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ABSTRACT

Open-Vocabulary Semantic Segmentation (OVSS) for remote sensing imagery
plays a crucial role in applications such as land cover mapping and environmental
monitoring. Recently, Contrastive Language-Image Pre-training (CLIP) has ad-
vanced the training-free paradigm of OVSS while also inspiring its exploration in
the remote sensing domain. However, directly applying CLIP to remote sensing
leads to cross-modal mismatches. Prevalent methods focus on exploring atten-
tion mechanism of CLIP visual encoder or introducing vision foundation models
to obtain more discriminative feature, but they often overlook the alignment be-
tween patches and textual representations. To address this issue, we propose a
training-free framework named AlignCLIP. We find that, objects of the same
category tend to exhibit a more compact distribution in remote sensing, this en-
ables a single visual feature to effectively represent all objects within the category.
Based on this observation, we design the Self-Guided Alignment (SGA) module,
which leverages the most reliable text-specific visual prototypes to refine the text
embeddings. To mitigate interference among irrelevant features, we further intro-
duce the Cluster-Constrained Enhancement (CCE) module, which clusters seman-
tically similar patch features, suppresses inter-cluster correlations, and updates the
logits map via a constraint propagation mechanism. Experiments on eight remote
sensing benchmarks demonstrate that AlignCLIP consistently outperforms state-
of-the-art training-free OVSS methods, achieving an average gain of +2.2 mloU
and offering a robust adaptive solution for open-vocabulary semantic segmenta-
tion in remote sensing. All code will be released.

1 INTRODUCTION

Open-vocabulary semantic segmentation (OVSS) in remote sensing imagery serves as a fundamen-
tal task in land cover mapping and environmental monitoring. Using arbitrary textual descriptions, it
enables pixel-level classification of remote sensing images. The remarkable success of Contrastive
Language—Image Pre-training (CLIP) (Radford et al.| 2021b) in zero-shot recognition has inspired
the development of OVSS. Most prior studies have focused on fine-tuning CLIP (Liang et al., 2023
Peng et al.; [Wei et al, 2023} |Peng et al.l 2025} Zeng et al.l 2024} [Lin et al.| 2024} [Zhang et al.,
2025)), but their progress is limited by the demand for large annotated datasets. Moreover, remote
sensing imagery often contains categories beyond the training set due to seasonal changes, land use
evolution, and geographic diversity, making these approaches difficult to generalize. Recently, sev-
eral works (Wang et al.,2023a; Yang et al.,2024; |Zhou et al., 2022;|Lan et al.,2024c) have begun to
explore training-free paradigms in natural image domain, which achieve OVSS by extracting image
patches and textual representations and directly performing cross-modal matching. This paradigm
has further inspired its exploration in the remote sensing domain.

Prevalent training-free approaches in natural image domain primarily focus on the image modal-
ity, and they explore the attention mechanism of the CLIP visual encoder or integrate advanced
vision foundation models (VFMs) to obtain more discriminative features (Lan et al., |2024b; |Shao
et al., 2024} Kim et al.| |2025b} Barsellotti et al., 2024). However, these methods largely overlook
the alignment between image patches and textual representations. Most existing open-vocabulary
segmentation methods perform mask-category recognition by aligning region-level features with
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Figure 1: (a) Reference-set paradigm primarily focuses on constructing an accurate image—text
matching set and performing matching based on proxy images. (b) Our SGA module refines the
textual representation by selecting the most reliable visual prototypes from patch features and en-
courages mismatched patches to align with their corresponding textual representations. (c) We
present feature visualization for both natural and remote sensing images and observe that, com-
pared with natural images, objects of the same category in remote sensing imagery exhibit a more
compact distribution.

CLIP-based textual embeddings. Although CLIP demonstrates remarkable generalization capabil-
ities on downstream classification tasks, it often suffers from spatial ambiguity and co-occurrence-
induced object confusion, which stem from its holistic pre-training objective and lead to cross-modal
mismatches [2024)). To address this issue, another line of research leverages external
image-text reference sets (Xuan et al., 2025;[Wang et al.,[2024)), specifically, these approaches trans-
form text-image matching into intra-image matching by retrieving proxy images associated with
category texts, as shown in Fig.[T[a), thereby mitigating cross-modal discrepancies. However, they
heavily depend on the construction of cumbersome reference sets and exhibit limited generalization
to unseen scenarios.

In this work, we observe that compared with nat-
ural images, the feature distribution within the
same category in remote sensing images is more
compact, as illustrated in Fig. [[fc). Intuitively,
remote sensing images are captured from a much
farther distance than natural images, which di- Natural Image 331,998 0.67+0.10

lutes the fine details of objects and thus results Remote Sensing 342,799 0.89:£0.05

in more uniform features. On the other hand, the

fixed top-down viewing angle of remote sensing images also contributes to the high similarity of
intra-class features (e.g., all water appear blue, and all buildings are represented by rooftops). To
further validate this observation, we calculated the intra-class feature similarity of objects in two
image domains (i.e., natural image and remote sensing) and report the mean and standard deviation
of the similarity, as presented in Table[I] We can find that the mean intra-class feature similarity of
remote sensing images is significantly higher than that of natural images, with a smaller standard
deviation. This indicates a more compact feature distribution, thereby verifying the rationality of
our observation.

Table 1: Statistics of intra-class feature similar-
ity in natural images and remote sensing.

Image domain #Pairs Similarity

Based on this observation, we naturally conceive a solution: selecting the features most similar to
the given text features from the image feature space as text-specific visual prototypes, and align-
ing the text features with the visual prototypes. Due to the high compactness of intra-class visual
features in the remote sensing, this alignment enables text features to match their corresponding
visual features more stably and accurately. Building upon this, we proposed a simple yet effec-
tive training-free framework, termed AlignCLIP to mitigate cross-modal mismatches in OVSS of
remote sensing imagery. We designed two key modules: (a) Self-Guided Alignment (SGA), which
leverages the most reliable text-specific visual prototypes of the target image to refine textual embed-
dings, thereby bringing mismatched patches closer to their correct textual semantics. (b) Cluster-
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Constrained Enhancement (CCE), which clusters semantically similar patches while suppressing
inter-cluster correlations, and updating logits map through constrained propagation.

