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Rethinking the Implicit Optimization Paradigm with Dual
Alignments for Referring Remote Sensing Image Segmentation

Anonymous Authors

ABSTRACT
Referring Remote Sensing Image Segmentation (RRSIS) is a chal-
lenging task that aims to identify specific regions in aerial images
that are relevant to given textual conditions. Existing methods tend
to adopt the paradigm of implicit optimization, utilizing a frame-
work consisting of early cross-modal feature fusion and a fixed
convolutional kernel-based predictor, neglecting the inherent inter-
domain gap and conducting class-agnostic predictions. In this paper,
we rethink the issues with the implicit optimization paradigm and
address the RRSIS task from a dual-alignment perspective. Specifi-
cally, we prepend the dedicated Dual Alignment Network (DANet),
including an explicit alignment strategy and a reliable agent align-
ment module. The explicit alignment strategy effectively reduces
domain discrepancies by narrowing the inter-domain affinity dis-
tribution. Meanwhile, the reliable agent alignment module aims to
enhance the predictor’s multi-modality awareness and alleviate the
impact of deceptive noise interference. Extensive experiments on
two remote sensing datasets demonstrate the effectiveness of our
proposed DANet in achieving superior segmentation performance
without introducing additional learnable parameters compared to
state-of-the-art methods.

CCS CONCEPTS
• Computing methodologies → Image segmentation; Scene
understanding; Image representations.

KEYWORDS
remote sensing image, referring image segmentation, transformer

1 INTRODUCTION
With the development of deep learning [19, 25], remote sensing im-
age segmentation [17, 32, 38], which provides rich insights into the
earth’s surface through pre-defined surface categories conditioned
on aerial images, has made rapid progress with many applications
such as environmental monitoring [7], land cover classification [29],
detailed mapping of terrain and urban areas [6], etc. However, in
practical scenarios, distinct from traditional single-modality seg-
mentation (purely visual remote sensing image segmentation), there
is often a need to segment specific regions in aerial images, unre-
stricted by fixed class labels, but rather guided by text descriptions

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

with the richer vocabulary and syntactic variations inherent in hu-
man natural language. To adapt to free-form text conditions, many
works have have turned their attention to the referring remote
sensing image segmentation (RRSIS) [23, 42]. Since the spatial and
geographical differences conveyed from an aerial perspective differ
from natural images, how to fully exploit the given text conditions
to perform accurate and text-relevant visual region segmentation
is thus extremely challenging.

Currently, mainstream RRSIS methods draw inspirations from
referring image segmentation (e.g., LAVT [39]) credited to competi-
tive performance, striving to align visual and linguistic branches.
The core idea is, as illustrated in Fig. 1 (a), RRSIS methods [23, 42]
tend to resort to a paradigm of fusion-then-segmentation, includ-
ing an implicit alignment between pre-trained textual (e.g., BERT)
and visual (e.g., Swim-B) streams, and a fixed convolutional ker-
nel for dense prediction. For example, Yuan et al. [42] directly
integrate semantic features extracted by BERT into visual feature
extraction, enabling semantic guidance for foreground focus, while
RMSIN [23] further employs a cross-scale interaction strategy to
replace skip connections and simply maps visual features to predic-
tions with a convolutional kernel. Overall, these methods mostly
employ ambiguous text-visual feature fusion and utilize semantics-
agnostic predictors for pixel-level classification, relying solely on
implicit interaction to pray for ideal optimization. These implicit
optimization-based methods have made strides in referring remote
sensing image segmentation indeed, but struggling to produce ideal
results when dealing with complex semantic scenarios.

Despite their promising results, after an in-depth analysis of im-
plicit optimization that exists in the current fusion-then-segmentation
paradigm, we find two key ingredients lacking in previous works.
(1) Inter-domain Misalignment. During the visual-textual inter-
action process, the pre-trained knowledge of the language encoder
originates from the natural language processing (NLP) domain, rep-
resenting a discrete, structured data format, while the visual encoder
focuses solely on the encoding and parsing of natural image domain,
tending towards a continuous and high-dimensional representation.
This notable gap between two domains, due to the inherent differ-
ences in training data, leads to a misalignment of input distributions
in existing methods’ implicit alignment paradigm (direct language-
visual interaction), resulting in ambiguous foreground activation,
as shown in Fig. 1 (b) left. Designing an appropriate strategy to
ensure the explicit alignment of visual and textual domain informa-
tion is worthy of exploration. (2) Semantics-agnostic Prediction.
Existing methods [23, 42] employ a CNN-based predictor for dense
prediction (Fig. 1 (a)), which remains fixed post-training and strug-
gles to adapt to diverse visual-textual input pairs. Without explicit
guidance from textual information, the fixed semantics-agnostic
predictor fails to deeply understand objects and scenes in images,

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Illustration of our motivation. (a) shows the the implicit optimization paradigm of existing RRSIS methods, leading
to issues of the inter-domain misalignment (implicit cross-modal fusion) and class-agnostic predictions (fixed kernel-based
predictor). (b) shows the comparison of implicit optimization and our explicit alignment during the muti-modal fusion process.
(c) shows the comparison of naive pairwise correlation and our reliable agent alignment during the prediction process.

lacking generalisability across diverse linguistic contexts. Address-
ing how to endow the predictor with semantic perceptual capabilities
to focus on specific targets is a desirable question.

