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ABSTRACT

As the third generation of neural networks, Spiking Neural Networks (SNNs) have
gained widespread attention due to their low energy consumption and biological
interpretability. Recently, SNNs have made considerable advancements in com-
puter vision. However, efficiently conducting feature extraction and fusion under
the spiking characteristics of SNNs for object detection remains a pressing chal-
lenge. To address this problem, we propose the SpikSSD, a novel Spiking Single
Shot Multibox Detector. Specifically, we design a full-spiking backbone network,
MDS-ResNet, which effectively adjusts the membrane synaptic input distribution
at each layer, achieving better spiking feature extraction. Additionally, for spik-
ing feature fusion, we introduce the Spiking Bi-direction Fusion Module (SBFM),
which for the first time realizes bi-direction fusion of spiking features, enhancing
the multi-scale detection capability of the model. Experimental results show that
SpikSSD achieves 40.8% mAP on the GEN1 dataset, 76.3% and 52.4% mAP@0.5
on VOC 2007 and COCO 2017 datasets respectively with the lowest firing rate,
outperforming existing SNN-based approaches at ultralow energy consumption.
This work sets a new benchmark for future research in SNN-based object detec-
tion. Our code is publicly available in supplementary materials.

1 INTRODUCTION

Spiking Neural Networks (SNNs), unlike traditional Artificial Neural Networks (ANNs) that rely on
continuous values, communicate between neurons through discrete spiking signals and use biolog-
ically interpretable spiking neurons for computation (Maass (1997)). Although the discreteness of
spiking signals may lead to information loss, the temporal property of spikes can compensate for this
limitation (Skatchkovsky et al. (2021)). Additionally, due to the spiking nature of SNNs, they can
avoid the heavy computation load of multiplication operations, relying instead on simpler addition
operations (Hu et al. (2024)). These characteristics give significant advantages to SNNs in terms of
energy efficiency and processing speed, positioning them as a promising alternative to ANNs.

Object detection is a crucial task in computer vision, with wide-ranging applications from au-
tonomous driving (Balasubramaniam & Pasricha (2022)) to intelligent surveillance (Zhang & Kim
(2019)) and medical imaging (Litjens et al. (2017)). Moreover, object detection is not only a classifi-
cation task but also involves regression, requiring the simultaneous identification of object categories
and the precise prediction of their locations and sizes.

Recently, SNNs have made significant progress in classification tasks (Zhou et al. (2024); Yao et al.
(2023)). However, their performance in more complex tasks that involve both classification and
regression, such as object detection, still falls short of expectations. In this situation, many studies
on SNN-based object detection have focused on improvements to the backbone (Su et al. (2023))
and introducing the spiking feature fusion network (Fan et al. (2024)). While these approaches
have achieved some success, they fail to consider the network as a whole and instead focus only
on optimizing specific parts. To enhance the performance of SNNs in detection tasks, it is essential
to focus on both efficient extraction and fusion of spiking features, as a strong backbone requires
effective fusion to utilize its features fully, and vice versa. Therefore, this paper proposes SpikSSD
(Spiking Single Shot Multibox Detector) to address these challenges.
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Figure 1: Firing patterns of MDS-ResNet and EMS-ResNet. Left: Bar chart and line graph show-
ing firing rates for each layer. Right: Bar chart with standard deviation displaying statistical features
of both networks per stage. For a fair comparison, both networks use the ResNet18 configuration on
the GEN1 dataset, and the firing rates shown are exclusively from the residual paths of each network.

For feature extraction, we observe that the most significant difference between SNNs and ANNs
lies in their feature representation: in SNNs, features are coded through neuron firing patterns. In
EMS-ResNet (Su et al. (2023)), the output of the residual path continuously accumulates to the
shortcut path. Assuming these outputs are approximately independent, the variance of their sum
equals the sum of their variances, leading to a gradual increase in membrane synaptic input variance
for subsequent neurons. This results in a higher probability of extreme inputs. Specifically, when
the synaptic input is small, the accumulated membrane potential fails to reach the firing threshold.
When it is excessively large, neurons exhibit abnormally high firing rates. In both cases, the firing
pattern becomes either overly sparse or excessive, failing to reflect the input features accurately.
This unstable firing pattern makes it difficult for the network to distinguish and extract meaningful
features, which in turn affects the network’s feature extraction capability.

