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Abstract

The infinite-horizon discounted objective is popular in reinforcement learning,
partly due to stationary optimal policies and convenient analysis based on contract-
ing Bellman operators. Unfortunately, optimal policies must be history-dependent
for most common coherent risk-averse discounted objectives, such as Value at Risk
(VaR) and Conditional Value at Risk (CVaR). They also must be computed using
complex state augmentation schemes. In this paper, we show that the total reward
objective, under the Entropic Risk Measure (ERM) and Entropic Value at Risk
(EVaR), can be optimized by a stationary policy, an essential property for practical
implementations. In addition, an optimal policy can be efficiently computed using
linear programming. Importantly, our results only require the relatively mild condi-
tion of transient MDPs and allow for both positive and negative rewards, unlike
prior work requiring assumptions on the sign of the rewards. Our results suggest
that the total reward criterion may be preferable to the discounted criterion in a
broad range of risk-averse reinforcement learning problems.

1 Introduction

The literature on Markov decision processes (MDP) [Puterman, 2005] has seen a growing interest
in risk-averse objectives [Kastner et al., 2023, Marthe et al., 2023, Lam et al., 2022, Li et al., 2022,
Bäuerle and Glauner, 2022, Hau et al., 2023b,a, Su et al., 2024a,b]. Risk-averse objectives penalize
the variability of returns and prefer policies with stronger guarantees on the probability of catastrophic
losses. As a result, risk-averse objectives are important in critical applications, such as healthcare,
autonomous driving, or finance, where avoiding disastrous failures is essential. In modern work, the
most common metric in risk-averse objectives is to use a monetary risk measure, which generalizes
the expectation operator and assigns a real value to any random variable [Follmer and Schied, 2016].

Most reinforcement learning (RL) algorithms, risk-neutral and risk-averse alike, are designed for
the discounted objective, which computes a weighted sum of rewards over an infinite time horizon
with weights that decrease geometrically with time according to a known discount rate [Puterman,
2005, Su and Petrik, 2023]. In financial applications of RL, discounting future rewards accounts for
inflation or the option to invest gains. In non-financial applications, the justification for discounting is
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more complex and often driven by its algorithmic convenience—discounting guarantees the Bellman
operator is a contraction.

The total reward criterion (TRC), also known as the stochastic shortest path, is an alternative objective
to discounting [Puterman, 2005, Kallenberg, 2021]. In TRC, the horizon is infinite, and future rewards
are undiscounted. While the undiscounted sum of rewards may be unbounded in general, a common
assumption on the model is that the model is transient. In transient MDPs, there is some positive
probability that the process terminates in a bounded number of steps and reaches an absorbing sink
state. In the risk-neutral settings, transience guarantees that the total sum of rewards remains finite
under any policy and, consequently, that an optimal policy exists [Kallenberg, 2021, Filar and Vrieze,
2012].

In this paper, we analyze the foundations of risk-averse MDPs under the TRC objective and propose
algorithms for solving it. We focus on risk aversion modeled by the Entropic Value-at-Risk (EVaR)
and Entropic Risk Measures (ERM) risk measures. As our main contribution, we show that stationary
deterministic optimal policies always exist for TRC with EVaR and ERM risk-averse objectives.
We also show that these stationary policies and value functions can be computed using linear
programming. Implementing these algorithms is simple and closely resembles the algorithms for
solving MDPs.

Transient MDPs with the TRC criterion are a particularly salient model in risk-averse reinforcement
learning. In reinforcement learning, it is common to adopt discounted objectives to account for
a probability of termination (transition to a sink state) [Sutton and Barto, 2018]. In risk-neutral
settings, there is an equivalence between the probability of terminating and the use of a discount
factor. However, as our previous work [Su et al., 2024a] shows, no such correspondence exists with
risk-averse objectives, and the difference between them may be arbitrarily large.

Our results also show that EVaR is a particularly interesting risk measure in reinforcement learning.
ERM and the closely related exponential utility functions have been popular in sequential decision-
making problems because they admit dynamic programming decompositions [Patek and Bertsekas,
1999, de Freitas et al., 2020, Smith and Chapman, 2023, Denardo and Rothblum, 1979, Hau et al.,
2023b,a]. Unfortunately, ERM is difficult to interpret; its risk level is scale-dependent, and it is
difficult to relate it to popular risk measures like VaR and CVaR. Because EVaR reduces to an
optimization over ERM, it preserves most of the computational advantages of ERM. Because EVaR
closely approximates CVaR and VaR at the same risk level, its value is much easier to interpret.
Finally, EVaR is also a coherent risk measure, unlike ERM [Ahmadi-Javid, 2012, Ahmadi-Javid and
Pichler, 2017].

While we are unaware of prior work on the TRC objective with ERM or EVaR risk-aversion, the
ERM risk measure is closely related to exponential utility functions. All prior works on TRC with
exponential utility functions impose some constraints on the sign of the instantaneous rewards, such
as positive rewards [Blackwell, 1967] or negative rewards [Bertsekas and Tsitsiklis, 1991, Freire
and Delgado, 2016, de Freitas et al., 2020, Fei et al., 2021a,b]. Note that this significantly limits the
modeling power of prior approaches since assuming positive (resp. negative) rewards means that all
states are more desirable (resp. detrimental) than the sink state. Our analysis allows rewards that are
negative as well as positive.

The remainder of the paper is organized as follows. Section 2 describes basic properties of transient
MDPs and common risk measures. Section 3 establishes the main properties of ERM-TRC and
computes its optimal stationary policy using linear programming. Section 4 establishes the main
properties of EVaR-TRC by reducing the EVaR-TRC to a sequence of ERM-TRC problems and
shows that the optimal EVaR-TRC policy is stationary. Section 5 evaluates our algorithm on a tabular
transient MDP that includes positive and negative rewards.

Notation. We use a tilde to mark random variables, e.g. x̃. Bold lower-case letters represent vectors,
and upper-case bold letters represent matrices. Sets are either calligraphic or upper-case Greek letters.
The symbol X represents the space of real-valued random variables. When a function is defined over
an index set, such as z : {1, 2, . . . , N} → R, we also treat it interchangeably as a vector z ∈ Rn such
that zi = z(i),∀i = 1, . . . , n.
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2 Background on risk-averse MDPs

Markov Decision Processes We focus on solving Markov decision processes (MDPs) [Puterman,
2005], modeled by a tuple (S̄,A, p, r, µ), where S̄ = {1, 2, . . . , S, S + 1} is the finite set of states
and A = {1, 2, . . . , A} is the finite set of actions. The transition function p : S̄×A → ∆S̄ represents
the probability p(s, a, s′) of transitioning to s′ ∈ S̄ after taking a ∈ A in s ∈ S̄ and psa ∈ ∆S̄ is such
that (psa)s′ = p(s, a, s′). The function r : S̄ × A × S̄ → R represents the reward r(s, a, s′) ∈ R
associated with transitioning from s ∈ S̄ and a ∈ A to s′ ∈ S̄. The vector µ ∈ ∆S̄ is the initial state
distribution. We designate the state e := S + 1 as a sink state and use S = {1, . . . , S} to denote the
set of all non-sink states. The sink state e must satisfy that p(e, a, e) = 1 and r(e, a, e) = 0 for each
a ∈ A, and µe = 0.