In this paper, we argue that pursuit alignments matter in RRSIS,
which is intuitively sensible from the definition of the task itself.
In this paper, we endeavor to mitigate the adverse effects of im-
plicit optimization (misaligned encoding and semantics-agnostic
segmentation), and aim to explore to achieve explicit alignments
of visual-textual cues in the RRSIS task. Specifically, we design a
coherent Dual Alignment Network (DANet) for referring remote
sensing image segmentation, including an affinity-based explicit
alignment strategy and an agent-based reliable alignment mod-
ule. In the explicit affinity alignment strategy, we endeavor to
explicitly alleviate the domain gap between vision and language.
Intuitively, for the activation of textual information within visual
features, pixels identified as foreground should exhibit a high cor-
relation with each other. Drawing inspiration from this instinct,
we harness insights from affinity learning [13] to seek percepti-
bility to spatial position and discrimination to surrounding pixels.
We deem that there should be consistency between the affinity
of text-to-visual activation and the internal affinity of visual fea-
tures, as shown in Fig. 1 (b) right. Therefore, the explicit affinity
alignment strategy is designed to utilize text-to-visual activation as
pseudo-labels, applying affinity constraints between pseudo-labels
and corresponding hierarchical visual features to narrow their dis-
tributions toward convergence, achieving explicit visual-textual
domain alignment across multiple levels without the introduction
of additional learnable parameters.

In the reliable agent alignment module, our intention is to
design a semantics-aware classifier with alignment with both do-
mains. Since fixed classifiers cannot perceive semantic information
post-training, a naive idea is to utilize pairwise alignment to update
textual embeddings to become classifiers, as depicted in Fig. 1 (c)
left. However, in remote sensing scenarios, directly applying pixel-
sentence interaction inevitably increases the risk of unreliability
due to the deceptive noise caused by long-distance imaging pat-
terns in aerial imagery. In this case, segmentation networks are
naturally equivocal for similar vision clues, leading to sub-optimal
results. Hence, we aim to construct robust interaction with reliable
matching to avoid uncertainty interference. Intuitively, as shown in
Fig. 1 (c) right, for the similarity distribution between a visual area
and a group of pixels, the current distribution of similarity between
the corresponding semantics and the same group should appear
similar, and vice versa. Inspired by this intuition, we adaptively
select reliable agents from vision features, avoiding deceptive visual
interference caused by direct matching. In this way, we are able
to leverage the purified textual knowledge to channel its attention
towards discerning and prioritizing foreground regions. Overall, we
manage to address problems of the implicit optimization in RRSIS
from a dual-alignment perspective, leveraging a comprehensive
framework that combines explicit affinity alignment and reliable
agent alignment strategies. Through this integrated approach, we
not only mitigate the challenges posed by domain discrepancies
but also equip the predictor with semantic awareness, thereby en-
hancing its ability to discern and prioritize foreground regions
accurately.

In this work, our contributions can be summarized as follows:
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• We analyze the issues within the implicit optimization para-
digm of referring remote sensing image segmentation, and
propose to mitigate domain discrepancies from an explicit
alignment perspective.

• Specifically, we design a Dual-Alignment Network (DANet)
including an explicit affinity alignment strategy to alleviate
the inter-domain gap and a reliable agent alignment module
to equip the predictor with semantic awareness.

• Extensive experimental results onmultiple challenging bench-
marks demonstrate that our proposed method performs fa-
vorably against state-of-the-art referring remote sensing
image segmentation methods.

2 RELATEDWORK
2.1 Remote Sensing Image Segmentation
Remote sensing image segmentation is a crucial task in various
scientific and engineering applications, facilitating the extraction
of valuable information from satellite or aerial images [17, 32, 38].
Early researches on remote sensing image segmentation rely heav-
ily on handcrafted features and simple thresholding methods [3, 26,
27, 36], often struggle with complex scenes and lacked robustness
to variations in illumination and terrain. With the advent of deep
learning, there has been a paradigm shift towards data-driven ap-
proaches that learn hierarchical representations directly from the
input data. CNN-based works [1, 2, 33] adopt well-known archi-
tectures like VGG [31], ResNet [9], and U-Net [30], demonstrating
superior performance in extracting spatial features from remote
sensing images. Transformer-based methods [8, 35, 38] introduce
the ability to model long-range dependencies, further enhancing
the remote sensing scenes perception.

