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Abstract
Event Detection is a key and challenging sub-001
task of event extraction, which has serious trig-002
ger word ambiguity. Existing studies mainly003
focus on contextual information in text, while004
there are naturally many images in news ar-005
ticles that need to be explored. We believe006
that images not only reflect the core events of007
the text but also help to trigger word disam-008
biguation. In this paper, we propose a new009
bi-recursive multimodal Prompt Tuning (MPT)010
model for deep interaction between images and011
sentences to achieve aggregation of modal fea-012
tures. MPT uses pre-trained CLIP to encode013
and map sentences and images into the same014
multimodal semantic space and uses alternat-015
ing dual attention to select information features016
for mutual enhancement. Then, a soft prompt017
method of multimodal guidance is proposed,018
and the multimodal information obtained by019
fusion is used to guide the downstream event020
detection task. Our superior performance com-021
pared to six state-of-the-art baselines and fur-022
ther ablation studies, demonstrate the impor-023
tance of image modality and the effectiveness024
of the proposed architecture.025

1 Introduction026

Events describe state changes of participating enti-027

ties. The Event Detection (ED) task is one of the028

essential tasks in the Information Extraction field.029

Event triggers are the most representative words or030

phrases in events, and they are usually composed031

of verbs or nouns (Doddington et al., 2004). There032

is a one-to-one correspondence between events and033

event triggers, so the ED task is equivalent to iden-034

tifying and classifying event triggers.035

As shown on the left side of Figure 1, since the036

confront refers to the occurrence of the event meet,037

it should be marked as the event trigger word of038

the meet. Event detection has important implica-039

tions for various natural language processing tasks040

such as text summarization, auto summarization,041

machine question and answer (QA), etc.042

Figure 1: The exact trigger word triggers two different
events, but the semantic distinction can be perceived
through the image.

ED is a challenging task because trigger words 043

must be representative, and the localization of these 044

trigger words is often ambiguous in relative terms. 045

A word can trigger different events, and the sur- 046

rounding context often doesn’t have enough infor- 047

mation to disambiguate them. For example, in 048

Figure 1, the trigger word confront triggers differ- 049

ent events due to its meaning in different contexts: 050

meet and attack. Existing approaches address this 051

problem by introducing a global context through- 052

out the article or by introducing some additional 053

linguistic resources. 054

In the event world, a complete interpretation 055

of an event is often completed through multiple 056

media (text, images, videos). The multimodal form 057

of images accompanying news articles and natural 058

language is becoming increasingly common in the 059

media industry. Among them, image information 060

has been proven to have the ability to disambiguate 061

text by providing information gain and semantic 062

coreference, and this disambiguation feature is just 063

suitable for ED tasks. 064

This fit is reflected in the following two as- 065

pects:The accompanying images usually reflect the 066

core events of the texts. As shown in Figure 1, 067

the first example contains two candidate verbs of 068

the event trigger: was and confronted, where con- 069

front is more representative in texts and is also the 070

main content of the image. (2) Since trigger words 071
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provide complementary information, such as phys-072