To address this issue, we propose the Membrane-based Deformed Shortcut (MDS), a novel mech-
anism optimizing identity mapping to stabilize membrane synaptic input distribution across lay-
ers. Based on MDS, we propose a novel Spiking Residual Network, MDS-ResNet, which exhibits
stronger feature extraction capabilities. The firing patterns of MDS-ResNet and EMS-ResNet are
shown in Fig. 1, where it can be seen that our MDS effectively stabilizes the firing pattern.

In SNNs, features exist in both spatial and temporal domains. Spiking feature fusion enhances
feature representation in both dimensions, improving multi-scale detection capabilities. This dual-
domain nature makes feature fusion more crucial in SNNs compared to ANNs. Currently, the only
fusion method designed for SNNs is the Spiking Fusion Module (SFM) (Fan et al. (2024)). This
fusion method adopts a one-way, down-up approach, where large-scale features are upsampled to
merge with small-scale features. Without up-down fusion, it only enhances small-scale feature rep-
resentation, overlooking the potential improvement of large-scale features. Furthermore, SFM in-
corporates SEW-Block internally, which compromises the spiking nature of the network. To address
these issues, we propose the Spiking Bi-direction Fusion Module (SBFM). Specifically, this module
utilizes Spiking Up/Down Block and membrane addition-based fusion method to process feature
maps, performing fusion first bottom-up and then top-down. We employ the proposed MDS Fusion
Block (MDSF-Block) to extract fused features during this process. These SNN-friendly components
ensure SBFM adheres to spiking characteristics while enhancing the model detection capabilities.

The main contributions of this work can be summarized as follows:

• We propose MDS-ResNet, which introduces the MDS to stabilize membrane synaptic input dis-
tribution at each layer, thereby enhancing feature extraction capabilities. Additionally, we theo-
retically demonstrate that MDS-ResNet can avoid gradient vanishing or explosion.

• We propose the SBFM, which achieves bi-directional feature fusion for the first time in SNNs,
thereby enhancing the model’s capability to detect multi-scale objects.

• Based on MDS-ResNet, SBFM, and the SSD Detection Head, we propose SpikSSD, which
achieves state-of-the-art mAP on event-based GEN1, frame-based VOC 2007 and COCO 2017
datasets compared to other SNN-based models, while requiring the lowest firing rate.
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2 RELATED WORK

2.1 SPIKING NEURAL NETWORKS

SNNs are designed to mimic the behavior of biological neurons more accurately than ANNs. Re-
searchers introduce various spiking neural models to achieve this, including the Hodgkin-Huxley
(Hodgkin & Huxley (1952)), Izhikevich (Izhikevich (2003)), Leaky Integrate-and-Fire (LIF) (Wu
et al. (2019)), and Parametric Leaky Integrate-and-Fire (PLIF) (Fang et al. (2021b)) models.

SNNs utilize two training approaches: ANNs-to-SNNs conversion and direct training. The ANNs-
to-SNNs conversion approach approximates ReLU activation using average firing rate, allowing
trained ANNs to be transformed into SNNs (Cao et al. (2015)). Although this approach has led to
powerful SNNs (Kim et al. (2020b)), it requires thousands of time steps and prevents SNNs from
exploiting their low-latency advantage. Moreover, this method is suited only for static datasets
and the performance of converted SNNs depends on the original ANNs. Conversely, the direct
training method leverages surrogate gradients to optimize SNNs (Neftci et al. (2019)), facilitating
their training on a variety of datasets and achieving strong performance within a limited number of
time steps. This technique enables the widespread application of SNNs in vision tasks (Cordone
et al. (2022); Zhu et al. (2022)). Hence, we apply the direct training strategy to our model in this
study.