However, traditional methods for remote sensing image segmen-
tation often struggle to meet the specific foreground recognition
requirements in practical applications. Therefore, referring remote
sensing image segmentation (RRSIS) [23, 42] guided by textual cues
has emerged. In specific, Yuan et al. [42] introduce a dataset for the
RRSIS task and employed fine-grained textual information to guide
visual encoding layer by layer. RMSIN [23] further incorporates a
cross-scale interaction module to integrate multi-scale information
from the encoders and used a fixed convolutional kernel to map
the final layer visual features to predictions. Nevertheless, these
existing methods mostly employ ambiguous text-visual feature
fusion and utilize semantics-agnostic predictors for prediction, re-
lying solely on implicit interaction to pray for ideal optimization.
This implicit optimization paradigm ignores the inherent differ-
ences across domains and fails to mine valuable clues dealing with
complex semantic scenarios. In this paper, we strive to address is-
sues of the implicit optimization paradigm from an dual alignment
perspective.

2.2 Referring Image Segmentation
Referring Image Segmentation (RIS), aiming to segment specific
objects within an image based on natural language expressions [15,
21, 41], has garnered significant attention in recent years. The
task’s goal is to understand and interpret linguistic descriptions,
such as "the red phone" or "the plane on the right", and precisely
locate and segment the referred objects in the image. Early RIS

research [20, 40] focuses on extracting visual and linguistic features
separately with Convolutional Neural Networks (CNNs) [18] and
Long Short-Term Memory (LSTM) [10] networks, struggling to
capture the relationships between language expressions and visual
contents. The recent emergence of Transformer [34] architectures
revolutionize RIS methodologies, offering remarkable fusion capa-
bilities for multi-modality integration. For example, MDETR [16]
showcases the effectiveness of simple concatenation of vision and
language features followed by Transformer encoding and decoding
for various vision-language tasks. Building upon this, VLT [5] pi-
oneers the integration of Transformer architecture into referring
segmentation, employing query generation modules to enrich lan-
guage expressions with contextual image information. To facilitate
cross-modal integration, LAVT [39] introduces language-aware at-
tention mechanisms into image encoding processes, aiding early
fusion of cross-modal features and improving segmentation accu-
racy. However, these existing referring image segmentation works
primarily focus on the understanding of natural image domains,
making it challenging to address complex terrains and specific con-
texts in aerial remotely sensed scenes. Thus, Yuan et al. [42] propose
language-guided cross-scale enhancement to encourage the explo-
ration of semantic clues in aerial images, while RMSIN [23] further
introduces cross-scale skip connections to boost performance. De-
spite these efforts, these methods often fall into the paradigm of im-
plicit optimization, neglecting the inter-domain gap and conducting
semantic-agnostic prediction. We rethink this implicit optimization
paradigm with dual alignments to better interpret referring remote
sensing image scenes.

3 METHOD
In this section, we first present the overview of the proposed DANet
for RRSIS and the baseline model in Sec. 3.1. Then, we describe the
details of the explicit affinity alignment strategy in Sec. 3.2 and the
reliable agent alignment module in Sec. 3.3. Finally, in Sec. 3.4, the
training and inference procedure are discussed.

3.1 Overview
As shown in Fig. 2, the input pair of referring remote sensing image
segmentation contains an input image I ∈ R𝐻×𝑊 ×3 and an input
expression T ∈ R𝐿 , where 𝐻 and𝑊 refer to the height and width
the input image I, 𝐿 denotes the number of words. For the feature
extraction, we utilize the pre-trained language encoder (e.g., BERT)
for encoding linguistic information as fine-grained embeddings
L𝑐 ∈ R𝐿×𝐶𝑡 and global textual representation L𝑔 ∈ R1×𝐶 , and take
LAVT [39] as our baseline model, including Swin Transformer [24]
as our backbone for vision feature extraction and PWAM (pixel-
word attention module, which is based on cross-attention) for
vision-language fusion. During Stage 𝑖 in the encoder, the input
feature F𝑖−1 is fused with text features L𝑐 to output enriched vision
feature F𝑖 after downsampling. Please note that this part is not the
focus of our design concerns, we use the same settings as LAVT for
fair comparison.

