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ABSTRACT

Centered kernel alignment (CKA) is a popular metric for comparing representa-
tion, determining equivalence of networks, and conducting neuroscience research.
However, CKA does not account for the underlying manifold and relies on many
heuristics that make it behave differently at different scales of data. In this work,
we propose Manifold-approximated Kernel Alignment (MKA) that incorporates
manifold geometry into the alignment task. We derive a theoretical framework
for MKA. We perform empirical evaluations on synthetic datasets and real-world
examples to characterize and compare MKA to CKA. Our findings suggest that
manifold-aware kernel alignment provides a more robust foundation for measur-
ing representations, with potential applications in representation learning.

1 INTRODUCTION

Centered Kernel Alignment (CKA) (Cortes et al., 2010; Kornblith et al., 2019) is a statistical method
used to compare the similarity between representations of data, often in the form of feature maps
or embeddings. It works by aligning kernels, which capture pairwise relationships within datasets,
and measuring their agreement. CKA is widely used in studies to compare layers of neural net-
works, analyze representational similarity, and study how models process information (Ramasesh
et al., 2021; Nguyen et al., 2022; Ciernik et al., 2024). Its ability to handle datasets of different
sizes and dimensions makes it a powerful tool for understanding complex models and evaluating
their performance. However, very few studies have characterized CKA under known representa-
tions/topologies. Moreover, the reliability of the CKA measure has been under scrutiny numerous
times (Davari et al., 2023; Murphy et al., 2024).

To address this, we propose Manifold-approximated Kernel Alignment (MKA). Manifold approx-
imation is a way of understanding and simplifying complex data. In many real-world problems,
data with many dimensions - like x-rays, medical records, and neuroimaging data - actually lie on a
much smaller, curved structure called a “manifold” within the high-dimensional space. Known as the
‘manifold hypothesis’, this concept is integral to modern statistics and learning algorithms (Feffer-
man et al., 2016). Manifold approximation uncovers and represents this underlying structure within
the high-dimensional data by exploiting the relationships between data points. It is an integral part
of non-linear dimensionality reduction, e.g., t-distributed Stochastic Neighbor Embedding (Van der
Maaten & Hinton, 2008) and Uniform Manifold Approximation and Projection (UMAP) (McInnes
et al., 2018).

We use manifold approximation to define a non-linear and non-Mercer kernel. Using this kernel
function, we provide a theoretical framework for MKA. With extensive characterization on syn-
thetic datasets, we show that MKA is more consistent under varying dimensionality and shapes that
preserve topology. We also discover that MKA captures the underlying topology better and is less
sensitive to hyperparameters than CKA. Finally, we revisit neural network representation and pro-
vide a new perspective. Overall, this work will pave the way for applying manifold approximation
in diverse applications.

∗corresponding author
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2 CENTERED KERNEL ALIGNMENT (CKA)

Let X ∈ RN×d1 and Y ∈ RN×d2 be feature sets from N samples each with d1 and d2 features,
respectively. The corresponding symmetric kernel matrices are K and L with Kij = k(xi, xj) and
Lij = l(yi, yj), respectively. The CKA measure between the two feature sets is given by

CKA(K,L) =
HSIC(K,L)√

HSIC(K,K)HSIC(L,L)
, (1)

where HSIC(·, ·) is the Hilbert-Schmidt independent criterion given by HSIC(K,L) =
1

(n−1)2 trace(KHLH). Here, H = I − 1
n11

T is a centering matrix that mitigates bias in the
kernel. There are other debiasing techniques (Song et al., 2007; Sucholutsky et al., 2023), however,
we will consider the simplest and most widely used technique in practice. HSIC computes the sim-
ilarity between the two kernel matrices of the same size, while the CKA measure normalizes this
similarity within [0, 1].

Various options exist for the kernel. The common ones include the linear kernel (LIN) given by
k(xi, xj) = xT

i xj and the radial basis function (RBF) kernel given by k(xi, xj) = exp(−||xi −
xj ||/(2σ2)), where σ is the bandwidth of the Gaussian. The following theorem establishes an equiv-
alence relation between CKA with linear and RBF kernel:
Theorem 2.1 (Alvarez (2022)). CKA(KRBF, L) = CKA(KLIN, L) +O(1/σ2) as σ → ∞. Here,
KRBF is the RBF kernel matrix with bandwidth σ, KLIN is the linear kernel matrix, and L is any
positive definite symmetric kernel matrix.

