

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ALIGNCLIP: SELF-GUIDED ALIGNMENT FOR RE- MOTE SENSING OPEN- VOCABULARY SEMANTIC SEG- MENTATION

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Open-Vocabulary Semantic Segmentation (OVSS) for remote sensing imagery plays a crucial role in applications such as land cover mapping and environmental monitoring. Recently, Contrastive Language-Image Pre-training (CLIP) has advanced the *training-free* paradigm of OVSS while also inspiring its exploration in the remote sensing domain. However, directly applying CLIP to remote sensing leads to cross-modal mismatches. Prevalent methods focus on exploring attention mechanism of CLIP visual encoder or introducing vision foundation models to obtain more discriminative feature, but they often overlook the alignment between patches and textual representations. To address this issue, we propose a *training-free* framework named **AlignCLIP**. We find that, objects of the same category tend to exhibit a more compact distribution in remote sensing, this enables a single visual feature to effectively represent all objects within the category. Based on this observation, we design the *Self-Guided Alignment (SGA)* module, which leverages the most reliable text-specific visual prototypes to refine the text embeddings. To mitigate interference among irrelevant features, we further introduce the *Cluster-Constrained Enhancement (CCE)* module, which clusters semantically similar patch features, suppresses inter-cluster correlations, and updates the logits map via a constraint propagation mechanism. Experiments on eight remote sensing benchmarks demonstrate that AlignCLIP consistently outperforms state-of-the-art *training-free* OVSS methods, achieving an average gain of +2.2 mIoU and offering a robust adaptive solution for open-vocabulary semantic segmentation in remote sensing. All code will be released.

1 INTRODUCTION

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Open-vocabulary semantic segmentation (OVSS) in remote sensing imagery serves as a fundamental task in land cover mapping and environmental monitoring. Using arbitrary textual descriptions, it enables pixel-level classification of remote sensing images. The remarkable success of Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021b) in zero-shot recognition has inspired the development of OVSS. Most prior studies have focused on fine-tuning CLIP (Liang et al., 2023; Peng et al.; Wei et al., 2023; Peng et al., 2025; Zeng et al., 2024; Lin et al., 2024; Zhang et al., 2025), but their progress is limited by the demand for large annotated datasets. Moreover, remote sensing imagery often contains categories beyond the training set due to seasonal changes, land use evolution, and geographic diversity, making these approaches difficult to generalize. Recently, several works (Wang et al., 2023a; Yang et al., 2024; Zhou et al., 2022; Lan et al., 2024c) have begun to explore *training-free* paradigms in natural image domain, which achieve OVSS by extracting image patches and textual representations and directly performing cross-modal matching. This paradigm has further inspired its exploration in the remote sensing domain.

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Prevalent *training-free* approaches in natural image domain primarily focus on the image modality, and they explore the attention mechanism of the CLIP visual encoder or integrate advanced vision foundation models (VFM) to obtain more discriminative features (Lan et al., 2024b; Shao et al., 2024; Kim et al., 2025b; Barsellotti et al., 2024). However, these methods largely overlook the alignment between image patches and textual representations. **Most existing open-vocabulary segmentation methods perform mask-category recognition by aligning region-level features with**

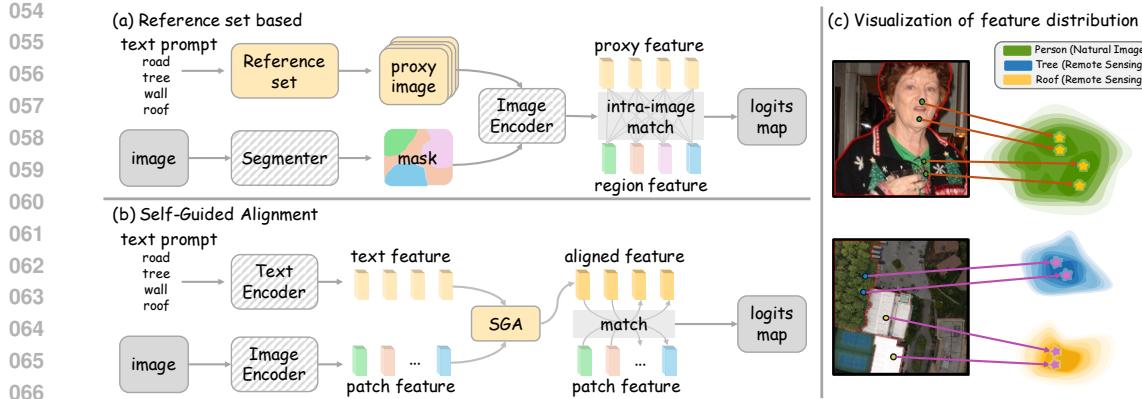


Figure 1: (a) **Reference-set** paradigm primarily focuses on constructing an accurate image–text matching set and performing matching based on proxy images. (b) **Our SGA module** refines the textual representation by selecting the most reliable visual prototypes from patch features and encourages mismatched patches to align with their corresponding textual representations. (c) We present **feature visualization** for both natural and remote sensing images and observe that, compared with natural images, objects of the same category in remote sensing imagery exhibit a more compact distribution.

CLIP-based textual embeddings. Although CLIP demonstrates remarkable generalization capabilities on downstream classification tasks, it often suffers from spatial ambiguity and co-occurrence-induced object confusion, which stem from its holistic pre-training objective and lead to cross-modal mismatches (Wang et al., 2024). To address this issue, another line of research leverages external image–text reference sets (Xuan et al., 2025; Wang et al., 2024), specifically, these approaches transform text–image matching into intra-image matching by retrieving proxy images associated with category texts, as shown in Fig. 1(a), thereby mitigating cross-modal discrepancies. However, they heavily depend on the construction of cumbersome reference sets and exhibit limited generalization to unseen scenarios.

In this work, we observe that compared with natural images, the feature distribution within the same category in remote sensing images is more compact, as illustrated in Fig. 1(c). Intuitively, remote sensing images are captured from a much farther distance than natural images, which dilutes the fine details of objects and thus results in more uniform features. On the other hand, the fixed top-down viewing angle of remote sensing images also contributes to the high similarity of intra-class features (e.g., all water appear blue, and all buildings are represented by rooftops). To further validate this observation, we calculated the intra-class feature similarity of objects in two image domains (*i.e.*, natural image and remote sensing) and report the mean and standard deviation of the similarity, as presented in Table 1. We can find that the mean intra-class feature similarity of remote sensing images is significantly higher than that of natural images, with a smaller standard deviation. This indicates a more compact feature distribution, thereby verifying the rationality of our observation.

Based on this observation, we naturally conceive a solution: selecting the features most similar to the given text features from the image feature space as text-specific visual prototypes, and aligning the text features with the visual prototypes. Due to the high compactness of intra-class visual features in the remote sensing, this alignment enables text features to match their corresponding visual features more stably and accurately. Building upon this, we proposed a simple yet effective *training-free* framework, termed **AlignCLIP** to mitigate cross-modal mismatches in OVSS of remote sensing imagery. We designed two key modules: (a) *Self-Guided Alignment (SGA)*, which leverages the most reliable text-specific visual prototypes of the target image to refine textual embeddings, thereby bringing mismatched patches closer to their correct textual semantics. (b) *Cluster-*

Table 1: Statistics of intra-class feature similarity in natural images and remote sensing.

Image domain	#Pairs	Similarity
Natural Image	331,998	0.67 \pm 0.10
Remote Sensing	342,799	0.89 \pm 0.05

108 *Constrained Enhancement (CCE)*, which clusters semantically similar patches while suppressing
 109 inter-cluster correlations, and updating logits map through constrained propagation.
 110

111 Notably, AlignCLIP operates in a fully *training-free* manner, thereby eliminating the need for labor-
 112 intensive reference sets construction. By relying solely on information inherent to the target image,
 113 it further ensures strong generalization across diverse scenarios. Extensive evaluations on eight
 114 remote sensing benchmarks demonstrate that AlignCLIP consistently outperforms state-of-the-art
 115 *training-free* OVSS methods, highlighting its robustness and adaptability to novel scenarios and
 116 unseen categories.
 117

The main contributions of our work are as follows:

- 118 • We analyze the limitations of existing reference sets-based methods, and observe that ob-
 119 jects of the same category in remote sensing imagery exhibit concentrated feature distribu-
 120 tion. Leveraging this characteristic, we mitigate cross-modal mismatches while obviating
 121 the need for cumbersome reference sets construction.
- 122 • We propose AlignCLIP, a fully *training-free* framework that alleviates cross-modal mis-
 123 matches. The framework incorporates the *Self-Guided Alignment (SGA)* module, which re-
 124 fines text embeddings using reliable text-specific prototypes, and the *Cluster-Constrained*
 125 *Enhancement (CCE)* module, which clusters image patches and suppresses the correlations
 126 between different clusters.
- 127 • Extensive experiments on eight remote sensing benchmarks demonstrate that AlignCLIP
 128 consistently outperforms state-of-the-art *training-free* OVSS methods, achieving both qual-
 129 itative and quantitative improvements and exhibiting strong generalization to diverse sce-
 130 narios and unseen categories.

132 2 RELATED WORK

133 **Vision-Language Models.** Vision-Language Models (VLMs) (Jia et al., 2021; Yuan et al., 2021)
 134 aim to align visual and textual representations within a shared semantic space, enabling zero-shot
 135 and open-vocabulary recognition. A landmark advancement in this field is CLIP (Radford et al.,
 136 2021b), a dual-encoder trained contrastively on image–text pairs with strong downstream general-
 137 ization. However, CLIP is optimized for image-level classification, and its patch features are subop-
 138 timal for dense prediction (Cheng et al., 2022; Xu et al., 2022) due to limited spatial awareness and
 139 the absence of explicit spatial modeling. This issue is more prominent in the remote sensing domain,
 140 where high-resolution scenes exhibit fine spectral-textural details and large-scale layouts distinctly
 141 different from those of natural images (Cao et al., 2024; Zhang et al., 2025; Dutta et al., 2025; Fu
 142 et al., 2025; 2024). Although some works (*e.g.*, RemoteCLIP (Liu et al., 2024), GeoRSCLIP (Zhang
 143 et al., 2024b)) have been adapted to remote sensing via prompt engineering or fine-tuning, such
 144 approaches typically require task-specific retraining or substantial labeled data, constraining their
 145 practicality for open-vocabulary semantic segmentation.

146 **Vision Foundation Models.** Vision Foundation Models (VFM) (Caron et al., 2021; Oquab et al.,
 147 2023; Siméoni et al., 2025; Kirillov et al., 2023; Ravi et al., 2024) provide general visual repre-
 148 sentations across a wide range of tasks. One category of such models is DINO (Caron et al., 2021),
 149 which learns semantically rich and spatially coherent features via self-distillation. It can localize ob-
 150 jects without explicit supervision, making it highly suitable for dense prediction tasks. Additionally,
 151 SAM (Kirillov et al., 2023) demonstrates strong image segmentation capabilities, supporting various
 152 segmentation prompts (*e.g.*, points, boxes, and masks) with excellent cross-domain generalization
 153 performance. In this work, we leverage the representations from VFM to cluster semantically sim-
 154 ilar features and utilize inter-cluster correlations to update the logits map.