To mitigate the inter-domain gap caused by different pre-trained
knowledge of vision and language encoders, the extracted hierar-
chical vision embeddings {F𝑙 }4𝑙=2 are utilized by the explicit affinity
alignment strategy to realize explicit alignments between vision
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Figure 2: Framework of our proposed DANet. It includes an explicit affinity alignment strategy (Sec. 3.2) to hierarchically
narrow the inter-domain affinity distribution and a reliable agent alignment module (Sec. 3.3) to acquire an adaptive predictor
aware of both modalities meanwhile mitigate the noising aggregation.

and language domains. Through this operation of narrowing affin-
ity distributions, the activation of global textual representation L𝑔
in vision features gradually focuses on the ideal region. To empower
the classifier’s vision-aware capacity and further reduce deceptive
background interference, L𝑔 is regarded as a semantics-initialized
prototype to align with selected reliable agents𝐴 to acquire aligned
predictor L̂𝑔 in the reliable agent alignment module. Finally, the
top-level feature E from the backbone decoder is interacted with
the evolved reliable predictor L̂𝑔 to generate the prediction Y.

3.2 Explicit Affinity Alignment Strategy
To tackle the problem of inter-domain gap caused by different pre-
trained knowledge in vision and language, we carefully design an
explicit alignment strategy to narrow the domain discrepancies.
Drawing inspiration from affinity learning, we explore explicitly
aligning the vision and language domains by approximating affinity
distributions. It can be noted that, in addition to leveraging the fine-
grained textual features L𝑐 ∈ R𝐿×𝐶𝑡 , our design also strategically
retains the [CLS] token L𝑔 ∈ R1×𝐶 from BERT outputs, serving as
a macroscopic representation of global textual features. The [CLS]
token in BERT serves a significant advantage: it encapsulates the
semantic understanding of the entire input sequence, acting as a
comprehensive sentence-level embedding that captures contextual
information efficiently.

Formally, during Stage 𝑖 in the backbone encoder, for the vision
feature F𝑖 ∈ Rℎ𝑖×𝑤𝑖×𝑐𝑖 , we first flatten F𝑖 as F̃𝑖 ∈ Rℎ𝑖𝑤𝑖×𝑐𝑖 , and the

self-generated pixel-level affinity from F̃𝑖 is formulated as:

Self-Affinity(F̃𝑖 ) = Softmax(
F̃𝑖 · F̃⊤𝑖
∥F̃𝑖 ∥

2 ), (1)

where ⊤ refers to the transpose operation. Here, we denote the
self-affinity map as A𝐹 for clarity. The internal self-affinity of im-
age features represents their internal consistency or self-similarity,
each value in the self-affinity map reflects the correlation between
the current observation area and other pixels within the same do-
main, indicating how well the features at different locations align
with each other. To explicitly align the vision affinity with the lan-
guage domain, we further utilize the global textual representation
L𝑔 to activate the corresponding semantic clues in vision feature
F𝑖 . F𝑖 is mapped into the same dimension with L𝑔 and produce the
text-to-visual activation A𝑡𝑣 . To convert the multi-modal activa-
tion A𝑡𝑣 into hard labels, we conduct the transformation based on
thresholding:

Â𝑡𝑣 =

{
1, if 𝑎(𝑥,𝑦) > 𝛼
0, otherwise

(2)

where a(x,y) is the original pixel value from the activation map,
and 𝛼 is the threshold for filtering positive samples. During imple-
mentation, we set 𝛼 as 0.80 by default, and as shown in Tab. 6, the
variation of 𝛼 has insignificant impacts on performance, indicating
the robustness of our design. Then, we aim to realize inter-domain
alignment by narrowing the affinity distribution between vision
and language clues. Specifically, we apply affinity constraints be-
tween these pseudo-labels and corresponding hierarchical visual
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features to narrow their distributions towards convergence, which
can be formulated as:

L𝑎𝑓 𝑓 𝑖𝑛𝑖𝑡𝑦 = ∥A𝐹 ⊙ Self-Affinity(Â𝑡𝑣) − Self-Affinity(Â𝑡𝑣)∥2𝐹 , (3)

where ∥ · ∥𝐹 denotes the Frobenius norm, encouraging the distance
between the two affinities to be similar and aligned. ⊙ denotes the
element-wise multiplication, which signifies that we only focus on
affinity constraints within the target, without enforcing consistency
in the distribution of different categories in the background.

One notable advantage of this explicit alignment strategy is that
it operates within the text-visual encoding process without adding
new learnable parameters, achieving gains in segmentation perfor-
mance. This ensures generalization and scalability across multiple
scenes, facilitating explicit visual-textual domain alignment in a
principled and efficient manner.