Notably, AlignCLIP operates in a fully training-free manner, thereby eliminating the need for labor-
intensive reference sets construction. By relying solely on information inherent to the target image,
it further ensures strong generalization across diverse scenarios. Extensive evaluations on eight
remote sensing benchmarks demonstrate that AlignCLIP consistently outperforms state-of-the-art
training-free OVSS methods, highlighting its robustness and adaptability to novel scenarios and
unseen categories.

The main contributions of our work are as follows:

* We analyze the limitations of existing reference sets-based methods, and observe that ob-
jects of the same category in remote sensing imagery exhibit concentrated feature distribu-
tion. Leveraging this characteristic, we mitigate cross-modal mismatches while obviating
the need for cumbersome reference sets construction.

* We propose AlignCLIP, a fully training-free framework that alleviates cross-modal mis-
matches. The framework incorporates the Self-Guided Alignment (SGA) module, which re-
fines text embeddings using reliable text-specific prototypes, and the Cluster-Constrained
Enhancement (CCE) module, which clusters image patches and suppresses the correlations
between different clusters.

» Extensive experiments on eight remote sensing benchmarks demonstrate that AlignCLIP
consistently outperforms state-of-the-art training-free OVSS methods, achieving both qual-
itative and quantitative improvements and exhibiting strong generalization to diverse sce-
narios and unseen categories.

2 RELATED WORK

Vision-Language Models. Vision-Language Models (VLMs) (Jia et al.l 2021} |Yuan et al., [2021)
aim to align visual and textual representations within a shared semantic space, enabling zero-shot
and open-vocabulary recognition. A landmark advancement in this field is CLIP (Radford et al.,
2021b), a dual-encoder trained contrastively on image—text pairs with strong downstream general-
ization. However, CLIP is optimized for image-level classification, and its patch features are subop-
timal for dense prediction (Cheng et al.| 2022; Xu et al., [2022) due to limited spatial awareness and
the absence of explicit spatial modeling. This issue is more prominent in the remote sensing domain,
where high-resolution scenes exhibit fine spectral-textural details and large-scale layouts distinctly
different from those of natural images (Cao et al., 2024} [Zhang et al., 2025} Dutta et al., 2025; |[Fu
et al.,|2025;2024)). Although some works (e.g., RemoteCLIP (Liu et al.;, 2024), GeoRSCLIP (Zhang
et al.l 2024b)) have been adapted to remote sensing via prompt engineering or fine-tuning, such
approaches typically require task-specific retraining or substantial labeled data, constraining their
practicality for open-vocabulary semantic segmentation.

Vision Foundation Models. Vision Foundation Models (VFMs) (Caron et al., 2021} |Oquab et al.,
2023} [Siméoni et al., 2025} |Kirillov et al., 2023} [Ravi et al., |2024) provide general visual repre-
sentations across a wide range of tasks. One category of such models is DINO (Caron et al., 2021},
which learns semantically rich and spatially coherent features via self-distillation. It can localize ob-
jects without explicit supervision, making it highly suitable for dense prediction tasks. Additionally,
SAM (Kirillov et al.} 2023)) demonstrates strong image segmentation capabilities, supporting various
segmentation prompts (e.g., points, boxes, and masks) with excellent cross-domain generalization
performance. In this work, we leverage the representations from VFMs to cluster semantically sim-
ilar features and utilize inter-cluster correlations to update the logits map.

Training-free OVSS. Training-free open-vocabulary semantic segmentation (OVSS) labels pixels
for arbitrary categories at inference by matching visual and textual embeddings from VLMs like
CLIP via cross-modal similarities. prevalent works improve spatial awareness via attention modifi-
cation (Yang et al} [2024; [Wang et al., 2023a) or by integrating VEMs such as SAM (Zhang et al.,
2024a; |Lan et al., 2024c), but they overlook the correlations between patches and text representa-
tions. ReMe (Xuan et al., [2025) mitigate mismatches using curated reference sets, which are costly
and difficult to generalize. In the remote sensing domain, SegEarth-OV (Li et al.l 2025) represents
the first training-free OVSS framework, which introduces an upsampling module to adapt CLIP, but
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Figure 2: The overall framework of AlignCLIP. We propose a simple yet effective approach to
alleviate cross-modal mismatches. We design two core modules (a) Self-Guided Alignment (SGA),
which refines textual embeddings using the most reliable text-specific visual prototypes. (b) Cluster-
Constrained Enhancement (CCE), which clusters semantically similar patches while suppressing
inter-cluster correlations and updates the logits map through constrained propagation.

still encounter cross-modal mismatches. Our work inherits the upsampling module of SegEarth-OV
and designs two modules to alleviate the cross-modal mismatches, leveraging the characteristic of
concentrated intra-class feature distribution in remote sensing imagery.

3 METHODOLOGY

In this section, we first introduce a preliminary of our framework in Sec. @ Then, we introduce the
Self-Guided Alignment (SGA) module in Sec.[3.2]and the Cluster-Constrained Enhancement (CCE)
module in Sec.[3.3] Finally, we detail the integration with the upsampling module in Sec. 3.4} The
overall framework is shown in Fig.[2}

3.1 PRELIMINARY

Given a remote sensing input image I € RZ*WX3 and an open set of textual category names

T ={t1,ts,...,tx }, where H, W denote the height and width of an image, K denotes the number
of classes. The objective of open-vocabulary semantic segmentation (OVSS) is to assign each pixel
in I to one of the categories in 7.