155 **Training-free OVSS.** *Training-free* open-vocabulary semantic segmentation (OVSS) labels pixels
 156 for arbitrary categories at inference by matching visual and textual embeddings from VLMs like
 157 CLIP via cross-modal similarities. prevalent works improve spatial awareness via attention modifi-
 158 cation (Yang et al., 2024; Wang et al., 2023a) or by integrating VFM such as SAM (Zhang et al.,
 159 2024a; Lan et al., 2024c), but they overlook the correlations between patches and text representa-
 160 tions. ReMe (Xuan et al., 2025) mitigate mismatches using curated reference sets, which are costly
 161 and difficult to generalize. In the remote sensing domain, SegEarth-OV (Li et al., 2025) represents
 the first *training-free* OVSS framework, which introduces an upsampling module to adapt CLIP, but

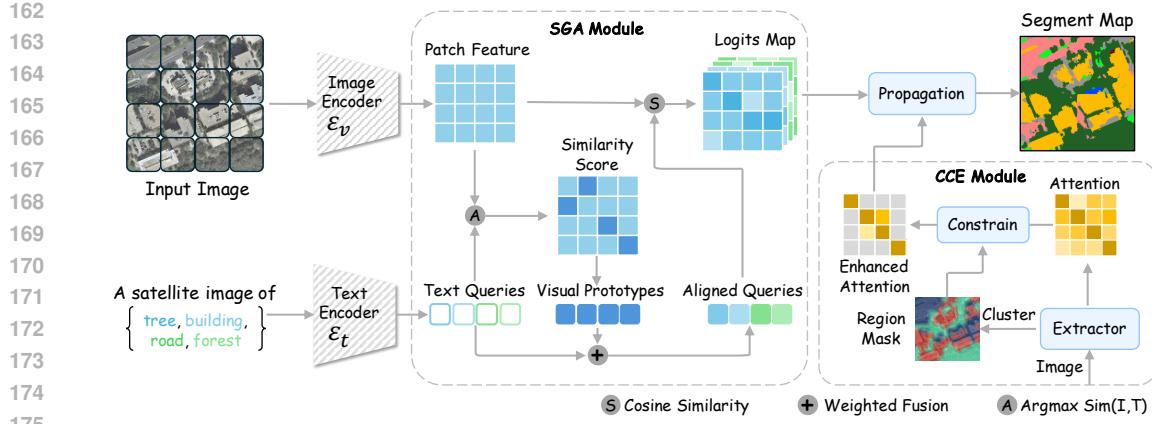


Figure 2: **The overall framework of AlignCLIP.** We propose a simple yet effective approach to alleviate cross-modal mismatches. We design two core modules (a) *Self-Guided Alignment (SGA)*, which refines textual embeddings using the most reliable text-specific visual prototypes. (b) *Cluster-Constrained Enhancement (CCE)*, which clusters semantically similar patches while suppressing inter-cluster correlations and updates the logits map through constrained propagation.

still encounter cross-modal mismatches. Our work inherits the upsampling module of SegEarth-OV and designs two modules to alleviate the cross-modal mismatches, leveraging the characteristic of concentrated intra-class feature distribution in remote sensing imagery.

3 METHODOLOGY

In this section, we first introduce a preliminary of our framework in Sec. 3.1. Then, we introduce the *Self-Guided Alignment (SGA)* module in Sec. 3.2 and the *Cluster-Constrained Enhancement (CCE)* module in Sec. 3.3. Finally, we detail the integration with the upsampling module in Sec. 3.4. The overall framework is shown in Fig. 2.

3.1 PRELIMINARY

Given a remote sensing input image $I \in \mathbb{R}^{H \times W \times 3}$ and an open set of textual category names $\mathcal{T} = \{t_1, t_2, \dots, t_K\}$, where H, W denote the height and width of an image, K denotes the number of classes. The objective of open-vocabulary semantic segmentation (OVSS) is to assign each pixel in I to one of the categories in \mathcal{T} .

In the *training-free* setting, recent works adopt large-scale vision-language models (e.g., ViT-based CLIP) as the backbone for feature extraction and cross-modal matching. Specifically, the frozen CLIP image encoder \mathcal{E}_v divides the input image I into a grid of image patches and outputs a set of patch-level visual embeddings. For brevity, we omit the $[CLS]$ token here:

$$\mathbf{P} = [\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_N] \in \mathbb{R}^{N \times D}, \quad (1)$$

where D denotes the embedding dimension and $N = H_p \times W_p$ depends on the encoder's patch resolution. However, the CLIP model has limited capability in spatial awareness, previous studies have modified the attention score calculation in the last layer of self-attention in the CLIP visual encoder from *query-to-key* to *query-to-query* or *key-to-key*, which has significantly improved the performance of CLIP's dense prediction. Following the practice of prior works (Li et al., 2025), we modified the calculation of the self-attention scores in the last layer of the visual encoder:

$$MSA(\mathbf{q}, \mathbf{k}, \mathbf{v}) = \sum_{i \in \{\mathbf{q}, \mathbf{k}, \mathbf{v}\}} \text{softmax}\left(\frac{\mathbf{i} \cdot \mathbf{i}^T}{\sqrt{d}}\right) \cdot \mathbf{v}, \quad (2)$$

where \mathbf{q} , \mathbf{k} and \mathbf{v} represent the *query*, *key*, and *value* matrices in self-attention, respectively, and d denotes the dimension of attention features. Meanwhile, to obtain more accurate text embeddings,

216 we adopt a prompt template that is more suitable for remote sensing scenarios (*e.g.*, “a satellite
217 image of [CLS].”) to incorporate contextual information, as opposed to the prompt template used
218 for natural images. Subsequently, each text prompt is processed by the CLIP text encoder \mathcal{E}_t to
219 obtain its corresponding textual embedding:

$$220 \quad \mathbf{T} = [\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_K] \in \mathbb{R}^{K \times D}. \quad (3)$$

222 Finally, we compute the logits map between each patch-level visual embedding $p_i \in \mathbf{P}$ and all
223 textual embeddings \mathbf{T} using cosine similarity. The segmentation mask is obtained by applying the
224 **argmax** operation to logits map:

$$226 \quad \mathcal{S} = \text{sim}(\mathbf{P}, \mathbf{T}), \quad \mathcal{S} \in \mathbb{R}^{N \times K}. \quad (4)$$

228 3.2 SELF-GUIDED ALIGNMENT

230 In the process of cross-modal matching, the inherent gap between text and image leads to cross-
231 modal mismatches. To address this, we design a *Self-Guided Alignment (SGA)* module, which ex-
232 ploits the intrinsic visual cues from the reliable text-specific visual prototypes to refine the textual
233 embeddings. Formally, for each textual embedding $\mathbf{t}_k \in \mathbf{T}$, we compute its cosine similarity with
234 all patch-level visual embeddings $\mathbf{p}_i \in \mathbf{P}$:

$$235 \quad s_{i,k} = \frac{\mathbf{p}_i^\top \mathbf{t}_k}{\|\mathbf{p}_i\| \|\mathbf{t}_k\|}. \quad (5)$$

237 We then select the most similar patch embedding \mathbf{p}_{i^*} for category k :

$$239 \quad i^* = \arg \max_i s_{i,k}. \quad (6)$$

241 The selected patch embedding serves as a text-specific visual prototype directly extracted from the
242 target image. **Owing to the high intra-class compactness observed in remote sensing imagery, this**
243 **visual prototype naturally clusters with other features of the same category in the feature space.**
244 By aligning the text embedding \mathbf{t}_k with this prototype \mathbf{p}_{i^*} , we effectively reduce their feature space
245 discrepancy, enabling the aligned text embedding \mathbf{t}'_k to match its corresponding visual features more
246 stably and accurately:

$$246 \quad \mathbf{t}'_k = (1 - \alpha) \cdot \mathbf{t}_k + \alpha \cdot \mathbf{p}_{i^*}, \quad (7)$$

247 where $\alpha \in [0, 1]$ is a balancing hyperparameter controlling the contribution of textual and visual
248 components.

250 Finally, the logits map for segmentation is computed by replacing the original textual embeddings
251 with the aligned embeddings $\mathbf{T}' = \{\mathbf{t}'_1, \dots, \mathbf{t}'_K\}$:

$$252 \quad \mathcal{S}' = \text{sim}(\mathbf{P}, \mathbf{T}'). \quad (8)$$

254 Notably, since the prototypes are derived on-the-fly from the target image, the SGA module naturally
255 adapts to new scenes without requiring any re-training or prebuilt reference sets.

257 3.3 CLUSTER-CONSTRAINED ENHANCEMENT

259 Although the SGA module mitigates cross-modal mismatches by refining text embeddings with text-
260 specific visual prototypes, the image patches may still be disturbed by irrelevant patches. To address
261 this issue, we introduce the *Cluster-Constrained Enhancement (CCE)* module, which aggregates
262 semantically similar patches, suppresses interactions between irrelevant patches, and updates logits
263 map through constrained propagation.

264 Specifically, we employ a VFM visual transformer (*e.g.*, DINO, SAM) to extract a high discrim-
265 inative visual feature map $\mathbf{F} \in \mathbb{R}^{H_p \times W_p \times D}$ from the target image. We reshape \mathbf{F} into N patch
266 embeddings $\{\mathbf{f}_1, \dots, \mathbf{f}_N\}$ and apply a clustering algorithm:

$$267 \quad \{\mathcal{C}_m\}_{m=1}^{K_c} = \text{Clustering}(\{\mathbf{f}_i\}_{i=1}^N), \quad (9)$$

268 where \mathcal{C}_m denotes the set of patch indices assigned to cluster m , and K_c is the total number of
269 clusters—a hyperparameter controlling the granularity of segmentation refinement.

In addition to visual features, we also extract the self-attention matrix $\mathbf{A} \in \mathbb{R}^{N \times N}$ from the final layer of the Vision Transformer, which encodes pairwise affinities between patches. However, directly applying this matrix to propagate information over the logits map can be detrimental, as the affinities between different semantic categories are generally non-zero, thereby introducing undesired cross-category interactions. To address this issue, we employ clustering results to mask the attention matrix, we retain affinities between patches belonging to similar categories while setting the affinities between dissimilar categories to zero. Specifically, we construct a binary clustering mask matrix $\mathbf{M} \in \{0, 1\}^{N \times N}$ as follows:

$$\mathbf{M}_{ij} = \begin{cases} 1, & \text{if } \mathcal{G}(i) = \mathcal{G}(j), \\ 0, & \text{otherwise,} \end{cases} \quad (10)$$

where $\mathcal{G}(i)$ denotes the cluster assignment of patch i . The masked affinity matrix $\tilde{\mathbf{A}}$ is then refined as:

$$\tilde{\mathbf{A}} = \mathbf{A} \odot \mathbf{M}, \quad (11)$$

where \odot denoting element-wise multiplication. In this way, affinities are preserved only within the same cluster, while inter-cluster correlations are suppressed, logits map are propagated under the cluster-constrained affinities as follows:

$$\hat{\mathcal{S}} = \text{Norm}(\tilde{\mathbf{A}} \cdot \mathcal{S}'). \quad (12)$$

During the propagation process, the logits maps are weighted and averaged based on affinity values within the same cluster. This ensures that logits maps from different clusters do not interfere with each other, while logits maps within the same cluster maintain consistent semantic predictions, ultimately resulting in more accurate mask predictions.

3.4 INTEGRATION WITH UPSAMPLING MODULE

To recover the fine-grained details critical for accurate segmentation in high-resolution remote sensing images, we inherit the upsample module from SegEarth-OV. Specifically, the visual feature map \mathbf{P} is first reshaped into a 2D feature representation $\mathbf{P} \in \mathbb{R}^{H_p \times W_p \times D}$, which is subsequently upsampled to the original image resolution. The upsampled features are then computed with the text embeddings \mathbf{T} via cosine similarity, yielding an upsampled logits map:

$$\mathcal{S}_{up} = \text{sim}(\text{featup}(\mathbf{P}), \mathbf{T}). \quad (13)$$

And then, we interpolate the $\hat{\mathcal{S}}$ to match the spatial size of \mathcal{S}_{up} , the two logits maps are then fused via a weighted combination:

$$\mathcal{S}_{final} = \beta \cdot \text{Interpolate}(\hat{\mathcal{S}}) + (1 - \beta) \cdot \mathcal{S}_{up}, \quad (14)$$

where $\beta \in [0, 1]$ is a fusion weight controlling the balance between CCE-refined logits map and upsampled logits map. *Interpolate* is a bilinear interpolation algorithm.

Finally, we apply an `argmax` operation over \mathcal{S}_{final} to produce the final segmentation mask:

$$pred = \arg \max_k \mathcal{S}_{final}. \quad (15)$$

4 EXPERIMENTS

4.1 SETTINGS

Datasets and Evaluation Metric. We conducted comprehensive experiments on eight widely used remote sensing semantic segmentation datasets. Among these, OpenEarthMap (Wang et al., 2023b), LoveDA (Wang et al., 2021), iSAID (Waqas Zamir et al., 2019), Potsdam (Gerke, 2014) and Vaihingen (Rottensteiner et al., 2014) are primarily composed of satellite images, while UAVid (Yang et al., 2020), UDD5 (Chen et al., 2018) and VDD (Pan et al., 2021) mainly consist of UAV images. These datasets collectively cover diverse spatial resolutions, imaging conditions, and scene types, thereby providing a comprehensive evaluation of model robustness. Each dataset contains multiple foreground categories along with a background category. Please refer to appendix A.1 for detailed

324
 325 Table 2: Quantitative comparison results on eight remote sensing datasets. **Bold** fonts indicate the
 326 optimal results, and underlined fonts indicate the suboptimal results. Avg. represents the average
 327 mIoU across the eight datasets.