The solution to an MDP is a policy. Given a horizon t ∈ N, a history-dependent policy in the set
Πt

HR maps the history of states and actions to a distribution over actions. A Markov policy π ∈ Πt
MR

is a sequence of decision rules π = (d0,d1, . . . ,dt−1) with dk : S → ∆A the decision rule for
taking actions at time k. The set of all randomized decision rules is D = (∆A)

S. Stationary policies
ΠSR are of Markov policies with π = (d,d, . . . ) := (d)∞ with the identical decision rule in every
timestep. We treat decision rules and stationary policies interchangeably. The sets of deterministic
Markov and stationary policies are denoted by Πt

MD and ΠSD. Finally, we omit the subscript t to
indicate infinite horizon definitions of policies for histories of any length.

Optimizing the risk-neutral Total Reward Criterion (TRC) involves solving for

sup
π∈ΠHR

lim inf
T→∞

Eπ,µ

[
T∑

t=0

r(s̃t, ãt, s̃t+1)

]
, (1)

where the random variables are denoted by a tilde and s̃t and ãt represent the state from S̄ and action
from A at time t. The superscript π denotes the policy that governs the actions ãt when visiting s̃t
and µ denotes the initial distribution. Finally, note that lim inf gives a conservative estimate of a
policy’s return since the limit does not necessarily exist for non-stationary policies.

In risk-neutral objectives, TRC is more challenging to optimize than the discounted criterion. Without
any additional assumptions, it is known that TRC may be unbounded, optimal policies may not exist,
or may be non-stationary [Bertsekas and Yu, 2013, James and Collins, 2006]. A common assumption
that guarantees that the total return is well-behaved is that all policies have a positive probability of
eventually transitioning to the sink state. Such MDPs are referred to as being transient [Kallenberg,
2021].
Definition 2.1 (Transient MDP). An MDP is transient if for any π ∈ ΠSD:

∞∑
t=0

Pπ,s [s̃t = s′] < ∞, ∀s, s′ ∈ S. (2)

Transient MDPs are important because their optimal policies exist and can be chosen stationary and
deterministic [Kallenberg, 2021, theorem 4.12]. An important tool in their analysis is the spectral
radius ρ : Rn×n → R which is defined for each A ∈ Rn×n as the maximum absolute eigenvalue:
ρ(A) := maxi=1,...,n |λi| where λi is the i-th eigenvalue [Horn and Johnson, 2013].
Lemma 2.2 (Theorem 4.8 in Kallenberg [2021]). An MDP is transient if and only if ρ(P π) < 1 for
all π ∈ ΠSD.

One can verify if an MDP is transient in polynomial time without enumerating all policies by solving
a linear programming [Kallenberg, 2021, Algorithm 4.1].

Now, let us understand the basic setting differences between a discounted MDP and a transient
MDP, which are useful in demonstrating the behavior of risk-averse objectives. Consider the MDPs
in Figure 1. There are one non-sink state s and one action a. A triple tuple represents an action,
transition probability, and an immediate reward separately. Note that every discounted MDP can be
converted to a transient MDP by (19) in Appendix B. For the discounted MDP, the discount factor is
γ. For the transient MDP, e is the sink state, and there is the probability 1− ϵ of transiting from state
s to state e. Once the agent reaches the state e, it stays in e. For the risk-neutral objective, if γ equals
ϵ, their value functions have identical values. Please see Proposition B.1 in Appendix B for details.
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(a, 1− ϵ, r)

(a, 1, 0)

Figure 1: left: a discounted MDP, right: a transient MDP

Monetary risk measures Monetary risk measures aim to generalize the expectation operator to
account for the spread of the random variable.

Entropic risk measure (ERM) is a popular risk measure, defined for any risk level β > 0 and x̃ ∈ X
as [Follmer and Schied, 2016]

ERMβ [x̃] = −β−1 · logE exp (−β · x̃) . (3)
and extended to β ∈ [0,∞] as ERM0[x̃] = limβ→0+ ERMβ [x̃] = E[x̃] and ERM∞[x̃] =
limβ→∞ ERMβ [x̃] = ess inf[x̃]. ERM plays a special role in sequential decision-making because it
is the only law-invariant risk measure that satisfies the tower property shown in Proposition A.1 [Kup-
per and Schachermayer, 2006, Marthe et al., 2023], which is essential in constructing dynamic
programs [Hau et al., 2023b].

Unfortunately, two significant limitations of ERM hinder its practical applications. First, it is not
positively homogenous and, therefore, the risk value depends on the scale of the rewards, and ERM
is not coherent [Follmer and Schied, 2016, Hau et al., 2023b, Ahmadi-Javid, 2012]. Second, the risk
parameter β is challenging to interpret and does not relate well to other common risk measures, like
VaR or CVaR.

For these reasons, we focus on the Entropic Value at Risk (EVaR), defined as, for a given α ∈ (0, 1),

EVaRα [x̃] = sup
β>0

−β−1 log
(
α−1E exp (−βx̃)

)
= sup

β>0
ERMβ [x̃] + β−1 logα, (4)

and is extended to EVaR0 [x̃] = ess inf[x̃] and EVaR1 [x̃] = E [x̃] [Ahmadi-Javid, 2012]. EVaR
addresses the limitations of ERM while preserving its main benefits. First, EVaR is coherent and,
therefore, positively homogenous. Second, EVaR is a good approximation to interpretable quantile-
based risk measures, like VaR and CVaR [Ahmadi-Javid, 2012, Hau et al., 2023b].

3 Analysis of ERM Total Reward Criterion

In this section, we analyze the ERM-TRC problem. We show that an optimal stationary policy exists
for this criterion, and we describe linear programming algorithm for computing it. As discussed
previously, the main innovation in this result is that we do not need to assume that the rewards
are positive or negative, and we make no additional assumptions on the value of β unlike prior
work [Patek, 2001, Denardo and Rothblum, 1979, de Freitas et al., 2020].