In the training-free setting, recent works adopt large-scale vision-language models (e.g., ViT-based
CLIP) as the backbone for feature extraction and cross-modal matching. Specifically, the frozen
CLIP image encoder &, divides the input image I into a grid of image patches and outputs a set of
patch-level visual embeddings. For brevity, we omit the [C'LS] token here:

P = [p1,p2,...,pn] € RV*P, (1

where D denotes the embedding dimension and N = H,, x W, depends on the encoder’s patch
resolution. However, the CLIP model has limited capability in spatial awareness, previous studies
have modified the attention score calculation in the last layer of self-attention in the CLIP visual
encoder from query-to-key to query-to-query or key-to-key, which has significantly improved the
performance of CLIP’s dense prediction. Following the practice of prior works (Li et al., |2025)), we
modified the calculation of the self-attention scores in the last layer of the visual encoder:

i-il

Vd

where g, k and v represent the query, key, and value matrices in self-attention, respectively, and d
denotes the dimension of attention features. Meanwhile, to obtain more accurate text embeddings,

MSA(q, k,v) = Z softmax(
i€{q,k,v}

) - v, (2)
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we adopt a prompt template that is more suitable for remote sensing scenarios (e.g., “a satellite
image of [CLS].”) to incorporate contextual information, as opposed to the prompt template used
for natural images. Subsequently, each text prompt is processed by the CLIP text encoder &; to
obtain its corresponding textual embedding:

T = [t1,t,...,tx] € REXD, (3)

Finally, we compute the logits map between each patch-level visual embedding p; € P and all
textual embeddings T using cosine similarity. The segmentation mask is obtained by applying the
argmax operation to logits map:

S =sim(P,T), SecRV*K, “4)

3.2 SELF-GUIDED ALIGNMENT

In the process of cross-modal matching, the inherent gap between text and image leads to cross-
modal mismatches. To address this, we design a Self-Guided Alignment (SGA) module, which ex-
ploits the intrinsic visual cues from the reliable text-specific visual prototypes to refine the textual
embeddings. Formally, for each textual embedding t; € T, we compute its cosine similarity with
all patch-level visual embeddings p; € P:

T
p; ty
Sik = T 4)
S el Tt
We then select the most similar patch embedding p;~ for category k:
F = arg Max si. (6)

The selected patch embedding serves as a text-specific visual prototype directly extracted from the
target image. Owing to the high intra-class compactness observed in remote sensing imagery, this
visual prototype naturally clusters with other features of the same category in the feature space.
By aligning the text embedding tj, with this prototype p;-, we effectively reduce their feature space
discrepancy, enabling the aligned text embedding t, to match its corresponding visual features more
stably and accurately:

t,=(1—-a) tp +a pi, (7
where « € [0, 1] is a balancing hyperparameter controlling the contribution of textual and visual
components.

Finally, the logits map for segmentation is computed by replacing the original textual embeddings
with the aligned embeddings T' = {t{,... t}}:

S’ =sim(P, T’). (8)

Notably, since the prototypes are derived on-the-fly from the target image, the SGA module naturally
adapts to new scenes without requiring any re-training or prebuilt reference sets.

3.3 CLUSTER-CONSTRAINED ENHANCEMENT

Although the SGA module mitigates cross-modal mismatches by refining text embeddings with text-
specific visual prototypes, the image patches may still be disturbed by irrelevant patches. To address
this issue, we introduce the Cluster-Constrained Enhancement (CCE) module, which aggregates
semantically similar patches, suppresses interactions between irrelevant patches, and updates logits
map through constrained propagation.

Specifically, we employ a VFM visual transformer (e.g., DINO, SAM) to extract a high discrim-
inative visual feature map F € RH»*W»xD from the target image. We reshape F into N patch
embeddings {f1, ..., fy} and apply a clustering algorithm:

{Cp }Ee Clustering({£; 1Y), )

m=1 "

where C,,, denotes the set of patch indices assigned to cluster m, and K. is the total number of
clusters—a hyperparameter controlling the granularity of segmentation refinement.
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In addition to visual features, we also extract the self-attention matrix A € RV*¥ from the final
layer of the Vision Transformer, which encodes pairwise affinities between patches. However, di-
rectly applying this matrix to propagate information over the logits map can be detrimental, as the
affinities between different semantic categories are generally non-zero, thereby introducing unde-
sired cross-category interactions. To address this issue, we employ clustering results to mask the
attention matrix, we retain affinities between patches belonging to similar categories while setting
the affinities between dissimilar categories to zero. Specifically, we construct a binary clustering
mask matrix M € {0, 1}V*" as follows:

= {1 190 =90 )

0, otherwise,

where G (i) denotes the cluster assignment of patch i. The masked affinity matrix A is then refined
as:
A=AcM, (1)

where © denoting element-wise multiplication. In this way, affinities are preserved only within the
same cluster, while inter-cluster correlations are suppressed, logits map are propagated under the
cluster-constrained affinities as follows:

S = Norm(A - 8'). (12)

During the propagation process, the logits maps are weighted and averaged based on affinity val-
ues within the same cluster. This ensures that logits maps from different clusters do not interfere
with each other, while logits maps within the same cluster maintain consistent semantic predictions,
ultimately resulting in more accurate mask predictions.

3.4 INTEGRATION WITH UPSAMPLING MODULE

To recover the fine-grained details critical for accurate segmentation in high-resolution remote sens-
ing images, we inherit the upsample module from SegEarth-OV. Specifically, the visual feature map
P is first reshaped into a 2D feature representation P € R¥»*WexDP “which is subsequently up-
sampled to the original image resolution. The upsampled features are then computed with the text
embeddings T via cosine similarity, yielding an upsampled logits map:

Sup = sim(featup(P), T). (13)

And then, we interpolate the S to match the spatial size of S,,p, the two logits maps are then fused
via a weighted combination:

Stinal = B+ Interpolate(S') + (1 —75) - Sups (14)
where $ € [0, 1] is a fusion weight controlling the balance between CCE-refined logits map and
upsampled logits map. Interpolate is a bilinear interpolation algorithm.

Finally, we apply an argmax operation over Sy;yq; to produce the final segmentation mask:

pred = arg In]iiX Stinal- (15)

4 EXPERIMENTS

4.1 SETTINGS

Datasets and Evaluation Metric. We conducted comprehensive experiments on eight widely used
remote sensing semantic segmentation datasets. Among these, OpenEarthMap (Wang et al., [2023b),
LoveDA (Wang et al.l [2021), iSAID (Waqas Zamir et al., 2019), Potsdam (Gerke}, 2014} and Vai-
hingen (Rottensteiner et al., [2014) are primarily composed of satellite images, while UAVid (Yang
et al.,|2020), UDDS (Chen et al.,|2018)) and VDD (Pan et al.,2021) mainly consist of UAV images.
These datasets collectively cover diverse spatial resolutions, imaging conditions, and scene types,
thereby providing a comprehensive evaluation of model robustness. Each dataset contains multiple
foreground categories along with a background category. Please refer to appendix [A.] for detailed
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Table 2: Quantitative comparison results on eight remote sensing datasets. Bold fonts indicate the
optimal results, and underlined fonts indicate the suboptimal results. Avg. represents the average
mloU across the eight datasets.