Methods	OpenEarthMap	LoveDA	iSAID	Potsdam	Vaihingen	UAVid	UDD5	VDD	Avg.
CLIP _[ICML'21]	12.0	12.4	7.5	14.5	10.3	10.9	9.5	14.2	11.4
MaskCLIP _[ECCV'22]	25.1	27.8	14.5	31.7	24.7	28.6	32.4	32.9	27.2
SCLIP _[ECCV'24]	29.3	30.4	16.1	36.6	28.4	31.4	38.7	37.9	31.1
GEM _[CVPR'24]	33.9	31.6	17.7	36.5	24.7	33.4	41.2	39.5	32.3
ClearCLIP _[ECCV'24]	31.0	32.4	18.2	40.9	27.3	36.2	41.8	39.3	33.4
NACLIP _[WACV'25]	35.7	31.5	19.5	40.2	28.8	37.5	42.1	40.9	34.5
ResCLIP _[CVPR'25]	34.2	31.2	20.0	42.6	28.2	37.6	42.3	40.3	34.6
ProxyCLIP _[ECCV'24]	35.0	33.5	20.7	44.1	27.8	42.1	46.5	44.3	36.8
CASS _[CVPR'25]	34.6	34.0	20.6	42.9	<u>31.5</u>	38.6	39.0	40.9	35.3
SC-CLIP _[ArXiv'24]	35.9	31.7	18.4	43.4	29.6	38.3	42.0	41.0	35.0
Trident _[ICCV'25]	35.1	31.5	20.0	44.4	27.7	41.8	44.1	<u>45.7</u>	36.3
CorrCLIP _[ICCV'25]	35.4	32.7	16.9	42.6	24.7	38.1	40.1	37.7	33.5
SegEarth-OV _[CVPR'25]	<u>39.8</u>	<u>36.9</u>	<u>21.7</u>	<u>47.1</u>	29.1	<u>42.5</u>	<u>50.6</u>	45.3	<u>39.1</u>
AlignCLIP-D (Ours)	40.1	39.5	23.6	47.9	34.5	44.4	51.8	48.4	41.3
	(+0.3)	(+2.6)	(+1.9)	(+0.8)	(+3.0)	(+1.9)	(+1.2)	(+2.8)	(+2.2)
AlignCLIP-S (Ours)	40.1	39.5	23.4	47.8	34.6	44.4	51.8	48.1	41.2
	(+0.3)	(+2.6)	(+1.7)	(+0.7)	(+3.1)	(+1.9)	(+1.2)	(+2.8)	(+2.1)

344
 345 dataset information. Following common practice in semantic segmentation, we report the mean Inter-
 346 section over Union (mIoU) as the primary evaluation metric, which provides a balanced measure
 347 of classification accuracy across categories.

348
 349 **Baselines.** We compared our AlignCLIP with a wide range of state-of-the-art *training-free* OVSS
 350 methods, including CLIP (Radford et al., 2021b), MaskCLIP (Zhou et al., 2022), SCLIP (Wang
 351 et al., 2023a), GEM (Bousselham et al., 2024), ClearCLIP (Lan et al., 2024a), NACLIP (Hajimiri
 352 et al., 2024), ResCLIP (Yang et al., 2024), ProxyCLIP (Lan et al., 2024c), CASS (Kim et al., 2025a),
 353 SC-CLIP (Bai et al., 2025), Trident (Shi et al., 2024) and CorrCLIP (Zhang et al., 2024a). These
 354 baselines represent different design paradigms such as attention modification and proxy-based adap-
 355 tation. Furthermore, we evaluated SegEarth-OV, a method specifically tailored for remote sensing
 356 that employs a trained upsampling module to recover the lost detailed information in feature maps. It
 357 should be noted that the performance of reference-set-based methods (*e.g.*, ReME) largely depends
 358 on the scale and quality of the constructed reference set, making fair comparisons challenging.
 359 Therefore, we do not report evaluations of these methods in the experimental section.

360
 361 **Implementation Details.** We provide two model variants of AlignCLIP, *i.e.*, AlignCLIP-D (in-
 362 tegration with DINO) and AlignCLIP-S (integration with SAM). All experiments employ Open-
 363 CLIP (Radford et al., 2021a) to extract both image and text features. Unless otherwise specified,
 364 all models adopt ViT-B/16 as the default backbone. For the text encoder, we adopted a remote-
 365 sensing-oriented prompt template, with the prompt list provided in appendix A.2. For the image
 366 encoder, we followed the settings of SegEarth-OV, input images were resized such that the long side
 367 was 448, and inference was conducted using a sliding window of size 224 × 224 with a stride of
 368 112. For the clustering algorithm, we simply used the K-Means algorithm (Ikotun et al., 2023) with
 369 the number of clusters $K_c = 3$ as default. For the specific balance ratios α and fusion weights β
 370 of each dataset, please refer to appendix A.3. To isolate the effectiveness of our method, all post-
 371 processing techniques (*e.g.*, PAMR (Araslanov & Roth, 2020), denseCRF (Krähenbühl & Koltun,
 372 2011)) were disabled. Experiments were conducted on 8 RTX 3090 GPUs, and all the code of our
 373 implementation is based on mmsegmentation repository¹.

374 4.2 RESULTS

375
 376 **Quantitative Evaluation.** As shown in Table 2, AlignCLIP achieves the overall best performance
 377 across all eight remote sensing benchmarks, achieving a highest average mIoU of **41.3%**, which
 378 outperforms all compared *training-free* OVSS methods. The improvements are particularly remark-

379
 380 ¹<https://github.com/open-mmlab/mmsegmentation>

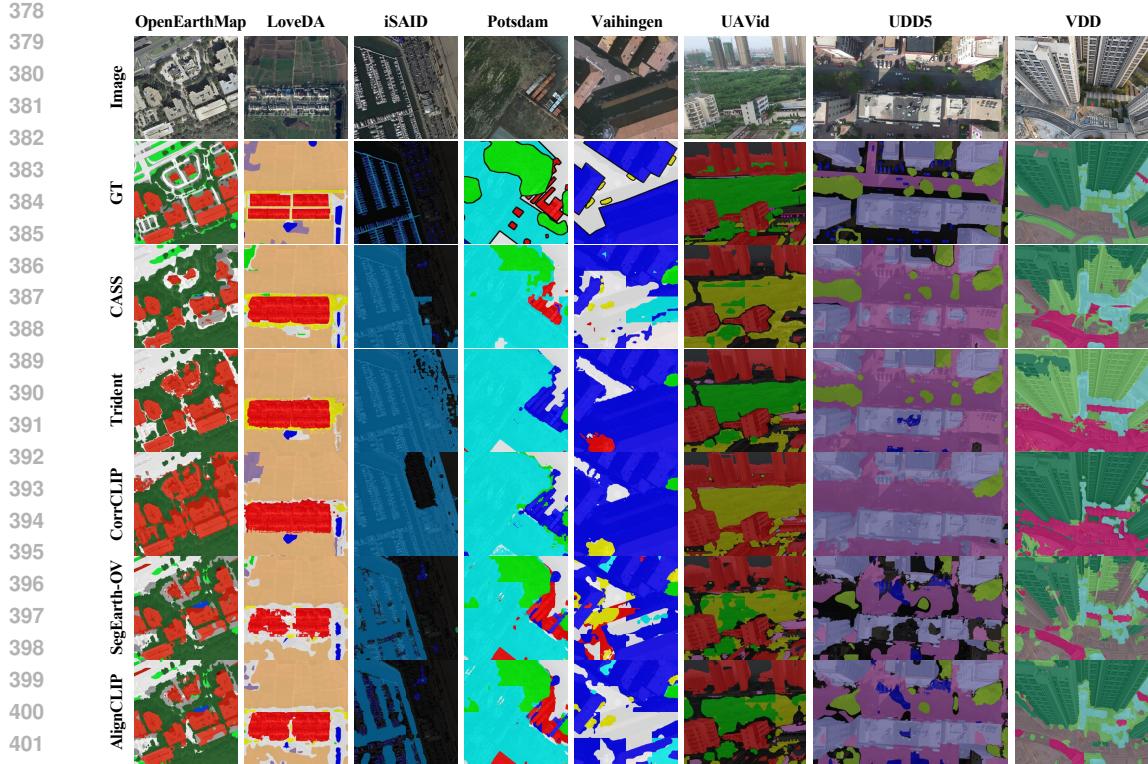


Figure 3: Qualitative comparison of different training-free OVSS methods on eight remote sensing datasets.

able on datasets such as LoveDA (**+2.6%**), Vaihingen (**+3.1%**), and VDD (**+2.8%**). On the remaining datasets, including OpenEarthMap, iSAID, Potsdam, UAVid, and UDD5, our method also achieves steady gains over existing approaches. Moreover, compared to SegEarth-OV, AlignCLIP still achieves a substantial improvement (**+2.2%** on average). Furthermore, we observe that the performance improvement varies significantly across different datasets. For instance, the OpenEarthMap only achieves a 0.3% improvement compared to the baseline method. We attribute this to the large scale of images in the OpenEarthMap dataset, which results in relatively small proportions of certain categories (*e.g.*, buildings) within the images. During the feature extraction process, features of small objects are easily overlooked, which impairs the selection of visual prototype and leads to a degradation in the logits map, resulting in limited performance gain. Interestingly, the two model variants based on DINO and SAM yield comparable results, which demonstrates that our method exhibits robust performance across the two mainstream VFM architectures. The above experimental results demonstrate that our method achieves consistent improvements across different scenarios and model architectures.

Qualitative Evaluation. As illustrated in Fig. 3, we present the qualitative visualization results of AlignCLIP-D and other representative methods. The results demonstrate that compared with CASS, Trident, CorrCLIP, and SegEarth-OV, our AlignCLIP generates more accurate and spatially coherent segmentation results across various datasets. Existing methods often suffer from category confusion (*e.g.*, walls vs. roofs in VDD). While SegEarth-OV improves boundary smoothness, it still exhibits matching errors in fine-grained structures. In contrast, AlignCLIP effectively mitigates cross-modal mismatches, producing clearer regions and sharper object boundaries. For more qualitative comparisons, refer to Appendix A.11.

4.3 ABLATION STUDIES

In this section, we conduct a comprehensive ablation study to evaluate the effectiveness of the proposed components in AlignCLIP and to examine the impact of key hyperparameters. For clarity, the

hyperparameter sensitivity analysis reports results on four representative datasets—OpenEarthMap (OEM), Potsdam (PD), UAVid (UAV) and VDD, while the complete experimental results are provided in Appendix A.4. Unless otherwise specified, we use the AlignCLIP-D as the default model for our primary analysis.

Component ablation analysis. We first investigate the effectiveness of our proposed SGA and CCE modules in AlignCLIP through component-wise ablation, as reported in Table 3. The 1st row reports the performance of the baseline method SegEarth-OV, the 2nd and 3rd rows report the results of introducing the SGA and CCE modules respectively, while the 4th row reports the performance of the complete model. We can find that: **i**) incorporating the SGA module alone yields a 1.0% improvement, demonstrating that alleviating cross-modal mismatches can substantially enhance segmentation performance. **ii**) applying the CCE module alone provides only a modest 0.3% gain, we attribute this to the fact that the CCE module operates on the aligned logits map produced by the SGA module, and propagating optimization on a poorly aligned logits map offers limited benefit.

Table 3: Ablation analysis of different components.

SGA	CCE	OpenEarthMap	LoveDA	iSAID	Potsdam	Vaihingen	UAVid	UDD5	VDD	Avg.
–		39.8	36.9	21.7	47.1	29.1	42.5	50.6	45.3	39.1
✓		39.8	37.8	22.7	47.2	32.3	43.3	50.6	46.8	40.1 ↑1.0
	✓	39.8	34.9	21.1	47.3	31.6	43.2	51.2	45.8	39.4 ↑0.3
✓	✓	40.1	39.5	23.6	47.9	34.5	44.4	51.8	48.4	41.3 ↑2.2

Effect of the balance ratios α . We further study the effect of the balance ratios α , which control the relative contributions of visual and textual features, a larger α assigns greater weight to the visual features. As shown in Table 4a, we observe that increasing α does not lead to a monotonic performance gain, instead, the performance generally rises initially and then declines (*e.g.*, when $\alpha = 0.3$ on the PD dataset). We attribute this phenomenon to the fact that, as the contribution of patch features increases, the text features can better align with the image features. However, beyond a certain threshold—determined by the feature distribution of the dataset, the image features begin to compromise the general representational capacity of the text features.

Effect of the fusion weights β . We further investigate the effect of the fusion weights β , which control the balance between our logits map and the upsampling logits map, a larger β indicates a smaller contribution of the upsampled logits map. As shown in Table 4b, smaller values (*e.g.*, $\beta = 0.1$) achieve the best performance on the OEM and PD datasets, while larger values (*e.g.*, $\beta = 0.3$ and $\beta = 0.4$) yield better results on the UAV and VDD datasets. We attribute this result to the differences in dataset scales, the OEM and PD datasets consist of large-scale satellite images, where detail information is more likely to be lost during feature extraction, thus requiring more contributions from the upsampled logits map to compensate. In contrast, UAV and VDD datasets contain small-scale UAV aerial images, where detail information is relatively preserved, making the contribution of the upsampled logits map relatively limited.