Softly, it states that at higher values of σ, CKA with linear and RBF kernels behave equivalently.
Various studies have reported this in empirical settings (e.g., in Kornblith et al. (2019) and Fig. 4(a)
of Davari et al. (2023)). Thus, most researchers use the linear kernel, effectively capturing linear
relationships alone. And by Theorem 2.1, even results with an RBF kernel (without properly tuning
the bandwidth, σ) potentially suffer from the same pitfalls of the linear one.

3 MANIFOLD-APPROXIMATED KERNEL ALIGNMENT (MKA)

Manifold approximation is a method for defining a graph that quantifies the pairwise relations within
the data. CKA already does this job by producing a dense kernel matrix that considers all possible
pairs. In the field of non-linear dimensionality reduction, manifold approximation takes a central
role in sampling the manifold of the data to reduce the complexity of computing the kernel ma-
trix. This kernel is often sparse and typically obtained by the k-nearest neighbor (KNN) algorithm.
Moreover, we will use a kernel function that is non-symmetric (i.e., k(xi, xj) ̸= k(xj , xi)). Thus,
our kernel will not be positive semidefinite; rather, it will fall in the class of indefinite or non-Mercer
kernels (Ong et al., 2004). Here, we adopt the manifold approximation method from UMAP1. Our
manifold-approximated kernel (KU ) defines a pairwise relationship by

K
(U)
ij =


1, if i = j

exp
(
−d(xi,xj)−ρi

σi

)
if xj ∈ KNN(xi, k)

0 otherwise

, (2)

where KNN(xi, k) contains the k-nearest neighbors of xi, d(·, ·) is a distance metric, ρi =
minxj∈KNN(xi,k) d(xi, xj) is the minimum distance from the nearest neighbor and σi is a scal-
ing parameter akin to bandwidth of RBF function. The scaling parameter is computed such that∑

j K
(U)
ij = 1+ log2(k). This constraint fixes the row of the kernel matrix to a constant and makes

the kernel less sensitive to lone outliers. The KNN imposes a stricter constraint on the number of
points that are considered related compared to CKA, which allows for a softer, more global measure
of similarity. Overall, KU is a graph on the data that depends on only one hyperparameter: k. Now,
we define Manifold-approximated Kernel Alignment (MKA) as:

MKA(KU , LU ) =
⟨KUH,LUH⟩√

⟨KUH,KUH⟩⟨LUH,LUH⟩
. (3)

1UMAP uses a graph-based kernel. It performs a symmetrization step to define it. We skip this step for
computational efficiency.
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Figure 1: Equivalence of two different shapes with 1-D manifolds. (a) Swiss-roll. (b) S-curve by
varying parameter r. (c) Alignment for the methods as S-curve parameter, r, varies. (d) Alignment
for different methods as different number of nearest neighbors considered. Note that CKA does not
have any notion of nearest neighbors; thus we have plotted the CKA value at the last point on the
x-axis.

Despite using non-symmetric kernels, the measure MKA is symmetric (MKA(KU , LU ) =
MKA(LU ,KU )). However, unlike CKA, which performs both row- and column-wise centering,
we opted for only row-wise centering. This leaves additional bias terms in the estimation, however,
we show in Appendix A.2 that this slight oversight does not make MKA less meaningful. Exploiting
the properties of the kernel matrix we can simplify and characterize MKA by

Theorem 3.1. If
∑

j K
(U)
i,j = D and

∑
j L

(U)
i,j = D, ∀i, then MKA reduces to

MKA(KU , LU ) =
⟨KU , LU ⟩ −D2√

(⟨KU ,KU ⟩ −D2)(⟨LU , LU ⟩ −D2)
. (4)

Corollary 3.2. If D <
√
N , then 0 < MKA(KU , LU ) < 1.

Theorem 3.1 enables fast computation of MKA, making it more scalable (especially when com-
bined with approximate nearest neighbor search algorithms). Few works (Chen et al., 2021; Huh
et al., 2024) have considered sparsifying the kernel matrix of CKA by taking the top-k values in
rows/columns. However, these works do not consider constraining rows of the kernel matrix.

