
Greedy Output Approximation: Towards Efficient
Structured Pruning for LLMs Without Retraining

Jianwei Li1, Yijun Dong2, Qi Lei2
1North Carolina State University, 2New York University
jli265@ncsu.edu, yd1319@nyu.edu, ql518@nyu.edu

To remove redundant components of large language models (LLMs) without incur-
ring significant pruning costs, this work focuses on single-shot structured pruning
without a retraining phase. We simplify the pruning process for Transformer-based
LLMs by identifying a depth-2 pruning structure that functions independently.
Additionally, we propose two inference-aware pruning criteria derived from the
optimization perspective of output approximation, which outperforms traditional
training-aware metrics such as gradient and Hessian. We also introduce a two-step
reconstruction technique to mitigate pruning errors without model retraining. Ex-
perimental results demonstrate that our strategy significantly reduces pruning costs
and hardware requirements while maintaining superior performance across various
datasets and models.

1. Introduction
With the development of LLMs displaying emergent capabilities like sophisticated reasoning, the
focus of the community has shifted to models with billions of parameters, for example, GPT-4 and
Llama2 [1, 2]. This transition introduces unprecedented computational costs both in the training
and the inference phases [3–6]. To address this challenge, pruning plays a constructive role by re-
moving redundant components from models, thereby reducing computational costs [7–10]. Notably,
designing an optimal pruning strategy is an NP-hard problem (as it reduces to subset selection) and
requires balancing accuracy, sparsity, generalizability, pruning costs, and hardware compatibility
in practice [11–13]. Traditional pruning methods primarily focus on accuracy and sparsity, often
neglecting other key factors. They typically involve model retraining and knowledge distillation to
mitigate pruning errors. However, with current LLMs featuring billions of parameters, the training
process is already a significant challenge, making the additional cost of model retraining even more
unaffordable [14, 15].

Recently, some works have focused on efficient structured pruning on pre-trained LLMs, directly
addressing hardware compatibility and generalizability. This approach allows them to concentrate
on the remaining trade-off factors: sparsity, accuracy, and pruning cost. For instance, Kim et al.
[16], Xia et al. [17] and Ma et al. [18] adopt single-shot pruning methods, which only require one
round of retraining. In contrast, other works such as An et al. [19] and Khaki and Plataniotis [20] aim
to eliminate the need for retraining completely. However, these linear approaches have respective
limitations, such as high computational costs due to the use of higher-order information [12, 21, 22],
a lack of fully structured pruning patterns [23–26], or compromised performance in some cases.
The development of these methods highlights a critical gap in LLM pruning, namely the struggle to
optimize all five factors simultaneously.

With the existing challenges, we delve into this ideal strategy by answering the following questions:

Question 1. Does an uniform pruning structure exist in Transformer-based language models?

We discovered depth-2 pruning modules within Transformer architecture by uniformly treating
attention and feed-forward modules. These structures preserve feature knowledge while reducing
pruning complexity from residual connections.

Question 2. Is there effective pruning criterion that does not require training awareness?

Second Conference on Parsimony and Learning (CPAL 2025).



A B C

Figure 1: Pruning metric analysis from the optimization perspective A: Function Approximation; B:
Output Approximation; C: Objective Approximation.

We identified two efficient, high-performing inference-aware pruning metrics based on output
approximation for Transformer models, which are comparable to or even outperform training-aware
metrics.

Answering the above questions altogether, this paper proposes an efficient, structured pruning
strategy with a focus on Transformer-based LLMs [27]. Specifically, we categorize the existing
pruningmetrics into three groups based on their implicit purpose: function (weights) approximation,
output approximation, and objective approximation (Fig. 1 describes the differences). Following
the output approximation route, we introduce a similarity-based pruning strategy that exploits the
redundancy in multi-head attention mechanisms by removing heads that extract similar information
first rather than those with minimal impact. Additionally, we propose a second-moment-based
pruning approach also under the output approximation category, which stands out for its ability to
integrate information acrossmultiple layers. We apply thismetric for depth-2modules (both attention
and feed-forward modules) to remove redundant components. Finally, we develop an optimization
technique that eliminates the need for higher-order information by greedily reducing pruning error
throughweight reconstruction of the subsequent densemodule. Our structured pruning experiments
on pre-trained LLMs ranging from millions to billions of parameters demonstrate that our method
ensures generalizability, hardware compatibility, andminimal pruning cost. Moreover, it outperforms
or achieves comparative performance to other non-retraining methods and even some methods that
require retraining.

2. Preliminary

Unstructured Pruning, Semi-Structured Pruning, and Fully Structured Pruning: Unstructured
pruning reduces model size by removing individual, non-essential weights, lowering storage and
computational costs without significantly affecting performance [14, 28]. Semi-structured pruning
introduces a specific sparsity pattern, whereN weights are pruned from every block ofM , balancing
flexibility with hardware efficiency. This approach imposes more structure than unstructured
pruning while retaining fine-grained control [29]. Fully structured pruning, the focus of our paper,
adopts a more rigid strategy by removing entire units—such as channels, neurons, or layers—making
it particularly compatible with standard hardware. In contrast, unstructured and semi-structured
pruning often require specialized accelerators for efficient deployment [30, 31].

Input or Output Channel Pruning: To clarify fully structured pruning, it is better to understand
that pruning neurons can be approached in two directions: input channels and output channels.
Consider a linear function f(X) = XW , where X ∈ R1×din is the input and W ∈ Rdin×dout is the
weight matrix. When we prune neurons, we typically refer to pruning the output channels of W
since the number of neurons generally corresponds to the number of output channels in each layer.
After pruning, the weight matrix becomes Ŵ ∈ Rdin×d′

out , where d′out < dout. Alternatively, pruning
the input channels of W equates to pruning the input X , also known as feature selection. This
paper focuses on a static approach to feature selection, where the same channels are removed for
all samples, making feature selection equivalent to output channel pruning in the previous layer.
An interesting phenomenon arises: in depth-2 sequential linear layers, pruning the input channels
of the second layer simultaneously pruning the output channels of the first layer, using identical
pruning indices. In contrast, pruning the output channels of the second layer does not affect the first

2



Depth-2 Module

Depth-2 Module

Inner Channel Pruning

Intra Channel Pruning
FFD

Attention

+

+

FFD

+

+

Attention

+

Attention Depth-2 Module

Level-1 Layers

Level-2 Layers

FFD Depth-2 Module

Level-1 Layers

Level-2 Layers

A

B

Figure 2: Pruning structure recognition.A: Two pruning strategies for the depth-2module.B: Depth-2
modules identification in Transformer-based LLMs.

layer at all. Both of them contribute to model compression but have different potential impacts on
the model performance.

Data-free/dependent and Training/Inference-aware Pruning Metrics: When choosing the redun-
dant components for removing, the selection is typically guided by specific metrics [29]. These
metrics can be broadly divided into data-free and data-dependent categories, depending on whether
they rely on specific datasets. Additionally, they can be categorized as training-aware or inference-
aware based on whether they require model backpropagation. This paper focuses on inference-aware
metrics and explores both data-free and data-dependent versions.

3. Methodology
This section outlines our structured pruning scheme, which consists of three key components:
pruning structure recognition, pruning criteria definition, and post-pruning recovery strategy.

3.1. Pruning Structure Recognition
Our approach involves single-shot pruning and targets structured components, such as entire rows
or columns of weight matrices. We do not discuss layer or block pruning, as it disrupts inherent
model correlations and requires retraining to restore layer dependencies.

3.1.1. Pruning Patterns in Transformer

Depth-2 Module Identification: In Transformer-based LLMs, both the attention and feed-forward
modules operate as sequential depth-2 structures. In the attention module, the first level consists of
theweightmatricesWQ,WK , andWV (query, key, and value), which run in parallel, while the second
level includes the output weight matrixWO. The feed-forward module follows a similar two-level
structure. A key characteristic of these depth-2 modules is that when pruning input channels at the
second level, the corresponding output channel indices from the first level must also be pruned to
maintain structural integrity.