Methods OpenEarthMap LoveDA  iSAID  Potsdam  Vaihingen = UAVid UDDS5 VDD ‘ Avg.
CLIP o) 12.0 12.4 75 145 103 109 95 142 | 114
MaskCLIP, ¢y, 25.1 27.8 14.5 317 24.7 286 324 329 | 272
SCLIP sccy s, 293 30.4 16.1 36.6 284 314 387 379 | 311
GEM cvpros) 33.9 316 17.7 36.5 24.7 334 412 395 | 323
ClearCLIPrccyvoas, 31.0 324 18.2 409 27.3 362 418 393 | 334
NACLIP 15, 357 315 19.5 402 28.8 375 421 409 | 345
ResCLIP cypp s, 342 312 20.0 426 282 37.6 423 403 | 346
ProxyCLIP|.ccy o) 35.0 335 20.7 44.1 27.8 2.1 465 443 | 368
CASS,cvpros, 34.6 34.0 20.6 429 315 386 390 409 | 353
SC-CLIP, 1y 21, 35.9 317 18.4 434 29.6 383 420 410 | 350
Tridentccyas, 35.1 315 20.0 44.4 277 418 441 457 | 363
CorrCLIP| v, 35.4 327 16.9 426 24.7 381 401 377 | 335
SegEarth-OV cypros) 398 369 21.7 47.1 29.1 42.5 50.6 453 39.1
) 40.1 395 23.6 479 345 444 518 484 | 413
AlignCLIP-D (Ours) (+0.3) (+2.6) (+19)  (+0.8) (#3.0) (19 (12) (2.8 | 22
: 40.1 395 23.4 478 34.6 444 518 481 | 412
AlignCLIP-S (Ours) (+0.3) (“2.6) L7 (0.7 @31 (1Y) (+1.2) (+2.8) | (+2.1)

dataset information. Following common practice in semantic segmentation, we report the mean In-
tersection over Union (mloU) as the primary evaluation metric, which provides a balanced measure
of classification accuracy across categories.

Baselines. We compared our AlignCLIP with a wide range of state-of-the-art training-free OVSS
methods, including CLIP (Radford et al.l 2021b), MaskCLIP (Zhou et al., [2022), SCLIP (Wang
et al., 2023a), GEM (Bousselham et al., [2024)), ClearCLIP (Lan et al.| [2024a)), NACLIP (Hajimir1
et al.}[2024)), ResCLIP (Yang et al.,|2024), ProxyCLIP (Lan et al., 2024c), CASS (Kim et al., 2025a)),
SC-CLIP (Bai et al.l [2025), Trident (Shi et al.| [2024) and CorrCLIP (Zhang et al., [2024a)). These
baselines represent different design paradigms such as attention modification and proxy-based adap-
tation. Furthermore, we evaluated SegEarth-OV, a method specifically tailored for remote sensing
that employs a trained upsampling module to recover the lost detailed information in feature maps. It
should be noted that the performance of reference-set-based methods (e.g., ReME) largely depends
on the scale and quality of the constructed reference set, making fair comparisons challenging.
Therefore, we do not report evaluations of these methods in the experimental section.

Implementation Details. We provide two model variants of AlignCLIP, i.e., AlignCLIP-D (in-
tegration with DINO) and AlignCLIP-S (integration with SAM). All experiments employ Open-
CLIP (Radford et al., [2021a) to extract both image and text features. Unless otherwise specified,
all models adopt ViT-B/16 as the default backbone. For the text encoder, we adopted a remote-
sensing-oriented prompt template, with the prompt list provided in appendix [A.2] For the image
encoder, we followed the settings of SegEarth-OV, input images were resized such that the long side
was 448, and inference was conducted using a sliding window of size 224 x 224 with a stride of
112. For the clustering algorithm, we simply used the K-Means algorithm (Ikotun et al.| [2023)) with
the number of clusters K. = 3 as default. For the specific balance ratios « and fusion weights g
of each dataset, please refer to appendix To isolate the effectiveness of our method, all post-
processing techniques (e.g., PAMR (Araslanov & Roth| [2020), denseCRF (Krdhenbiihl & Koltun,
2011)) were disabled. Experiments were conducted on 8 RTX 3090 GPUs, and all the code of our
implementation is based on mmsegmentation reposito

4.2 RESULTS

Quantitative Evaluation. As shown in Table 2] AlignCLIP achieves the overall best performance
across all eight remote sensing benchmarks, achieving a highest average mloU of 41.3%, which
outperforms all compared training-free OVSS methods. The improvements are particularly remark-

'https://github.com/open-mmlab/mmsegmentation
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Figure 3: Qualitative comparison of different training-free OVSS methods on eight remote sensing
datasets.

able on datasets such as LoveDA (+2.6%), Vaihingen (+3.1%), and VDD (+2.8%). On the re-
maining datasets, including OpenEarthMap, iSAID, Potsdam, UAVid, and UDDS5, our method also
achieves steady gains over existing approaches. Moreover, compared to SegEarth-OV, AlignCLIP
still achieves a substantial improvement (+2.2% on average). Furthermore, we observe that the
performance improvement varies significantly across different datasets. For instance, the Open-
EarthMap only achieves a 0.3% improvement compared to the baseline method. We attribute this
to the large scale of images in the OpenEarthMap dataset, which results in relatively small propor-
tions of certain categories (e.g., buildings) within the images. During the feature extraction process,
features of small objects are easily overlooked, which impairs the selection of visual prototype and
leads to a degradation in the logits map, resulting in limited performance gain. Interestingly, the
two model variants based on DINO and SAM yield comparable results, which demonstrates that
our method exhibits robust performance across the two mainstream VFM architectures. The above
experimental results demonstrate that our method achieves consistent improvements across different
scenarios and model architectures.

