 16.0 31.8
HyTE(2018) 29.7 10.8 41.6 65.5 31.6 11.6 44.5 68.1 11.8 0.0 16.5 32.6
TA-DistMult(2018) 47.7 - 36.3 68.6 47.4 34.6 - 72.8 20.6 12.4 21.9 36.5
DE-SimplE(2020) 52.6 41.8 59.2 72.5 51.3 39.2 57.8 74.8 23.0 14.1 24.8 40.3
TIMEPLEX(2020) 60.4 51.5 - 77.1 64.0 54.5 - 81.8 - - - -
TNTComplEx(2020) 60.7 51.9 65.9 77.2 66.6 58.3 71.8 81.7 - - - -
TeRo(2020) 56.2 46.8 62.1 73.2 58.6 46.9 66.8 79.5 - - - -
TeMP(2020) 60.7 48.4 68.4 84.0 68.0 55.3 76.9 91.3 23.2 15.2 24.5 37.7
ChronoR(2021) 62.5 54.7 66.9 77.3 67.5 59.6 72.3 82.0 - - - -

TaCE(ours) 67.4 61.2 71.0 78.8 68.3 61.2 72.6 81.1 31.4 22.6 34.0 48.6

year to another; interestingly, the et for GDELT in (c) and (d) within the same months consecutively
form a curving chain. In summary, the time embedding et, trained by the convolution networks in
TaCE, can automatically learn good sematic meanings for temporal order by itself.

Visualization of atemp In Figure 5, atemp stands for the mapping representations of facts (s: boko
haram, r: use conventional military force) in different years. It can be observed that this sampled
temporal fact based on ICEW05-15 is evolving with time in 2011, 2013 and 2015; points sharing
close distances are usually those falling in the same year. Hence, it convinces that our model has the
capability of capturing evolving facts with semantic meanings.

5.4 THE AWARENESS OF TIME

To further demonstrate the time awareness of TaCE in factual prediction, we further plot the proba-
bilities provided by TaCE for the fact who (Umaru Musa Yar’Adua or Muhammadu Buhari) poten-
tially made a “statement” for the “Government (Nigeria)” during 2005-2015 as shown in Figure 6.
Upon the knowledge shown in Appendix A.4, Umaru Musa Yar’Adua and Muhammadu Buhari hold
their president tenure in different years. Our TaCE infers that Umaru Musa Yar’Adua has the highest
scores for the fact (s: ?, r: make statement, o: Government (Nigeria), 2007-2011), but Muhammadu
Buhari for (s: ?, r: make statement, o: Government (Nigeria), 2015). The reasoning results match
the grounding truth, implying that our model has good time awareness to distinguish fact rankings
along the time. A list of Nigerian presidents and their tenure during 2005-2015 can be found in
Appendix A.4.

5.5 ABLATION STUDY

We conduct ablation studies on ICEWS14 to explore to what extent the temporal and static compo-
nents may impact on the model prediction. The testing results are reported in Table 3.

Impact of temporal embedding module When we remove the temporal embedding module from
TaCE, the model only performs as a static KGE model. The prediction results for MRR, Hits@1,
Hits@3 and Hits@10 all bear significant drops compared to the states under the full condition. It
highlights that the model closely relies on the temporal module to capture the evolving knowledge
to enhance its prediction accuracy.
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(a) (b)

(c) (d)

Figure 4: Visualization of et. (a)&(b) map out all the trained temporal embeddings based on
ICEWS05-15, with the ones in the same year marked by the same color; (c) maps out all the times-
tamps contained in GDELT with the ones in the same month marked by the same color; (d) is the
zoom-in region highlighted by the red circle in subgraph (c).

Figure 5: Visualization of atemp representing
the incomplete fact of s: boko haram, r: use
conventional military force in different years,
based on the training of ICEWS05-15.

Figure 6: Probabilities for the fact (s:?, r: make
statement, o: Government (Nigeria)) druing
2005-2015, based on the training of ICEWS05-
15.
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Impact of static embedding module The static embedding module is responsible for learning the
context knowledge of a KG. It can be observed that the performance of TaCE is slightly under-
mined when removing the static component off the model. This is due to the reason that ICEWS
are highly dynamic data. If a KG contains more static facts, i.e., (Beijing, located in, China) or
(Barack Obama, spouse of, Michelle Obama), the KGE model is necessary to incorporate the static
embedding module to represent the context knowledge properly.