Pruning Strategies for Depth-2 Modules: For a depth-2 module, a given compression ratio can
be achieved via two pruning strategies. The first strategy involves pruning the output channels
of the layers in the first level while concurrently pruning the input channels of the layers in the
second level. This approach ensures that the dependencies outside the module remain invariant. The
second strategy involves pruning the output channels and the initial input X to the entire depth-2
module. In the context of the LLMs, which consist of multiple such modules in sequence, pruning
the initial input X is effectively equivalent to pruning the output channels of a preceding module in
the sequence. As this dependency propagates backward through the layers, it ultimately affects the
model’s embedding layer, meaning we are directly pruning the channels of the token embeddings.

3



Challenge ofResidual Connection: Without considering the loss of tokens’ semantic information, the
two pruning strategies described above should not differ significantly. However, residual connections
impose substantial constraints on the second strategy. In the Transformer architecture, every depth-2
module connects a residual connection. This means that the pruned channels must be strictly aligned
across all modules. If the pruned indices of one of them do not align with others, it could lead to an
unpredictable loss of information. This constraint severely limits the choice of channels for pruning
and could significantly decrease performance. In contrast, the first strategy maintains a fixed number
of output channels across these modules, avoiding this limitation. Each module can independently
select which internal channels to prune based on its needs, resulting in a larger search space for
optimization. Fig. 2 describes their differences, and this paper will adopt the inner channel pruning.

Additional Structure for Attention Mechanism: The intricate topology of the attention block intro-
duces an additional constraint: pruning must be conducted at the level of entire heads, encompassing
continuous portions of the channels. Fortunately, given the design philosophy of multi-head atten-
tion—that each head is designed to capture correlations between tokens independently—this setup
easily leads to redundancy, making it highly amenable to similarity analysis.

3.2. Pruning Criteria Selection
This section begins by categorizing pruning criteria based on their implicit purposes. Then, we
introduce two specific pruning metrics for the aforementioned depth-2 modules and employ a
magnitude-based pruning method to remove the least important channels.

3.2.1. Implicit Purpose of Pruning Metric

B

A

Figure 3: Similarity visualization of at-
tention heads in A: block 4 and B: block
5 for Llama-7B. Heads with divergence
less than τ = 0.20 are connected.

Previous work has categorized pruning metrics based on
their relationship with data, as discussed in Section 5. Di-
verging from these approaches, we analyze these metrics
based on their implicit purposes and describe them in
Fig. 1. Specifically, for a linear operation f(X) = XW ,
our goal is to prune W while preserving the accuracy
f(X) ≈ Y . To minimize pruning error, we can approxi-
mateW , f(X), and (f(X), Y ). We term these strategies as
function approximation, output approximation, and objec-
tive approximation, respectively. Function approximation
focuses on directly approximating W , which is equivalent
to approximating the function itself. Typical metrics in
this category include the L1 and L2 norms of weights or
neurons. Output approximation seeks to approximate the
result of XW . Known metrics in this category include
contribution energy, the sensitivity of f(X) to deviations
in X , and the variance or similarity score of f(X). Objec-
tive approximation aims to directly approximate accuracy.
This category encompasses metrics such as first-order or
second-order information and regularization scores. How-
ever, this type of metric is computationally expensive as
the optimization process involves backward propagation
and calculation of the Hessian Matrix. By analyzing these
strategies, this paper proposes two new metrics to guide
the pruning of LLMs.

3.2.2. Similarity-based Metric for Attention

Previous research on pruning attention heads typically involves removing heads with the lowest
importance scores. Surprisingly, our experiments indicate that random pruning also yields competi-
tive results compared to magnitude-based pruning, especially when the pruning ratio is below 50%.

4



Further experimentation with different random seeds, leading to various head indices for pruning,
consistently produces comparable results. Notably, nearly all heads have been selected for removal at
some point during this process, suggesting a potential oversight in our initial understanding. Recall
that different attention heads are intended to capture correlations between tokens independently.
Thus, it’s common for similar information to be extracted across different heads. This observation
prompted us to reconsider our strategy: we prioritize removing similar heads before eliminating
those with the least importance score. By identifying and pruning heads that capture redundant
information, we can compress the model effectively while preserving performance.

Algorithm 1 Post-Pruning Recovery.
1: Input: Depth-2 modulemi withW1 andW2;

Input X
2: Input: Original dense outputs Y1, Y2 for X
3: Input: Preceding pruned modulesm1..mi−1

4: Output: Reconstructed weight W̄1 and W̄2

5: procedure Weights Reconstruction
6: X̂1 ← (mi−1(mi−2..(m1X)))

7: W̄1 ← (X̂1X̂
⊤
1 )−1X̂⊤

1 Y1

8: Ŷ1 ← W̄1X̂1

9: X̂2 ← Ŷ1

10: W̄2 ← (X̂2X̂
⊤
2 )−1X̂⊤

2 Y2

11: end procedure

Previous studies have conducted similarity anal-
ysis between neurons [32–34], examining the
output differences across multiple samples to
identify similar components. The redundant
neurons are then removed, and the remaining
neurons scale their weights or biases to mini-
mize the impact of this removal. However, these
methods are primarily effective in smaller neu-
ral networks, as the scaling technique struggles
to handle the accumulated error across numer-
ous layers. Fortunately, due to the parallelism
and independence of attention heads, remov-
ing redundant heads does not lead to significant
information loss that affects subsequent layers,
thus eliminating the need for costly remedial op-
erations. Based on this observation, we define a

pairwise head divergence matrix D ∈ Rh×h for each attention module, where h refers to the number
of heads. Specifically, given an attention score matrix Attn ∈ RN×h×s×s, where N represents the
number of samples and s is the sequence length, let Pi ∈ RN×s×s and Qj ∈ RN×s×s denote the
attention scores of heads hi and hj , respectively. Then D(Pi ∥ Qj) is calculated as:

Dij(Pi ∥ Qj) =
1

N × s

N×s∑
n=1

DJS(P
(n)
i ∥ Q(n)

j ) (1)

as the empirical distance between heads hi and hj across the dataset, where DJS denotes the Jensen-
Shannon Divergence. and Dij represents the empirical distance between heads hi and hj across the
dataset. By visualizing the attention heads as graph nodes and connecting nodes with a divergence
less than a predefined threshold τ via an edge, we can clearly illustrate the relationships between
these heads. Fig. 3 demonstrates that some heads fall into the same group, signaling information
redundancy, whereas others stand alone, highlighting the uniqueness of their information. We also
observe that specific layers form large groups, indicating higher redundancy. The details of our
pruning strategy for the attention module are outlined in Algo 2.

3.2.3. Second-moment-based Metric

To prune the identified depth-2 module, we follow the structure mentioned in Section 3.1, namely
pruning output channels in the first level and input channels in the second level. Since the pruned
channel indexes from these two directions must match, we have to consider them together. This
paper proposes a second-moment-based pruning metric that is simple to calculate and incorporates
information from multiple layers.