4 EXPERIMENTS

In this section, we empirically characterize MKA using various synthetic datasets. We compare
MKA with several CKA variants with RBF kernel: 1) CKA(σ = M): σ is set to the median, M ,
of the entries of the distance matrix, 2) CKA(σ = δM): σ is set to δM (we mostly use δ = 0.45)
for considering local relationships, and 3) t − CKA: sparsifying the kernel matrix by considering
k-nearest neighbors of each sample and setting σ to be median of the considered distances giving us
a simple manifold approximation. We do not consider CKA with a linear kernel as the RBF kernel
works as a good proxy of a linear one.

4.1 EQUIVALENCE OF SHAPES: SWISS-ROLL AND S-CURVE

Here we take two shapes: Swiss-roll (Fig. 1(a)) and S-curve (Fig. 1(b), r = 0.5). Even though
Swiss-roll and S-curve look drastically different, topologically, they both lie in a 1-D non-linear
manifold and thus are equivalent. Furthermore, the parameter r in the S-curve can give it different
shapes (Fig. 1(b), for details see Appendix A.3). A color map shows the correspondence among
the shapes. The lower (< 0.4) and higher (> 0.6) values of r make the colors overlap, causing
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Figure 2: Characterizing MKA using synthetic datasets. (a) A Gaussian spot; colors identify the
position of the points on the x-axis. (b) Perturbed Gaussian spot. We added noise to the points
sampled in (a) so that colors slightly overlap. (c) A Gaussian spot with no correspondence to the
spot in (a). (d) Two uniform spots are located nearby (top) and translated far away (bottom). (e)
Alignment between Gaussian spot and when it is perturbed and (f) alignment between two Gaussian
spots for various methods as number of samples increases (d = 1000). (g,h) Alignment under
perturbation as (g) data dimensionality, d, and (h) hyperparameter, k, varies (N = 5000). (i,j)
Alignment under lost-correspondence as (i) data dimensionality, d, and (j) nearest neighbors, k,
varies (N = 5000). (k,l) Alignment between uniform spots and translated uniform spots at (k)
various translation distances, t, and (l) data dimensionality (N = 5000; 2500 in each spot). Note
that CKA does not have any notion of nearest neighbors; thus, in (h,j), we have plotted CKA values
at the last point on the x-axis. Error bars are drawn up to three standard deviations (10 trials for each
experiment).

the disappearance of the 1-D manifold. For experiments, we sampled 1000 points from each of the
shapes and computed alignment between the Swiss-roll and the S-curve.

CKA with σ = M fails to align the manifold of Swiss-roll and S-curve (r = 0.5) giving a value
below 0.5 (Fig. 1(c)). However, for cases where the 1-D manifold structure is absent (e.g., r < 0.4
and r > 0.6), CKA provides a higher value. Similarly, CKA with σ = 0.45M fails to capture this
information as well and shows high alignment throughout. t − CKA and MKA properly capture
the alignment of the two shapes. At r = 0.5, the alignment of Swiss-roll and S-curve is highest and
gets lower as the parameter moves away from this point. However, t−CKA is more sensitive to the
number of nearest neighbors k (Fig. 1(d)). MKA, on the other hand, is very robust to the parameter
k.

4.2 SYNTHETIC DATA

In this section, we characterize the algorithms using several synthetic datasets inspired by real-world
scenarios. First, we consider the alignment between a d-dimensional Gaussian spot (xi ∼ N (0, Id),
Fig. 2(a)) and its perturbed version (yi = xi + 0.5N (0, Id), Fig. 2(b)). Such a scenario may
occur when a representation learning algorithm runs repeatedly. This results in altered orders of
the points in the point cloud (seen as colors slightly overlapping in Fig. 2(b)). As the number of
samples in the spots increases (d = 1000, Fig. 2(e)), their alignment values using different methods
decreases slightly. This is expected, as the denser the spot gets, the higher the change of orders
within the point cloud. However, the dimensionality (d) of the data affects the values differently
(N = 5000, Fig. 2(g)). All methods, except CKA with σ = 0.45M , are fairly consistent as d
increases while the latter approaches the maximum value of 1, making it unreliable in capturing such
scenarios. Additionally, t − CKA shows inconsistent behavior as the number of nearest neighbors
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Figure 3: Alignment between features from different layers of ResNet-50 trained on the CIFAR-
10 dataset. (a) Alignment between layers of a network using (left) CKA and (right) MKA. (b)
Alignment between layers across different networks using (left) CKA and (right) MKA. The results
are an average of 10 instances of ResNet-50 on CIFAR-10, each initialized randomly and using a
subset of 5000 samples from the test set.