2.2 SPIKING RESIDUAL NETWORKS

In the Spiking Residual Networks (SRNs) proposed based on the ANN-to-SNN conversion training
method, the primary focus is ensuring that the SNNs maintain lossless accuracy during the conver-
sion from ANNs (Hu et al. (2021)). However, networks designed based on this method also face
inherent drawbacks associated with this training approach.

In directly trained SRNs, Zheng et al. (2021) successfully constructs a 50-layer deep network using
threshold-dependent Batch Normalization (tdBN), but overlooks spiking characteristics by simply
replacing ReLU with LIF neurons. SEW-ResNet (Fang et al. (2021a)) and MS-ResNet (Hu et al.
(2024)) address gradient issues and train networks exceeding 100 layers. However, the spike addi-
tion for residual learning in SEW-ResNet and the neglect of non-spiking convolutions for shortcuts
by MS-ResNet prevent full-spiking networks. EMS-ResNet Su et al. (2023) addresses the short-
comings of MS-ResNet but fails to improve performance due to inadequate consideration of SNN
characteristics. This paper further investigates spiking characteristics to enhance feature extraction
while maintaining a full-spiking SRN.

2.3 OBJECT DETECTION WITH SPIKING NEURON NETWORKS

Unlike ANNs, SNNs have event-driven characteristics suitable for both frame and event cameras.
Event cameras have garnered attention due to their advantages in temporal resolution, dynamic
range, power efficiency, and pixel bandwidth (Gallego et al. (2020)).

Early attempts to apply SNNs to object detection using ANN-to-SNN conversion (Kim et al.
(2020b;a)) face challenges of high latency, poor performance, and incompatibility with event cam-
eras. VC-DenseNet (Cordone et al. (2022)) and EMS-YOLO (Su et al. (2023)) pioneer direct train-
ing for SNN-based object detection, achieving promising results on both frame and event-based
datasets. However, they both overlook feature fusion. SFOD (Fan et al. (2024)) introduces an ef-
ficient Spiking Fusion Module, but emphasizes less on backbone feature extraction. Hence, our
research enhances SNN-based object detection by improving both feature extraction and fusion.

3 METHOD

3.1 OVERVIEW

The architecture of our proposed SpikSSD is shown in Fig. 2. For event data, we use the voxel cube
(Cordone et al. (2022)) for coding. Compared to the voxel grid (Bardow et al. (2016)), this method
can store more temporal information in the channel dimension, thereby improving the efficiency
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Figure 2: The architecture of SpikSSD. SpikSSD comprises MDS-ResNet, SBFM, and the SSD
Detection Head. The backbone is illustrated using the ResNet18 configuration He et al. (2016). The
total downsampling factors for each block are annotated in the figure. The model receives two types
of inputs: event and static data. The input coding and output are represented in the figure.

in processing sparse and asynchronous event data. For static data, to leverage the spatiotemporal
characteristics of SNNs, we employ the direct coding method (Kim et al. (2022)), replicating the
input T times to form a time train that supports the temporal processing requirements of the model.

Then, we feed the coded data into MDS-ResNet for feature extraction. To capture more multi-scale
information, two additional MDS-Block2 are integrated after the backbone network. When feature
extraction is completed, features with resolutions ranging from 1/8 to 1/128 are processed through
the Spiking Bi-direction Fusion Module (SBFM) for feature fusion. This module employs a down-
up followed by an up-down bi-directional fusion method. The resulting fused feature maps are then
fed into the SSD Detection Head (Liu et al. (2016)) for object detection. Finally, softNMS (Bodla
et al. (2017)) is used for post-processing to optimize detection results.

Notably, the SSD Detection Head (SDH) consists of only a single convolution layer. During the
training phase, to aid in the model convergence, we first decode the data using spiking rate decoding
before inputting them into the SDH (Fan et al. (2024)). In the inference phase, we divide the SDH
parameters by the number of time steps T and directly input the spike train into the SDH, finally
performing summation over the time dimension. This strategy ensures consistency between the
inference and training results while preserving the spiking characteristics of the model.