For demonstration purposes, we consider a simple linear feed-forward module f(x) = BAxwith
weight matrices A,B and Gaussian input x ∼ N (0,Σ). Let Aj be the j-th output channel (row) of A
such thatA⊤

j x ∼ N (0, A⊤
j ΣAj); and letBj be the j-th column ofB andBij be the (i, j)-th entry such

that Yij := BijA
⊤
j x measures the influence of a single weight Bij on the output with Yi =

∑
j Yij in

the i-th entry. The second moment of Yij is given by
E[Y 2

ij ] = E[B2
ij(A

⊤
j x)

2] = B2
ijE[(A⊤

j x)(x
⊤Aj)] = B2

ij(A
⊤
j E[xx⊤]Aj) = B2

ij(A
⊤
j ΣAj). (2)

5



Table 1: The zero-shot performance of the compressed LLaMA-7B (20% sparsity respective to the
global). Following the LLM-Pruner methodology [18], we only prune the transformer blocks from
the 4th to the 30th. The average performance is calculated across seven classification datasets.
Bold indicates the best pruning-only performance, while underline represents the overall-best
performance.
Pruning Methods WikiText2 ↓ PTB ↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Ave ↑
Dense 12.62 22.14 73.18 78.35 72.99 67.01 67.45 41.38 42.4 63.5
Data Free Pruning
Random 23.02 40.19 46.21 71.33 59.35 56.51 47.97 32.0 36.30 49.95
L1 norm 179.02 311.75 51.28 60.22 43.14 52.01 36.53 27.89 30.8 43.12
L2 norm 582.41 1022.17 60.18 58.54 37.04 53.27 32.91 27.56 29.8 42.76
Ours (Self-Gen) 21.76 34.3 63.51 72.63 56.54 54.46 51.68 33.79 36.4 52.72
Data Dependent Pruning

Training-Aware Pruning Criterion
LLM-Pruner Vec 22.28 41.78 61.44 71.71 57.27 54.22 55.77 33.96 38.4 53.52
LLM-Pruner E1 19.09 34.21 57.06 75.68 66.8 59.83 60.94 36.52 40.0 56.69
LLM-Pruner E2 19.77 36.66 59.39 75.57 65.34 61.33 59.18 37.12 39.8 56.82

Inference-Aware Pruning Criterion
Wanda-sp 27.45 49.52 64.16 75.21 68.62 62.27 59.68 36.68 39.2 57.97
Ours (Calibration) 17.48 30.04 66.48 75.78 67.73 62.27 61.4 35.49 39.6 58.39
Ours C w/ remedy 17.90 31.23 70.12 76.86 68.55 65.76 64.23 38.54 40.5 60.65

Training-Aware Pruning Criterion and Model Retraining
LLM-Pruner LoRA 17.37 30.39 69.54 76.44 68.11 65.11 63.43 37.88 40.0 60.07

To obtain an importance score for the j-th inner channel Bj based on the second moment, we take
the sum over all output channels in B:

Mj :=
∑
i

E[Y 2
ij ] = ∥Bi∥22(A⊤

j ΣAj) (3)

For a depth-2 module f(x) = Bσ(Ax)with a more practical ReLU activation σ, we scale the above
equation with a constant factor of 1

2 to accommodate for the reduction in variance when A⊤
j x < 0.

Further extending the above notion of second-moment-based importance score to GeLU or SiLU
activations, we empirically observe that the additional nonlinearity in σ has negligible influence on
Yij and therefore treat these nonlinear activations the same as ReLU, i.e.

Mj :=
1

2
∥Bi∥22(A⊤

j ΣAj). (4)

This approach offers more valuable information from the covariance matrix compared to methods
based on output energy (first moment) [35–37]. Unlike some statistical methods that require
calibration datasets to collect feature values and then calculate statistical properties, our method
can flexibly integrate information from both input and output channels, whereas those methods are
limited to focusing only on output channels. When there is no prior information on Σ, we assume
isotropic Gaussian data with Σ being the identity. More details about calculatingMi can be found
in the Appendix 6.

3.3. Recovery Without Retraining
With the selection of the pruning structure and criteria, this paper proposes a module-wise pruning
approach. Similar to layer-wise pruning, we prune these depth-2 modules sequentially. Notably,
due to errors introduced by pruning preceding modules, the input to the current module inevitably
deviates from its dense version. Consequently, even without pruning the current module, a discrep-
ancy between its output and the original output is unavoidable. Recall that our design philosophy
is to approximate the output as closely as possible. Thus, it is crucial to reconstruct the weights of
the current module before pruning. This paper presents a reconstruction technique in Algo. 1, 3, 4
that can mitigate the accumulated errors without requiring model retraining. This reconstruction
process ensures that the output of each module can still align as closely as possible with the original,
even with the new input. This way, the pruning criteria for each channel can be optimally up-to-date.

6



Unlike Li et al. [12], which primarily focuses on reconstructing a single layer, our approach targets
more complex structures, including intricate layer dependencies.

Table 2: Perplexity of compressed GPT-2 and LLaMA-7B (25% and 50% sparsity respective to pruned
blocks) on Wikitext2 and PTB. We prune the 4th to 30th transformer blocks for LLaMA-7B and all
blocks for GPT-2. Bold indicates the best performance, while underline represents the second-best
performance.

Models GPT-2: [0-12) LLama-7b: [4-30)
Datasets: PPL WikiText2: 29.95↓ PTB: 40.12↓ WikiText2: 12.62↓ PTB: 22.14↓
Sparsity 25% 50% 25% 50% 25% 50% 25% 50%
Data Free Pruning
Random 189.73 1839.33 245.33 2769.6 23.02 100.42 40.19 133.56
L1 norm 338.3 1226.13 583.2 1290.45 179.02 891.23 311.75 1034.69
L2 norm 227.32 674.52 324.33 800.14 582.41 14000.68 1022.17 28062.45
Ours (Self-Gen) 119.29 586.87 152.93 723.39 21.76 58.61 34.3 64.24
Data Dependent Pruning

Training-Aware Pruning Criterion
LLM-Pruner Element1 9229.32 32453.23 11993.24 8020.87 19.09 48.84 34.21 105.24
LLM-Pruner Element2 1897.32 14706.23 2258.33 18598.33 19.77 72.89 36.66 138.33
LLM-Pruner Vector 488.32 39025.12 6169.56 18616.87 22.88 55.68 41.76 305.24

Inference-Aware Pruning Criterion
Wanda-Structured Pruning 586.34 4147.32 355.17 3246.79 27.45 69.02 49.52 132.52
FLAP UL-UM w/o remedy 818.14 3636.23 554.32 2758.37 17.15 36.08 34.96 85.22
FLAP UL-UM w/ remedy 2197.32 3043.35 2199.24 3561.76 15.76 26.87 32.1 66.18
Ours (Calibration) UL-UM 81.96 317.37 186.68 936.57 NA NA NA NA
FLAP AL-AM w/o remedy 126.57 5538.32 135.07 10244.95 17.01 34.09 30.99 71.76
FLAP AL-AM w/ remedy 1349.25 5382.14 1769.56 7476.08 15.06 26.55 29.45 57.89
Ours (Calibration) ML-MM 79.4 251.34 130.54 756.33 17.48 26.87 30.04 57.89

4. Experiment
This section initially presents the fundamental setup for our experiments. Subsequently, we demon-
strate and analyze the results from multiple perspectives.

Baselines: This paper compares state-of-the-art pruning methods across multiple dimensions,
aiming for fair evaluations and in-depth analyses to uncover the reasons behind the observed
results. First, we compare our approach with data-free pruning methods, including random pruning
and magnitude-based pruning (L1 and L2 norms) [29]. Next, we evaluate our methods against
data-dependent pruning techniques, encompassing training-aware, inference-aware, and retraining-
required methods. In the training-aware category, we compare with various configurations of
LLM-Pruner [18], such as Element1, Element2, and Vector-wisemagnitude pruning. Within the
inference-aware category, we compare with the structured version of Wanda [24] and FLAP [19].
Additionally, we extend our comparisons to include the LLM-Pruner method augmented with
one-round LoRA retraining Hu et al. [38]. Such comprehensive evaluations will demonstrate the
effectiveness of our pruning approach.

Models: Our primary experiments are categorized into two series based on the model scale: LLaMA-
7Bwith 7 billion parameters andGPT-2with 110 million parameters [3, 39]. This aligns with our
study’s goal to assess pruning performance across different model sizes and ensure a thorough
examination. Additionally, we extend our experiments to other models, including Vicuna-7B [40],
Llama2-7B [2], and Llama3.1-8B [41]. This comprehensive selection allows us to explore a broader
spectrum of capabilities and sizes, enhancing our understanding of how different architectures
perform under various computational constraints. Additional experiment results can be found in
Appendix 6.