(k) increases, while MKA values remain consistent across a wide range (Fig. 2(h)). Overall, MKA
is more restrictive to perturbations in the features than other methods.

We can take this scenario to the extreme and make the colors completely overlap each other
(Fig. 2(c)). The orderings (based on some criterion) of both the Gaussian spots will not corre-
spond to each other at all, and thus, we call it a lost-correspondence scenario. The CKA measure
is sensitive to the number of samples for both choices of σ, while t − CKA and MKA are fairly
consistent (d = 1000, Fig. 2(f)). The CKA measure tends to increase with higher data dimensional-
ity, reflecting the effect of the curse of dimensionality (N = 5000, Fig. 2(i)). t − CKA and MKA,
on the other hand, are fairly robust and less affected from the curse. However, t − CKA is highly
sensitive to the number of nearest neighbors (k) which gets resolved at a higher value of k ≥ 200
(Fig. 2(j)). Like previously, MKA is consistent for a wide range of k, even for values smaller than
200. Overall, MKA is more consistent with varying hyperparameters than other methods.

Finally, we consider two uniform spots separated by a small distance (Fig.2(d); this scenario is
inspired by Davari et al. (2023)). Both spots (N = 2500 each) are drawn from uniform distribution
by xi ∼ U(−0.5, 0.5) and yi ∼ p+U(−0.5, 0.5) with p = [1.1+t, 0, 0, . . . , 0], where the translation
distance, t(> 0), controls the separation of the two spots. Regardless of the translation distance,
the topology of the data remains the same, and alignment should be high. However, CKA fails
to capture this phenomenon. As t increases CKA value decreases; even using smaller bandwidth
σ = 0.15M fails (Fig. 2(k)). In contrast, t−CKA and MKA settle to a constant and higher number
as t increases. Following the results of previous experiments, we used k = 200. The methods
provide similar results as dimensionality increases (Fig. 2(l)).

4.3 NEURAL NETWORK REPRESENTATIONS

In this section, we explore the representational similarity using ResNet-50 models trained on the
CIFAR-10 dataset. First, we compute alignment between feature representations extracted from dif-
ferent layers (after activation) of the network to investigate how representational structure evolves
across the depth of the model (Fig. 3(a)). Using CKA, we can reproduce the famous block struc-
ture (Kornblith et al., 2019; Nguyen et al., 2022). However, when MKA is used, the block structure
is less pronounced in the latter layers of the network, indicating some perturbation as the data flows
within the network. When features from 10 randomly initialized ResNet-50 networks are compared,
this block structure becomes less pronounced for CKA and disappears in the latter layers for MKA
(Fig. 3(b)). This suggests that the same network using different initialization, even with similar
accuracy, can obtain different internal orientations or perturbations in the manifold.

5 CONCLUSIONS

In this paper, we introduced Manifold-approximated Kernel Alignment (MKA) and formalized and
characterized it using several datasets. Here, we computed the kernel matrix and compared it to
CKA (and its variations) on equal terms. By analyzing representations of neural networks, we have
discovered that MKA perceives the neural network representations differently than CKA. Future
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works could explore other kernel functions, e.g., effective resistance (Doyle & Snell, 1984) and dif-
fusion distance Coifman & Lafon (2006) and focus on additional debiasing techniques (Sucholutsky
et al., 2023). This alignment technique would find usage wherever alignment is beneficial, e.g., in
neuroscience for monitoring brain activity, neural decoding, and brain representation analysis and
graph learning for evaluating embeddings and measuring protein interactions.
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A APPENDIX

A.1 PROOFS

(Proof of Theorem 3.1). Let KUH = K̄ and LUH = L̄. Then,

K̄ij = K
(U)
ij − 1

N

∑
j

K
(U)
ij

= K
(U)
ij − 1

N
D. (5)