3.3 Reliable Agent Alignment Module
Existing approaches mostly use fixed semantics-agnostic predic-
tors for dense prediction, struggling to mine valuable clues when
facing complex semantic scenarios. In order to make the predictor
semantic-aware and aligned to the linguistic domain, a preliminary
scheme is to use global textual representations L𝑔 as prototype,
and directly align with the semantically-rich visual features X after
the bottleneck to obtain a visual textually multi-aware classifier.
However, such a naive correlation would inevitably fall into the
trap of deceptive noise in remote sensing imagery, as shown in
Fig. 1 (c) left, destroying the purity of semantic features. How to
achieve reliable visual-text alignment and avoid noise interference
simultaneously is a problemworth solving. Intuitively, in a situation
where it is difficult to distinguish between pixel classes, humans
tend to decide by looking for a comparison between the current
query location and a reliable class-aware region. Motivated by this
intuition, assuming that given a trusted medium in remotely sensed
imagery, we argue that the distribution of semantic and foreground
pixels over that medium should be consistent, and vice versa. Thus
we design a novel reliable agent alignment module (RAAM) to find
dependable points as reliable medium (i.e., agent) to acquire more
accurate correlations.

Given the bottom-level image feature X after bottleneck (F4
through feature enhancement) derived from the backbone encoder,
the queries arise from the global textual representation L𝑐 = {l𝑛}𝐿𝑛=1,
and keys and values arise from the input features X̃ = [𝒇 1;𝒇 2; ...;𝒇ℎ𝑤]
(flattened X). Formally,

Q𝑛 = l𝑛W𝑄 ,K𝑚 = 𝒇𝑚W𝐾 ,V𝑚 = 𝒇𝑚W𝑉 , (4)

where 𝑛 ∈ [1, . . . , 𝐿], 𝑚 ∈ 1, 2, ..., ℎ𝑤 and W𝑄 ∈ R𝐶𝑡×𝐶𝑘 , W𝐾 ∈
R𝐶×𝐶𝑘 ,W𝑉 ∈ R𝐶×𝐶𝑣 are linear projections. Then, we can obtain
the correlation between queries and keys with distance calculation
as:

𝑐𝑜𝑟𝑟𝑛,𝑚 =
𝑑𝑖𝑠 (Q𝑛,K𝑚)√︁

𝐶𝑘

, (5)

where 𝑑𝑖𝑠 (·, ·) denotes the distance metric.
Direct pairwise alignment is unreliable due to deceptive back-

grounds during remote sensing, especially with similar texture
details, e.g., bikeways and sidewalks. The reliability for each pixel

can be obtained via the weighted sum over all correlations as:

𝑟𝑚 =

𝐿∑︁
𝑛=1

𝑐𝑜𝑟𝑟𝑛,𝑚,𝑚 ∈ 1, 2, ..., ℎ𝑤, (6)

where the top-𝐾 pixels are selected with the highest reliabilities
(i.e., the largest correlations with semantics) to be agentsA. The cor-
responding features can be denoted as F𝐴 = {𝒇𝐴

𝑘
}𝐾
𝑘=1. With agents

that filter fine-grained semantic activations, we use them as media-
tors to achieve reliable alignment between visual features X and
global textual representations L𝑔 . We first map L𝑔 to the query di-
mension (i.e., the same dimension with K𝑚) asQ𝑔 = L𝑔W𝑄𝑔

, where
W𝑄𝑔 ∈ R𝐶×𝐶𝑘 . Then, we calculate the agent-global semantics cor-
relation 𝑐𝑜𝑟𝑟𝑠𝑛 and the agent-pixel correlation 𝑐𝑜𝑟𝑟𝑝𝑚 respectively
as same as Eq.(5):

𝑐𝑜𝑟𝑟𝑔 = softmax(Q
𝑔 (F𝐴W𝐾 )⊤√︁

𝐶𝑘

),

𝑐𝑜𝑟𝑟
𝑝
𝑚 = softmax(

(𝒇𝑚W𝑄 ) (F𝐴W𝐾 )⊤√︁
𝐶𝑘

).
(7)

And then, we can obtain the reliable alignment between global
semantics and pixels based on agents A as:

𝑎𝑙𝑖𝑔𝑛
𝑔&𝑝
𝑚 = 𝑐𝑜𝑟𝑟𝑔 (𝑐𝑜𝑟𝑟𝑝𝑚)⊤, (8)

which is used to acquire more accurate relations. Finally, the up-
dated aligned classifier (i.e., clear vision-aware semantic represen-
tations) can be acquired by blending values with the reliable align-
ment 𝑎𝑙𝑖𝑔𝑛𝑔&𝑝𝑚 as:

L̂𝑔 =
ℎ𝑤∑︁
𝑚=1

𝑎𝑙𝑖𝑔𝑛
𝑔&𝑝
𝑚 V𝑚, (9)

and following general transformer pipeline [34], we equip the reli-
able classifier L̃𝑔 with self-attention and FFN at the output of the
reliable agent alignment module. In this way, the global seman-
tics L𝑔 is modified in the RAAM and finally evolves into a reliable
aligned predictor L̂𝑔 .