3.2 MDS-RESNET

Currently, the main deep Spiking Residual Networks include MS-ResNet and EMS-ResNet. For
MS-ResNet, its residual learning can be expressed as follows.

ψ = tdBN ◦ Conv ◦ SN (1)

Y L
I = ψ

(
ψ(XL)

)
+XL (2)

Y L
D = ψ

(
ψ(XL)

)
+ tdBN(Conv(XL)) (3)

Here, Y represents output and X represents input. The superscript L denotes the L-th residual
block, and the subscripts D and I indicate whether the residual block performs downsampling or
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Figure 3: Architecture of the four blocks in MDS-ResNet.

not, respectively. SN, tdBN, and Conv denote spiking neurons, threshold-dependent Batch Nor-
malization, and convolution, respectively. From the above equations, it can be seen that in shortcuts
involving downsampling, convolution is performed on membrane synaptic input without convert-
ing them to spikes. This disrupts the spiking characteristics of SNNs and introduces a substantial
amount of non-spiking operations.

To address this issue, EMS-ResNet improves Y L
D , with its residual learning formula as follows.

Here, MaxPool represents Maxpool, Y L
D1 represents downsampling with an increased number

of channels, and Y L
D2 represents downsampling with the same or decreased number of channels.

Through this improvement, EMS-ResNet effectively preserves the spiking characteristics of SNNs.

Y L
D1 = ψ

(
ψ(XL)

)
+Concat[MaxPool(XL), ψ(MaxPool(XL))] (4)

Y L
D2 = ψ

(
ψ(XL)

)
+ ψ(MaxPool(XL)) (5)

However, we believe that the Y L
I in MS-ResNet and EMS-ResNet does not fully consider the char-

acteristics of SNNs that utilize firing patterns for feature representation. For ease of analysis, let
Y L
R denote the residual path output and Y L

S denote the shortcut path output. We assume the distri-
butions of these two variables to be Y L

R ∼ N (0, σL
R
2
) and Y L

S ∼ N (0, σL
S
2
), where σL

R
2 and σL

S
2

represent their respective variances. Assuming the two variables are approximately independent,
Y L
I ∼ N (0, σL

R
2
+ σL

S
2
). Since there is no computation on the shortcut path, we can derive that

Y L
I ∼ N (0, σL

R
2
+ σL−1

R

2
+ σL−1

S

2
). Therefore, the variance of Y L

I becomes increasingly large
as the network deepens. This results in unstable membrane synaptic input distribution in subse-
quent neurons, leading to unstable cumulative membrane potential distributions. Consequently, the
probability of overly sparse or excessive firing patterns increases, which impedes accurate feature
representation and ultimately weakens the feature extraction capability of the model.

While adding tdBN at the shortcut could address this problem, it introduces non-spiking operations,
compromising the inherent characteristics of SNNs. To preserve these characteristics while solving
the issue, we propose the Membrane-based Deformed Shortcut (MDS), which incorporates LIF-
Conv1x1-tdBN. This approach employs a LIF layer to convert input into spikes, followed by a 1x1
convolution layer. The convolution not only enhances the expressiveness of the network but also
enables batchnorm-scale-fusion with tdBN during inference (Zheng et al. (2021)). Finally, the tdBN
effectively adjusts the distribution of the shortcut output. Building upon the MDS, we propose
MDS-ResNet, a new variant of SRN that incorporates MDS into the network architecture.

The proposed MDS-ResNet comprises four blocks, with their structures illustrated in Fig. 3. MDS-
Block1 and 2 are downsampling blocks, adopting the idea of EMS-ResNet. MDS-Block3 and 4
are designed without downsampling. MDS-Block3 incorporates MDS in its shortcut, effectively
adjusting the output variance. MDS-Block4, identical to MS-Block (Hu et al. (2024)), facilitates
gradient propagation. This combination of the two block varieties prevents degradation of gradient

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

flow in deeper networks, which could occur if only MDS-Block3 is used throughout the model.
Notably, while some feature maps are directly added to the residual path in the shortcuts of MDS-
Block1 and 4, MDS-Block2 and 3 allow for quick adjustment of membrane synaptic input variance,
ensuring effective feature extraction capabilities across the network.