ical information, image style, or action, which is073

difficult to describe with words, images help to dis-074

ambiguate trigger words. (Tong et al., 2020) also075

demonstrated the role of images in ED, using the076

global information of images to disambiguation077

entities, and they significantly improved the perfor-078

mance of ED.079

In this paper, we introduce the original images080

of news articles into the ED scene. Nevertheless,081

at the same time, the following difficulties need082

to be overcome: first, although there is more and083

more research on multimodal information, there084

is still no recognized method for incorporating im-085

age modalities into NLP tasks; secondly, the align-086

ment between multimodal information Dimension-087

ality needs to be considered, in ED scenarios, im-088

ages should help the model identify specific events,089

but should these images map to events, or specific090

words, sentences, or entities like (citations) There091

are also considerations; finally, in the ED task In092

addition to the additional visual information intro-093

duced, a large amount of noise will also be added,094

and the effect of the additional noise is often more095

significant than the disambiguation gain provided096

by the multimodal information. Therefore, how097

to introduce multimodal information, how to de-098

termine the alignment dimension of the imported099

information and text information, how to use the100

semantic information of multimodal information101

as a practical guide, and how to assist the model in102

classifying are also problems that we need to solve103

after introducing visual information.104

To address these issues, We propose a bi-105

recursive multimodal Prompt Tuning model to106

deeply interact between images and text for modal107

feature fusion and use the fusion information as the108

soft prompt for downstream tasks in ED. Specif-109

ically, two types of modal features are first inte-110

grated through an alternating dual attention mecha-111

nism; by proposing the MPT method, multimodal112

information is used to classify and guide traditional113

ED tasks. The novel alternating dual attention has114

a two-wheel structure for deep interaction between115

text and image modalities, which can repeatedly116

merge useful event-related images and texts and117

fuse the final multimodal information. As a kind118

of semantic guidance for downstream tasks of ED,119

the provided semantic information can alleviate the120

problem of trigger word ambiguity.121

The major contributions of this work are:122

• We propose a method to introduce visual informa- 123

tion into ED tasks, using multimodal information 124

as soft prompt to guide downstream tasks, which 125

is the earliest in ED tasks; 126

• We propose a multimodal cue-based ED learn- 127

ing model called multimodal injection prompt 128

learning fine-tuning, which utilizes multimodal 129

information as soft cue fine-tuning to optimize 130

ED tasks; 131

• We evaluate the quality of the constructed 132

language model-based image-augmented ED 133

dataset. We conduct a series of experiments on 134

benchmark and compare it with six state-of-the- 135

art baseline models. The results, as well as fur- 136

ther studies, demonstrate the effectiveness of our 137

model. 138

2 Related Work 139

Event Detection (ED) Existing ED works mainly 140

focus on single mode, and ED models can be di- 141

vided into sequential labelling and conditional gen- 142

eration models. 143

Chen et al. (2015) first designed ED as a se- 144

quence labelling task and used CNN and RNN to 145

model sentence-level features. Liu et al. (2018) 146

used GCN to emphasize semantic dependence. Lin 147

et al. (2020) constructed an end-to-end informa- 148

tion extraction system to extract globally optimal 149

event structures using global features and beam 150

search. Conditional generation approaches encode 151

sentences using generative pre-trained language 152

models such as BART (Lewis et al., 2019) and 153

T5 (Raffel et al., 2020). There are also sentence- 154

level (Nguyen and Grishman, 2018) and document- 155

level (Duan et al., 2017) event extraction tasks of 156

different granularity in the above two paradigms. 157

However, events do not exist only in textual 158

modality. More and more multidimensional modal 159

supervision also provides a broader space for con- 160

structing downstream tasks in ED fields. 161

Multimodal Learning Multimodal learning aims 162

to build models that can integrate information from 163

different modalities, such as images, video, and au- 164

dio. Recently, multimodal learning has been widely 165

used to deal with NLP problems such as NER and 166

machine translation (Rahman et al., 2020). These 167

methods strengthen the understanding of short and 168

coarse texts from the perspective of visual context 169

and propose different modality attention to inte- 170
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Figure 2: The overall structure of the model.