3.4 Training and Inference
With the final high-resolution features E ∈ R𝐻×𝑊 ×𝐶 from the
backbone upsampling decoder and the aligned predictor L̂𝑔 ∈ R1×𝐶 ,
we can finally obtain the segmentation map Y as:

Y = E × L̂⊤𝑔 . (10)

For better training our network, we utilize the affinity constraint
within the designed explicit alignment strategy and the convention-
ally used loss paradigm [23, 39, 42], i.e., the binary cross-entropy
loss for mask recognition. The final loss is formulated as:

L𝑡𝑜𝑡𝑎𝑙 = L𝐵𝐶𝐸 (Y,Y) + 𝜆𝑎𝑓 L𝑎𝑓 𝑓 𝑖𝑛𝑖𝑡𝑦 (11)

where Y is the ground-truth of the prediction Y, 𝜆𝑎𝑓 denotes the
coefficient of L𝑎𝑓 𝑓 𝑖𝑛𝑖𝑡𝑦 .
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Table 1: Comparisons of existing referring remote sensing image segmentation methods on the RefSegRS [42] dataset. The best
results are shown in bold. † denotes the performance of our reproduction of the corresponding model.

Method Visual Enc. Text Enc. mIoU oIoU Pr@0.9 Pr@0.8 Pr@0.7 Pr@0.6 Pr@0.5
RRN [20] ResNet-101 LSTM 43.34 66.12 1.10 7.59 15.30 23.39 31.21
CMSA [41] ResNet-101 None 41.47 64.53 0.83 5.61 12.71 20.25 28.07
LSCM [14] ResNet-101 LSTM 38.64 63.21 1.23 6.12 10.53 21.56 32.12
CMPC [12] ResNet-101 LSTM 33.57 61.25 0.88 8.94 11.26 16.34 26.57
BRINet [11] ResNet-101 LSTM 32.87 60.16 1.27 3.52 10.11 15.74 22.56
CMPC+ [22] ResNet-101 LSTM 54.21 68.23 3.27 12.56 29.54 47.65 51.27
LAVT [39] Swin-B BERT 57.74 76.46 4.51 15.41 32.14 57.40 71.44
RMSIN† [23] Swin-B BERT 59.63 76.29 5.38 15.89 39.37 62.83 72.26
LGCE [42] Swin-B BERT 59.96 76.81 5.45 16.02 39.46 61.14 73.75
DANet (ours) Swin-B BERT 62.14 79.53 8.04 18.29 42.72 64.59 76.61

Table 2: Comparisons of existing referring remote sensing image segmentation methods on the RRSIS-D [23] dataset. The best
results are shown in bold. † denotes the performance of our reproduction of the corresponding model.

Method Visual Enc. Text Enc. mIoU oIoU Pr@0.9 Pr@0.8 Pr@0.7 Pr@0.6 Pr@0.5
RRN [20] ResNet-101 LSTM 46.06 66.53 6.14 20.80 33.04 42.47 51.09
CMSA [41] ResNet-101 None 48.85 69.68 9.02 26.55 38.27 48.04 55.68
LSCM† [14] ResNet-101 LSTM 51.35 69.28 7.93 26.37 37.87 48.04 57.12
CMPC† [12] ResNet-101 LSTM 50.41 70.15 9.31 25.28 38.50 48.85 57.93
BRINet [11] ResNet-101 LSTM 51.14 70.73 9.19 28.21 39.65 49.54 58.79
CMPC+† [22] ResNet-101 LSTM 51.41 70.14 8.16 25.91 38.67 59.36 59.19
LAVT [39] Swin-B BERT 61.46 77.59 24.25 43.97 53.16 63.51 69.54
LGCE† [42] Swin-B BERT 61.63 77.82 23.29 45.93 55.83 66.59 71.58
RMSIN† [23] Swin-B BERT 61.96 77.63 24.71 42.30 56.01 66.87 73.87
DANet (ours) Swin-B BERT 66.07 79.85 27.05 47.79 57.92 69.17 73.69

4 EXPERIMENTS
In this section, we will first introduce the datasets used in our work
in Sec. 4.1. The implementation details are shown in Sec. 4.2. In
Sec. 4.3, we illustrate the specific metric for better evaluation of
our method. Then, we further analyze the main results including
quantitative evaluations and qualitative results in Sec. 4.4 Finally,
we ablate the effectiveness of our method in Sec. 4.5 for better
demonstration of DANet’s superiority.