Our objective l : R++ → R̄ in this section is to maximize the ERM of the infinite-horizon total sum
of rewards, which is formally defined as

l(β) := sup
π∈ΠHR

lim inf
T→∞

ERMπ,µ
β

[
T∑

t=0

r(s̃t, ãt, s̃t+1)

]
, (5)

where R++ is the set of positive real numbers. Analogously to the expectation operator in (1), we
use the superscript in the risk measure to indicate the policy and initial distribution governing the
distribution of s̃t and ãt.

Surprisingly, adding risk aversion to the TRC can result in unbounded returns even when the MDP is
transient, as we show below. In the remainder of the section, we generally assume that the risk level
β > 0 is fixed and omit it in notations when its value is unambiguous from the context.

3.1 Existence of Optimal Value Functions and Stationary Policies

To prove our results, we first study the finite-horizon ERM objective and then treat the total reward
criterion as a limiting case as the horizon tends to infinity.
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For the finite-horizon ERM objective, there always exists a Markov deterministic optimal policy
(see Appendix C.1), and we therefore define finite-horizon time-dependent value functions for
such policies. The finite-horizon value and optimal value functions, vt(π) ∈ RS̄ and vt,⋆ ∈ RS̄

respectively, are defined for each horizon t = 0, . . . and policy π ∈ ΠMD, s ∈ S̄ as

vts(π) := ERMπ,s
β

[
t−1∑
k=0

r(s̃k, ãk, s̃k+1)

]
, vt,⋆s = max

π∈ΠMD

vts(π). (6)

Instead of value functions, it will be convenient to consider their exponential transformation that
will linearize the corresponding Bellman operators. The exponential value function wπ

s ∈ RS̄ for
π ∈ ΠMD, t = 0, 1, . . . , and s ∈ S̄ is defined as

wt
s(π) := − exp

(
−β · vts(π)

)
= −Eπ,s

[
exp

(
−β ·

t−1∑
k=0

r(s̃k, ãk, s̃k+1)

)]
. (7)

The optimal exponential value function wt,⋆ ∈ RS̄ is defined analogously. Note that the exponential
value functions satisfy wt < 0 (componentwise) and w0(π) = wt,⋆ = −1 = −(1, ..., 1) for any
π ∈ ΠMD. The value function can be recovered as

vts(π) = −β−1 log(−wt
s(π)), ∀s ∈ S̄, t = 0, 1, . . . . (8)

As is usual in MDPs, we employ dynamic programming to compute exponential value functions. The
exponential Bellman operator for w ∈ RS is defined as

Ldw := Bdw − bd, L⋆w := max
d∈D

Ldw = max
d∈extD

Ld, (9)

where extD is the set of extreme points of D corresponding to deterministic decision rules. The
exponential transition matrix Bd ∈ RS×S

+ and vector bd ∈ RS
+ are defined for s, s′ ∈ S and d ∈ D

as

Bd
s,s′ :=

∑
a∈A

p(s, a, s′) · da(s) · exp (−β · r(s, a, s′)) , (10a)

bds :=
∑
a∈A

p(s, a, e) · da(s) · exp (−β · r(s, a, e)) . (10b)

The following theorem builds on previous results for MDPs with ERM [Hau et al., 2023b] and
exponential utility functions [Patek, 1997] to show that exponential value functions can be computed
by applying the exponential Bellman operator iteratively. We use the shorthand notation π1:t−1 =
(d1, . . . ,dt−1) ∈ Πt−1

MR to denote the tail of π that starts with d1 instead of d0.
Theorem 3.1. The exponential value functions wt(π) in (7) for π = (d0, . . . ,dt−1) ∈ Πt

MR and
wt,⋆ can be computed from wt(π1:t−1) and wt,⋆ respectively for t = 1, . . . as:

wt = Ldtwt−1(π1:t−1), wt,⋆ = L⋆wt−1,⋆,

and w0(π) = w0,⋆ = −1. Moreover, there exists π⋆
t ∈ Πt

MD such that wt(π⋆
t ) = wt,⋆ for each

t = 0, . . . .

The proof of Theorem 3.1 is shown in Appendix C.3.

Using the notation and results above, we now turn to constructing infinite-horizon optimal policies as
a limiting case of the finite horizon. The ERM-TRC objective defined in (5) can be expressed for the
initial distribution µ ∈ ∆S̄ as

sup
π∈ΠHR

lim inf
t→∞

µ⊤vt(π). (11)

As in the finite-horizon case, it will be beneficial to define an exponential transformation of the value
function for each π ∈ ΠMR as elementwise limits:

w∞(π) := lim inf
t→∞

wt(π), w∞,⋆ := lim inf
t→∞

wt,⋆.

The following theorem shows the main results of this section. It establishes the existence of an
optimal exponential value function, attained by a stationary deterministic policy, and shows that it is
the fixed point of the exponential Bellman operator.
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Theorem 3.2. Assume the MDP is transient, µ > 0, and µ⊤w∞,⋆ > −∞. Then there exists
π⋆ = (d⋆)∞ ∈ ΠSD such that

w∞,⋆ = w∞(π⋆) = Ld⋆

w∞,⋆.

Moreover, w∞,⋆ is the unique fixed point of Ld⋆

.

Before discussing the proof of Theorem 3.2, we state its immediate corollary. That is, there exists an
optimal stationary policy that solves the ERM-TRC objective.
Corollary 3.3. Assume a transient MDP and µ > 0. Then:

µ⊤v∞,⋆ = max
π∈ΠSD

µ⊤v∞(π).

The proof of Corollary 3.3 is shown in Appendix C.5.

Our results are somewhat stronger than purely showing the existence of optimal stationary policies in
infinite-horizon objectives. Our results show an optimal stationary policy exists whenever the planning
horizon t is sufficiently large. This property mirrors turnpikes in discounted MDPs [Puterman, 2005].

Finally, we use the properties above to discuss the impact of β on the objective function.
Proposition 3.4. There exists a transient MDP and a risk level β > 0 such that l(β) = −∞.

The proof of Proposition 3.4 is shown in Appendix C.6.

Although the TRC may be unbounded, for each transient MDP, there exists a β such that the TRC is
bounded. This result will be important in the analysis of the EVaR objective.
Lemma 3.5. Assume that the MDP is transient. Then there exists β > 0 such that ∞ > l(β) > −∞.

The proof of Lemma 3.5 is shown in Appendix C.7.

3.2 Outline of the Convergence Proof of Theorem 3.2

We now outline the proof of Theorem 3.2; please see Appendix C.4 for details. To establish
Theorem 3.2, we show that wt,⋆ converges to a fixed point as t→ ∞ .