grating information from different heterogeneous171

sources.172

Zhang et al. (2017) incorporates image modal-173

ity into the ED task by visualizing entities in sen-174

tences. Tong et al. (2020) press multiple images in175

the disambiguation process through the attention176

mechanism, get the global image modality and then177

integrate it into the ED task. Li et al. (2020) and Li178

et al. (2022b), respectively, correspond to the align-179

ment of entities and the alignment of events and180

their argument structures in multimodal ED tasks181

by constructing entity and argument relationships.182

Prompt-based Learning Methods183

Prompt-based learning methods use cues to184

guide pre-trained language models to generate re-185

sults, so the quality of cue templates is crucial.186

Current prompt-based learning templates include:187

manually setting discrete prompt templates and188

building trainable continuous prompt templates.189

Schick and Schütze (Schick and Schütze, 2020)190

transferred the text classification task into a cloze-191

filling task by using manual prompt templates. Li192

and Liang (Li and Liang, 2021) used trainable pre-193

fix tokens as prompts and added soft tokens in each194

layer of the language model.195

Both methods do not introduce task-related 196

knowledge and cannot optimize prompts and ex- 197

ternal knowledge. Until KiPT (Li et al., 2022a), a 198

knowledge injection method was proposed to inject 199

event-related semantic knowledge into the prompt 200

template, WordNet, token’s part of speech (POS) 201

mechanism and other related external knowledge 202

as the prompt learning fine-tuning strategy to opti- 203

mize the prompt. Inspired by his work, we decided 204

to inject visual information into ED tasks as exter- 205

nal knowledge and a prompt to guide deep learning 206

models. 207

3 Methodology 208

Figure 2 shows our Multimodal Prompt Tuning 209

model. MPT has three components. Feature extrac- 210

tion first extracts text and image features from a 211

large-scale pretrained CLIP network. Second, the 212

multimodal ensemble enables two-round deep inter- 213

action between text and image modalities through 214

a novel Alternating Dual Attention (ADA). Finally, 215

event prediction uses Soft-Prompt to map the final 216

multimodal representation to the event type seman- 217

tic space to guide Bert to complete event detection. 218
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3.1 Feature Extraction219

In this section, we will elaborate on the details of
the feature extraction layer. Since events exist not
only in text modalities but also in image modalities,
we extract features from text and image modali-
ties. A contrastive learning multimodal pre-trained
CLIP model has demonstrated the potential to learn
open-set visual concepts. CLIP (Radford et al.,
2021)is built with two encoders, one for images
and one for text, as shown in Figure 3. The image
encoder can be either ResNet or ViT (Liu et al.,
2021) to convert images to feature vectors. The
text encoder is a Transformer that takes as input a
sequence of word tokens and again generates a vec-
torized representation. CLIP employs a contrastive
loss during training to learn the joint embedding
space of the two modalities. Specifically, for a
small batch of image-text pairs, CLIP maximizes
the cosine similarity of each image to the matched
text while minimizing the cosine similarity to all
other unmatched texts and each text similarly. Cal-
culate the loss. After training, CLIP can be used
for zero-shot image recognition. Let x be the im-
age features generated by the image encoder, and
{wi}Ki=1 be a set of weight vectors generated by the
text encoder, each representing a category (assum-
ing there are K categories in total). In particular,
each Wi is derived from a hint, such as "a photo of
a class", where the "class" tag is populated with the
ith class name. Then the predicted probability is:

p(y | x) = exp (sim (x,wy) /τ)∑K
i=1 exp (sim (x,wi) /τ)

We adopt Cliptext as the text feature ex-220

tractor. We feed the input sentence S =221

{W1, W2, . . . ,WN} into Cliptext and use the se-222

quence output as the sentence representation H0 =223

{H1,H2, . . . ,HN}.224

H0 = Cliptext (S)

ClipVision was an effective image representation
() Given multiple images p = {p1, p2, . . . ,pk} in a
news article, we feed each image pi into ClipVision
and then take the last residual The block output
serves as the image has hidden representation Ui.

ui = ClipVision (pi)

To map the image to the same latitude space as the225

text, we employ a sigmoid function to generate the226

final image representation:227

mi = σ (Wuui + bu)

3.2 Multimodal Integration 228

In this section, we illustrate the steps of ADA. We 229

first obtain an image-augmented text representation 230

through a recursive multi-image encoder. In each 231

step, we propose a novel Alternating Double At- 232

tention (ADA) method that first refines the image 233

representation with textual information and then 234

conversely performs deep interaction. We then ag- 235

gregate the image-augmented text representation 236

and Bert’s raw output with a residual network to 237

obtain the final multimodal representation. 238

Alternate double attention (ADA module) As 239

shown in Figure 4, ADA has a dual structure: us- 240

ing text information to guide image attention and 241

then using image information to guide text atten- 242

tion. Since image and text information influence 243

each other, we adopt a binary structure. The focus 244

area of the same image is different under different 245

text backgrounds. Likewise, the same word can 246

describe different events in different visuals. 247

Specifically, ADA is a two-round multi-head at- 248

tention module. We first introduce the first round 249

and then the second round. For the first round, the 250

goal of ADA is to update the image representation 251

with textual information. Formally, we use three 252

fully connected layers to map the text represen- 253

tation Ht to the first two inputs of the scaled dot 254

product attention module and the image represen- 255

tation Mt to the third input, denoted V, K, and Q, 256

respectively. Then we compute the attention by 257

querying k with q. We rescale the attention value 258

by dividing the dimension of K to avoid vanishing 259

gradients (citations). Next, we do a dot product 260

of the learned attention with the third input V to 261

obtain the weighted image representation z. 262

s =
q · k√
dk

αi =
si∑L
i=1 si

z = αvT

We repeat the above steps u times and use linear 263

transformation to get the final attention-corrected 264

image representation h 265

Z = [z1; z2; . . . ; zu]