Qualitative Evaluation. As illustrated in Fig.[3] we present the qualitative visualization results of
AlignCLIP-D and other representative methods. The results demonstrate that compared with CASS,
Trident, CorrCLIP, and SegEarth-OV, our AlignCLIP generates more accurate and spatially coherent
segmentation results across various datasets. Existing methods often suffer from category confusion
(e.g., walls vs. roofs in VDD). While SegEarth-OV improves boundary smoothness, it still exhibits
matching errors in fine-grained structures. In contrast, AlignCLIP effectively mitigates cross-modal
mismatches, producing clearer regions and sharper object boundaries. For more qualitative compar-
isons, refer to Appendix [ATT]

4.3 ABLATION STUDIES

In this section, we conduct a comprehensive ablation study to evaluate the effectiveness of the pro-
posed components in AlignCLIP and to examine the impact of key hyperparameters. For clarity, the
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hyperparameter sensitivity analysis reports results on four representative datasets—OpenEarthMap
(OEM), Potsdam (PD), UAVid (UAV) and VDD, while the complete experimental results are pro-
vided in Appendix Unless otherwise specified, we use the AlignCLIP-D as the default model
for our primary analysis.

Component ablation analysis. We first investigate the effectiveness of our proposed SGA and
CCE modules in AlignCLIP through component-wise ablation, as reported in Table The 1%
row reports the performance of the baseline method SegEarth-OV, the 2"¢ and 3" rows report the
results of introducing the SGA and CCE modules respectively, while the 4** row reports the per-
formance of the complete model. We can find that: i) incorporating the SGA module alone yields
a 1.0% improvement, demonstrating that alleviating cross-modal mismatches can substantially en-
hance segmentation performance. ii) applying the CCE module alone provides only a modest 0.3%
gain, we attribute this to the fact that the CCE module operates on the aligned logits map produced
by the SGA module, and propagating optimization on a poorly aligned logits map offers limited
benefit.

Table 3: Ablation analysis of different components.

SGA  CCE | OpenEarthMap LoveDA  iSAID  Potsdam  Vaihingen @~ UAVid UDD5 VDD Avg.

- 39.8 36.9 21.7 47.1 29.1 42.5 50.6 453 39.1
v 39.8 37.8 22.7 472 323 433 50.6 46.8 40.1 11.0
v 39.8 34.9 21.1 47.3 31.6 432 51.2 45.8 39.4 103
v v 40.1 39.5 23.6 47.9 34.5 44.4 51.8 48.4 41.3 122

Effect of the balance ratios o. We further study the effect of the balance ratios «, which control
the relative contributions of visual and textual features, a larger o assigns greater weight to the
visual features. As shown in Table fal we observe that increasing o does not lead to a monotonic
performance gain, instead, the performance generally rises initially and then declines (e.g., when
a = 0.3 on the PD dataset). We attribute this phenomenon to the fact that, as the contribution of
patch features increases, the text features can better align with the image features. However, beyond
a certain threshold—determined by the feature distribution of the dataset, the image features begin
to compromise the general representational capacity of the text features.

Effect of the fusion weights 3. We further investigate the effect of the fusion weights 3, which
control the balance between our logits map and the upsampling logits map, a larger [ indicates
a smaller contribution of the upsampled logits map. As shown in Table @bl smaller values (e.g.,
B = 0.1) achieve the best performance on the OEM and PD datasets, while larger values (e.g.,
B = 0.3 and 8 = 0.4) yield better results on the UAV and VDD datasets. We attribute this result
to the differences in dataset scales, the OEM and PD datasets consist of large-scale satellite images,
where detail information is more likely to be lost during feature extraction, thus requiring more
contributions from the upsampled logits map to compensate. In contrast, UAV and VDD datasets
contain small-scale UAV aerial images, where detail information is relatively preserved, making the
contribution of the upsampled logits map relatively limited.

Table 4: Sensitivity analysis of various hyperparameters across different datasets.

(a) Balance ratios « (b) Fusion weights 3 (c) Cluster numbers K.
[} OEM PD UAV VDD B OEM PD UAV VDD K. OEM PD UAV VDD
0.1 40.1 47.5 44.0 47.7 0.1 40.1 47.9 434 46.7 3 40.1 47.9 44.4 48.4
0.2 40.1 47.6 44.4 48.4 0.2 40.0 47.8 44.0 479 6 40.1 47.6 442 48.2
03 398 479 44.3 48.3 03 396 47.5 44.4 48.4 9 40.0 47.6 44.2 48.1
04 393 47.8 439 479 04  39.1 46.9 44.4 48.4 12 40.0 47.6 44.1 48.0
0.5 388 47.7 433 47.2 0.5 38.6 46.0 443 48.2 15 40.0 47.5 44.0 479

Effect of the cluster number K .. We further analyze the effect of varying number of the clusters
K used in the CCE module (i.e., K. = 3,6,9, 12, 15), with the results summarized in Table[dc} The
results indicate that K. = 3 achieves the best performance across all datasets. Increasing the number
of clusters leads to a slight performance decrease, with a drop of no more than 0.5%, suggesting that
our method is not sensitive to the choice of K.. We attribute this to the fact that K. = 3 is sufficient
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for the model to distinguish irrelevant features, and further increasing the number of clusters does
not yield significant performance gains.

Effect of different top-n visual prototypes. We fur-

ther investigate the effect of varying the number of vi- OpenEarthMap =-LoveDA  <-iSAID =potsdam
sual prototypes on text embeddings. Specifically, we gy vaiingen  e-uavid +-ubDs VoD
compute the cosine distance between each patch fea- 50

ture and the text feature, select the n closest patch 45 ‘i‘i\\i;

features (i.e., n = 1,2,3,4,5,6), and average them &40 e
before fusing with the text features. As illustrated :_ézg —_—

in Fig. @] our experiments reveal that increasing the 2

number of patch features leads to a consistent per- 0 0 T
formance decline across all eight datasets. This indi- 15

cates that excessive prototypes not only fail to improve
patch—text alignment but also introduce mismatched
features, thereby increasing noise. Therefore, we se-
lect only the most similar feature to pursue the best
performance.