3.3 ANALYSIS OF GRADIENT VANISHING/EXPLOSION FOR MDS-RESNET

To demonstrate that the MDS does not affect the training and convergence, we use the Block Dynam-
ical Isometry (Chen et al. (2020)) to verify that MDS-ResNet can effectively overcome the gradient
vanishing or explosion problem.

Consider a serial network as shown in Eq. (6), where fj represents the j-th layer of the network. The
jacobian matrix from input to output of the j-th layer can be denoted as Jj =

∂fj
∂fj−1

. Furthermore,
let ϕ(J) be defined as the expectation of tr(J), while φ(J) = ϕ(J2)− ϕ2(J)

f(x) = fL ◦ fL−1 ◦ · · · ◦ f1(x) (6)
Lemma 1. (Chen et al. (2020)) Consider a neural network that can be represented as a series of
blocks as Eq. (6) and the j-th block’s jacobian matrix is denoted as Jj. If ∀j, ϕ(JjJj

T ) ≈ 1 and
φ(JjJj

T ) ≈ 0, the network achieves Block Dynamical Isometry and can avoid gradient vanishing
or explosion.

Definition 1. (General Linear Transform) (Chen et al. (2020)) Let f(x) be a transform whose
Jacobian matrix is J. f is called general linear transform when it satisfies:

E

[
||f(x)||22
len(f(x))

]
= ϕ

(
JJT

)
E

[
||x||22
len(x)

]
. (7)

Lemma 2. (Multiplication) (Chen et al. (2020)) Given J :=
∏1

j=L Jj, where {Jj ∈ Rmj×mj−1}
is a series of independent random matrices. If (

∏1
j=L Jj)(

∏1
j=L Jj)

T is at least the 1st moment
unitarily invariant, we have

ϕ

(

1∏
j=L

Jj)(

1∏
j=L

Jj)
T

 =

1∏
j=L

ϕ(JjJj
T ). (8)

Since the information transmitted in the network can be considered as random variables (Poole et al.
(2016)), E

[
||x||22
len(x)

]
is regarded as the second-order moment of the input, denoted by α2. Building on

the derivations in (Chen et al. (2020); Su et al. (2023); Zheng et al. (2021)), it is established that LIF,
Conv, tdBN, Concatenation, and Maxpool each qualify as general linear transform. Therefore, we
can independently analyze each MDS-Block based on Definition 1 and Lemma 2. By multiplying
these analysis results, we derive the overall behavior of the MDS-ResNet.

Proposition 1. For MDS-Block1, MDS-Block2, and MDS-Block3, when the block output follows
x ∼ N (0, 1), each satisfies: ϕ(JjJ

T
j ) ≈ 1

αj−1
2

.

Proposition 2. For MDS-ResNet, when the encoding layer output follows x ∼ N (0, 2NMDS-Block4) and
each block output follows x ∼ N (0, 1), the network satisfies: ϕ(JJT ) ≈ 1.

Proof. The details can be found in the supplementary materials.

As elucidated in (Su et al. (2023); Hu et al. (2024)), in the majority of cases, ϕ(JJT ) ≈ 1 is sufficient
to guarantee that the network avoids gradient vanishing or explosion. The condition φ(JjJj

T ) ≈ 0
is imposed to preclude the occurrence of accidental situations. Therefore, Proposition 1 and Propo-
sition 2 provide theoretical support for the ability of MDS-ResNet to address the problem of gradient
vanishing or explosion.

3.4 SPIKING BI-DIRECTION FUSION MODULE

Research in feature fusion for SNNs is limited to one-way down-up fusion (Fan et al. (2024)), where
large-scale features are only upsampled to enhance small-scale features. This approach restricts up-
down information transmission and leads to inadequate feature fusion across scales. Furthermore,
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Figure 4: The architecture of MDSF-Block and Spiking Up/Down Block.

this method fails to preserve inherent spiking characteristics. To address these issues, we propose the
Spiking Bi-direction Fusion Module (SBFM), which enhances feature fusion through bi-directional
information flow while maintaining the network spiking properties.