h = WhZ + bo
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Finally, the query signal QP is directly sent to
the attention-corrected output HP using the resid-
ual block, and the refined representation m′

t of the
image is obtained in the t-th step

m′
t = h+ q

Reducing the above calculation process to Ω, the
calculation process of the first round can be ex-
pressed as:

m′
t = Ω(mt, Ht)

ADA aims to update the text representation with
image information, the operation in the middle is
the same as the first round, but the input is different.
We swap inputs in the scaled dot product attention
module by mapping Ht to the third input and Mt

to the first and second inputs. We formulate the
second round process as follows:

Ht+1 = Ω
(
m′

t, Ht

)
3.3 Multimodal-to-language prompting266

Including the description of the visual context can267

make the text more accurate. In this paper, we268

use the multimodal features obtained by fusion to269

guide the classification of text features. In gen-270

eral, we can use the cross-attention mechanism271

in the Transformer decoder [citation needed] to272

simulate the interaction between multimodal infor-273

mation and languages. We propose two different274

context-aware cueing strategies, as shown in Figure275

5. One strategy we consider is pre-language model276

cueing, or simply pre-model cueing. We pass the277

features[z, z]to the Transformer decoder to encode278

the visual context:279

vpre = Trans Decoder (q, [z, z])

Where q ∈ RN×C is a set of learnable queries,280

and vpre ∈ RN×C is the extracted visual context.281

We replace P in the formula with the visual context282

V to form the input of the text encoder. Since the283

input of the text encoder is modified, we refer to284

this approach as the bootstrap pre-prompt model.285

The multimodal information output Vpre for286

each Transformer is constructed as soft prompts.287

Then, build a prompt template with input x,288

prompt(x), and the target event record y.289

Template : Prompt(x)[x], Events: [y]290

It is necessary to optimize Prompt(x) of mul-291

timodal information injection by training for the292

following two reasons: (1) Some rule-based algo-293

rithms are used in the construction of knowledge294

injection K(x). However, these rules may be inef- 295

fective or even wrong in some cases, so these rules 296

need to be softened by training; (2) Soft tokens are 297

randomly initialized virtual tensors without original 298

semantics. They need to be trained to approximate 299

the distribution of actual words in order to serve 300

as a cue to the language model. Therefore, we 301

propose knowledge injection prompt tuning to op- 302

timize Prompt(x). Given a pre-trained language 303

model and its vocabulary v, the input t of the cued 304

template is: 305

T =
[
Hk;Hs; e(x)

]
=

{
hk1, . . . , h

k
|K|, h

s
1, . . . , h

s
p, e (x1) , . . . , e (xn)

}
Where e (xi) represents the embedding of the in- 306

put token, hsi and hki stand for knowledge injection 307

and embedded hints for soft tokens, respectively. 308

Note thathsi and hki are initialized using an embed- 309

ding of the actual token from the LM vocabulary 310

V , while hsi represents a tensor initialized randomly. 311

The conditional probability of the output of this 312

event record can be obtained by generating the lan- 313

guage model LM. Finally, given the Golden event 314

record y, the gradient update is performed using 315

the following log-likelihood loss function: 316

L = −
∑

(x,y)∈D

log
(
y | Hk, Hs, e(x), θLM

)
where D stands for the whole training dataset, 317

and θLM stands for the LM ’s parameters. 318

4 Experiments 319

In this section, we evaluate the proposed dataset 320

and approach by extensive experiments. We first 321

give a description of dataset and hyperparameters 322

in the experiment. We then will compare our re- 323

sults with several existing SOTA approaches on 324

the same benchmarks to show the effectiveness of 325

our image dataset and the superiority of the pro- 326

posed approach. Next, we conduct experiments to 327

answer three questions: 1) the quality of images, 2) 328

whether to use images and 3) how to use images. 329

Finally, we analyze when and how the images are 330

helpful in ED by a case study. 331

4.1 Experiment Setup 332

Datasets.We employ open data set Multimedia 333

Event Extraction (M2E2) and a new data set based 334
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on the partition of the ScienceQA Dataset.Their335