Top-n

Figure 4: The effect of different numbers
of top-n visual prototypes.

5 CONCLUSION

In this work, we presented AlignCLIP, a novel training-free framework for open-vocabulary seman-
tic segmentation in the remote sensing domain. We find that features of intra-class objects in remote
sensing tend to be compact. Based on this observation, we design two modules to alleviate cross-
modal mismatches between image patches and textual representations. Specifically, the Self-Guided
Alignment (SGA) module leverages the most reliable text-specific visual prototypes to refine textual
embeddings, and the Cluster-Constrained Enhancement (CCE) clusters semantically similar patches
while suppressing inter-cluster correlations, and updating logits map through constrained propaga-
tion. Extensive experiments across eight remote sensing benchmarks demonstrated that AlignCLIP
consistently outperforms state-of-the-art approaches, We hope this work can inspire future related
research and bring new possibilities to training-free open-vocabulary semantic segmentation in the
remote sensing domain.
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A APPENDIX

A.1 DATASET DESCRIPTION

OpenEarthMap contains 5,000 aerial and satellite remote sensing images, including 8 foreground
classes and 1 background class, with a spatial resolution of 0.25-0.5 meters, covering 97 regions in
44 countries / territories on six continents. we use the validation set for evaluation.

LoveDA includes remote sensing images with a spatial resolution of 0.3 meters covering multi-
ple cities, totaling 5,987 images. These images are annotated with 6 foreground classes and one
background class. we use the validation set for evaluation.

iSAID consists of images captured by the JL-1 satellite and GF-2 satellite. It includes 15 foreground
classes and one background class. Following the data processing pipeline of MMSegmentation, we
cropped the images into rectangles with a size of 896 and an overlapping area of 384. Finally, 33,978
images were generated for training and 11,644 for validation. In this study, the validation set was
used for evaluation.

Potsdam comprises 38 image patches with a spatial resolution of 0.05 meters, with an average size
of 6,000x6,000 pixels. It includes 5 foreground categories and 1 background category. Following
the data processing pipeline of MMSegmentation, we used the validation set for evaluation.

Vaihingen comprises 33 image patches with a spatial resolution of 0.09 meters, with an average size
of 2,494x2,064 pixels. It includes 5 foreground categories and 1 background category. Following
the data processing pipeline of MMSegmentation, we used the validation set for evaluation.

UAVid is a 4K semantic segmentation video dataset for urban scenes, which contains a large number
of street views and is annotated with 6 foreground classes and 1 background class. In this study, its
test set was used for evaluation.

UDDS consists of images collected by unmanned aerial vehicles (UAVs), including 4 foreground
classes and 1 background class. In this study, we used its validation set for evaluation.

VDD is a collection of UAV images featuring diverse scenes, camera angles, and varying
weather/lighting conditions. It provides high-resolution annotated images at the 400-pixel scale.
With 6 foreground classes and 1 background class, its test set was used for evaluation in this study.

A.2 REMOTE SENSING PROMPT TEMPLATE

To obtain more effective text embeddings for remote sensing scenarios, we carefully designed 80
prompt templates tailored to remote sensing scenarios to replace the prompt templates oriented to
natural images. As shown in Table[3] five representative examples are presented. For each category,
these prompt templates are used to generate corresponding text features, which are then averaged to
obtain a semantically rich category feature representation for semantic segmentation.

Table 5: Examples of remote sensing prompt templates for generating text descriptions.

Remote sensing prompt templates

a low-quality aerial image of [class].
a cropped remote sensing image of [class].
a remote sensing interpretation map of [class].
a satellite image containing hardly recognizable [class].
a low-resolution remote sensing image of [class].

A.3 HYPERPARAMETER SETTING

We provide the detailed hyperparameter settings for each dataset corresponding to the two model
variants, i.e., AlignCLIP-D and AlignCLIP-S, as shown in Table @ The balance ratio o denotes
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the contribution of text features and visual features, while the fusion weight 3 is used to control the
fusion weight between the CCE-refined logits and the upsampled logits.

Table 6: Hyperparameter settings of AlignCLIP across different datasets.

hyperparameters ‘ OpenEarthMap  LoveDA  iSAID  Potsdam  Vaihingen UAVid UDDS VDD

Integration with DINO
@ 0.1 0.7 0.5 0.3 0.3 0.2 0.3 0.2
B 0.1 0.2 0.2 0.1 0.5 0.3 0.2 0.3
Integration with SAM
o 0.1 0.5 0.5 0.3 0.3 0.2 0.3 0.2
‘ 0.1 0.2 0.2 0.2 0.5 0.4 0.2 0.4

A.4 SENSITIVITY ANALYSIS DETAILS

In this section, we present the detailed sensitivity analysis of the hyperparameters involved in the
two model variants (i.e., AlignCLIP-D and AlignCLIP-S) across eight datasets, as shown in Table[7}
O Specifically, the balance ratios < is used to control the contribution of text features and visual
features in the SGA module (see Sec. [3.2), the fusion weights 3 is employed to control the fusion
balance between the CCE-refined logits map and the upsampled logits map (see Sec. [3.4), and K.
represents the number of clusters in the clustering algorithm within the CCE module, which is used
to control the granularity of segmentation refinement (see Sec. [3.3).

Table 7: Sensitivity analysis of different balance ratios «v across different datasets.

o ‘ OpenEarthMap  LoveDA  iSAID  Potsdam  Vaihingen @ UAVid UDDS5 VDD ‘ Avg.