Table 4: Sensitivity analysis of various hyperparameters across different datasets.

(a) Balance ratios α					(b) Fusion weights β				(c) Cluster numbers K_c					
α	OEM	PD	UAV	VDD	β	OEM	PD	UAV	VDD	K_c	OEM	PD	UAV	VDD
0.1	40.1	47.5	44.0	47.7	0.1	40.1	47.9	43.4	46.7	3	40.1	47.9	44.4	48.4
0.2	40.1	47.6	44.4	48.4	0.2	40.0	47.8	44.0	47.9	6	40.1	47.6	44.2	48.2
0.3	39.8	47.9	44.3	48.3	0.3	39.6	47.5	44.4	48.4	9	40.0	47.6	44.2	48.1
0.4	39.3	47.8	43.9	47.9	0.4	39.1	46.9	44.4	48.4	12	40.0	47.6	44.1	48.0
0.5	38.8	47.7	43.3	47.2	0.5	38.6	46.0	44.3	48.2	15	40.0	47.5	44.0	47.9

Effect of the cluster number K_c . We further analyze the effect of varying number of the clusters K_c used in the CCE module (*i.e.*, $K_c = 3, 6, 9, 12, 15$), with the results summarized in Table 4c. The results indicate that $K_c = 3$ achieves the best performance across all datasets. Increasing the number of clusters leads to a slight performance decrease, with a drop of no more than 0.5%, suggesting that our method is not sensitive to the choice of K_c . We attribute this to the fact that $K_c = 3$ is sufficient

486 for the model to distinguish irrelevant features, and further increasing the number of clusters does
 487 not yield significant performance gains.
 488

489 **Effect of different top- n visual prototypes.** We fur-
 490 ther investigate the effect of varying the number of vi-
 491 sual prototypes on text embeddings. Specifically, we
 492 compute the cosine distance between each patch fea-
 493 ture and the text feature, select the n closest patch
 494 features (*i.e.*, $n = 1, 2, 3, 4, 5, 6$), and average them
 495 before fusing with the text features. As illustrated
 496 in Fig. 4, our experiments reveal that increasing the
 497 number of patch features leads to a consistent per-
 498 formance decline across all eight datasets. This indi-
 499 cates that excessive prototypes not only fail to improve
 500 patch–text alignment but also introduce mismatched
 501 features, thereby increasing noise. Therefore, we se-
 502 lect only the most similar feature to pursue the best
 503 performance.

504 5 CONCLUSION

505 In this work, we presented AlignCLIP, a novel *training-free* framework for open-vocabulary seman-
 506 tic segmentation in the remote sensing domain. We find that features of intra-class objects in remote
 507 sensing tend to be compact. Based on this observation, we design two modules to alleviate cross-
 508 modal mismatches between image patches and textual representations. Specifically, the *Self-Guided*
 509 *Alignment (SGA)* module leverages the most reliable text-specific visual prototypes to refine textual
 510 embeddings, and the *Cluster-Constrained Enhancement (CCE)* clusters semantically similar patches
 511 while suppressing inter-cluster correlations, and updating logits map through constrained propa-
 512 gation. Extensive experiments across eight remote sensing benchmarks demonstrated that AlignCLIP
 513 consistently outperforms state-of-the-art approaches. We hope this work can inspire future related
 514 research and bring new possibilities to *training-free* open-vocabulary semantic segmentation in the
 515 remote sensing domain.

517 REFERENCES

518 Nikita Araslanov and Stefan Roth. Single-stage semantic segmentation from image labels. In *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 4253–4262, June 2020.

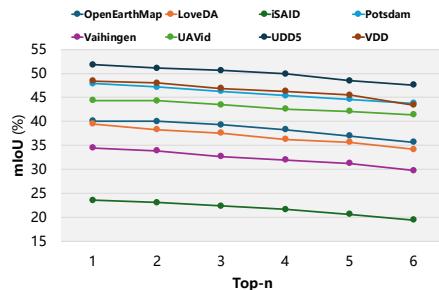
519 Sule Bai, Yong Liu, Yifei Han, Haoji Zhang, and Yansong Tang. Self-calibrated clip for training-free
 520 open-vocabulary segmentation, 2025. URL <https://arxiv.org/abs/2411.15869>.

521 Luca Barsellotti, Roberto Amoroso, Lorenzo Baraldi, and Rita Cucchiara. Fossil: Free open-
 522 vocabulary semantic segmentation through synthetic references retrieval. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 1464–1473, 2024.

523 Walid Bousselham, Felix Petersen, Vittorio Ferrari, and Hilde Kuehne. Grounding everything:
 524 Emerging localization properties in vision-language transformers. In *2024 IEEE/CVF Conference
 525 on Computer Vision and Pattern Recognition (CVPR)*, pp. 3828–3837, 2024. doi: 10.1109/
 526 CVPR52733.2024.00367.

527 Qinglong Cao, Yuntian Chen, Chao Ma, and Xiaokang Yang. Open-vocabulary remote sensing
 528 image semantic segmentation. *arXiv preprint arXiv:2409.07683*, 2024.

529 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
 530 Armand Joulin. Emerging properties in self-supervised vision transformers. In *Proceedings of the
 531 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 9650–9660, October
 532 2021.



533 Figure 4: The effect of different numbers
 534 of top- n visual prototypes.

540 Yu Chen, Yao Wang, Peng Lu, Yisong Chen, and Guoping Wang. Large-scale structure from motion
 541 with semantic constraints of aerial images. In Chinese Conference on Pattern Recognition and
 542 Computer Vision (PRCV), pp. 347–359. Springer, 2018.

543

544 Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
 545 attention mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF
 546 conference on computer vision and pattern recognition, pp. 1290–1299, 2022.

547

548 Saikat Dutta, Akhil Vasim, Siddhant Gole, Hamid Rezatofighi, and Biplab Banerjee. Aeroseg:
 549 Harnessing sam for open-vocabulary segmentation in remote sensing images. In Proceedings of
 550 the Computer Vision and Pattern Recognition Conference, pp. 2254–2264, 2025.

551

552 Yanping Fu, Wenbin Liao, Xinyuan Liu, Hang Xu, Yike Ma, Yucheng Zhang, and Feng Dai. Topo-
 553 logic: An interpretable pipeline for lane topology reasoning on driving scenes. In Advances in
 554 Neural Information Processing Systems, volume 37, pp. 61658–61676, 2024.

555

556 Yanping Fu, Xinyuan Liu, Tianyu Li, Yike Ma, Yucheng Zhang, and Feng Dai. Topopoint: En-
 557 hance topology reasoning via endpoint detection in autonomous driving, 2025. URL <https://arxiv.org/abs/2505.17771>.

558

559 Markus Gerke. The isprs 2d semantic labeling contest - potsdam dataset. In ISPRS Annals of
 560 the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014. URL <https://www.isprs.org/education/benchmarks/UrbanSemLab/default.aspx>.

561

562 Sina Hajimiri, Ismail Ben Ayed, and Jose Dolz. Pay attention to your neighbours: Training-free
 563 open-vocabulary semantic segmentation. arXiv preprint, 2024. URL <https://arxiv.org/abs/2404.08181>.

564

565 Abiodun M. Ikotun, Absalom E. Ezugwu, Laith Abualigah, Belal Abuhaija, and Jia Heming. K-
 566 means clustering algorithms: A comprehensive review, variants analysis, and advances in the
 567 era of big data. Information Sciences, 622:178–210, 2023. ISSN 0020-0255. doi: <https://doi.org/10.1016/j.ins.2022.11.139>. URL <https://www.sciencedirect.com/science/article/pii/S0020025522014633>.

568

569 Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
 570 Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
 571 with noisy text supervision. In International conference on machine learning, pp. 4904–4916.
 572 PMLR, 2021.

573

574 Chanyoung Kim, Dayun Ju, Woojung Han, Ming-Hsuan Yang, and Seong Jae Hwang. Distilling
 575 spectral graph for object-context aware pen-vocabulary semantic segmentation. In Proceedings
 576 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2025a.

577

578 Chanyoung Kim, Dayun Ju, Woojung Han, Ming-Hsuan Yang, and Seong Jae Hwang. Distilling
 579 spectral graph for object-context aware open-vocabulary semantic segmentation. In Proceedings
 580 of the Computer Vision and Pattern Recognition Conference, pp. 15033–15042, 2025b.

581

582 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 583 Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
 584 Segment anything. arXiv:2304.02643, 2023.

585

586 Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected crfs with gaus-
 587 sian edge potentials. In Proceedings of the 25th International Conference on Neural Information
 588 Processing Systems, NIPS’11, pp. 109–117, Red Hook, NY, USA, 2011. Curran Associates Inc.
 589 ISBN 9781618395993.

590

591 Mengcheng Lan, Chaofeng Chen, Yiping Ke, Xinjiang Wang, Litong Feng, and Wayne Zhang.
 592 Clearclip: Decomposing clip representations for dense vision-language inference. In European
 593 Conference on Computer Vision, pp. 143–160. Springer, 2024a.

594

595 Mengcheng Lan, Chaofeng Chen, Yiping Ke, Xinjiang Wang, Litong Feng, and Wayne Zhang. Prox-
 596 yclip: Proxy attention improves clip for open-vocabulary segmentation. In European Conference
 597 on Computer Vision, pp. 70–88. Springer, 2024b.

594 Mengcheng Lan, Chaofeng Chen, Yiping Ke, Xinjiang Wang, Litong Feng, and Wayne Zhang. Prox-
 595 yclip: Proxy attention improves clip for open-vocabulary segmentation. In *European Conference*
 596 on Computer Vision

597 Kaiyu Li, Ruixun Liu, Xiangyong Cao, Xueru Bai, Feng Zhou, Deyu Meng, and Zhi Wang.
 598 Segearth-ov: Towards training-free open-vocabulary segmentation for remote sensing images.
 599 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 10545–10556,
 600 2025.

601 Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan Zhao, Hang Zhang, Peizhao Zhang,
 602 Peter Vajda, and Diana Marculescu. Open-vocabulary semantic segmentation with mask-adapted
 603 clip. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp.
 604 7061–7070, 2023.

605 Yuting Lin, Kumiko Suzuki, and Shinichiro Sogo. Practical techniques for vision-language seg-
 606 mentation model in remote sensing. *The International Archives of the Photogrammetry, Remote*
 607 *Sensing and Spatial Information Sciences*, 48:203–210, 2024.

608 Fan Liu, Delong Chen, Zhangqingyun Guan, Xiaocong Zhou, Jiale Zhu, Qiaolin Ye, Liyong Fu,
 609 and Jun Zhou. Remoteclip: A vision language foundation model for remote sensing. *IEEE*
 610 *Transactions on Geoscience and Remote Sensing*, 62:1–16, 2024. doi: 10.1109/TGRS.2024.
 611 3390838. URL <https://doi.org/10.1109/TGRS.2024.3390838>.

612 Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
 613 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Russell Howes, Po-Yao
 614 Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba, Mike Rabbat, Mido Assran,
 615 Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve Jegou, Julien Mairal, Patrick Labatut, Ar-
 616 mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
 617 2023.

618 X. Pan, Y. Li, J. Chen, and Z. Wang. Vdd: A new benchmark dataset for semantic segmentation of
 619 uav imagery. *Remote Sensing*, 13(7):1302, 2021. doi: 10.3390/rs13071302.

620 Zelin Peng, Zhengqin Xu, Zhilin Zeng, Changsong Wen, Yu Huang, Menglin Yang, Feilong Tang,
 621 and Wei Shen. Understanding fine-tuning clip for open-vocabulary semantic segmentation in
 622 hyperbolic space-supplementary material.

623 Zelin Peng, Zhengqin Xu, Zhilin Zeng, Yu Huang, Yaoming Wang, and Wei Shen. Parameter-
 624 efficient fine-tuning in hyperspherical space for open-vocabulary semantic segmentation. In
 625 *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 15009–15020,
 626 2025.

627 Alec Radford, Jong Wook Kim, Chris Hallacy, A. Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
 628 Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 629 Learning transferable visual models from natural language supervision. In *ICML*, 2021a.

630 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 631 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
 632 Sutskever. Learning transferable visual models from natural language supervision. In Marina
 633 Meila and Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine*
 634 *Learning*, volume 139 of *Proceedings of Machine Learning Research*, pp. 8748–8763. PMLR, 18–
 635 24 Jul 2021b. URL <https://proceedings.mlr.press/v139/radford21a.html>.