Evaluation and Datasets: To evaluate performance, we adopt LLaMa’s approach by conducting
zero-shot task classification on a range of common sense reasoning datasets: BoolQ [42], PIQA [43],

7



HellaSwag [44], WinoGrande [45], ARC-easy [46], ARC-challenge [46], and OpenbookQA [47].
Following the methodology in [48], the model either ranks the options in multiple-choice tasks
or generates answers in open-ended formats. Additionally, we follow Ma et al. [18] to conduct a
zero-shot perplexity (PPL) analysis on WikiText2 [49] and the Penn Treebank (PTB) [50] with a
specific sequence length 128.

Implementation: During the pruning phase, we randomly select 16 samples from Wikitext2 or
Bookcorpus [51], truncated to a sequence length of 128 for LLaMA-7B and 1024 for GPT-2. These
samples serve as calibration data for pruning metric calculation and covariance matrix extraction, re-
spectively. During the recovery phase, we sample an additional 1024 examples from the downstream
dataset to guide optimization in the data-dependent comparison experiments.

4.1. Results and Analysis
Table 3: Similarity-based analysis for
LLaMA-7B attention heads pruning (all
blocks) with different τ . ’Bold’ indicates
the best performance.

Methods # pruned heads Wiki2 ↓ PTB ↓
Dense 0 12.62 22.14
Ours (τ = 0.16) 88 12.96 22.45
Random 64 14.50 24.13
L2 Norm 64 14.69 25.64
1st+2nd order 64 13.45 24.19
FLAP 88 12.90 22.67
Ours (τ = 0.19) 204 14.69 24.32
Random 192 18.75 35.73
L2 Norm 192 195.84 371.65
1st+2nd order 192 14.81 28.77
FLAP 204 13.22 24.42

We present the main results in Tab. 1. For the data-free
comparison experiments, we leverage the inherent ability
of LLMs to generate sentences. Our pruningmethod uses
these generated sentences as calibration data because,
given that the LLMs are well-trained, these sentences nat-
urally conform to the semantic and syntactic token dis-
tributions of the training data. Compared to traditional
data-free metrics (L1 or L2), our data-free version, which
relies solely on the model itself, achieves significant im-
provements in perplexity and up to a 20% enhancement
in zero-shot evaluation for downstream tasks. Moreover,
our method surpasses random pruning by at least 6%,
a significant improvement achieved without relying on
existing datasets, while traditional metrics (L1 or L2) fail
to outperform. These results demonstrate the superiority of our techniques in data-free pruning
methods.

Our approach outperforms data-dependent pruning methods and the inference-only methodWanda-
SP. Impressively, it also surpasses the state-of-the-art training-aware pruning method LLM-Pruner,
which includes different configurations such as Element1, Element2, and Vector. Our approach
consistently demonstrates better pruning results without requiring computationally intensive first-
order and second-order information. Moreover, our method even achieves better results compared
to LLM-Pruner with LoRA, despite the latter involving model retraining.

We also compare our method with the state-of-the-art inference-only method FLAP and present the
results in Tab. 2. Our approach exhibits significantly better results on the GPT-2 model and achieves
comparable performance with LLaMA-7B. Overall, our method demonstrates superior performance
in both data-free and data-dependent pruning categories.

4.2. Ablation Study
We also explore our pruningmetrics by exclusively pruning attention heads. The experimental results
in Tab. 3 demonstrate that for colossal LLMs like LLaMA-7B, our similarity analysis effectively iden-
tifies redundant attention heads with minimal negative impact on model performance. Compared to
inference-aware metrics such as the L2 norm, training-aware metrics using first- and second-order
information, and random pruning, our similarity-based metric consistently outperforms. When
compared to the specifically designed metric of FLAP, we achieve better or comparable performance.
These results strongly indicate that we should prioritize pruning redundant information rather than
heads with small importance scores.

Additionally, we designed experiments to explore the influence of the number of calibration samples.
Figure 4 shows that in LLaMA-7B pruning-only experiments, our method is insensitive to the number
of calibration samples, achieving comparable results with as few as 8 samples and as many as 128

8



samples. Conversely, in GPT-2 pruning with remediation experiments, performance improves
with an increasing number of calibration samples. These findings demonstrate that our pruning
method is robust regardless of the number of calibration samples, while our pre-pruning recovery
method benefits from a higher number of calibration samples. However, this improvement gradually
diminishes once the number of samples reaches a threshold.

5. Related Work

A

B

Figure 4: Performance of compressed
A: LLaMA-7B (w/o Remediation) and
B: GPT-2 (w/ Remediation) concerning
the number of calibration samples.

Efficient and Low-Resource Pruning: With the growing
parameter size in LLMs, efficient pruning has become
essential. Methods like LLM-Pruner, Sheared LLaMA,
and Shortened LLaMA use single-shot pruning but re-
quire retraining and rely on costly metrics [16–18]. In
contrast, approaches like OPTIN and SlicedGPT elimi-
nate retraining but still depend on computationally expen-
sive second-order Hessian information [20–22, 24]. Mean-
while, FLAP and Wanda design specific pruning metrics
inspired by pre-deep learning eramethods [32–34, 52], sig-
nificantly reducing computational demand [19, 26]. This
paper presents a method that avoids both retraining and
costly metrics while delivering superior or comparable
performance to others. In parallel with this paper, [53, 54]
also focus on static structured pruning without requiring
model retraining, [55] find a way to break the residual
dependency issue of intra-channel pruning.

6. Discussion and Conclusion
Implicit Motivation and Call: In the pre-deep learning
era, various pruningmetrics and structures were designed.

For example, variance-based pruning and bias-based remedy methods similar to FLAP were pro-
posed by researchers 30 years ago [32–34, 52]. These early researchers already recognized that feature
information is at least as crucial as model weights in constructing pruning criteria. In the early stages
of deep learning (before 2022), many researchers found that multi-round model retraining could eas-
ily recover the lost performance induced by pruning, even when based solely on weight magnitudes.
As a result, the importance of pruning metrics and structure design was often overlooked, with
reliance placed on retraining to validate methods. However, this paradigm shifted after 2022, when
colossal LLMs became mainstream in the community. Training such models is prohibitively expen-
sive, making pruning that relies on multi-round retraining impractical. Although parameter-efficient
training methods like LoRA can reduce costs, they still require rigorous data selection [18, 38]. Thus,
we urge the community to return to designing metrics that better account for the influence of both
weights and features, rather than focusing solely on dataset competition. Motivated by this, this
paper focuses on inference-aware pruning metrics that do not require retraining.

Limitation: This work evaluates the compressed LLMs primarily on perplexity and downstream
tasks. However, we do not assess the emergent abilities of colossal LLMs, such as mathematical
reasoning, safety alignment, common sense reasoning, contextual understanding, and creativity in
text generation. Future research will focus on evaluating and enhancing these emergent abilities to
provide a more comprehensive understanding of the compressed LLMs.

Conclusion: This paper introduces a novel approach to pruning LLMs by identifying a depth-2
pruning structure and developing two inference-aware pruning criteria. These strategies surpass
traditional metrics and eliminate the need for computationally expensive retraining. Our two-step
reconstruction technique further mitigates the pruning error, ensuring superior performance across

9



various datasets. Overall, our approach reduces pruning costs and hardware requirements, offering
an efficient solution for LLM pruning.

Acknowledgement
The authors wish to thank the anonymous reviewers for their helpful comments. The au-
thors also would like to extend their sincere gratitude to the ARC (A Root Cluster for Re-
search into Scalable Computer Systems) at the Computer Science Department of North Car-
olina State University. The invaluable computing resources provided by the ARC cluster
(https://arcb.csc.ncsu.edu/ mueller/cluster/arc/) were instrumental in facilitating the research
presented in this paper.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[3] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[4] Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow,
Roman Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. Bloom: A
176b-parameter open-access multilingual language model. arXiv preprint, 2023.

[5] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

[6] Tris Warkentin Jeanine Banks and Tris Warkentin. Gemma: Introducing new state-of-the-art
open models, 2024.