Note that standard discounted infinite-horizon arguments do not apply to our ERM-TRC setting: in
discounted objectives, one would usually use the contraction property of the Bellman operator under
the L∞ norm to establish the existence of a single fixed point. However, under the TRC, the Bellman
operator is not a L∞-contraction. There are two common techniques in TRC with transient MDPs.
The first one is to argue that the Bellman operator is a contraction under specially weighted L∞
norm [Bertsekas, 2018]. The second one is to argue that (Td)k is an L∞ contraction for a sufficiently
large k where T is the Bellman operator [Bertsekas, 2017].

The risk-neutral TRC proof techniques rely on the linearity of the Bellman evaluation operator [Kallen-
berg, 2021] and cannot be applied to the nonlinear ERM Bellman operator. To overcome this nonlin-
earity, we consider the exponential Bellman operator Ld, which is linear for each d ∈ D. Although
Bd is linear, it may be a non-contraction with ρ(Bd) ≥ 1 when the MDP is a transient. This is
because the transformation in (10) can increase the transition probabilities leading to rows sums
greater than 1 [Horn and Johnson, 2013, theorem 8.1.22]. This precludes us from using standard
fixed-point arguments to argue that the limit exists (does not oscillate with time) and is bounded.

Our main contribution is to show that whenever the exponential value functions are bounded, they
must be contractions, and the limit exists. To facilitate the analysis, we define wt : Πt

SR × RS̄ →
RS̄, t = 0, . . . for z ∈ RS̄ as, for π ∈ Πt

SR,

wt(π, z) = Ldw(π1:t−1) = LdLd . . . Ld(−z) = −(Bd)tz −
t−1∑
k=0

(Bd)kbd. (12)

The value z can be interpreted as the exponential value function at the termination of the process
following π for t periods, with exponential value at termination z. Note that wt(π) = wt(π,1), ∀π ∈
ΠMR, t = 0, . . . . An important technical result we show is that the only way a stationary policy’s
return can be bounded is if the policy’s matrix has a contracting spectral radius.
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Lemma 3.6. Assume a transient MDP and π = (d)∞ ∈ ΠSR. Then for each µ > 0 and z ≥ 0

µ⊤w∞(π,z) > −∞ ⇒ ρ(Bd) < 1.

The proof of Lemma 3.6 is shown in Appendix C.8.

Lemma 3.6 uses the transience property to show that Perron vector f of Bd satisfies that f⊤bd > 0.
Recall that the Perron vector of a non-negative matrix is the eigenvector with the maximum absolute
eigenvalue [Horn and Johnson, 2013]. Therefore, ρ(Bd) < 1 is necessary for the series in (12) to be
bounded.

The limitation of Lemma 3.6 is that it only applies to stationary policies and does not preclude the
possibility that all stationary policies have unbounded returns while there exists a Markov policy that
has a bounded and superior return. To show that this is impossible, we construct an upper bound on
wt,⋆ that decreases monotonically with t and converges when bounded. The proof then concludes by
squeezing wt,⋆ between a lower bound that converges to the upper bound.

3.3 Linear Programming for Computing Value Functions

We now describe the linear program to compute the optimal exponential value function, and the
regular value function is recovered in (8). The optimal exponential value function can be computed
using the following linear program

min
w∈RS̄

1⊤w

subject to ws ≥ −bas +Ba
s,· ·w, ∀s ∈ S̄, a ∈ A

(13)

where w = (w1, · · · , w|S̄|) and Ba
s,· = (Ba

s,s1 , · · · ,B
a
s,s|S̄|

), Ba
s,s′ and bas are constructed in (10).

4 Reduction of EVaR-TRC to ERM-TRC

In this section, we analyze the EVaR-TRC objective and show that it can be reduced to a sequence of
ERM-TRC problems. This reduction is inspired by a reduction proposed for discounted MDPs [Hau
et al., 2023b]. Using this reduction, we show that the optimal EVaR-TRC policy is stationary.

The objective in this section is to compute a policy that maximizes the EVaR of the random return∑∞
t=0 r(s̃t, ãt, s̃t+1) at some given risk level α ∈ (0, 1) as

ρ⋆ = sup
π∈ΠHR

EVaRπ,µ
α

[ ∞∑
t=0

r(s̃t, ãt, s̃t+1)

]
, (14)

where π denotes the policy that governs the actions ãt when visiting s̃t and µ denotes the initial state
distribution. In (14), we interpret the EVaR of the infinite sum as

EVaRπ,µ
α

[ ∞∑
t=0

r(s̃t, ãt, s̃t+1)

]
= sup

β>0
lim

T→∞
ERMπ,µ

β

[
T∑

t=0

r(s̃t, ãt, s̃t+1)

]
+ β−1 · logα.

One could formulate this objective in other ways, such as putting the limit outside of the supremum
operator or inside of the ERM. We chose this formulation because of its convenience and leave the
study of related objectives for future work.

Note that the objective in (14) differs from prior work [Ahmadi et al., 2021, Hau et al., 2023b] on
EVaR in MDPs is that it considers an undiscounted criterion and a static risk measure.

To compute an optimal policy for the EVaR-TRC objective, we define a proxy objective function
h : R → R̄ as

h(β) := max
π∈ΠSD

(
lim

T→∞
ERMπ,µ

β

[
T∑

t=0

r(s̃t, ãt, s̃t+1)

]
+ β−1 · log(α)

)
. (15)

If we can find a β value that maximizes the function h, then we can use ERM-TRC to compute an
optimal policy for EVaR-TRC objective. The main result of this section is given by Theorem 4.1.
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Figure 2: Transient MDP without an equivalent discounted MDP

Theorem 4.1. Assume a transient MDP. Then:

1. if supβ>0 h(β) is attained, then there exists β⋆ > 0 and π⋆ ∈ ΠSD such that

h(β⋆) = sup
β>0

h(β), π⋆ ∈ arg max
π∈ΠSD

(
lim

T→∞
ERMπ,µ

β⋆

[
T∑

t=0

r (s̃t, ãt, s̃t+1)

])
, (16)

and π⋆ is EVaR-TRC optimal in (14) and achieves a finite return.

2. if supβ>0 h(β) is unattained, then π⋆ is optimal in (14) if

π⋆ ∈ arg max
π∈ΠSD

ess infπ,µ

[ ∞∑
t=0

r (s̃t, ãt, s̃t+1)

]
.

The proof of Theorem 4.1 is shown in Appendix D.1.