636 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
 637 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
 638 sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Fe-
 639 ichtenhofer. Sam 2: Segment anything in images and videos. *arXiv preprint arXiv:2408.00714*,
 640 2024. URL <https://arxiv.org/abs/2408.00714>.

641 Franz Rottensteiner, Gunho Sohn, Jaewan Jung, Markus Gerke, Caroline Baillard, Silvia Benitez,
 642 and Uwe Breitkopf. The isprs semantic labeling benchmark (vaihingen dataset). In *ISPRS Annals*
 643 of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2014. URL <https://www.isprs.org/education/benchmarks/UrbanSemLab/default.aspx>.

648 Tong Shao, Zhuotao Tian, Hang Zhao, and Jingyong Su. Explore the potential of clip for training-
 649 free open vocabulary semantic segmentation. In *European Conference on Computer Vision*, pp.
 650 139–156. Springer, 2024.

651 Yuheng Shi, Minjing Dong, and Chang Xu. Harnessing vision foundation models for high-
 652 performance, training-free open vocabulary segmentation. *arXiv preprint arXiv:2411.09219*,
 653 2024.

654 Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
 655 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, Francisco Massa, Daniel
 656 Haziza, Luca Wehrstedt, Jianyuan Wang, Timothée Darct, Théo Moutakanni, Leonel Sentana,
 657 Claire Roberts, Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie, Julien Mairal, Hervé
 658 Jégou, Patrick Labatut, and Piotr Bojanowski. DINOv3, 2025. URL <https://arxiv.org/abs/2508.10104>.

659 Feng Wang, Jieru Mei, and Alan Yuille. Sclip: Rethinking self-attention for dense vision-language
 660 inference. *arXiv preprint arXiv:2312.01597*, 2023a.

661 Jiwei Wang, Shunping Zhang, Wei Wang, Kun Fu, Zhiyong Li, Zhenwei Shi, Wei Wei, and Wei
 662 Liu. Loveda: A remote sensing land-cover dataset for domain adaptive semantic segmentation. In
 663 *Advances in Neural Information Processing Systems (NeurIPS)*, 2021. URL <https://arxiv.org/abs/2110.08733>.

664 Xiaoyang Wang, Yue Wu, Htoo Htoo Aung, Xiaoxiang Liu, and Xiao Xiang Zhu. Openearthmap:
 665 A benchmark dataset for global high-resolution land cover mapping. In *Advances in Neural
 666 Information Processing Systems (NeurIPS) Datasets and Benchmarks Track*, 2023b. URL
 667 <https://arxiv.org/abs/2307.15062>.

668 Yuan Wang, Rui Sun, Naisong Luo, Yuwen Pan, and Tianzhu Zhang. Image-to-image matching via
 669 foundation models: A new perspective for open-vocabulary semantic segmentation, 2024. URL
 670 <https://arxiv.org/abs/2404.00262>.

671 Syed Waqas Zamir, Aditya Arora, Akshita Gupta, Salman Khan, Guolei Sun, Fahad Shahbaz Khan,
 672 Fan Zhu, Ling Shao, and Gui-Song Xia. isaid: A large-scale dataset for instance segmentation
 673 in aerial images. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 674 Recognition (CVPR) Workshops*, 2019. URL <https://arxiv.org/abs/1905.12886>.

675 Yixuan Wei, Han Hu, Zhenda Xie, Ze Liu, Zheng Zhang, Yue Cao, Jianmin Bao, Dong Chen,
 676 and Baining Guo. Improving clip fine-tuning performance. In *Proceedings of the IEEE/CVF
 677 International Conference on Computer Vision*, pp. 5439–5449, 2023.

678 Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, and Xiaolong
 679 Wang. Groupvit: Semantic segmentation emerges from text supervision. In *Proceedings of the
 680 IEEE/CVF conference on computer vision and pattern recognition*, pp. 18134–18144, 2022.

681 Xiwei Xuan, Ziquan Deng, and Kwan-Liu Ma. Reme: A data-centric framework for training-free
 682 open-vocabulary segmentation, 2025. URL <https://arxiv.org/abs/2506.21233>.

683 Yuhang Yang, Jinhong Deng, Wen Li, and Lixin Duan. Resclip: Residual attention for training-free
 684 dense vision-language inference. *arXiv preprint arXiv:2411.15851*, 2024.

685 Zhenhua Yang, Liang Wang, Yue Zhang, Licheng Wang, and Zhaoxiang Zhang. Uavid: A semantic
 686 segmentation dataset for uav imagery. *ISPRS Journal of Photogrammetry and Remote Sensing*,
 687 165:108–119, 2020. doi: 10.1016/j.isprsjprs.2020.02.017.

688 Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu,
 689 Xuedong Huang, Boxin Li, Chunyuan Li, et al. Florence: A new foundation model for computer
 690 vision. *arXiv preprint arXiv:2111.11432*, 2021.

691 Quan-Sheng Zeng, Yunheng Li, Daquan Zhou, Guanbin Li, Qibin Hou, and Ming-Ming Cheng.
 692 Maskclip++: A mask-based clip fine-tuning framework for open-vocabulary image segmentation.
 693 2024.

702 Dengke Zhang, Fagui Liu, and Quan Tang. Corrclip: Reconstructing patch correlations in clip for
703 open-vocabulary semantic segmentation. [arXiv preprint arXiv:2411.10086](https://arxiv.org/abs/2411.10086), 2024a.
704

705 Qiang Zhang, Decheng Wang, and Xiao Yu. Rlita: A region-level image–text alignment method for
706 remote sensing foundation model. [Remote Sensing](https://doi.org/10.1007/s11590-024-02054-1), 17(10):1661, 2025.
707

708 Zilun Zhang, Tiancheng Zhao, Yulong Guo, and Jianwei Yin. Rs5m and georsclip: A large scale
709 vision-language dataset and a large vision-language model for remote sensing. [IEEE Transactions
710 on Geoscience and Remote Sensing](https://doi.org/10.1109/TGRS.2024.3449154), pp. 1–1, 2024b. doi: 10.1109/TGRS.2024.3449154.
711

712 Chong Zhou, Chen Change Loy, and Bo Dai. Extract free dense labels from clip. In [European
713 Conference on Computer Vision \(ECCV\)](https://doi.org/10.1007/978-3-031-33733-7_10), 2022.
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

A APPENDIX

A.1 DATASET DESCRIPTION

OpenEarthMap contains 5,000 aerial and satellite remote sensing images, including 8 foreground classes and 1 background class, with a spatial resolution of 0.25-0.5 meters, covering 97 regions in 44 countries / territories on six continents. we use the validation set for evaluation.

LoveDA includes remote sensing images with a spatial resolution of 0.3 meters covering multiple cities, totaling 5,987 images. These images are annotated with 6 foreground classes and one background class. we use the validation set for evaluation.

iSAID consists of images captured by the JL-1 satellite and GF-2 satellite. It includes 15 foreground classes and one background class. Following the data processing pipeline of MMSegmentation, we cropped the images into rectangles with a size of 896 and an overlapping area of 384. Finally, 33,978 images were generated for training and 11,644 for validation. In this study, the validation set was used for evaluation.

Potsdam comprises 38 image patches with a spatial resolution of 0.05 meters, with an average size of 6,000×6,000 pixels. It includes 5 foreground categories and 1 background category. Following the data processing pipeline of MMSegmentation, we used the validation set for evaluation.

Vaihingen comprises 33 image patches with a spatial resolution of 0.09 meters, with an average size of $2,494 \times 2,064$ pixels. It includes 5 foreground categories and 1 background category. Following the data processing pipeline of MMSegmentation, we used the validation set for evaluation.

UAVid is a 4K semantic segmentation video dataset for urban scenes, which contains a large number of street views and is annotated with 6 foreground classes and 1 background class. In this study, its test set was used for evaluation.

UDD5 consists of images collected by unmanned aerial vehicles (UAVs), including 4 foreground classes and 1 background class. In this study, we used its validation set for evaluation.

VDD is a collection of UAV images featuring diverse scenes, camera angles, and varying weather/lighting conditions. It provides high-resolution annotated images at the 400-pixel scale. With 6 foreground classes and 1 background class, its test set was used for evaluation in this study.

A.2 REMOTE SENSING PROMPT TEMPLATE

To obtain more effective text embeddings for remote sensing scenarios, we carefully designed 80 prompt templates tailored to remote sensing scenarios to replace the prompt templates oriented to natural images. As shown in Table 5, five representative examples are presented. For each category, these prompt templates are used to generate corresponding text features, which are then averaged to obtain a semantically rich category feature representation for semantic segmentation.

Table 5: Examples of remote sensing prompt templates for generating text descriptions.

Remote sensing prompt templates
a low-quality aerial image of [class].
a cropped remote sensing image of [class].
a remote sensing interpretation map of [class].
a satellite image containing hardly recognizable [class].
a low-resolution remote sensing image of [class].

A.3 HYPERPARAMETER SETTING

We provide the detailed hyperparameter settings for each dataset corresponding to the two model variants, *i.e.*, AlignCLIP-D and AlignCLIP-S, as shown in Table 6. The balance ratio α denotes

810 the contribution of text features and visual features, while the fusion weight β is used to control the
 811 fusion weight between the CCE-refined logits and the upsampled logits.
 812

813 Table 6: Hyperparameter settings of AlignCLIP across different datasets.
 814

815 hyperparameters	816 OpenEarthMap	817 LoveDA	818 iSAID	819 Potsdam	820 Vaihingen	821 UAVid	822 UDD5	823 VDD
Integration with DINO								
α	0.1	0.7	0.5	0.3	0.3	0.2	0.3	0.2
β	0.1	0.2	0.2	0.1	0.5	0.3	0.2	0.3
Integration with SAM								
α	0.1	0.5	0.5	0.3	0.3	0.2	0.3	0.2
β	0.1	0.2	0.2	0.2	0.5	0.4	0.2	0.4

824 A.4 SENSITIVITY ANALYSIS DETAILS
 825

826 In this section, we present the detailed sensitivity analysis of the hyperparameters involved in the
 827 two model variants (*i.e.*, AlignCLIP-D and AlignCLIP-S) across eight datasets, as shown in Table 7-
 828 9. Specifically, the balance ratios α is used to control the contribution of text features and visual
 829 features in the SGA module (see Sec. 3.2), the fusion weights β is employed to control the fusion
 830 balance between the CCE-refined logits map and the upsampled logits map (see Sec. 3.4), and K_c
 831 represents the number of clusters in the clustering algorithm within the CCE module, which is used
 832 to control the granularity of segmentation refinement (see Sec. 3.3).
 833

834 Table 7: Sensitivity analysis of different balance ratios α across different datasets.
 835

836 α	837 OpenEarthMap	838 LoveDA	839 iSAID	840 Potsdam	841 Vaihingen	842 UAVid	843 UDD5	844 VDD	845 Avg.
Integration with DINO									
0.1	40.1	36.2	21.7	47.5	32.7	44.0	51.5	47.7	40.2
0.2	40.1	37.3	22.3	47.6	33.9	44.4	51.7	48.4	40.7
0.3	39.8	38.2	22.9	47.9	34.5	44.3	51.8	48.3	40.9
0.4	39.3	38.8	23.4	47.8	34.4	43.9	51.8	47.9	40.9
0.5	38.8	39.2	23.6	47.7	34.0	43.3	51.7	47.2	40.7
Integration with SAM									
0.1	40.1	36.1	21.6	47.5	32.7	44.0	51.4	47.4	40.1
0.2	40.0	37.2	22.2	47.7	33.9	44.4	51.7	48.1	40.7
0.3	39.9	38.1	22.7	47.8	34.6	44.4	51.8	48.1	40.9
0.4	39.3	38.8	23.2	47.8	34.5	43.9	51.8	47.7	40.9
0.5	38.7	39.2	23.4	47.8	34.1	43.4	51.7	47.0	40.7

846 Table 8: Sensitivity analysis of different fusion weights β across different datasets.
 847

851 β	852 OpenEarthMap	853 LoveDA	854 iSAID	855 Potsdam	856 Vaihingen	857 UAVid	858 UDD5	859 VDD	860 Avg.
Integration with DINO									
0.1	40.1	38.5	22.2	47.9	31.1	43.4	51.4	46.7	40.1
0.2	40.0	39.5	23.6	47.8	32.5	44.0	51.8	47.9	40.9
0.3	39.6	39.3	23.6	47.5	33.4	44.4	51.8	48.4	41.0
0.4	39.1	38.4	22.2	46.9	34.1	44.4	51.4	48.4	40.6
0.5	38.6	37.4	20.4	46.0	34.5	44.3	50.9	48.2	40.0
Integration with SAM									
0.1	40.1	38.4	22.1	47.8	31.1	43.4	51.4	46.6	40.1
0.2	40.0	39.5	23.4	48.0	32.5	44.0	51.8	47.7	40.9
0.3	39.6	39.3	23.4	47.8	33.4	44.4	51.8	48.1	41.0
0.4	39.1	38.5	22.1	47.2	34.1	44.5	51.4	48.2	40.6
0.5	38.6	37.4	20.4	46.3	34.6	44.4	50.9	47.9	40.1