[7] Mitchell Gordon, Kevin Duh, and Nicholas Andrews. Compressing BERT: Studying the effects
of weight pruning on transfer learning. In Proceedings of the 5th Workshop on Representation
Learning for NLP, pages 143–155, Online, July 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.repl4nlp-1.18. URL https://aclanthology.org/2020.repl4nlp-1.
18.

[8] Sai Prasanna, Anna Rogers, and Anna Rumshisky. When BERT Plays the Lottery, All Tickets
Are Winning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 3208–3229, Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.emnlp-main.259. URL https://aclanthology.org/2020.
emnlp-main.259.

[9] ZihengWang, JeremyWohlwend, and Tao Lei. Structured pruning of large language models. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 6151–6162, Online, November 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.emnlp-main.496. URL https://aclanthology.org/2020.emnlp-main.496.

[10] Jianwei Li, Weizhi Gao, Qi Lei, and Dongkuan Xu. Breaking through deterministic barriers:
Randomized pruning mask generation and selection. arXiv preprint arXiv:2310.13183, 2023.

10

https://arcb.csc.ncsu.edu/~mueller/cluster/arc/
https://aclanthology.org/2020.repl4nlp-1.18
https://aclanthology.org/2020.repl4nlp-1.18
https://aclanthology.org/2020.emnlp-main.259
https://aclanthology.org/2020.emnlp-main.259
https://aclanthology.org/2020.emnlp-main.496


[11] Canwen Xu, Wangchunshu Zhou, Tao Ge, Ke Xu, Julian McAuley, and Furu Wei. Beyond
preserved accuracy: Evaluating loyalty and robustness of BERT compression. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 10653–10659,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics. doi: 10.18653/v1/2021.emnlp-main.832. URL https://aclanthology.org/2021.
emnlp-main.832.

[12] Jianwei Li, Qi Lei, Wei Cheng, and Dongkuan Xu. Towards robust pruning: An adaptive
knowledge-retention pruning strategy for language models. arXiv preprint arXiv:2310.13191,
2023.

[13] Mengnan Du, Subhabrata Mukherjee, Yu Cheng, Milad Shokouhi, Xia Hu, and Ahmed Hassan
Awadallah. Robustness challenges in model distillation and pruning for natural language
understanding. In Proceedings of the 17th Conference of the European Chapter of the Association
for Computational Linguistics, pages 1766–1778, Dubrovnik, Croatia, May 2023. Association for
Computational Linguistics. URL https://aclanthology.org/2023.eacl-main.129.

[14] Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-
training quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–
4488, 2022.

[15] Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned
in one-shot. In International Conference on Machine Learning, pages 10323–10337. PMLR, 2023.

[16] Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault Castells, Shinkook Choi, Junho Shin,
and Hyoung-Kyu Song. Shortened llama: A simple depth pruning for large language models.
arXiv preprint arXiv:2402.02834, 2024.

[17] Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi Chen. Sheared llama: Accelerating
language model pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

[18] Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

[19] Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive
structured pruning for large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 10865–10873, 2024.

[20] Samir Khaki and Konstantinos N Plataniotis. The need for speed: Pruning transformers with
one recipe. arXiv preprint arXiv:2403.17921, 2024.

[21] Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and
James Hensman. Slicegpt: Compress large language models by deleting rows and columns.
arXiv preprint arXiv:2401.15024, 2024.

[22] Eldar Kurtić, Elias Frantar, and Dan Alistarh. Ziplm: Inference-aware structured pruning of
language models. Advances in Neural Information Processing Systems, 36, 2024.

[23] Jeff Pool, Abhishek Sawarkar, and Jay Rodge. Accelerating inference with sparsity us-
ing the nvidia ampere architecture and nvidia tensorrt. NVIDIA Developer Technical Blog,
https://developer. nvidia. com/blog/accelerating-inference-with-sparsityusing-ampere-and-tensorrt,
2021.

[24] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

[25] Yingtao Zhang, Haoli Bai, Haokun Lin, Jialin Zhao, Lu Hou, and Carlo Vittorio Cannistraci.
Plug-and-play: An efficient post-training pruning method for large language models. In The
Twelfth International Conference on Learning Representations, 2024.

11

https://aclanthology.org/2021.emnlp-main.832
https://aclanthology.org/2021.emnlp-main.832
https://aclanthology.org/2023.eacl-main.129


[26] Tycho FA van der Ouderaa, Markus Nagel, Mart Van Baalen, Yuki M Asano, and Tijmen
Blankevoort. The llm surgeon. arXiv preprint arXiv:2312.17244, 2023.

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[28] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pages 3259–3269. PMLR, 2020.

[29] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity
in deep learning: Pruning and growth for efficient inference and training in neural networks.
Journal of Machine Learning Research, 22(241):1–124, 2021.

[30] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured pruning of deep convolutional
neural networks. ACM Journal on Emerging Technologies in Computing Systems (JETC), 13(3):
1–18, 2017.

[31] Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and XinchaoWang. Depgraph: Towards
any structural pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 16091–16101, 2023.

[32] Andries P Engelbrecht and Ian Cloete. A sensitivity analysis algorithm for pruning feedfor-
ward neural networks. In Proceedings of International Conference on Neural Networks (ICNN’96),
volume 2, pages 1274–1278. IEEE, 1996.

[33] Sietsma and Dow. Neural net pruning-why and how. In IEEE 1988 international conference on
neural networks, pages 325–333. IEEE, 1988.

[34] Andries P Engelbrecht, L Fletcher, and Ian Cloete. Variance analysis of sensitivity information
for pruning multilayer feedforward neural networks. In IJCNN’99. International Joint Conference
on Neural Networks. Proceedings (Cat. No. 99CH36339), volume 3, pages 1829–1833. IEEE, 1999.

[35] Masafumi Hagiwara. Removal of hidden units and weights for back propagation networks.
In Proceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan),
volume 1, pages 351–354. IEEE, 1993.

[36] Masafumi Hagiwara. A simple and effective method for removal of hidden units and weights.
Neurocomputing, 6(2):207–218, 1994.

[37] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven
neuron pruning approach towards efficient deep architectures. arXiv preprint arXiv:1607.03250,
2016.

[38] Edward JHu, Yelong Shen, PhillipWallis, ZeyuanAllen-Zhu, Yuanzhi Li, SheanWang, LuWang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

[39] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[40] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

[41] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

12



[42] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and
Kristina Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions.
arXiv preprint arXiv:1905.10044, 2019.

[43] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 7432–7439, 2020.

[44] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

[45] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

[46] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick,
and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning
challenge. arXiv preprint arXiv:1803.05457, 2018.

[47] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

[48] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, page 8, 2021.

[49] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

[50] Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

[51] Yukun Zhu. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. arXiv preprint arXiv:1506.06724, 2015.

[52] Georg Thimm and Emile Fiesler. Evaluating pruning methods. In Proceedings of the International
Symposium on Artificial neural networks, pages 20–25, 1995.

[53] Donghyun Lee, Je-Yong Lee, Genghan Zhang, Mo Tiwari, and Azalia Mirhoseini. Cats:
Contextually-aware thresholding for sparsity in large language models. arXiv preprint
arXiv:2404.08763, 2024.

[54] Harry Dong, Beidi Chen, and Yuejie Chi. Prompt-prompted adaptive structured pruning for
efficient llm generation. arXiv preprint arXiv:2404.01365, 2024.

[55] Shangqian Gao, Chi-Heng Lin, Ting Hua, Zheng Tang, Yilin Shen, Hongxia Jin, and Yen-Chang
Hsu. Disp-llm: Dimension-independent structural pruning for large languagemodels. Advances
in Neural Information Processing Systems, 37:72219–72244, 2025.

[56] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/
forum?id=rJl-b3RcF7.

[57] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network
pruning based on connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

13

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7


[58] M. Hagiwara. Removal of hidden units and weights for back propagation networks. In Pro-
ceedings of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), volume 1,
pages 351–354 vol.1, 1993. doi: 10.1109/IJCNN.1993.713929.

[59] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. ArXiv,
abs/1902.09574, 2019.