Integration with DINO
0.1 40.1 36.2 21.7 475 327 44.0 515 47.7 40.2
0.2 40.1 373 223 47.6 33.9 44.4 51.7 48.4 40.7
0.3 39.8 38.2 229 47.9 34.5 443 51.8 483 40.9
0.4 39.3 38.8 234 47.8 344 439 51.8 479 40.9
0.5 38.8 39.2 23.6 47.7 34.0 433 51.7 47.2 40.7
Integration with SAM
0.1 40.1 36.1 21.6 475 327 44.0 514 474 40.1
0.2 40.0 37.2 222 477 33.9 44.4 51.7 48.1 40.7
0.3 399 38.1 227 47.8 34.6 44.4 51.8 48.1 40.9
0.4 39.3 38.8 232 47.8 34.5 439 51.8 47.7 40.9
0.5 38.7 39.2 234 47.8 34.1 434 51.7 47.0 40.7

Table 8: Sensitivity analysis of different fusion weights /3 across different datasets.

B ‘ OpenEarthMap  LoveDA  iSAID  Potsdam  Vaihingen = UAVid UDDS5 VDD ‘ Avg.

Integration with DINO
0.1 40.1 38.5 222 47.9 31.1 434 51.4 46.7 40.1
0.2 40.0 39.5 23.6 47.8 325 44.0 51.8 479 40.9
0.3 39.6 39.3 23.6 475 334 44.4 51.8 484 41.0
0.4 39.1 38.4 222 46.9 34.1 44.4 51.4 48.4 40.6
0.5 38.6 37.4 20.4 46.0 34.5 443 50.9 48.2 40.0
Integration with SAM
0.1 40.1 38.4 22.1 47.8 31.1 434 51.4 46.6 40.1
0.2 40.0 39.5 234 48.0 325 44.0 51.8 47.7 40.9
0.3 39.6 39.3 234 47.8 334 44.4 51.8 48.1 41.0
0.4 39.1 38.5 22.1 47.2 34.1 4.5 51.4 48.2 40.6
0.5 38.6 37.4 20.4 46.3 34.6 44.4 50.9 479 40.1
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Table 9: Sensitivity analysis of different cluster numbers K. across different datasets.

K. ‘ OpenEarthMap  LoveDA  iSAID  Potsdam  Vaihingen = UAVid UDDS VDD ‘ Avg.

Integration with DINO
3 40.1 39.5 23.6 479 34.5 444 51.8 48.4 41.3
6 40.1 393 235 47.6 34.4 442 51.8 48.2 41.1
9 40.0 39.2 23.5 47.6 343 442 51.7 48.1 41.1
12 40.0 39.1 23.4 47.6 34.1 44.1 51.6 48.0 41.0
15 40.0 39.0 233 475 34.1 44.0 51.6 479 41.0
Integration with SAM
3 40.1 39.5 234 47.8 34.6 444 51.8 48.1 41.2
6 40.1 393 23.4 47.7 34.4 443 51.7 48.1 41.1
9 40.0 39.2 233 47.6 343 442 51.6 48.0 41.0
12 40.0 39.1 233 47.6 342 442 51.6 479 41.0
15 40.0 39.0 233 47.6 34.1 44.1 51.5 47.8 40.9

A.5 SEAMLESS INTEGRATION INTO OTHER METHODS

In this section, we further validate the generality of the proposed approach by integrating the SGA
module into other representative frameworks and conducting comprehensive evaluations on eight
remote sensing benchmark datasets. Specifically, we incorporate SGA as an independent, plug-and-
play component into existing methods. Since SGA aligns only the text embeddings without altering
the remaining architecture, it can be seamlessly integrated into a variety of CLIP-based frameworks.
For the experimental setup, we select ProxyCLIP, SC-CLIP, and CorrCLIP as baseline methods,
with the hyperparameter o uniformly set to 0.1.

As shown in Table m The experimental results demonstrate that, across different baseline models,
incorporating our method enables the text embeddings to achieve more precise alignment with the
patch features. This finding not only confirms that enhancing image—text alignment can significantly
improve semantic segmentation performance, but also highlights the generality of the SGA module,
which can be seamlessly integrated into other CLIP-based frameworks.

Table 10: The proposed SGA module is integrated as a plugin into other methods.

Methods ‘ OpenEarthMap  LoveDA  iSAID  Potsdam  Vaihingen UAVid UDDS VDD ‘ Avg.

ProxyCLIP 35.0 33.5 20.7 44.1 27.8 42.1 46.5 44.3 36.8
+SGA 38.6 34.2 21.6 44.6 32.7 424 48.3 453 38.5 11.7

SC-CLIP 359 31.7 18.4 434 29.6 383 42.0 41.0 35.0
+SGA 39.8 32.8 19.6 43.6 31.6 39.6 46.0 423 36.9 11.9

CorrCLIP 354 32.7 16.9 42.6 24.7 38.1 40.1 37.7 33.5
+SGA 36.6 335 18.6 43.8 27.9 39.9 41.1 39.6 35.1 11.6

A.6 COMPUTATIONAL ANALYSIS

In this section, we conduct a computational analysis to validate the efficiency and practicality of
our proposed method. Specifically, we report the average inference time per image and memory
consumption of the baseline method and our two model variants across eight datasets using 8§ RTX
3090 GPUs, as presented in Table[TT] It can be observed that when solely adopting the SGA module,
our method incurs nearly negligible overhead in terms of inference time and memory consumption
compared to SegEarth-OV, while achieving a 1% performance improvement. When solely using
the CCE module, the inference time increases by an insignificant few milliseconds, although the
memory consumption exhibits a relatively more noticeable increase, the combined use of the CCE
module with the SGA module yields a 2.2% performance gain, which we consider a favorable trade-
off.
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Table 11: Computational analysis of AlignCLIP.

Methods ‘ Time(ms/image) |  Memory(MB) | ‘ Performance(mlIoU) 1

Trident 89 2514 36.3

CorrCLIP 97 2890 335

SegEarth-OV | 12 1392 | 39.1
Integration with DINO

+SGA 12 1392 40.1

+CCE 16 2661 39.4

Ours 16 2661 413
Integration with SAM

+SGA 12 1392 40.1

+CCE 18 2782 39.3

Ours 18 2782 412

A.7 RESULTS ON NATURAL IMAGES

In this section, we perform cross-domain validation on natural images. Specifically, we select five
representative natural image segmentation datasets (i.e., Cityscapes, ADE20k, COCO-Stuff, Con-
text59, and VOC20), and integrate our SGA module into three state-of-the-art (SOTA) methods
for natural images. The experimental results are presented in Table [I2] It can be observed that
all three methods exhibit consistent performance degradation, which is consistent with our expec-
tations. These results demonstrate that natural images with scattered intra-class features cannot
alleviate cross-modal mismatch by searching for representative visual prototypes. In contrast, our
method achieves SOTA performance in remote sensing scenarios with compact intra-class features,
further validate the rationality of our motivation.