Now, we reduce the EVaR-TRC problem to a specific sequence of ERM-TRC problems. Given an
approximation error δ, we use a discrete grid β0 ∪ {βk}Kk=1 to search over the risk level β that can
maximize the function h. β0 is chosen to be a very small number. K ∈ N is sufficiently large. Find
the k⋆ value, k⋆ ∈ argmaxk=0:K h(βk), and then πk⋆

is the δ-sub-optimal policy to EVaR-TRC
objective in (14). To guarantee δ-sub-optimality of the computed policy, the values {βk}Kk=1 can be
constructed for k = 1, . . . ,K − 2 as

β0, βk+1 =
βk log(α)

βkδ + log(α)
. βK =

− log(α)

δ
, (17)

Please see Equations (19) and (20) in [Hau et al., 2023b] for more details, derivation, and guarantees.

5 Numerical Illustration

In this section, we first show that there exists a transient MDP that can not be converted to a discounted
MDP. Then we illustrate the results of Section 3 and discuss the influence of the risk parameter β on
ERM and the influence of termination probability on EVaR on a tabular transient MDP that includes
positive rewards and negative rewards.

We describe how to construct a transient MDP from a discounted MDP by Remark 1 in Appendix B.
Note that for a discounted MDP, there always exists an equivalent transient MDP constructed by
Remark 1. However, there exists a transient MDP shown in Figure 2 that can not be converted to
a discounted MDP. For the transient MDP in Figure 2, the state space is S̄ = {1, 2, e}. There is
only one available action a at each state. The initial state distribution µ(s1) = 0.5, µ(s2) = 0.5 and
µ(e) = 0. The tuple represents a transition probability and an immediate reward separately. ϵ ∈ [0, 1]
is used to show the connection between a transient MDP and a discounted MDP. In state s1, the
probability of transitioning from state s1 to e is (1− ϵ)2, so the discount factor can be considered as
1− (1− ϵ)2. In state s2, the probability of transitioning from state s2 to e is 1− ϵ, so the discounted
factor can be considered as ϵ. When 1 − (1 − ϵ)2 ̸= ϵ, the future rewards in states s1 and s2 are
discounted differently, so there is no corresponding discounted MDP.

Let us illustrate the results of Section 3 and the influence of the risk parameter β on ERM. We set ϵ
to 0.5. Compute the exponential transition matrix Bd in (10). Because there is only one action a
available at each state, the only policy is to take the action a at each state and da(s) = 1,∀s ∈ S̄. We

8



Figure 3: Spectral radius ρ(Bd) with ϵ = 0.85 Figure 4: ERM value with ϵ = 0.85

Figure 5: h(β) with the risk level α = 0.75, EVaR values are labelled by stars

use linear program in (13) to compute the exponential ERM value and recover the regular ERM value
by (8). Figures 3 and 4 show the relationship between the spectral radius of Bd and the ERM value.
As the spectral radius ρ(Bd) approaches to 1, the ERM value dramatically decreases. It is obvious
that when ρ(Bd) ≥ 1, the ERM value will be unbounded. Therefore, ρ(Bd) < 1 is the necessary
condition for the ERM return to be bounded.

Now we use the transient MDP in Figure 2 to discuss the influence of termination probability on
EVaR. The first case is 1 − (1 − ϵ)2 = ϵ. That is, ϵ is 1 or 0. When ϵ = 1, the probability of
transitioning from state s2 to e is 0, then the MDP is not transient, and the accumulated reward will
be −∞. When ϵ = 0,in a discounted criterion, it is a one-step discounted MDP, and the return is
0.5. When ϵ = 0, in a TRC criterion, the agent has the probability 1 of entering the sink state at
most 2 steps, and the return is 0.5. For this special case, the EVaR values are identical in discounted
and TRC criteria. The second case is 1 − (1 − ϵ)2 ̸= ϵ. That is, ∀ϵ ∈ (0, 1), the transient MDP
has no corresponding discounted MDP. We set the risk level α to 0.75, δ to 0.01 and δ to 2e − 7.
The optimal EVaR-TRC value is computed by (16) in Theorem 4.1. Figure 5 shows how ϵ values
affect h(β) defined in (15), EVaR values, and the optimal β values. In general, h(β) is not a concave
function. For this transient MDP, h(β) is a concave function with respect to β. As ϵ increases, the
optimal EVaR-TRC value and the optimal β value decrease. Note that βK defined in (17) is equal to
− log(α)

δ = 28.76, but the optimal β values in Figure 5 are much smaller than βK .

6 Conclusion

We analyze transient MDPs with two risk measures: ERM and EVaR. We establish the necessary and
sufficient conditions for the existence of stationary optimal policies. We allow negative and positive
rewards. We prove the convergence of value iteration and show that the optimal stationary policy
can be computed using linear programming. Our numerical illustration shows that TRC may be
preferable to the discounted criterion under the ERM and EVaR.
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A Background

Proposition A.1. Tower Property for Expectation(Proposition 3.4 in [Ross and Peköz, 2023],Propo-
sition B.1. in [Hau et al., 2023b]) Any two random variables X1, X2 ∈ X, we have

E[X1] = E[E[X1|X2]]

B Transient MDP Construction

In the risk-neutral setting, it is well-known that the discounted objective can be interpreted as TRC.
The discounted infinite-horizon objective for a factor γ ∈ (0, 1) is [Puterman, 2005]

max
π∈ΠSD

ργ(π) := Eπ,µ

[ ∞∑
t=0

γt · r(s̃t, ãt, s̃t+1)

]
. (18)

Here, s̃t and ãt are random variables for the state s̃t and action ãt at time t distributed according to
the transition probabilities p. The superscript of E denotes the policy that governs the distribution of
ãt and the distribution over the initial state s̃0. We replace the distribution by a specific state s ∈ S
when µs = 1.

We describe how to construct a transient MDP from a discounted MDP as follows.
Remark 1 (Transient MDP construction). Given an MDP M = (S,A, p, r, µ) and a discount factor
γ ∈ [0, 1), construct an MDP M̄γ = (S̄, Ā, p̄, r̄, µ̄) such that S̄ = S ∪ {g}, Ā = A, and µ̄(s) =
µ(s),∀s ∈ S and µ(g) = 0. The transition function is defined as

p̄(s, a, s′) =


γ · p(s, a, s′) if s, s′ ∈ S, a ∈ A,

1− γ if s ∈ S, s′ = g, a ∈ A,

1 if s = s′ = g, a ∈ A,

0 otherwise.

(19)

When the rewards r : S×A → R are independent of the next state, then r̄ : S̄× Ā → R are defined as
r̄(s, a) = r(s, a) when s ∈ S, a ∈ A and r(s, a) = 0 otherwise. The model can be readily extended
to account for the target state dependence by constructing an M̄γ with a random reward function.