statistics are shown in Table 1.336

Implementation Details of MPT. Specifically,337

we used the CLIP pre-training model as the en-338

coder, and we directly used ViT-B (Dong et al.,339

2022) as the visual encoder. For the locale prompt,340

we use a context length of 8. The Transformer341

decoder used to extract the visual context consists342

of 6 layers and we set the number of headers to343

4. We fixed the text encoder during the training to344

preserve the natural language knowledge learned345

from the large-scale pre-training. In order to reduce346

computational costs, both image embedding and347

text embedding are projected to a lower dim(256)348

in front of the Transformer module. A modification349

was made compared to the CLIP default configura-350

tion: we used AdamW instead of the default SGD,351

inspired by the latest advances in Visual Transform-352

ers. We utilize the Text and Vision Transformers353

of “ViT-B/32” to initialize our encoders. The batch354

size is 128. We set the learning rate as 1e− 6 with355

a linearly-decaying schedule. We train 20 epochs356

with Adam as the optimizer, and select the best357

model based on the image-retrieval performance on358

VOANews testing dataset. The optimal transport359

plan is obtained within k = 50 iterations. To get360

the bounding box embeddings from CLIP visual361

backbone, we extract grid features and perform av-362

erage pooling on the grids covered by the bounding363

box. For CLIP-ViT-B models, we reshape the patch364

representation of the final layer into grid features.365

For CLIP-ResNet models, we use the grid features366

from the last layer before the pooling. The model is367

trained on 4 Tesla V100 GPUs with 16GB DRAM.368

Baselines. The baselines include: (1) Text-only369

models: We use the state-of-the-art model JMEE370

(Liu et al., 2018) and GAIL (Zhang et al., 2019) for371

comparison. We also evaluate the effectiveness of372

cross media joint training by including a version of373

our model trained only on M2E2 and ScienceQA,374

denoted as WASET. (2) Image-only models: Since375

we are the first to extract newsworthy events, and376

the most similar work situation recognition can not377

localize arguments in images, we use our model378

trained only on image corpus as baselines. Our379

visual branch has two versions, object-based and380

attention-based, denoted as WASEI obj and WASEI381

att (Li et al., 2020). (3) Multimedia models: To382

show the effectiveness of structured embedding,383

we include a baseline by removing the text and384

image GCNs from our model, which is denoted385

Table 1: Overall Performance on M2E2 and ScienceQA
dataset (%)

DataSet M2E2 (%) ScienceQA (%)
Method P R F1 P R F1
BERT_QA 37.7 56.4 50.8 36.1 51.7 48.5
GDAP 35.8 55.3 40.6 35.4 47.9 41.1
VSE-C 33.3 48.2 39.3 34.7 42.4 33.2
Flat 34.1 56.4 42.5 36.5 53.9 43.4
WASE 43.1 59.2 49.9 40.6 55.3 39.2
CLIP-Event 41.3 72.8 52.7 42.8 65.4 46.1
MPT 44.6 66.3 54.2 43.3 58.7 48.3