[60] Georg Thimm and Emile Fiesler. Evaluating pruning methods. In Proceedings of the International
Symposium on Artificial neural networks, pages 20–25, 1995.

[61] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149,
2015.

[62] Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

[63] Xavier Suau Cuadros, Luca Zappella, and Nicholas Apostoloff. Filter distillation for network
compression. In Proceedings of the IEEE/CVFWinter Conference on Applications of Computer Vision,
pages 3140–3149, 2020.

[64] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep
neural network compression. In Proceedings of the IEEE international conference on computer vision,
pages 5058–5066, 2017.

[65] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei Gao,
Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance score
propagation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
9194–9203, 2018.

[66] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median
for deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 4340–4349, 2019.

[67] Mieszko Lis, Maximilian Golub, and Guy Lemieux. Full deep neural network training on a
pruned weight budget. Proceedings of Machine Learning and Systems, 1:252–263, 2019.

[68] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance estima-
tion for neural network pruning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11264–11272, 2019.

[69] Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. Advances in Neural Information Processing Systems, 33:18098–18109, 2020.

[70] Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-
wise optimal brain surgeon. Advances in Neural Information Processing Systems, 30, 2017.

[71] Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

14



Appendix-A: Pruning in LLMs Era
Pruning is a promising method that can effectively reduce model inference costs. In the main part of
this paper, we discuss pruning methods within different classification philosophies. We summarize
previous work and categorize pruning from multiple perspectives: unstructured and semi/fully
structured, data-free and data-dependent, training-aware and inference-aware, and retraining-
free and retraining-dependent. We also propose an innovative optimization-oriented view of
pruning, which involves: A: Function Approximation, B: Output Approximation, and C: Objective
Approximation. Our pruning pattern is designed based on B.

Additionally, we reviewmore about pruning, including the most popular techniques in the pre-LLMs
era (before 2022), such as Iterative Magnitude Pruning and the comparison between Randomized
Pruning and Magnitude-based Pruning. We also discussed the relationship between Pruning and
Quantization. By considering these various dimensions and methodologies, we aim to provide a
comprehensive understanding of pruning and its potential to enhance model efficiency in the age of
LLMs.

Iterative Magnitude Pruning in Pre-LLMs Era

Iterative Magnitude Pruning (IMP) is the most renowned strategy for achieving state-of-the-art
results, surpassing other methods such as Single-shot Network Pruning (SNIP) [14, 28, 56, 57].
This approach divides the pruning process into multiple stages by gradually increasing the sparsity.
At each stage, the goal is to identify and remove redundant parameters or neurons. The most
intuitive approach is to assign an importance score to each element and keep only the top-k elements,
where the score can be based on the absolute value of weights, output sensitivity, gradients, or
other fine-designed metrics [58–64]. Weight magnitude is the most straightforward and data-free
method, while other metrics can be computationally expensive as they require training with data [65–
70]. Moreover, IMP is accompanied by a retraining phase to restore performance, which can be
computationally costly. Therefore, in the era of colossal LLMs, IMP and other methods that heavily
depend on model retraining are no longer effective due to the immense costs involved.

Algorithm 2 Attention Heads Pruning.
1: Input: Pairwise head divergence matrix D ∈ Rh×h

2: Input: divergence threshold τ
3: Output: List of candidate heads for pruning C
4: Initialize C = []
5: for row i and col j in D do
6: if D[i][j] < τ and i ̸= j then
7: if i /∈ C and j /∈ C then
8: C.append(i)
9: end if
10: end if
11: end for
12: Prune C

Randomized Pruning v.s. Magnitude Pruning in LLMs Era

Excluding the influence of model retraining, we discovered an interesting phenomenon for model
pruning. For colossal LLMs such as LLaMA-7B, randomized pruning surprisingly produced com-
petitive results. Specifically, compared to traditional data-free pruning metrics like L1 and L2 norm
values, randomized pruning achieved several times better results, even rivaling data-dependent
pruning methods. However, this advantage only existed when the pruning ratio was less than
2x. As the pruning ratio increased, magnitude pruning gradually yielded better results. Initially,
we attributed this phenomenon to the high redundancy of parameters in LLMs. However, our
experiments with GPT-2 showed that randomized pruning was still weaker than magnitude pruning.

15



Therefore, we speculate that for colossal LLMs like Llama-7B, feature plays a more crucial role
than weights in model pruning compared to smaller LLMs like GPT-2.

Magnitude-based pruning methods aim to remove weights or neurons from a neural network that
appear least influential, primarily determined by the value of their weights. The rationale behind
these methods is to reduce overall model size and computational requirements without a drastic
loss in performance. However, several challenges arise with this approach, and one major challenge
is the lack of variety if the magnitude is based on data-free metrics (L1 or L2). This kind of metric
focuses solely on the magnitude of the weights for pruning decisions, potentially missing smaller
weights that play pivotal roles, especially in edge cases or rarer instances. To illustrate this more
clearly, consider the following example. The output of a neural network can be represented as
y =

∑
(wi · fi), where y is the network output, fi represents a feature, and wi is the corresponding

weight. In magnitude-based pruning (L1 or L2), if |wi| < τ (τ is pruning threshold), then wi · fi is
pruned. However, the impact on y is not solely determined by wi, but by the combined effect of wi

and the sensitivity of fi. For instance, if fi represents the sharpness of an image, even a small weight
|wi| = 0.01 can significantly affect y if fi is highly sensitive, such as affecting object recognition.
Conversely, if fi represents the hue of an image background, a large weight wi = 5 might have
minimal impact on y if fi is less sensitive, such as the background hue not altering recognition much.
The influence on y is thus a joint effect of wi and the sensitivity of fi. This example indicates that the
influence of feature information plays a significant role in identifying redundant elements.

Figure 5: Mean activation value Llama-7B and GPT-2 on Wikitext2.

Based on the above observation, we speculate that LLaMA-7B’s feature information contributes more
to the importance score of removed elements when the pruning ratio is less than 2x. As the pruning
ratio gradually increases, the influence of the features on the activation values is no longer greater
than that of the weights. Therefore, randomized pruning fails at larger pruning ratios. To validate
our hypothesis, we conducted a statistical analysis on the feature values of LLaMA-7B, described
in Figure 5. Our results show that colossal LLMs like Llama-7B have larger activation values than
smaller LLMs like GPT-2. These findings further motivate us to design the pruning metrics that
incorporate both feature and weight information instead of seeking dataset competition.

Pruning v.s. Quantization in LLMs Era:
Pruning, though considered less effective than quantization in the era of colossal LLMs, should
not be underestimated. In practice, pruning and quantization can complement each other, yielding
significant benefits when applied together [14]. Even pruning a small percentage of parameters,
such as 5%, can be valuable if it meets practical performance requirements. Therefore, integrating
pruning into the optimization process is always worthwhile.

Appendix-B: More Details of 2nd-Moment-Based Metric
In Section 3.1.1, we introduced the 2nd-moment-based pruningmetric for a standard depth-2 module.
However, there are different variants of depth-2 modules, including the attention module and the

16



gated feed-forward module. We describe the metric calculation for these variants in the following
section.

Notations: To better demonstrate our method, let us first establish the notations. We focus on the
pruning of Transformer-based large language models, thus we refer to the attention mechanism as
Cathi=1[σ1(XWK

i WQ
i X

⊤)XWV
i ]W

O, with i indicating the attention head index. The symbols WK ,
WQ, WV and WO represent the weights for the key, query, value, and output in the attention block,
respectively. For the general and gated feed-forward module, we denote the logic as WDσ2(W

UX)
and WD(WUX · σ2(W

GX)). Here, WU , WD, and WG stand for the weights for upward projection,
downward projection, and gate projection. σ refers to the activation function for all of them: SoftMax,
ReLU, GeLU, or SiLU function.

Based on the above notations, we can treat the entire output of σ1(XWiKWiQX⊤)X as the input to
WV

i . Let X̂ represent this new input. In this way, the attention module can be viewed as a module
similar to a standard depth-2 module (X̂WV

i )W
O
i , with each level having only one linear layer.