It is well-known that discounted MDPs reduce to TRCs [Altman, 1998, Section 1.10]. The construc-
tion can readily be shown using standard dynamic programming techniques to satisfy the following
property [Feinberg and Huang, 2019].
Proposition B.1. For each MDP M, discount factor γ ∈ [0, 1), and π ∈ ΠSD we have that

ργ(π,M) = ρ(π̄, M̄γ),

where ργ , ρ are model-dependent and π̄ extends π to S̄.

C Proofs for Section 3

C.1 Optimality of Markov Policies

The equivalence to solving finite-horizon MDPs with exponential utility functions gives us the
following result.
Theorem C.1. For each β > 0, there exists an optimal deterministic Markov policy πt,⋆ ∈ ΠMD for
each horizon t = 0, . . . :

max
π∈ΠMR

ERMπ,s
β

[
t−1∑
k=0

r(s̃k, ãk, s̃k+1)

]
= max

π∈ΠHR

ERMπ,s
β

[
t−1∑
k=0

r(s̃k, ãk, s̃k+1)

]
.

See [Hau et al., 2023b, Corollary 4.2] for a proof. The result can also be derived from the optimality
of Markov deterministic policies in MDPs with exponential utility functions [Chung and Sobel, 1987,
Patek, 2001].
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C.2 Bellman Operator

Lemma C.2. The exponential Bellman operator is monotone. That is for x,y ∈ RS

x ≥ y ⇒ Ldx ≥ Ldy, ∀d ∈ D (20)
x ≥ y ⇒ L⋆x ≥ L⋆y. (21)

Proof. The property in (20) follows immediately from non-negattivity of Bd. The property in (21)
then follows from the monotonicity of the max operator.

Lemma C.3. The exponential Bellman operators Ld, ∀d ∈ D and L⋆ are continuous.

Proof. The lemma follows directly from the continuity of linear operators and from the fact that the
pointwise maximum of a finite number of continuous functions is continuous. See also [Patek, 2001,
lemma 5]

C.3 Proof of Theorem 3.1

Proof of Theorem 3.1. To construct the value function, we can define a Bellman operator Td : RS →
RS for any decision rule d : S → ∆A and the optimal Bellman operator T ⋆ : RS → RS for a value
vector v ∈ RS as

(Tdv)s := ERMd,s
β [r(s, ã0, s̃1) + vs̃1 ] ,

T ⋆v := max
d∈D

Tdv = max
d∈extD

Tdv.
(22)

It is easy to see that d can be chosen independently for each state to maximize v uniformly across
states. The optimality of deterministic decision rules, d ∈ extD, follows because ERM is a mixture
quasi-convex function [Delage et al., 2019].

The existence of value function for finite-horizon problem under the ERM objective has been analyzed
previously [Hau et al., 2023b] including in the context of exponential utility functions [Chung and
Sobel, 1987].

To derive the exponential Bellman operator for the exponential value function for d : S → ∆A we
concatenate the Bellman operator with the transformations to and from the exponential value function:

(Ldw)s := − exp
(
−β · Td(−β−1 log(−w))

)
= −Ed,s [exp (−β · r(s, ã0, s̃1) + log(−ws̃1))]

= −Ed,s [exp (−β · r(s, ã0, s̃1)) · (−ws̃1)]

=
∑
s′∈S̄

∑
a∈A

p(s, a, s′) · da(s) · exp (−β · r(s, a, s′)) · ws′

=
∑
s′∈S

∑
a∈A

p(s, a, s′) · da(s) · exp (−β · r(s, a, s′)) · ws′

−
∑
a∈A

p(s, a, e) · da(s) · exp (−β · r(s, a, e)) .

(23)

The derivation above uses the fact that we = −1 since ve = 0 by definition. The statement of the
theorem then follows by algebraic manipulation of Bd, bd and by induction on t. The base case hold
by the definition of w0(π) = w0,⋆ = −1.

The existence of an optimal π⋆ follows by choosing the maximum in the definition of L⋆, which is
attained by compactness and continuity of the objective.

C.4 Proof of Theorem 3.2

Lemma C.4. Assume some π = (d)∞ ∈ ΠSR such that ρ(Bd) < 1. Then for all z ∈ RS

w∞(π) = w∞(π,z) = Ldw > −∞.
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Proof. The result follows by algebraic manipulation from (12) and basic matrix analysis. When
ρ(Bd) < 1, we get from Neumann series [Horn and Johnson, 2013, problem 5.6.P26]

t−1∑
k=0

(Bd)kbd = (I −Bd)−1bd

and a consequence of Gelfand’s formula [Kallenberg, 2021, theorem 4.5]

lim
k→∞

(Bd)kz = 0.

Proof of Theorem 3.2. When µ⊤v∞,⋆ = −∞ then the result follows immediately because −∞ =
supπ∈ΠMR

µ⊤v∞(π) ≥ maxπ∈ΠSR
µ⊤v∞(π) ≥ −∞.

For the remainder of the proof, suppose that µ⊤v∞(π⋆
M) > −∞. Then, the exponential value

function wt,⋆ = wt(πM) ∈ RS of πM satisfies by Theorem 3.1 that

w0,⋆ = −1, wt(π⋆
M) = L⋆wt−1(π⋆

M), t = 1, . . . .

We show that limt→∞ wt,⋆ exists and that it is attained by a stationary policy. We construct a
sequence wt

u ∈ RS , t = 0, . . . as

w0
u = 0, wt

u = L⋆wt−1
u , t = 1, . . . .

First, we show by induction that

wt
u ≥ wt,⋆, t = 0, . . . . (24)

The base case t = 0 follows immediately from the definitions of w0
u and w0,⋆. Next, suppose that

(24) holds for some t > 0, then it also holds for t+ 1:

wt+1
u = L⋆wt

u ≥ L⋆wt,⋆ = wt+1,⋆,

where the inequality follows from the inductive assumption and from Lemma C.2. Second, we show
by induction that

wt+1
u ≤ wt

u, t = 0, . . . . (25)
The base case for t = 0 holds as

w1
u = L⋆w0

u = L⋆0 = max
d∈D

−bd ≤ 0 = w0
u ,

where the inequality holds because bd ≥ 0 from its construction. To prove the inductive step, assume
that (25) holds for t > 0 and prove it for t+ 1:

wt+1
u = L⋆wt

u ≤ L⋆wt−1
u = wt

u,

where the inequality follows from the inductive assumption and Lemma C.2.