The structure of the SBFM is shown in Fig. 2. In this module, feature maps ranging from 1/8 to 1/128
are fused. During the fusion process, we first fuse feature maps of lower resolution with those of
higher resolution through upsampling (down-up). Subsequently, we employ downsampling further
to integrate these fused feature maps (up-down). Notably, we perform only a single fusion operation
for the 1/8 and 1/128 scale feature maps to avoid introducing feature maps at 1/4 and 1/256 scales,
thereby enhancing computation efficiency. Next, we will discuss the methods for spiking feature
fusion, upsampling, and downsampling.

The current spiking feature fusion method uses concatenation to preserve spiking characteristics
(Fan et al. (2024)), but this increases model complexity and makes the effective alignment of fea-
tures difficult. To address these issues, we propose a membrane addition-based fusion method that
maintains spiking characteristics by adding membrane synaptic inputs. This method treats feature
maps from different resolutions as supplements with smaller variances, adding them to the target-
resolution feature map to mimic residual learning. The MDSF-Block (Fig. 4) enhances fusion
through post-addition feature extraction. This block replaces MDS in MDS-Block3 with spiking
depthwise separable convolution, enabling fusion across different dimensions while maintaining
spike-based computation.

To achieve upsampling/downsampling, we propose the Spiking Up/Down Block, whose structure
is shown in Fig. 4. In this block, we use Nearest Neighbor Interpolation or Maxpool as the key
element, which has been proven to maintain the inherent spiking characteristics of SNNs during
the upsampling/downsampling process (Rançon et al. (2022); Fang et al. (2021b)). Furthermore, to
ensure that the feature maps after sampling are consistent in channel numbers with the feature maps
to be fused, and to assign them a smaller variance, we incorporate a LIF-Conv1x1-tdBN structure
following the Nearest Neighbor Interpolation or Maxpool operation.

4 EXPERIMENT

In this section, we conduct extensive ablation studies and analysis of the model on the GEN1
(De Tournemire et al. (2020)) dataset. We also compare the results with state-of-the-art methods
on GEN1, PASCAL VOC (Everingham et al. (2010)), and COCO 2017 (Lin et al. (2014)) dataset.

4.1 EXPERIMENTAL SETUP

The membrane time constant τ for LIF/PLIF neurons is initialized to 0.25, with the threshold set to
1. The models are trained on 4 NVIDIA A6000 GPUs, using the AdamW optimizer with a learning
rate of 1e-3 in conjunction with a cosine learning rate scheduler. On the Gen1 dataset, we employ the
zoom-in and zoom-out augmentation strategies from (Gehrig & Scaramuzza (2023)). For PASCAL
VOC, we train on the VOC 2007+2012 trainval and evaluate on the VOC 2007 test set. For both
PASCAL VOC and COCO 2017 datasets, we use Mosaic and Mixup augmentation.

7
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Backbone Fusion mAP mAP
@0.5

Param
(M)

Firing
Rate(%)

Energy
(mJ)

Window
(ms)