Notely, we need to view an attention module asm standard depth-2 modules (m is the number of
attention heads), as the attention heads operate independently. For the gated feed-forward module
WD(WUX · σ2(W

GX)), we treat it as a product of two standard depth-2 modules. Specifically, we
can divide it into two modules: WD ·WUX andWD(σ2(W

GX)), and calculate the 2nd-moment
metric separately for them. Finally, we use the product of their ownmetric as the 2nd-moment metric
for the entire module. These approaches allow us to effectively prune channels in attention and
gated feedforward modules by leveraging the 2nd-moment-based metric.

Appendix-C: More Details of Post-Pruning Recovery Method
In Section 3.3, we only provide the post-pruning recovery algorithm for the standard depth-2 module,
thus we describe the details of the recovery process for the attention module and gated feed-forward
module in Algo 3 and Algo 4, respectively. All of them include multiple linear layers in the first level
of the depth-2 module.

Algorithm 3 Post-Pruning Recovery for Attention Module.
1: Input: Attention module layers with weightsWK ,WQ,WV ,WO

2: Input: Corresponding inputs X
3: Input: Corresponding outputs YK , YQ, YV , YO

4: Input: Function reconstruct_best_weight and restore_layer_weights
5: Output: Reconstructed weights W̄K , W̄Q, W̄W , W̄O

6: procedureWeights Reconstruction
7: XTX ← Matmul(X.T,X)
8: W̄K ← reconstruct_best_weight(XTX,X, YK)
9: W̄Q ← reconstruct_best_weight(XTX,X, YQ))
10: W̄V ← reconstruct_best_weight(XTX,X, YV ))
11: restore_layer_weights(module.k_proj, W̄k_proj)
12: restore_layer_weights(module.q_proj, W̄q_proj)
13: restore_layer_weights(module.v_proj, W̄v_proj)
14: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
15: X2 ← module(X) # new input for o proj
16: XTX2 ← Matmul(X2.T,X2)
17: W̄O ← reconstruct_best_weight(XTX2, X2, YO)
18: restore_layer_weights(module.o_proj, W̄O)
19: end procedure

Appendix-D: More Implementation Details and Experiment
Results
In this paper, we evaluated our pruning method on LLaMA-7B and GPT-2 models with a sequence
length of 128 tokens for LLaMA-7B and 1024 tokens for GPT-2. This setup was chosen to ensure

17



consistent with other structured pruning baselines, such as LLM-Pruner and FLAP, and to accommo-
date hardware constraints. Given that LLaMA-7B is a large-scale model, evaluating with a shorter
sequence length (128 tokens) allowed us to reduce computational overhead, making the experiments
feasible on general-purpose GPUs like NVIDIA A6000. By using a specific sequence length of 128,
we aimed to maintain consistency with structured pruning setups and ensure a fair comparison with
existing works.

For the data-free comparison experiments, instead of using an identity matrix to calculate the 2nd-
moment-based importance score, we extract the covariance matrix for the depth-2 modules using
random input. Specifically, we generate random token IDs from the model’s vocabulary to simulate
input data. It is important to note that the self-generated calibration data does not participate in this
extraction process.

Algorithm 4 Post-Pruning Recovery for Gated Feed-forward Module.
1: Input: Gated feed-forward module with weightsWU ,WG,WD

2: Input: Corresponding inputs X
3: Input: Corresponding outputs YU , YG, YD

4: Input: Function reconstruct_best_weight and restore_layer_weights
5: Output: Reconstructed weights {W̄U , W̄G, W̄D}
6: procedureWeights Reconstruction
7: XTX ← Matmul(X.T,X)
8: W̄U ← reconstruct_best_weight(XTX,X, YU )
9: W̄G ← reconstruct_best_weight(XTX,X, YG))
10: restore_layer_weights(module.up_proj, W̄U )
11: restore_layer_weights(module.gate_proj, W̄G)
12: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
13: X2 ← module(X) # new input for down proj
14: XTX2 ← Matmul(X2.T,X2)
15: W̄D ← reconstruct_best_weight(XTX2, X2, YD)
16: restore_layer_weights(module.down_proj, W̄D)
17: end procedure

To provide a more comprehensive evaluation of our methods, we conducted additional pruning
experiments on various large language models (LLMs), including Vicuna-7B, LLaMA2-7B, and
LLaMA3.1-8B. The results of these experiments are presented in Tables 6, 4, and 5. As the ex-
perimental data shows, our method consistently outperforms various baselines in both data-free
and data-dependent pruning settings. Our approach is inference-aware and performs as well as
training-aware metrics, which typically integrate both first-order and second-order information.
However, we did not replicate baseline methods that require retraining on LLaMA2-B or LLaMA3.1-B
models, as we aimed to eliminate the influence of hyperparameter tuning. Interestingly, we observed
that in some cases, such as with LLaMA3.1, our data-free pruning approach even outperformed
data-dependent pruning in downstream tasks, despite perplexity analysis indicating a different trend.
This suggests that downstream task performance does not always align with perplexity metrics.

Appendix-E: Broader Impact
Pruning large language models (LLMs) has significant implications for the environment and the ac-
cessibility of advanced AI technologies. By reducing these models’ size and computational demands,
pruning techniques can lower the energy consumption and carbon footprint associated with training
and deploying LLMs, contributing to more sustainable AI practices. Additionally, the ability to run
more efficient models on lower-cost hardware democratizes access to cutting-edge AI tools, enabling
wider participation from researchers, developers, and institutions with limited resources. However,
there are potential risks to consider, such as the possibility that pruned models might exacerbate
biases or lose important contextual knowledge if not carefully evaluated. Thus, it is essential to assess
not only the performance but also the ethical and societal impacts of these techniques, ensuring that
they contribute positively to the broader AI landscape.

18



Table 4: The zero-shot performance of the compressed Llama2-7B (20% sparsity respective to the
global). Following the LLM-Pruner methodology [18], we only prune the transformer blocks from
the 4th to the 30th. The average performance is calculated across seven classification datasets.

Pruning Methods WikiText2 ↓ PTB ↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Ave ↑
Dense 12.2 48.4 71.1 78.4 72.9 67.3 69.3 40.6 40.8 62.9
Data Free Pruning
Random 25.7 87.9 61.7 70.4 56.6 58.8 54.7 30.2 35.0 52.5
L2 norm 895.9 1540.2 53.4 55.7 32.3 51.4 29.7 29.8 31.4 40.5
L1 norm 239.9 1038.2 55.9 58.9 39.9 49.9 32.1 29.3 29.0 42.1
Ours SG w/o remedy 21.0 74.0 63.5 73.2 66.7 63.0 60.8 35.0 37.6 57.1
Data Dependent Pruning

Training-Aware Pruning Criterion
LLM-Pruner Vec 20.52 73.76 59.6 73.8 62.3 62.8 59.6 35.2 37.0 55.8
LLM-Pruner E1 19.2 72.61 62.2 76.2 65.8 60.7 63.8 37.2 39.0 57.8
LLM-Pruner E2 19.09 72.89 48.8 76.0 65.7 60.0 65.0 37.5 39.0 56.0

Inference-Aware Pruning Criterion
Ours (C) w/o remedy 17.4 64.1 66.4 74.0 66.0 63.4 61.7 35.4 39.0 58.0

Table 5: The zero-shot performance of the compressed Llama3.1-8B (20% sparsity respective to the
global). Following the LLM-Pruner methodology [18], we only prune the transformer blocks from
the 4th to the 30th. The average performance is calculated across seven classification datasets.