4.1 Dataset
To demonstrate the effectiveness of our proposed model, we con-
duct extensive experiments on two referring remote sensing image
segmentation benchmarks: RefSegRS [42] and RRSIS-D [23].
RefSegRS is a dataset containing 4,420 remote sensing images with
language expressions and corresponding labels, divided with 2172
images allocated for training, 431 images for validation, and 1817
images for testing. The image resolution of this dataset is 512× 512.
RRSIS-D is a dataset with imaging resolution ranging from 0.5 to
30 meters and a resolution of 800 × 800. It consists of 17,402 aerial
remote sensing images, with 1,740 images used for testing and the
rest for training.

4.2 Implementation Details
We adopt Pytorch [28] and Detectron2 [37] to implement the pro-
posed method. 4 NVIDIA GeForce RTX 3090 GPUs are used for
training. We take the input image size as 480 × 480 following con-
ventional settings [23, 42]. During the training stage, our model
is trained with a batch size of 16, using the AdamW optimizer
with an initial learning rate of 0.0005. We set the coefficient 𝜆𝑎𝑓 of
L𝑎𝑓 𝑓 𝑖𝑛𝑖𝑡𝑦 as 0.5, and the number of agents as 𝐾 = 32. We ablate
the effects of these hyper-parameters in detail in our ablation stud-
ies (Sec. 4.5). Please refer to the supplementary material for more
descriptions of implementation details and results.

4.3 Metric
For a fair comparison, we adopt the same metric with previous
works [23, 42], including Mean Intersection over Union (mIoU),
Object Intersection over Union (oIoU), and Precision at X pixels
(Pr@X). The higher the values of these metrics, the better the perfor-
mance. mIoU measures the average overlap between the predicted
segmentation masks and the ground truth masks for each class.
oIoU focuses on evaluating the segmentation accuracy at the ob-
ject level rather than at the pixel level. It computes the IoU for
each object instance and then calculates the average IoU across
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Expression: “the bridge in the middle” Expression: “the airplane on the right”

Expression: “a vehicle on the right” Expression: “an airport in the middle”

Expression: “a large airplane” Expression: “a expressway service area at the bottom”

Ground TruthImage LAVT DANet (ours) Ground TruthImage LAVT DANet (ours)

Expression: “the baseball field at the bottom” Expression: “the basketball court on the left”

Figure 3: Qualitative demonstrations of different methods on the RRSIS-D [23] dataset.

Table 3: Ablation on main components in terms of mIoU.

Main Components
RefSegRS [42] RRSIS-D [23]

Affinity Alignment Reliable Agent Alignment
✗ ✗ 57.74 61.46
✓ ✗ 59.84 63.57
✗ ✓ 59.95 64.02
✓ ✓ 62.14 66.07

all objects. Pr@X evaluates the precision of object segmentation
by considering the number of correctly predicted pixels within a
certain distance threshold X from the ground truth masks.

4.4 Main Results
4.4.1 Quantitative Evaluations. Our method demonstrates superior
performance in referring remote sensing image segmentation, out-
performing state-of-the-art methods, as illustrated in Tab. 1 and 2.
Evaluation on both RefSegRS [42] and RRSIS-D [23] datasets re-
veals compelling results. It can be observed that our method not
only exhibits superior performance in terms of mIoU and oIoU, but
also demonstrates substantial improvements when more precise
and fine-grained segmentation is required (i.e., Pr@0.9 and Pr@0.8).
Despite challenges posed by the implicit optimization paradigm in
remotely sensed scenes, the explicit affinity alignment strategy and
reliable agent alignment module in DANet enable accurate identifi-
cation of foreground regions, mitigating deceptive environmental

Table 4: Ablation on different affinity alignment designs.

Hierarchical Affinity RefSegRS [42] RRSIS-D [23]
{𝐹4} 60.19 64.32
{𝐹3, 𝐹4} 61.88 65.73
{𝐹2, 𝐹3, 𝐹4} 62.14 66.07
{𝐹1, 𝐹2, 𝐹3, 𝐹4} 62.12 65.94

interference and the inter-domain gap. Activation maps shown in
Fig. 5 further validate the superiority of our alignment design.

4.4.2 Qualitative Results. As shown in Fig. 3, DANet shows promis-
ing segmentation performance in diverse remotely sensed scenes.
In specific, our method performs great in most scenarios for differ-
ent targets. As shown in the third row in Fig. 3, our approach allows
for the accurate discrimination of confusable regions, e.g., as shown
in the left of the 4𝑡ℎ row, DANet isn’t tricked by a similar "baseball
field" to produce activation that shouldn’t be there. And in the 2𝑛𝑑
row, we can observe DANet achieves a high level of completeness
in predicting foreground regions, consistent with our findings in
Pr@X in Tab. 1 and Tab. 2. With explicit and reliable alignments,
DANet can achieve more precise target localisation recognition. As
shown in Fig. 5, the activation maps with a reliable alignment strat-
egy demonstrate stronger focusing capability, indicating that our
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Table 5: Comparison of different alignment mechanisms in
the reliable agent alignment module.