Table 12: Quantitative comparison results on natural images.

Methods | Cityscapes ~ADE20k  Stuff  Context59 ~ VOC20 | Avg.
SC-CLIP 41.0 20.1 26.6 40.1 84.3 424
+SGA 38.5 20.0 26.4 40.0 77.9 40.6
Trident 429 21.9 283 422 84.5 44.0
+SGA 389 21.1 277 421 82.0 424
CorrCLIP 49.9 26.9 31.6 48.8 88.8 492
+SGA 4738 26.1 31.1 472 85.8 476

A.8 COMBINED WITH POST-PROCESSING

In this section, we present the quantitative results of our method when combined with a post-
processing technique. In semantic segmentation, post-processing typically refines the predicted
masks by leveraging low-level cues (e.g., color consistency and spatial proximity) through iterative
optimization, and it generally leads to performance improvements. In our experiments, we apply
denseCRF to the logits maps produced by our method. As shown in Table[T3] all datasets exhibit
consistent performance gains, resulting in an overall improvement of 0.9% in the average mloU.

Table 13: Quantitative comparison results based on post-processing.

Methods ‘OpenEarthMap LoveDA  iSAID  Potsdam  Vaihingen = UAVid  UDDS5 VDD‘ Avg.

Ours 40.1 39.5 23.6 47.9 34.5 44.4 51.8 48.4 41.3
+denseCRF 40.9 40.2 24.3 48.7 35.1 45.3 52.9 499 | 42.2 109
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A.9 VISUALIZATION ANALYSIS OF DIFFERENT IMAGE DOMAINS

In this section, we visualize the visual features of objects from several remote sensing and natural
image datasets. As shown in Fig.[J] we extract image features using CLIP-B/16 and project them
into a two-dimensional space using t-SNE algorithm. The results reveal that, in the natural-image
domain, features from different categories tend to overlap substantially, leading to ambiguous class
boundaries. In contrast, in the remote-sensing domain, features belonging to the same class form no-
tably more compact clusters and exhibit much less confusion with other categories. This observation
provides additional evidence supporting the validity and motivation of our approach.

® house
® tree
® road
« @ grass

(a) Natural Image

©® building

building
tree

car
vegetation

building
free
road

® grass

Figure 5: Visualization of intra-class features in different image domains.

A.10 PSEUDO CODE OF OUR ALIGNCLIP

To clearly present the implementation details of our method and ensure reproducibility, we provide
pseudo code for the two core modules of AlignCLIP, i.e., SGA and CCE, in Algorithm [T] and Al-
gorithm [2] respectively. In addition, the full implementation of our method (based on PyTorch),
is provided in the supplementary materials, and the complete code will be publicly released after
curation.
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Algorithm 1 Pseudo code for Self-Guided Alignment in a PyTorch-like style.

def self guided_alignment (image_features, query_features, visual_query_alpha):

mon

Self-Guided Alignment (SGA) module.

Args:
image_features: [num_patches, feature_dim]
query_features: [num_queries, feature_dim]
visual_query_alpha: balance ratio (071)

Returns:
Aligned query features: [num_queries, feature_dim]

mon

num_queries = len(query_features)
# S arity query features
similarity = (image_features @ query_ features.T) .permute(1l,0) .softmax (dim=-1)
_, index = similarity.topk(l, dim=-1)
# Gather top pa
visual_query_features = torch.gather (
image_features.unsqueeze (0) .repeat (num_queries, , 1)y,
dim=1,
index=index.unsqueeze (-1) .repeat (1, 1, image_features.shape[-1])

) .mean (dim=1)

featt

se w n ires
aligned_query_features = visual_query_alpha * visual_query_features + \
(1 - visual_query_lambda) »* query_features
return aligned_query_features / aligned_query_features.norm(dim=-1, keepdim=True)

visue

Algorithm 2 Pseudo code for Cluster-Constrained Enhancement in a PyTorch-like style.

def cluster_constrained_enhancement (vfm_features, logits_map, cluster_num):

mon

Cluster—Constrained Enhancement (CCE) Module.

Args:
vim features: Feature map for clustering, shape [num _patches, feature_dim].
logits_map: original logits map, shape [num_patches, num_classes].
cluster_num: Number of clusters to group patches.

Returns:
refined logits map: [num_patches, num_classes].

mon

# ster the es

_, cluster_ids = perform_clustering(vfm_features, n_clusters=cluster_num)

Clu

vim_attn = vfm_features @ vfm_features.T

% Calculate masked attn based on clustering results
masked_attn = torch.zeros_like (vfm_attn)

for cluster_id in np.unique (cluster_ids):

# C. e mask for c rent cl er

mask = (cluster_ids == cluster_id)

# Aggregate attention within cluster

masked_attn[mask] = vfm_attn[mask, :] * mask[None, :] #

#Propagate attention to refine logits map

refined_logits = propagate_aff (logits_map, aff=final_attn)

return refined_logits

A.11 ADDITIONAL QUALITATIVE RESULTS

We provide additional visualization analysis results for eight datasets to further validate the effec-
tiveness of our proposed method, as illustrated in Fig.
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Figure 6: Qualitative comparison of different training-free OVSS methods on OpenEarthMap.
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Figure 7: Qualitative comparison of different training-free OVSS methods on LoveDA.
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Figure 8: Qualitative comparison of different training-free OVSS methods on iSAID.
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Figure 9: Qualitative comparison of different training-free OVSS methods on Potsdam.
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Figure 10: Qualitative comparison of different training-free OVSS methods on Vaihingen.
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Figure 11: Qualitative comparison of different training-free OVSS methods on UAVid.
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Figure 12: Qualitative comparison of different training-free OVSS methods on UDDS5.
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Figure 13: Qualitative comparison of different training-free OVSS methods on VDD.
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