as Flat. The Flat baseline ignores edges and treats 386

images and sentences as sets of vectors. We also 387

compare to the state-of-the-art crossmedia common 388

representation model, Contrastive Visual Semantic 389

Embedding VSE-C (Shi et al., 2018), by training 390

it the same way as WASE. We use micro-averaged 391

Precision (P), Recall (R), and F1 score (F1) in all 392

the following evaluations. 393

4.2 Overall Results 394

Overall Performance. 395

Evaluation of Image Dataset. 396

In the main experiment, though, MPT was bet- 397

ter than current methods. However, it cannot re- 398

flect the action mechanism of single mode or multi- 399

mode in ED. Therefore, we need to find out the 400

action mechanism of single mode and multi-mode 401

in subsequent experiments and maximize the gain 402

of multi-mode information for ED task.Since the 403

image dataset is one of the most principal contribu- 404

tion of the paper, we evaluate the quality of images 405

by a series of experiments. To validate the effective- 406

ness of the image dataset, two questions need to be 407

answered. The first is to what extent news articles 408

are related to the images. It is necessary that images 409

are closely related to their articles. Otherwise, the 410

images are noises that may harm the understanding 411

of texts. Secondly, how much extra information 412

images can provide to the understanding of texts. 413

Effectiveness of Image Modality Knowledge . 414

In the section, we discuss how much improve- 415

ment the image modality brings to Event Detection. 416

We employ the same models with and without im- 417

age modality on M2E2 dataset. Different from the 418

overall part, we employ three different base en- 419

coders, including RNN and BERT, in order to show 420

the improvement of image modality on ED is om- 421

nipresent rather than a model-related situation. We 422
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Table 2: The evaluation of image modality.

DataSet M2E2 (%) ScienceQA (%)
Method P R F1 P R F1
LSTM 35.7 44.6 40.1 33.2 41.4 38.2
LSTM+Image 37.3 47.3 43.9 33.7 41.7 40.8
improvement +1.6 +2.7 +3.8 +0.5 +0.3 +2.6
BERT 36.1 56.4 42.5 36.5 53.9 43.5
BERT+Image 39.4 59.2 45.9 37.6 55.3 45.3
improvement +3.3 +2.8 +3.4 +1.1 -0.6 +1.8

employ two layers of Bi-LSTM model with hidden423

units 384 for each direction. As shown in Table424

3, the incorporation of image modality improves425

the performance of Event Detection on Precision,426

Recall and F score independent to specific mod-427

els. The three models are the most commonly used428

neural network models, so the results validate the429

significance of image modality in Event Detection.430

Note that the improvement for CNN and LSTM431

encoders is obviously bigger than that on BERT,432

which reflects the complementary role of images in433

Event Detection. When the capacity of text encoder434

is small, images can bring in larger improvement.435

Effectiveness of Multimodal Fusion and436

Prompt437

It is not difficult to see from the ablation exper-438

iment that direct connection of multimodal infor-439

mation does not necessarily disambiguation ED440

tasks, because although multimodal information441

is mapped into a multimodal semantic space by442

CLIP, direct cascading will add additional redun-443

dant information. The effect of joint attention is444

not as good as the ADA cross-attention mechanism445

proposed by us, because in the process of semantic446

coupling decoupling, ADA can carry out additional447

subration of noise information, which makes the se-448

mantic co-reference stronger and suitable for elim-449

inating the ambiguity of ED. Prompt’s approach450

is slightly better than the Prefix approach, because451

in MPT, we cascade the multimodal information452

with the natural language, and the semantic gap is453

smaller than the directly generated multimodal in-454

formation, which is more suitable for downstream455

ED tasks. Prefix provides semantic coreference,456

but it provides a smaller number of variable param-457

eters, and the semantic gap is larger than the direct458

one.459

Table 3: Effectiveness of multimodal fusion in MPT.

DataSet M2E2 (%) ScienceQA (%)
Method P R F1 P R F1
Connection+Prefix 33.1 49.8 40.5 35.2 46.3 34.2
Connection+Prompt 32.7 50.3 42.4 36.3 47.6 36.5
ADA+Prefix 42.4 63.2 51.9 40.8 58.0 45.7
Co-Attention+Prefix 41.2 61.5 52.1 39.3 60.7 43.6
Co-Attention+Prmopt 42.3 64.8 45.9 41.9 62.5 46.1
MPT(ADA+Prompt) 44.6 66.3 54.2 43.3 58.7 48.3

5 Conclusions 460

This paper proposes an ED method based on mul- 461

timodal prompt guidance. Adjust the learning 462

method by introducing a piece of multimodal in- 463

formation promptly. Multimodal fusion informa- 464

tion and soft tokens are used to construct final 465

multimodal hints that can be optimized through 466

training. Comprehensive experiments show that 467

the proposed method is superior to the current 468

prompt-based ED model and has a strong baseline. 469

The prompt-based model can introduce task-related 470

multimodal knowledge more conveniently and ef- 471

ficiently through our approach. In the future, we 472

will explore more multimodal cue mechanisms and 473

their application in other tasks. 474
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