Alignment Mechanism RefSegRS [42] RRSIS-D [23]
cross-attention [34] 60.17 63.92
masked attention [4] 61.45 64.73
Reliable Agent Alignment 62.14 66.07
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Figure 4: Comparisons of performance with different num-
bers of agents 𝐾 and 𝜆𝑎𝑓 in terms of mIoU.

method can fully leverage language guidance and alleviate domain
discrepancies.

4.5 Ablation Study
We conduct comprehensive ablation studies on both datasets in
terms of mIoU to verify the effectiveness of our modules.
Effectiveness of the Explicit Affinity Alignment Strategy
(EAAS). As shown in the ablation experiments on the main com-
ponents of our DANet in Tab. 3, the introduction of affinity explicit
alignment yields a discernible performance improvement, elevat-
ing the average DSC from 57.74 to 59.84 on the RefSegRS [42]
dataset. Besides, the effects of the threshold 𝛼 in EAAS and the
loss coefficient 𝜆𝑎𝑓 are shown in Tab. 6 and Fig. 4 (b), demon-
strating our DANet’s effectiveness and robustness. EAAS is able
to mitigate the inherent inter-domain gap between vision and

Table 6: Effects of 𝛼 .

𝛼 RefSegRS [42] RRSIS-D [23]
0.75 62.03 65.94
0.80 62.14 66.07
0.85 61.97 65.81
0.90 61.63 65.72

language, utilizing the affinity
constraints to narrow the domain
discrepancies. The explicit align-
ment strategy not only enhances
the perception of visual semantic
clues but also avoids introducing
any additional parameters.

Impacts about Different Hierarchical Affinity Designs. As
shown in Tab. 4, substantial performance improvements are evident
on both datasets when employing multi-level features compared to
utilizing only the bottom embedding 𝐹4. This underscores the effec-
tiveness of our hierarchical affinity alignment design. The rationale
behind this success is that vision-language alignments at different
levels are well-suited for capturing targets at diverse scales. How-
ever, when applying the top-level feature 𝐹1 at the start of EAAS,
there exists a drop in performance. We deem that this setback is due
to relatively weak ability to capture overall semantic information
in 𝐹1, thus forcing it to align with semantics may disrupt the initial

a gray huge 
expressway 
service area

the baseball 
field on the left

the bridge is on 
the lower right 
of the tiny gray 

harbor

Expression Image w/o RAAM w/ RAAM GT

Figure 5: Visualizations of activationmapsw/ andw/oRAAM.

structure of visual encoding features. The incorporation of suitable
hierarchical affinity alignments proves instrumental in effectively
parsing various types of targets in remotely sensed scenes.
Effectiveness of theReliableAgentAlignmentModule (RAAM).
The design of our reliable agent alignment proves immensely bene-
ficial to the model. This is particularly evident when it is integrated
with explicit affinity alignments, as indicated in Tab. 3. In Tab. 5,
we utilize different mechanisms to interact between vision features
X and the textual representation L𝑔 . Specific benefits brought by
reliable agent alignments are demonstrated in Fig. 5, as can be
observed, activation without reliable alignment may be subject to
deceptive background interference, resulting in erroneous activa-
tion or the loss of foreground integrity. Our designed reliable agent
alignment module can suppress noise interference, leading to better
aggregation and clearer foreground activation of various targets.
Impacts about the Agent Selection Strategy in RAAM. In the
reliable agent alignment module, the number of agents, denoted as
𝐾 , determines how many reliable pixels are selected to establish
the correlation between semantics and pixels. Ablating the number
of reference points, as depicted in Fig. 4 (a), reveals that perfor-
mance reaches its top when 𝐾 = 32, signifying that this number is
sufficient for achieving the necessary correction. Too few reliable
points may result in insufficient reference samples, leading to an
unreliable medium between semantics and pixels, while too many
agents may overly emphasize model discrimination and include
irrelevant background information, ultimately disrupting the corre-
lation distribution. The adaptive selection of agents in RAAM holds
pivotal importance for pixel-level precision in challenging regions.

5 CONCLUSION
In this paper, we rethink the implicit optimization paradigm to ad-
dress the RRSIS task from a dual-alignment perspective. Specifically,
we design a Dual Alignment Network (DANet) including an explicit
alignment strategy and a reliable agent alignment module. The ex-
plicit alignment strategy effectively reduces domain discrepancies
by narrowing the inter-domain affinity distribution, and the reliable
agent alignment module enhances the predictor’s multi-modality
awareness and alleviates the impact of deceptive noise interference.
Extensive experiments demonstrate our DANet’s effectiveness.
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