864
865
866 Table 9: Sensitivity analysis of different cluster numbers K_c across different datasets.
867
868
869
870
871
872
873
874
875
876

K_c	OpenEarthMap	LoveDA	iSAID	Potsdam	Vaihingen	UAVid	UDD5	VDD	Avg.
Integration with DINO									
3	40.1	39.5	23.6	47.9	34.5	44.4	51.8	48.4	41.3
6	40.1	39.3	23.5	47.6	34.4	44.2	51.8	48.2	41.1
9	40.0	39.2	23.5	47.6	34.3	44.2	51.7	48.1	41.1
12	40.0	39.1	23.4	47.6	34.1	44.1	51.6	48.0	41.0
15	40.0	39.0	23.3	47.5	34.1	44.0	51.6	47.9	41.0
Integration with SAM									
3	40.1	39.5	23.4	47.8	34.6	44.4	51.8	48.1	41.2
6	40.1	39.3	23.4	47.7	34.4	44.3	51.7	48.1	41.1
9	40.0	39.2	23.3	47.6	34.3	44.2	51.6	48.0	41.0
12	40.0	39.1	23.3	47.6	34.2	44.2	51.6	47.9	41.0
15	40.0	39.0	23.3	47.6	34.1	44.1	51.5	47.8	40.9

877
878
879
880 A.5 SEAMLESS INTEGRATION INTO OTHER METHODS
881

882 In this section, we further validate the generality of the proposed approach by integrating the SGA
883 module into other representative frameworks and conducting comprehensive evaluations on eight
884 remote sensing benchmark datasets. Specifically, we incorporate SGA as an independent, plug-and-
885 play component into existing methods. Since SGA aligns only the text embeddings without altering
886 the remaining architecture, it can be seamlessly integrated into a variety of CLIP-based frameworks.
887 For the experimental setup, we select ProxyCLIP, SC-CLIP, and CorrCLIP as baseline methods,
888 with the hyperparameter α uniformly set to 0.1.

889 As shown in Table 10. The experimental results demonstrate that, across different baseline models,
890 incorporating our method enables the text embeddings to achieve more precise alignment with the
891 patch features. This finding not only confirms that enhancing image–text alignment can significantly
892 improve semantic segmentation performance, but also highlights the generality of the SGA module,
893 which can be seamlessly integrated into other CLIP-based frameworks.

894
895
896 Table 10: The proposed SGA module is integrated as a plugin into other methods.
897

Methods	OpenEarthMap	LoveDA	iSAID	Potsdam	Vaihingen	UAVid	UDD5	VDD	Avg.
ProxyCLIP	35.0	33.5	20.7	44.1	27.8	42.1	46.5	44.3	36.8
+SGA	38.6	34.2	21.6	44.6	32.7	42.4	48.3	45.3	38.5 $\uparrow 1.7$
SC-CLIP	35.9	31.7	18.4	43.4	29.6	38.3	42.0	41.0	35.0
+SGA	39.8	32.8	19.6	43.6	31.6	39.6	46.0	42.3	36.9 $\uparrow 1.9$
CorrCLIP	35.4	32.7	16.9	42.6	24.7	38.1	40.1	37.7	33.5
+SGA	36.6	33.5	18.6	43.8	27.9	39.9	41.1	39.6	35.1 $\uparrow 1.6$

904
905
906
907 A.6 COMPUTATIONAL ANALYSIS
908

909 In this section, we conduct a computational analysis to validate the efficiency and practicality of
910 our proposed method. Specifically, we report the average inference time per image and memory
911 consumption of the baseline method and our two model variants across eight datasets using 8 RTX
912 3090 GPUs, as presented in Table 11. It can be observed that when solely adopting the SGA module,
913 our method incurs nearly negligible overhead in terms of inference time and memory consumption
914 compared to SegEarth- $\bar{O}V$, while achieving a 1% performance improvement. When solely using
915 the CCE module, the inference time increases by an insignificant few milliseconds, although the
916 memory consumption exhibits a relatively more noticeable increase, the combined use of the CCE
917 module with the SGA module yields a 2.2% performance gain, which we consider a favorable trade-
off.

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 11: Computational analysis of AlignCLIP.

Methods	Time(ms/image) ↓	Memory(MB) ↓	Performance(mIoU) ↑
Trident	89	2514	36.3
CorrCLIP	97	2890	33.5
SegEarth-OV	12	1392	39.1
Integration with DINO			
+SGA	12	1392	40.1
+CCE	16	2661	39.4
Ours	16	2661	41.3
Integration with SAM			
+SGA	12	1392	40.1
+CCE	18	2782	39.3
Ours	18	2782	41.2

A.7 RESULTS ON NATURAL IMAGES

In this section, we perform cross-domain validation on natural images. Specifically, we select five representative natural image segmentation datasets (*i.e.*, Cityscapes, ADE20k, COCO-Stuff, Context59, and VOC20), and integrate our SGA module into three state-of-the-art (SOTA) methods for natural images. The experimental results are presented in Table 12. It can be observed that all three methods exhibit consistent performance degradation, which is consistent with our expectations. These results demonstrate that natural images with scattered intra-class features cannot alleviate cross-modal mismatch by searching for representative visual prototypes. In contrast, our method achieves SOTA performance in remote sensing scenarios with compact intra-class features, further validate the rationality of our motivation.

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
Table 12: Quantitative comparison results on natural images.

Methods	Cityscapes	ADE20k	Stuff	Context59	VOC20	Avg.
SC-CLIP	41.0	20.1	26.6	40.1	84.3	42.4
+SGA	38.5	20.0	26.4	40.0	77.9	40.6
Trident	42.9	21.9	28.3	42.2	84.5	44.0
+SGA	38.9	21.1	27.7	42.1	82.0	42.4
CorrCLIP	49.9	26.9	31.6	48.8	88.8	49.2
+SGA	47.8	26.1	31.1	47.2	85.8	47.6

A.8 COMBINED WITH POST-PROCESSING

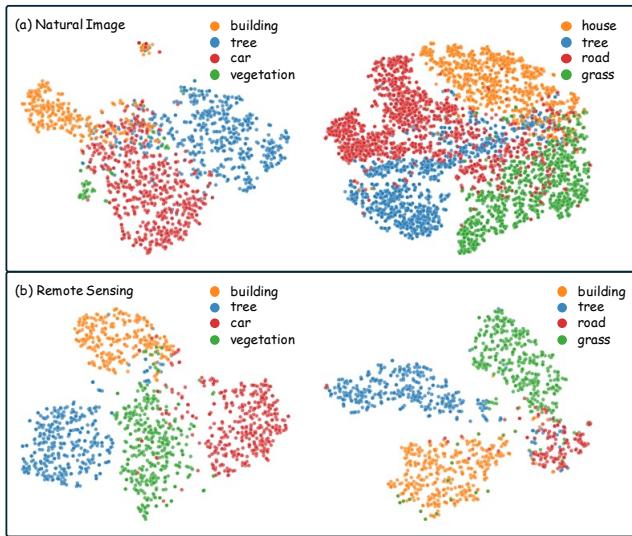
In this section, we present the quantitative results of our method when combined with a post-processing technique. In semantic segmentation, post-processing typically refines the predicted masks by leveraging low-level cues (*e.g.*, color consistency and spatial proximity) through iterative optimization, and it generally leads to performance improvements. In our experiments, we apply denseCRF to the logits maps produced by our method. As shown in Table 13, all datasets exhibit consistent performance gains, resulting in an overall improvement of 0.9% in the average mIoU.

966
967
968
969
970
971
Table 13: Quantitative comparison results based on post-processing.

Methods	OpenEarthMap	LoveDA	iSAID	Potsdam	Vaihingen	UAVid	UDD5	VDD	Avg.
Ours	40.1	39.5	23.6	47.9	34.5	44.4	51.8	48.4	41.3
+denseCRF	40.9	40.2	24.3	48.7	35.1	45.3	52.9	49.9	42.2 ↑0.9

972 A.9 VISUALIZATION ANALYSIS OF DIFFERENT IMAGE DOMAINS
973
974
975

976 In this section, we visualize the visual features of objects from several remote sensing and natural
977 image datasets. As shown in Fig. 5, we extract image features using CLIP-B/16 and project them
978 into a two-dimensional space using t-SNE algorithm. The results reveal that, in the natural-image
979 domain, features from different categories tend to overlap substantially, leading to ambiguous class
980 boundaries. In contrast, in the remote-sensing domain, features belonging to the same class form
981 notably more compact clusters and exhibit much less confusion with other categories. This observation
982 provides additional evidence supporting the validity and motivation of our approach.

1006 Figure 5: Visualization of intra-class features in different image domains.
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
10171018 A.10 PSEUDO CODE OF OUR ALIGNCLIP
1019
1020
1021

1022 To clearly present the implementation details of our method and ensure reproducibility, we provide
1023 pseudo code for the two core modules of AlignCLIP, *i.e.*, SGA and CCE, in Algorithm 1 and Al-
1024 gorithm 2, respectively. In addition, the full implementation of our method (based on PyTorch),
1025 is provided in the supplementary materials, and the complete code will be publicly released after
curation.

1026
1027**Algorithm 1** Pseudo code for Self-Guided Alignment in a PyTorch-like style.

```

1028 1  def self_guided_alignment (image_features, query_features, visual_query_alpha):
1029 2  """
1029 3  Self-Guided Alignment (SGA) module.
1030 4
1031 5  Args:
1031 6      image_features: [num_patches, feature_dim]
1032 7      query_features: [num_queries, feature_dim]
1032 8      visual_query_alpha: balance ratio (0~1)
1033 9
103410  Returns:
103411      Aligned query features: [num_queries, feature_dim]
103512  """
103613  num_queries = len(query_features)
103714
103815  # Similarity between image patches and query features
103816  similarity = (image_features @ query_features.T).permute(1,0).softmax(dim=-1)
103917  _, index = similarity.topk(1, dim=-1)
103918
104019  # Gather top patch features and average
104020  visual_query_features = torch.gather(
104121      image_features.unsqueeze(0).repeat(num_queries, 1, 1),
104222      dim=1,
104223      index=index.unsqueeze(-1).repeat(1, 1, image_features.shape[-1])
104324  ).mean(dim=1)
104425
104526  # Fuse with visual features
104527  aligned_query_features = visual_query_alpha * visual_query_features + \
104628      (1 - visual_query_lambda) * query_features
104729  return aligned_query_features / aligned_query_features.norm(dim=-1, keepdim=True)
1047
1048
1049
```

1048

1049

Algorithm 2 Pseudo code for Cluster-Constrained Enhancement in a PyTorch-like style.

```

10501  def cluster_constrained_enhancement (vfm_features, logits_map, cluster_num):
10502  """
10503  Cluster-Constrained Enhancement (CCE) Module.
10504 4
10505 5  Args:
10506 6      vfm_features: Feature map for clustering, shape [num_patches, feature_dim].
10507 7      logits_map: original logits map, shape [num_patches, num_classes].
10508 8      cluster_num: Number of clusters to group patches.
10509 9
1051010  Returns:
10511      refined logits map: [num_patches, num_classes].
10512  """
10513
10514 13  # Cluster the features
10515 14  _, cluster_ids = perform_clustering(vfm_features, n_clusters=cluster_num)
10516 16
10517 17  # Calculate patch attention
10518 18  vfm_attn = vfm_features @ vfm_features.T
10519 19
10520 20  % Calculate masked attn based on clustering results
10521 21  masked_attn = torch.zeros_like(vfm_attn)
10522 22
10523 23  for cluster_id in np.unique(cluster_ids):
10524 24      # Create mask for current cluster
10525 25      mask = (cluster_ids == cluster_id)
10526 26
10527 27      # Aggregate attention within cluster
10528 28      masked_attn[mask] = vfm_attn[mask, :] * mask[None, :]  # element-wise masking
10529 29
10530 30  # Propagate attention to refine logits map
10531 31  refined_logits = propagate_aff(logits_map, aff=final_attn)
10532 32
10533 33  return refined_logits
1074
1075
1076  A.11 ADDITIONAL QUALITATIVE RESULTS
1077
1078  We provide additional visualization analysis results for eight datasets to further validate the effec-
1079  tiveness of our proposed method, as illustrated in Fig. 6-13.