Then, using the Monotone Convergence Theorem [Johnsonbaugh and Pfaffenberger, 1981, theo-
rem 16.2], finite S, and inft=0,... w

t
u ≥ inft=0,... w

t,⋆ > −∞, we get that there exists w⋆
u ∈ RS such

that
w⋆

u = lim
t→∞

wt
u,

and the limit exists. Then, taking the limit of both sides of wt
u = L⋆wt−1

u , we have that

lim
t→∞

wt
u = lim

t→∞
L⋆wt−1

u

w⋆
u = lim

t→∞
L⋆wt−1

u

w⋆
u = L⋆ lim

t→∞
wt−1

u

w⋆
u = Ld⋆

w⋆
u,

where d⋆ = argmaxd∈D Ldwu. Above, we can exchange the operators L⋆ and lim by the continuity
of L⋆ (Lemma C.3).
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Now, define wt
l ∈ RS , t = 0, . . . as

w0
l = −1, wt

l = Ld⋆

wt−1
l , t = 1, . . . .

From the definition of L⋆ and by induction on t we have that

wt
l ≤ wt,⋆.

By Lemma 3.6 for z = 0, we have that ρ(Bd⋆

) < 1 and therefore from Lemma C.4

lim
t→∞

wt
l = lim

t→∞
wt

u = w⋆
u.

In addition, because
wt

u ≥ wt,⋆ ≥ wt
l , t = 0, . . .

The Squeeze Theorem [Johnsonbaugh and Pfaffenberger, 1981, theorem 14.3] then shows that

lim
t→∞

wt,⋆ = w⋆
u,

and d⋆ is a stationary policy that attains the return of π⋆
M.

C.5 Proof of Corollary 3.3

Proof of Corollary 3.3. From the existence of an optimal stationary policy π⋆ ∈ ΠSD from for a
sufficiently large horizon t from Theorem 3.2 and Appendix C.1, we get that

µ⊤v∞(π⋆) ≤ sup
π∈ΠHR

lim inf
t→∞

µ⊤vt(π) ≤ lim inf
t→∞

sup
π∈Πt

HR

µ⊤vt(π) ≤ µ⊤v∞(π⋆),

which implies that all inequalities above hold with equality.

C.6 Proof of Proposition 3.4

Proof of Proposition 3.4. We use the transient MDP in Figure 1 to show this result. Because the
returns of this MDP follow a truncated geometric distribution, its risk-averse return for each β > 0
and ϵ ∈ (0, 1) can be expressed analytically for t ≥ 1 as

ERMπ
β

[
t−1∑
k=0

r(s̃k, ãk, s̃k+1)

]
= − 1

β
log

(
t−1∑
k=0

(1− ϵ)ϵk · exp (−β · k · r) + ϵt · 0

)

= − 1

β
log

(
t−1∑
k=0

(1− ϵ)ϵk+1 · exp (−β · r)k
)
.

(26)

Here, (1 − ϵ)ϵk is the probability that the process terminates after exacly k steps, and ϵt is the
probability that the process does not terminate before reaching the horizon. Then, using the fact that
a geometric series

∑∞
i=0 a · qi for a ̸= 0 is bounded if and only if |q| < 1 we get that

lim
t→∞

ERMπ
β

[
t−1∑
k=0

r(s̃k, ãk, s̃k+1)

]
> −∞

⇕
ϵ · exp (−β · r) < 1.

Note that ϵ · exp (−β · r) ≥ 0 from its definition. Then, setting r = −1 and β > − log ϵ proves the
result.

C.7 Proof of Lemma 3.5

The result follows from an identical argument to [Patek and Bertsekas, 1999, lemma 1].

15



C.8 Proof of Lemma 3.6

We use pd ∈ RS
+ to represent the probability of terminating in any state for each d ∈ D:

pds =
∑
a∈A

da(s) · p̄(s, a, e), ∀s ∈ S.

The following lemma establishes a convenient representation of the termination probabilities.
Lemma C.5. Assume a transient MDP and a policy π = (d)∞ ∈ ΠSR. Then, the probability of
termination in t = 0, 1, . . . or fewer steps is

t∑
k=0

µ⊤(P d)kpd = µ⊤(I − (P d)t+1)1.

Proof. We have by algebraic manipulation that

pd = (I − P )1.

The probability of terminating in step t ≥ 0 is

µ⊤(P d)tpd.

Using algebraic manipulation and recognizing a telescopic sum, we have that the probability of
terminating in k ≤ t steps is

t∑
k=0

µ⊤(P d)kpd =

t∑
k=0

µ⊤(P d)k(I − P d)1 = µ⊤(I − (P d)t+1)1.

Lemma C.6. For any d ∈ D, the exponential transition matrix is monotone:

x ≥ y ⇒ Bdx ≥ Bdy, ∀x,y ∈ RS .

Proof. The result follows immediately from the fact that Bd is a non-nonnegative matrix.

Lemma C.7. For each t = 0, . . . and each policy π = (d)∞ ∈ ΠSR and each µ ∈ ∆S:

µ⊤(Bd)tbd = 0 ⇔ µ⊤(P d)tpd = 0. (27)

Proof. Algebraic manipulation from the definition in (10) shows that

cl · pd ≤ bd ≤ cu · pd,
cl · P dx ≤ Bdx ≤ cu · P dx, ∀x ∈ RS ,

(28)

where

cl := min
s,s′∈S̄,a∈A

exp (−β · r(s, a, s′)) , cu := max
s,s′∈S̄,a∈A

exp (−β · r(s, a, s′)) .

Note that ∞ > cu > cl > 0.

We now extend the inequalities in (28) to multiple time steps. Suppose that yl ≤ y ≤ yu, then, for
t = 0, 1, . . . :

ctl · (P d)tyl ≤ (Bd)ty ≤ ctu · (P d)tyu. (29)
For the left inequality in (29), the induction proceeds as follows. The base case t = 0 holds
immediately. For the inductive step, suppose that the left inequality in (29) property holds for
t = 0, . . . then it also holds for t+ 1 for each y ∈ RS as

(Bd)t+1y = Bd(Bd)ty ≥ ctlB
d(P d)tyl ≥ ct+1

l P d(P d)tyl = ct+1
l (P d)t+1yl.

Above, the first inequality follows from Lemma C.6 and from the inductive assumption, and the
second inequality follows from (29) by setting x = P dy. The right inequality in (29) follows
analogously.
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Exploiting the fact that µ ≥ 0 and substituting y = bd, yl = cl · pd, yu = cu · pd into (29) and
using the bounds in (28), we get that

0 ≤ ct+1
l · µ⊤(P d)tpd ≤ µ⊤(Bd)tbd ≤ ct+1

u · µ⊤(P d)tpd,

where the terms are non-negative because all constants, matrices, and vectors are non-negative.
Therefore,

µ⊤(Bd)tbd = 0 ⇔ µ⊤(P d)tpd = 0.