Table 3: Ablation studies of TKGC tasks on ICEWS14. MRR, Hits@1, Hits@3 and Hits@10 are
calculated with all numbers are multiplied by 100%.

Configuration MRR Hits@1 Hits@3 Hits@10

TaCE 67.4 61.2 71.0 78.8
TaCE without temporal embedding module 48.9 37.3 54.7 72.0
TaCE without static embedding module 66.2 59.6 70.0 78.4

5.6 TRAINING EFFICIENCY

To test the training efficiency of TaCE for the TKGC task, we conduct a comparison of our model
against its two competitors, TNTComplEx (a structure-based model) and TeMP (a sequence-based
model). The tests are implemented on training 72,826 quadruples for ICEWS14 under the same
computing environment. The results are shown in Table 4. Among the three tested models, TNT-
ComplEx performs as the fastest one due to owning the tensor factorization method in its algorithm.
TaCE, running convolution networks over a KG, can achieve a satisfying efficiency. TeMP costs two
orders of magnitude of time to complete the whole train task, as it applies a complex GRU model
to learn temporal patterns. The runtime will soar up to a high level when running over billions or
trillions of facts.

Table 4: Training efficiency (in seconds) on ICEWS14.

Model Runtime (one epoch)

TNTComplEx 2.5
TeMP 316.8
TaCE(our model) 4.9

6 CONCLUSION

In this paper, a convolution-based model called TaCE is proposed to manage the task of TKGC.
The key idea is to generate the timestamp-based convolution filters based on timestamps to convolve
the time-dependent entities and relations contained in a knowledge graph. Such a design allows the
model to have a good expressiveness for the evolving knowledge and enables it to distinguish the
facts with the time order and consistency. Furthermore, it can easily combine the static knowledge
features together to achieve a better link prediction. The model has good efficiency in training
procedure which allows it to run over those large-scale KGs. Additional properties such as spatial
information or the description of an entity are expected to add in easily, however, this would refer to
another paper in the future.
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A APPENDIX

A.1 EXPERIMENTS ON YAGO11K, WIKIDATA12K AND YAGO15K

The experimental results on YAGO11k, WIKIDATA12k and YAGO15k are shown in Table 5.
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Table 5: Link prediction results on YAGO11k, WIKIDATA12k and YAGO15k datasets. The best
results for each metric are marked in bold. All numbers of results are multiplied by 100%. Missing
scores not reported are denoted by “–”. Due to limited space, we use H@1, H@3 and H@10 to
represent Hits@1, Hits@3 and Hits@10, respectively.

Model YAGO11k WIKIDATA12k YAGO15k

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE(2013) 10.0 1.5 13.8 24.4 17.8 10.0 19.2 33.9 29.6 22.8 - 46.8
DistMult(2014) 15.8 10.7 16.1 26.8 22.2 11.9 23.8 46.0 27.5 21.5 - 43.8
ComplEx(2016) 16.7 10.6 15.4 28.2 23.3 12.3 25.3 43.6 36.0 29.0 36.0 54.0
ConvE(2018) 13.9 8.8 13.3 25.4 21.5 12.2 23.3 41.4 10.8 3.7 9.4 31.2
HypER(2019) 14.8 9.4 14.8 25.4 21.1 11.8 22.3 42.5 10.4 3.3 8.7 32.8

TTransE(2016) 10.8 2.0 15.0 25.1 17.2 9.6 18.4 32.9 32.1 23.0 - 51.0
HyTE(2018) 10.5 1.5 14.3 27.2 18.0 9.8 19.7 33.3 - - - -
TA-DistMult(2018) 16.1 10.3 17.1 29.2 21.8 12.2 23.2 44.7 29.1 21.6 - 47.6
DE-SimplE(2020) 15.1 8.8 - 26.7 25.3 14.7 - 49.1 - - - -
TIMEPLEX(2020) 23.6 16.9 - 36.7 33.4 22.8 - 53.2 - - - -
TNTComplEx(2020) 18.0 11.0 - 31.9 30.1 19.7 - 50.7 35.9 28.5 36.8 53.8
TeRo(2020) 18.7 12.1 19.7 31.9 29.9 19.8 32.9 50.7 - - - -
TeMP(2020) - - - - - - - - - - - -
ChronoR(2021) - - - - - - - - 36.6 29.2 37.9 53.8