Now we can compute the inner product,

⟨K̄, K̄⟩ =
∑
i,j

(K
(U)
ij − 1

N
D)2

=
∑
i,j

((
K

(U)
ij

)2

− 2

N
DK

(U)
ij +

1

N2
D2

)
=

∑
i,j

(
K

(U)
ij

)2

− 2

N
D

∑
i,j

K
(U)
ij +

1

N2
D2

∑
i,j

1

=
∑
i,j

(
K

(U)
ij

)2

−D2

= ⟨KU ,KU ⟩ −D2 (6)

We used the fact that
∑

i,j K
(U)
ij = ND and

∑
i,j 1 = N2. Similarly, L̄ij = L

(U)
ij − 1

ND and
⟨L̄, L̄⟩ = ⟨LU , LU ⟩ −D2. Finally,

⟨K̄, L̄⟩ =
∑
i,j

(K
(U)
ij − 1

N
D)(L

(U)
ij − 1

N
D)

=
∑
i,j

K
(U)
ij L

(U)
ij − 1

N
D(K

(U)
ij + L

(U)
ij )− 1

N2
D2

=
∑
i,j

K
(U)
ij L

(U)
ij −D2

= ⟨K(U)
ij , L

(U)
ij ⟩ −D2 (7)
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a b c d

Figure 4: Effect of Kernel Approximation on the CKA algorithm. (a) Alignment between Swiss-
roll and S-curve. (b,c) Gaussian spots under (b) perturbation and (c) Lost-correspondence. CKA

with manifold approximation (CKA(K
(S)
U ,K

(S)
L ) behave similar to MKA, but with less bias. (d)

Computation time for CKA and MKA. MKA require much less time than CKA (average of 5 runs).
Note that we have excluded the computation time for the kernel matrix.

(Proof of Corollary 3.2). We start from the inner products,

⟨KU ,KU ⟩ −D2 =
∑
i,j

(
K

(U)
ij

)2

−D2

=
∑
i,i

1 +
∑

i,j,i ̸=j

(
K

(U)
ij

)2

−D2

= N −D2 +
∑

i,j,i ̸=j

(
K

(U)
ij

)2

. (8)

Similarly,

⟨LU , LU ⟩ −D2 = N −D2 +
∑

i,j,i ̸=j

(
L
(U)
ij

)2

(9)

And finally,

⟨KU , LU ⟩ −D2 = N −D2 +
∑

i,j,i ̸=j

K
(U)
ij L

(U)
ij (10)

The value
∑

i,j,i ̸=j K
(U)
ij L

(U)
ij can be zero if the nearest neighbors in the kernels do not overlap each

other. Otherwise, this value is positive. Thus, the lower bound is guaranteed when N > D2. The
upper bound is due to Cauchy–Schwarz inequality.

A.2 CKA WITH MANIFOLD APPROXIMATION

We can symmetrize the manifold approximated kernel matrix, KU , using the probabilistic t-conorm
given by

K
(S)
U = KU +KT

U −KU ◦KT
U , (11)

where ◦ denotes element-wise multiplication. This operation does not guarantee a positive semidef-
inite kernel. However, we can now directly apply CKA on the approximated kernels K(S)

U and L
(S)
U .

The CKA results obtained from this kernel matrix behave similarly to that of MKA but with less
bias (Fig. 4(b-c)). However, computing MKA requires much less time compared to CKA (Fig. 4(d),
using NumPy Harris et al. (2020)).

A.3 DETAILS OF SWISS-ROLL AND S-CURVE

Swiss-roll and S-curve are parameterized by variable t ∈ [0, 1]. S-curve contains an additional
control parameter r ∈ [0, 1] that determines the shape. r = 0.5 gives the familiar S-curve used in

8



To appear at the ICLR 2025 Workshop on Representational Alignment (Re-Align)

many studies. We only consider 2-D shapes in this study.

Swiss-Roll:

z =
3π

2
(1 + 2t) (12)

x1 = z cos(z) (13)
x2 = z sin(z) (14)

S-Curve:
z = 3π(t− r) (15)
y1 = sin(z) (16)
y2 = sgn(z)(cos(z)− 1) (17)
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