```

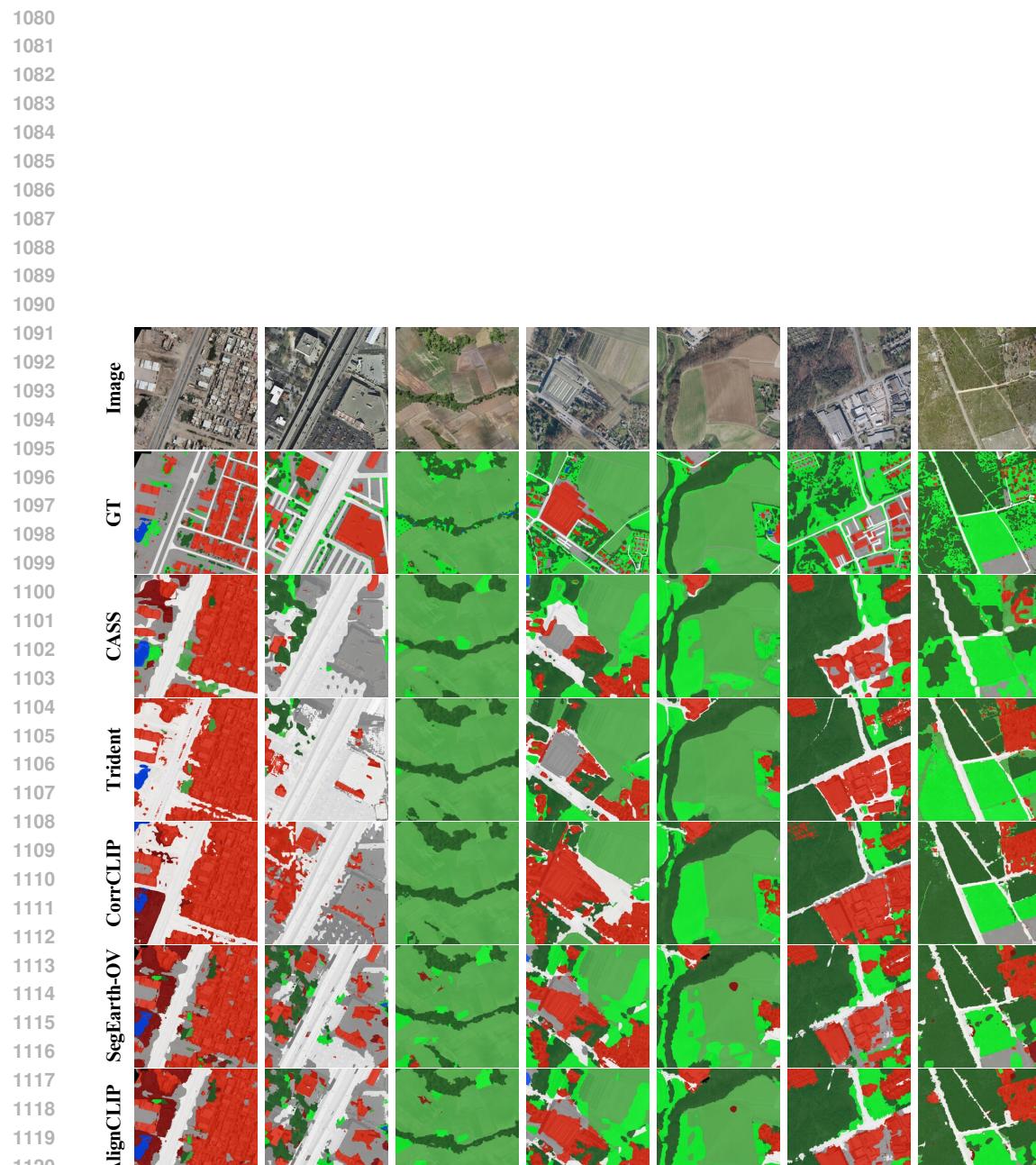


Figure 6: Qualitative comparison of different training-free OVSS methods on OpenEarthMap.

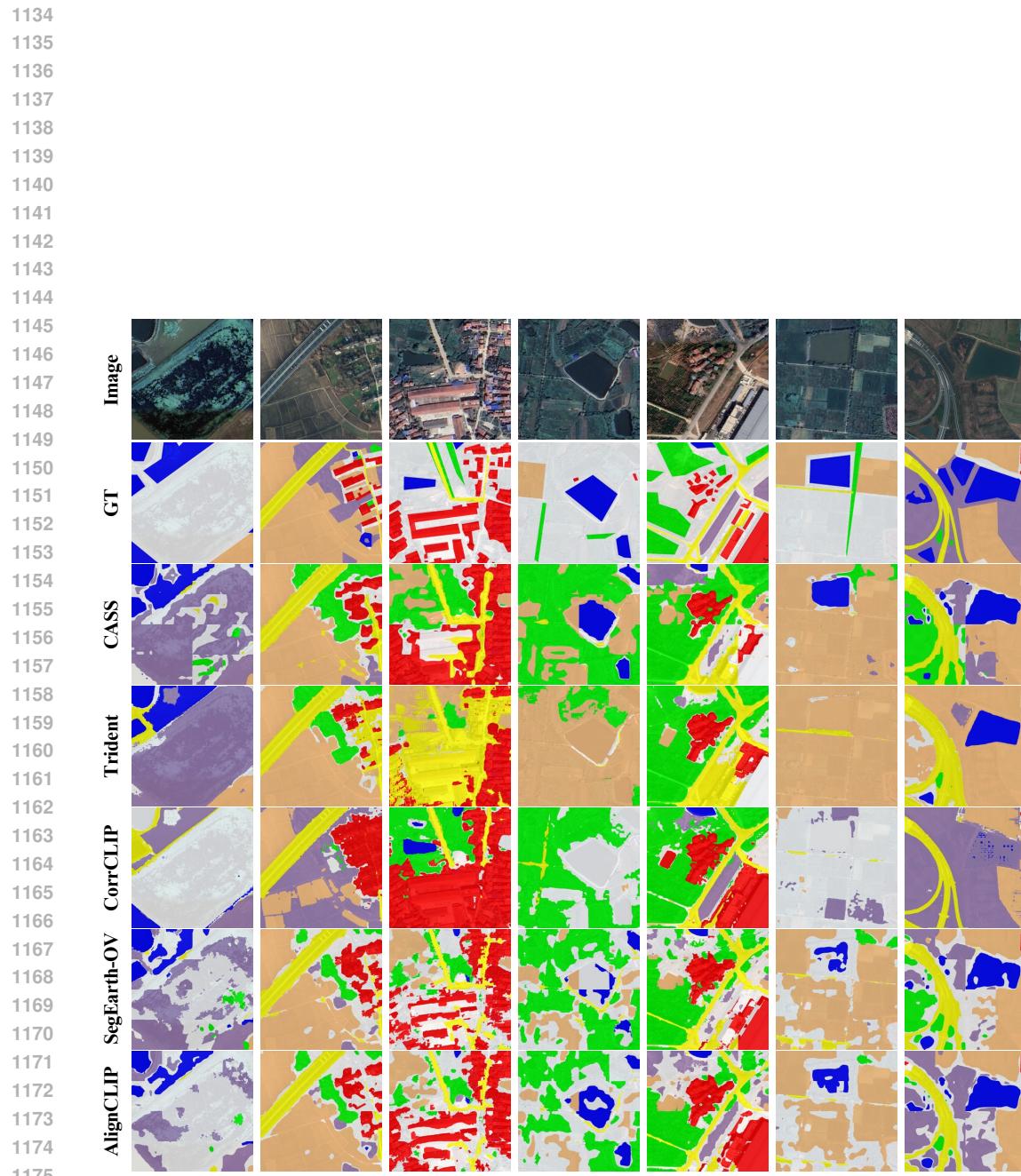


Figure 7: Qualitative comparison of different training-free OVSS methods on LoveDA.

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187



Figure 8: Qualitative comparison of different training-free OVSS methods on iSAID.

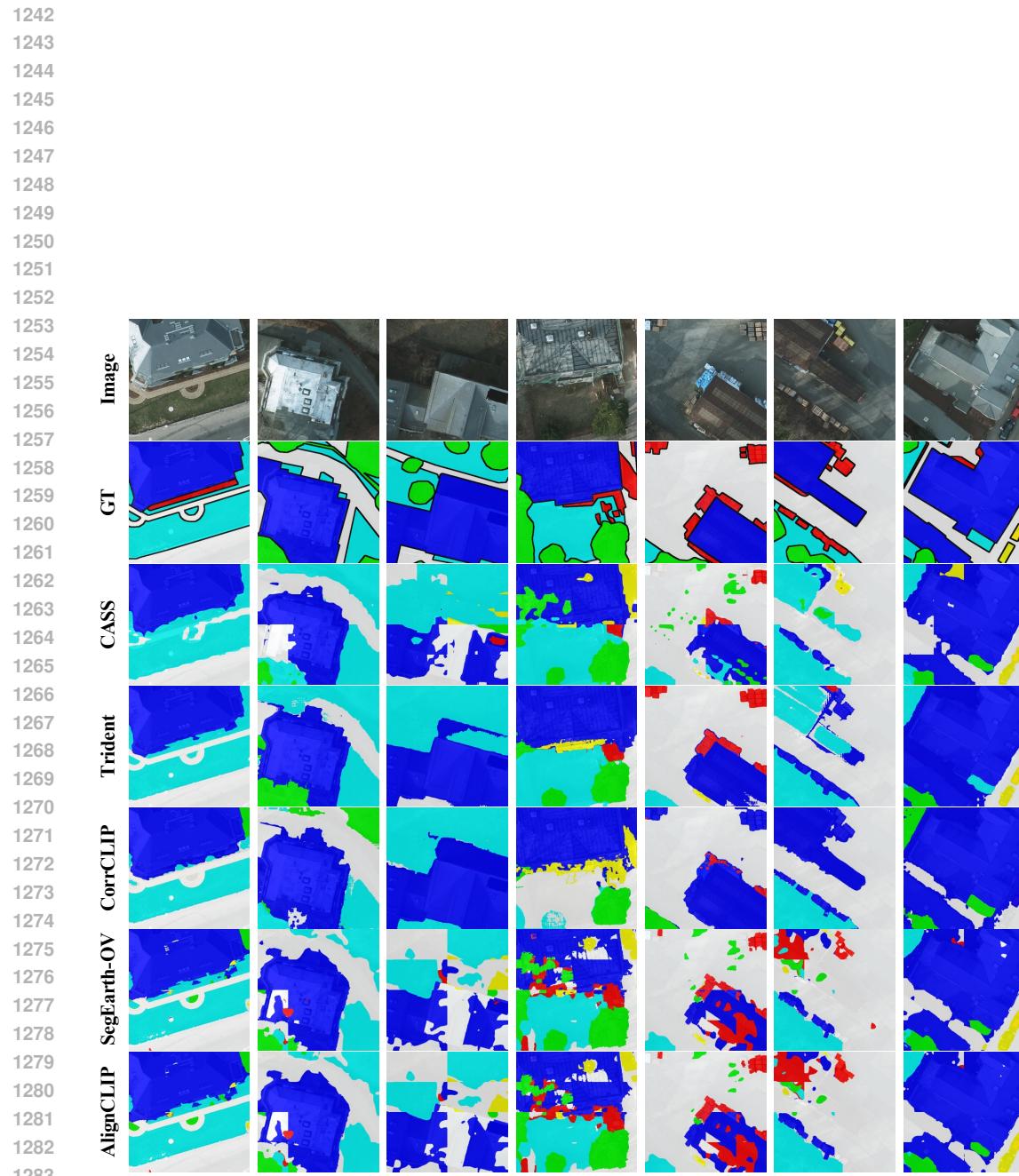


Figure 9: Qualitative comparison of different training-free OVSS methods on Potsdam.