Lemma C.8. Assume a transient MDP and a π = (d)∞ ∈ ΠSR. Then there exists f ∈ RS such that
f⊤Bd = ρ(Bd) · f⊤ and f ≥ 0,f ̸= 0 and

f⊤bd > 0.

Proof. Because Bd is non-negative, the required vector f exists from the Perron-Frobenius theorem,
e.g. [Horn and Johnson, 2013, Theorem 8.3.1]. Therefore,

f⊤bd ≥ 0,

since bd ≥ 0.

It remains to show that f⊤bd ̸= 0, which we do by deriving a contradiction. Without loss of
generality, assume that 1⊤f = 1 and suppose that f⊤bd = 0. Then:

f⊤bd = 0

f⊤(Bd)tbd = 0, ∀t = 0, 1, . . . ⇓ from f⊤Bd = ρ(Bd) · f⊤

f⊤(P d)tpd = 0, ∀t = 0, 1, . . . ⇓ from Lemma C.7
t∑

k=0

f⊤(P d)kpd = 0, ∀t = 0, 1, . . . ⇓ by summing elements

f⊤(I − (P d)t+1)1 = 0, ∀t = 0, 1, . . . ⇓ from Lemma C.5

lim
t→∞

f⊤(I − (P d)t+1)1 = 0, ⇓ limit

f⊤1 = 0, ⇓ from Lemma 2.2

which is a contradiction with 1⊤f ̸= 0. The last step in the derivation follows from ρ(P d) < 1 and
therefore limt→∞(P d)t+1 = 0 [Kallenberg, 2021, Theorem 4.5].

Proof of Lemma 3.6. From Lemma C.8, there exists an f ∈ RS
+ that f⊤Bd = ρ(Bd) · f⊤ and

f ≥ 0,f ̸= 0. Then from (12):

−∞ < µ⊤wt(π) = −µ⊤(Bd)tz − µ⊤
t−1∑
k=0

(Bd)kb ≤ −
t−1∑
k=0

ρ(Bd)kµ⊤b.

The second inequality follows because z ≥ 0 and Bd is non-negative. Since µ⊤b > 0 from
Lemma C.8, we can cancel it from the inequality getting that

t−1∑
k=0

ρ(Bd)k <∞.

Then ρ(Bd) < 1 because ρ(Bd) ≥ 0 the geometric series is bounded.

17



D Proofs for Section 4

D.1 Proof of Theorem 4.1

Proof of Theorem 4.1. To streamline the notation, we use

ψ(β, π) := lim
T→∞

ERMπ,µ
β

[
T∑

t=0

r(s̃t, ãt, s̃t+1)

]
.

First, to prove claim 1., suppose that supβ>0 h(β) is attained in some β⋆ > 0:

sup
β>0

h(β) = h(β⋆),

and π⋆ ∈ argmaxπ∈ ψ(β
⋆, π). Then, the objective in (14) can be expressed as

sup
π∈ΠHR

EVaRπ,µ
α

[ ∞∑
t=0

r(s̃t, ãt, s̃t+1)

]
= sup

π∈ΠHR

sup
β>0

ψ(β, π) + β−1 · logα

(a)
= sup

β>0
sup

π∈ΠHR

ψ(β, π) + β−1 · logα

(b)
= sup

β>0
max
π∈ΠSD

ψ(β, π) + β−1 · logα

(c)
= max

π∈ΠSD

ψ(β⋆, π) + (β⋆)−1 · logα

(d)
= ψ(β⋆, π⋆) + (β⋆)−1 · logα
≤ sup

β>0
ψ(β, π⋆) + (β)−1 · logα

= EVaRπ⋆,µ
α

[ ∞∑
t=0

r(s̃t, ãt, s̃t+1)

]
.

(30)

Above, the equality in (a) follows by exchanging the suprema [Rockafellar and Wets, 2009, proposi-
tion 1.35], (b) follows from Corollary 3.3, (c) follows from the supremum of h being attained, and (d)
from the optimality of π⋆. Then, since ΠSD ⊆ ΠHR, we get that

sup
π∈ΠHR

EVaRπ,µ
α

[ ∞∑
t=0

r(s̃t, ãt, s̃t+1)

]
= EVaRπ⋆,µ

α

[ ∞∑
t=0

r(s̃t, ãt, s̃t+1)

]
,

which proves the first part of the statement of the theorem.

To prove the second part of the statement, suppose that supβ>0 h(β) is unattained, then because ΠSD

is finite, there must exist π⋆ ∈ ΠSD such that

sup
β>0

h(β) = sup
β>0

ψ(β, π⋆) + β−1 · logα, (31)

and the supremum on the right-hand side is not attained. This is true because if the supremum were
attained for all policies π ∈ ΠSD, then the supremum of the maxima would also be attained. From
the properties of EVaR, we have that when the supremum is unattained, then [Ahmadi-Javid and
Pichler, 2017, proposition 2.11]

EVaRπ⋆,µ
α

[ ∞∑
t=0

r(s̃t, ãt, s̃t+1)

]
= ess infπ

⋆,µ

[ ∞∑
t=0

r(s̃t, ãt, s̃t+1)

]
.
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Then, following an analogous reasoning to (30), we get that

sup
π∈ΠHR

EVaRπ,µ
α

[ ∞∑
t=0

r(s̃t, ãt, s̃t+1)

]
= sup

π∈ΠHR

sup
β>0

ψ(β, π) + β−1 · logα

= sup
β>0

sup
π∈ΠHR

ψ(β, π) + β−1 · logα

= sup
β>0

max
π∈ΠSD

ψ(β, π) + β−1 · logα

= sup
β>0

ψ(β, π⋆) + β−1 · logα

= ess infπ
⋆,µ

[ ∞∑
t=0

r(s̃t, ãt, s̃t+1)

]
,

which proves the optimality of π⋆. Finally, note from (31) we get that

ess infπ
⋆,µ

[ ∞∑
t=0

r(s̃t, ãt, s̃t+1)

]
= sup

β>0
ψ(β, π⋆) + β−1 · logα

= sup
β>0

max
π∈ΠSD

ψ(β, π) + β−1 · logα

= sup
π∈ΠSD

sup
β>0

ψ(β, π) + β−1 · logα

≥ ess infπ,µ

[ ∞∑
t=0

r(s̃t, ãt, s̃t+1)

]
, ∀π ∈ ΠSD,

which shows that π⋆ maximizes the essential infimum, as desired.
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