TaCE(ours) 23.8 17.1 25.3 36.4 33.6 23.4 36.1 52.7 36.2 30.4 37.0 47.5

A.2 THE DETAILS OF DEFINITIONS ON EVALUATION METRICS

MRR, Hits@1, Hits@3 and Hits@10 are employed to score measure the model performance. MRR
is defined as follow:

MRR =
1

2‖test‖
∑

(s,r,o,t)∈test

(
1

ranko
+

1

ranks
) (7)

where ranko and ranks denote the ranking of tail entity o and head entity s for tail and head queries,
respectively. Hits@K, K=1,2,3. . . , is defined as follow:

Hits@K =
1

2‖test‖
∑

(s,r,o,t)∈test

(I(ranko ≤ k) + I(ranks ≤ k)) (8)

where k = 1, 2, 3 . . . , I denotes the indicator function.

A.3 PARAMETER SETTINGS

The parameter settings for TaCE is listed in Table 6.

A.4 NIGERIAN PRESIDENTS AND THEIR TENURE FROM 2005 TO 2015

There mainly refer to four presidents of Nigeria from 2005 to 2015 by checking on the Wikipedia.
Their tenure information is listed in Table 7.

A.5 THE NUMBER OF PARAMETERS (SPACE COMPLEXITY) OF TKGC MODELS

The number of parameters or the space complexity of TKGC models are shown in Table 8.
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Table 6: Parameter settings in TaCE.

Dataset ICEWS14 ICEWS05-15 GDELT YAGO11k WIKIDATA12k YAGO15k

Embedding size 200 200 200 200 200 200
Batch size 512 512 512 512 512 512
Embedding dropout rate 0.2 0.2 0.2 0.2 0.2 0.2
Feature map dropout rate 0.2 0.1 0.1 0.2 0.2 0.2
Projection dropout rate 0.3 0.2 0.2 0.3 0.3 0.3
Label smoothing 0.0 0.0 0.0 0.1 0.1 0.1
Number of feature maps 32 32 32 32 32 32
Convolutional filer size 1x9 1x9 1x9 1x9 1x9 1x9
Number of deep layers 1 1 1 1 1 1
Learning rate (Adam) 0.0005 0.0001 0.0001 0.001 0.001 0.001
Exponential learning rate decay 0.995 0.995 0.995 0.99 0.99 0.99

Table 7: The list of Nigerian presidents and their tenure from 2005 to 2015.

Name Start date of tenure End date of tenure

Olusegun Obasanjo May 29th, 1999 May 29th, 2007
Umaru Musa Yar’Adua May 29th, 2007 May 5th, 2010

Goodluck Ebele Jonathan May 29th, 2010 May 29th, 2015
Muhammadu Buhari May 29th, 2015 Till date

Table 8: The number of parameters (Space Complexity) of TKGC models. ne, nr and nt denote
the number of entities, relations and timestamps respectively. de, dr and dt denote the dimension of
entity, relation and timestamp embedding respectively. ntoken represents the token of time, which is
defined in (Garcı́a-Durán et al., 2018).

Model The Number of Paramters (Space Complexity)

TransE(2013) O(nede + nrdr)
DistMult(2014) O(nede + nrdr)
ComplEx(2016) O(2nede + 2nrdr)
ConvE(2018) O(nede + nrdr)
HypER(2019) O(nede + nrdr)
TTransE(2016) O(nede + nrdr + ntdt)
HyTE(2018) O(nede + nrdr + ntdt)
TA-DistMult(2018) O(nede + nrdr + ntokendt)
DE-SimplE(2020) O(nede + nrdr)
TIMEPLEX(2020) O(2nede + 6nrdr + 2ntdt)
TNTComplEx(2020) O(2nede + 2nrdr + 2ntdt)
TeRo(2020) O(nede + nrdr + ntdt)
TeMP(2020) O(nede + nrdr)
ChronoR(2021) O(2nede + 2nrdr + 2ntdt)
TaCE(ours) O(2nede + 2nrdr + ntdt)
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