1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

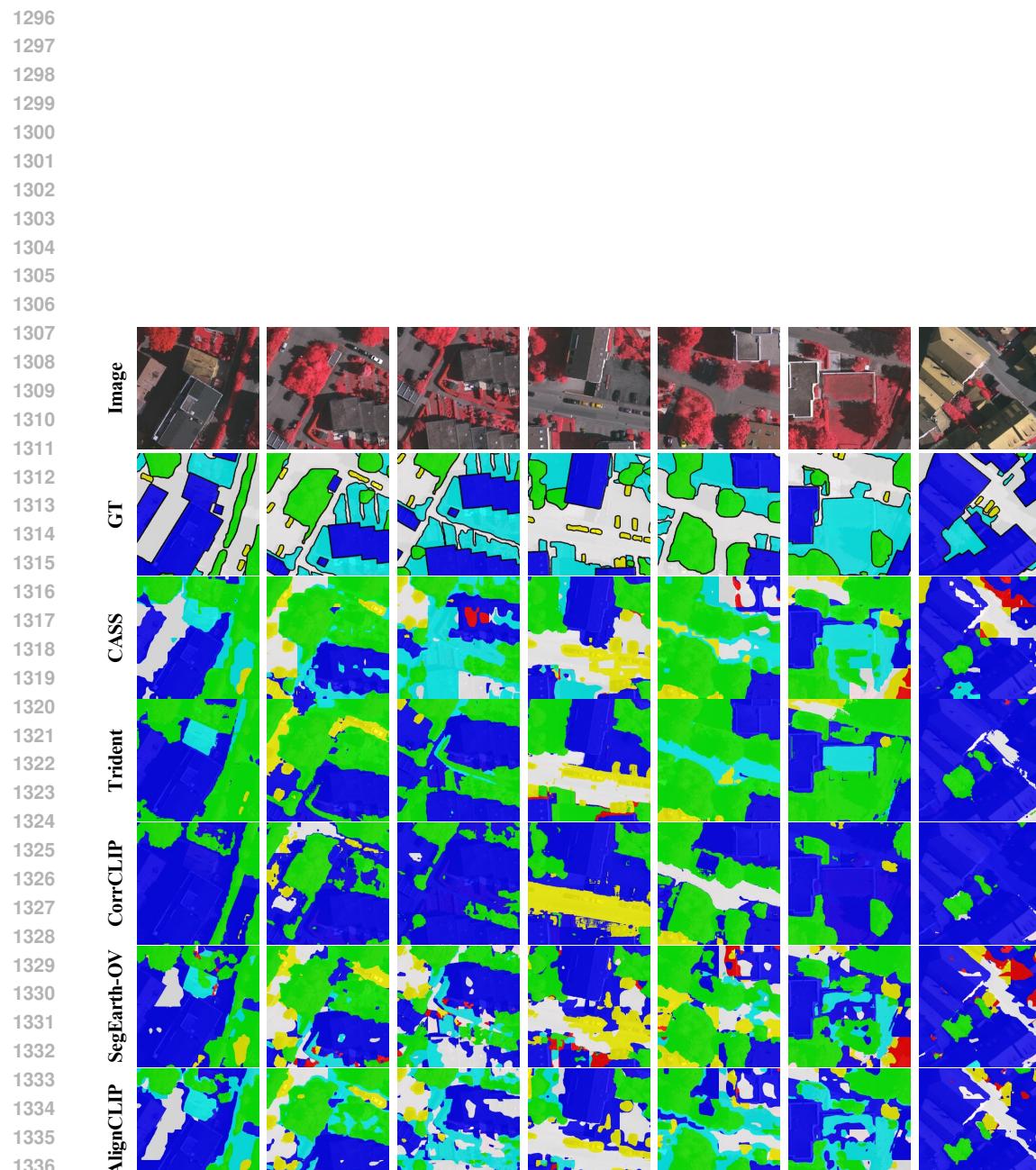


Figure 10: Qualitative comparison of different training-free OVSS methods on Vaihingen.

1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

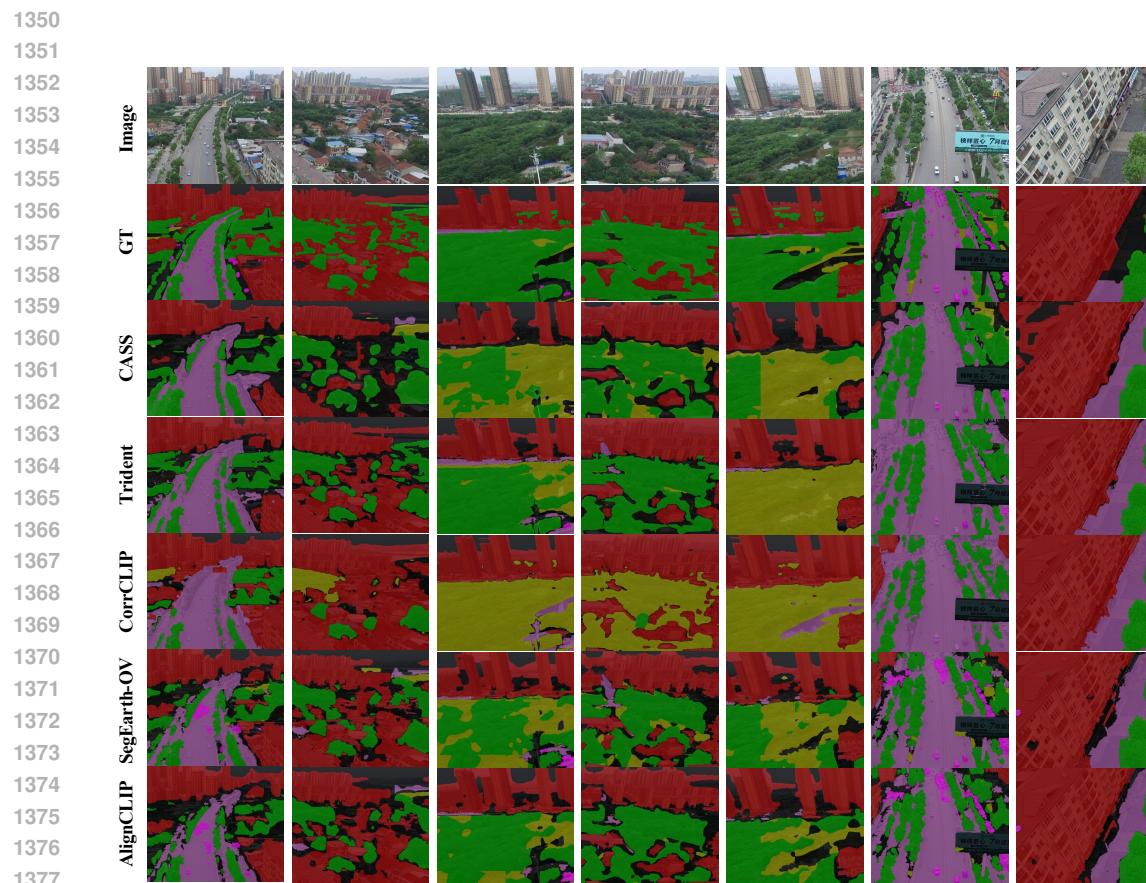


Figure 11: Qualitative comparison of different training-free OVSS methods on UAVid.

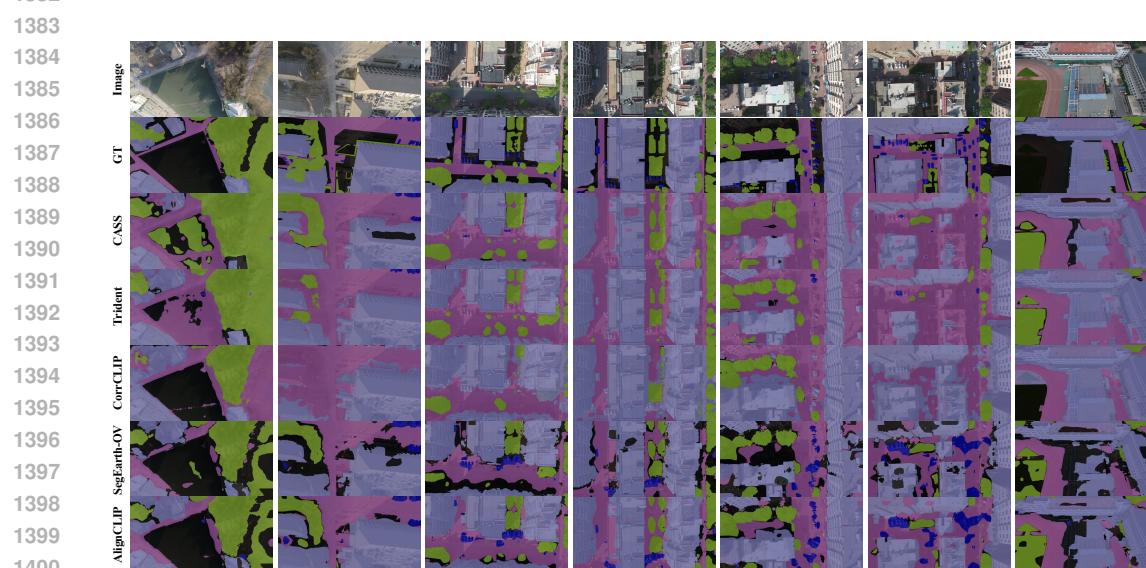


Figure 12: Qualitative comparison of different training-free OVSS methods on UDD5.

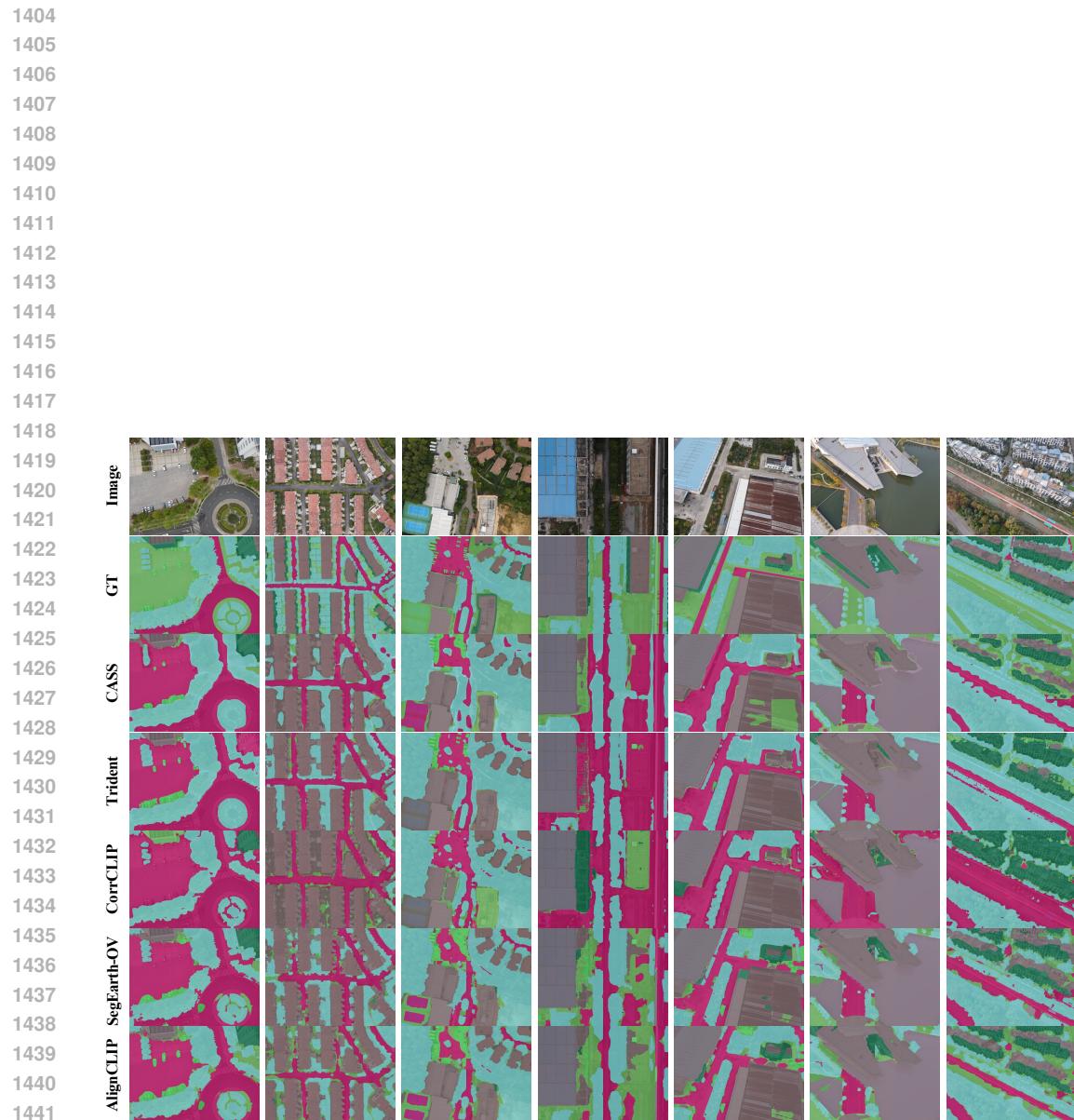


Figure 13: Qualitative comparison of different training-free OVSS methods on VDD.