Pruning Methods WikiText2 ↓ PTB ↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Ave ↑
Dense 14.3 27.7 82.1 81.1 73.6 72.5 81.5 53.6 45.0 69.9
Data Free Pruning
Random 45.8 76.4 61.6 71.5 56.5 59.4 58.9 34.6 33.4 53.7
L2 norm 88.5 149.3 57.5 68.1 55.9 57.1 48.1 32.8 36.0 50.8
L1 norm 230.9 376.3 53.2 61.8 39.3 53.2 37.5 25.5 29.4 42.8
Ours SG w/o remedy 35.3 61.6 68.8 75.4 64.5 64.0 66.6 39.8 40.8 59.9
Data Dependent Pruning

Training-Aware Pruning Criterion
LLM-Pruner Vec 28.3 47.9 62.2 73.9 59.4 60.9 64.5 35.5 35.2 55.9
LLM-Pruner E1 25.9 48.1 54.5 76.5 63.3 60.5 68.3 37.5 38.0 56.9
LLM-Pruner E2 26.3 48.6 62.3 76.4 63.3 60.1 66.7 37.3 39.1 57.8

Inference-Aware Pruning Criterion
Ours (C) w/o remedy 25.7 42.7 70.9 74.9 68.5 68.1 67.4 38.4 38.8 61.0

Table 6: The zero-shot performance of the compressed Vicuna-7B (20% sparsity respective to the
global). Following the LLM-Pruner methodology [18], we only prune the transformer blocks from
the 4th to the 30th. The average performance is calculated across seven classification datasets.

Pruning Methods WikiText2 ↓ PTB ↓ BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Ave ↑
Dense 16.11 61.37 76.57 77.75 70.64 67.40 65.11 41.21 40.80 62.78
Data Free Pruning
Random 34.63 112.44 61.47 70.89 54.67 56.27 55.60 31.74 34.60 52.18
L2 norm 3339.98 5882.21 55.90 56.15 32.37 51.85 30.01 28.41 28.20 40.41
Ours SG w/o remedy 28.45 92.3 62.51 72.63 56.54 57.46 58.68 33.29 36.2 53.91
Data Dependent Pruning

Training-Aware Pruning Criterion
LLM-Pruner Vec 27.03 92.51 62.17 71.44 55.80 53.43 55.77 33.28 37.80 52.81
LLM-Pruner E2 24.70 94.34 62.87 75.41 64.00 58.41 60.98 37.12 39.00 56.83
LLM-Pruner E1 25.74 92.88 61.70 75.30 63.75 56.20 63.22 36.60 37.00 56.25

Inference-Aware Pruning Criterion
Ours (C) w/o remedy 19.88 90.04 62.48 75.68 65.23 61.27 63.4 35.49 37.6 57.31

Training-Aware Pruning Criterion and Model Retraining
LLM-Pruner LoRA 18.97 76.78 60.40 75.63 65.45 63.22 63.05 37.71 39.00 57.78

Appendix-F: Novelty and Distinction from Previous Work
To comprehensively address the novelty of our contributions, it is important to revisit the evolution of
pruningmethods for languagemodels across three distinct stages: the Pre-Deep Learning Age, the Early

19



Deep Learning Age, and the LLMs Age. This historical perspective contextualizes the advancements
made by our work and highlights how it differs from prior methods.

Pre-Deep Learning Age (1970s-1990s): Pruning research originated in the 1970s through the
1990s, with early studies recognizing that simple magnitude-based pruning often failed to fully
preserve network performance due to its neglect of activation effects. In response, researchers
explored alternative algorithms based on similarity or variance analysis. One of the most notable
works from this era is LeCun’s Optimal Brain Damage (OBD) from 1989 [71], which utilized second-
order derivatives (the Hessian matrix) for pruning. Despite being innovative, this method was
computationally expensive for the hardware of that time, confining its application to small-scale
networks. These early works laid the foundation for future pruning methodologies, including the
ones we build upon in this paper.

Early Deep Learning Age (2012-2022): The emergence of deep learning, particularly from 2012 to
2022, broughtwith it a surge in the development ofmoderate-sized languagemodels like Transformer,
GPT, GPT-2, and BERT. This era saw a significant shift toward applying pruning techniques to larger
models, with methods such as the Pretrained Ticket, Lottery Ticket Hypothesis, SNIP, EBERT, BERT-
PKD, Random Pruning, and Movement Pruning gaining popularity. Many of these methods required
multiple rounds of pruning-induced retraining, which became feasible as computational resources
improved. The period also witnessed a revival of interest in pruning metrics, including those based
on weight magnitude, activations, and higher-order information, many of which had been initially
proposed in the previous era.

LLMs Age (2023-present): Since 2023, the landscape of language models has drastically evolved
with the advent of extremely large models, such as LLaMA, GPT-3, and their successors. The sheer
size of these models has rendered traditional retraining-based pruning methods less viable due to
prohibitive computational costs. As a result, researchers have increasingly turned their focus toward
more efficient pruning strategies that avoid expensive retraining. Prominent works in this era include
LLM-Pruner, which introduces structured pruning, andWanda, which addresses unstructured and
semi-structured pruning. However, these methods still face challenges. For instance, LLM-Pruner
depends on computationally intensive training-aware metrics and requires at least one round of
retraining, whileWanda and similar methods, such as Sheared LLaMA, necessitate specialized datasets
or additional rounds of pretraining. Other approaches like OPTIN, Sliced GPT, LLM Surgeon, ZipLM,
and KRP focus on unstructured pruning or often come with high computational costs due to the
use of higher-order information. These limitations point to the growing need for more scalable and
retraining-free pruning techniques, which our work addresses.

Our Novel Contributions

Against this historical backdrop, our work introduces several key innovations that address the
limitations of pruning in the age of large language models. We summarize our contribution as
follows:

Optimization Perspective in Pruning. Firstly, we propose an entirely new framework for pruning
large language models from an optimization perspective, focusing on output approximation. In contrast
to prior methods that rely on weight magnitude or gradient-based metrics, we develop pruning
criteria based on the output behavior of the model. By prioritizing output approximation, we ensure
that the model’s performance remains robust, even without the need for costly retraining phases.
This conceptual contribution significantly advances the field of structured pruning by emphasizing
efficiency and inference-awareness in pruning decisions.

Identification of Depth-2 Modules. Additionally, we introduce the novel concept of depth-2 modules
within transformer-based architectures. We recognize that both the attention mechanism and feed-
forward (FFD) layers in transformers share similar structural properties, allowing us to prune them
using a unified approach. This insight facilitates the development of a consistent set of pruning
metrics and recovery methods that apply across different model components. Our approach departs

20



from traditional layer-wise pruning techniques by focusing on a more granular and efficient module-
wise strategy.

Inference-Aware and Distribution-Aware Pruning Metrics. We also propose two new pruning met-
rics: a second-moment-based metric that accounts for the variance in both input data and intermediate
activations, and a similarity-based metric that evaluates redundancy among attention heads. These
metrics offer a more sophisticated pruning approach than conventional magnitude-based methods,
ensuring that only the most redundant parameters are removed.

Enhanced Recovery Method. Finally, we introduce an enhanced recovery method designed specifically
for structured pruning of transformer architectures. Unlike traditional recovery methods that
operate on a layer-by-layer basis, our recovery technique is adapted to handle the unique challenges
of module-wise pruning. By refining the pruned weights within depth-2 modules, we achieve
significant performance recovery without requiring additional rounds of retraining, setting our work
apart from previous unstructured pruning methods.

In summary, our contributions can be seen as both conceptual and technical. Conceptually, we
frame pruning as an optimization problem focused on output approximation, while technically, we
introduce depth-2 module pruning, novel pruning metrics, and an efficient recovery process. These
advancements represent significant progress in the structured pruning of large language models,
particularly in the context of avoiding retraining.

21


	.  Introduction
	.  Preliminary
	.  Methodology
	.  Pruning Structure Recognition
	.  Pruning Patterns in Transformer 

	.  Pruning Criteria Selection
	.  Implicit Purpose of Pruning Metric
	.  Similarity-based Metric for Attention 
	.  Second-moment-based Metric 

	.  Recovery Without Retraining 

	.  Experiment
	.  Results and Analysis
	.  Ablation Study

	.  Related Work
	.  Discussion and Conclusion