Input
Scale

DenseNet121-24 ✗ 29.2 52.5 7.3 20.19 2.17 100 1.0
SEW-ResNet18 ✗ 32.2 58.2 9.8 10.46 1.92 100 1.0
EMS-ResNet18 ✗ 32.9 59.2 9.7 17.51 1.29 100 1.0
MS-ResNet18 ✗ 34.1 60.4 9.8 12.80 2.04 100 1.0
MDS-ResNet10 ✗ 29.3 54.6 6.6 18.48 0.80 100 1.0
MDS-ResNet18 ✗ 34.7 60.9 10.1 12.41 0.97 100 1.0
MDS-ResNet34 ✗ 37.4 64.1 15.2 12.41 1.73 100 1.0
MDS-ResNet18 ✓ 35.7 62.3 13.9 10.58 1.47 50 1.0
MDS-ResNet18 ✓ 37.6 64.3 13.9 10.57 1.47 100 1.0
MDS-ResNet34 ✓ 39.2 66.5 19.0 11.56 2.32 100 1.0
MDS-ResNet18 ✓ 38.0 64.9 13.9 10.40 1.44 200 1.0
MDS-ResNet18† ✓ 38.2 65.3 13.9 11.22 1.56 200 1.0
MDS-ResNet34† ✓ 39.7 67.2 19.0 12.20 2.45 200 1.0
MDS-ResNet34† ✓ 39.5 66.9 19.0 11.67 2.90 200 1.1
MDS-ResNet34† ✓ 40.7 68.0 19.0 11.93 3.42 200 1.2
MDS-ResNet34† ✓ 40.8 68.8 19.0 11.59 3.97 200 1.3
MDS-ResNet34† ✓ 40.5 68.1 19.0 10.11 4.01 200 1.4

Table 1: Results of the ablation study on the GEN1 dataset. A † indicates that the model adopts
100ms/200ms training/inference approach.

For object detection tasks, the main evaluation metrics are mAP (mAP@0.5:0.95) and mAP@0.5.
The firing rate, which measures neuronal activity, is another critical metric for evaluating SNNs. It
is calculated as the average ratio of neuron spikes to the total number of neurons across all time
steps. Additionally, we report the energy consumption of the models. More implementation details
and energy consumption calculation methods are provided in the supplementary materials.

4.2 ABLATION STUDIES

In this section, we first demonstrate the effectiveness of MDS-ResNet through a comparison with
different spiking backbone networks. Next, we investigate the impact of model depth, the SBFM,
the event time window, and the input scale on model performance.

4.2.1 DIFFERENT BACKBONE NETWORK

To better demonstrate the feature extraction capabilities of MDS-ResNet, we compare it with the
most advanced SNN backbones currently available. For a fair comparison with DenseNet121-24
(Cordone et al. (2022)), the other networks are configured with ResNet18 (He et al. (2016)) to
ensure similar parameter sizes. The comparison results are shown in rows 1 to 4 and 6 of Tab. 1.
These results show that the MDS-ResNet18 outperforms other models in mAP and has a lower firing
rate and energy consumption. This indicates that our proposed MDS effectively ensures the stability
of membrane synaptic input, achieving optimal performance with the most efficient firing pattern.

4.2.2 IMPACT OF MODEL DEPTH

In the previous section, we theoretically demonstrate that the MDS-ResNet could overcome the
issues of gradient vanishing or exploding, enabling the realization of large-scale networks. In this
section, we further validate this through experiments. As shown in rows 5 to 7 of Tab. 1, the feature
extraction capability of MDS-ResNet improves as the network depth increases.

4.2.3 THE EFFECTIVENESS OF SBFM

As shown in rows 9 and 10 of Tab. 1, the performance of MDS-ResNet18 and MDS-ResNet34 sig-
nificantly improves after incorporating the SBFM. Specifically, not only does the mAP increase by
about 2 points, but the firing rate also decreases, and energy consumption remains nearly unchanged.
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Model Spike Param
(M) mAP Window

(ms)
Firing

Rate(%)
Energy

(mJ)
Asynet (Messikommer et al. (2020)) ✗ 11.4 14.5 250 - >4.83
MatrixLSTM (Cannici et al. (2020)) ✗ 61.5 31.0 - - -
RED (Perot et al. (2020)) ✗ 24.1 40.0 50 - >24.08
ASTMNet (Li et al. (2022a)) ✗ >100 46.7 - - -
RVT (Gehrig & Scaramuzza (2023)) ✗ 18.5 47.2 50 - -
VC-DenseNet (Cordone et al. (2022)) ✓ 8.2 18.9 100 29.44 3.89
KD-SNN (Bodden et al. (2024)) ✓ 13.0 22.9 100 17.40 1.00
EMS-YOLO (Su et al. (2023)) ✓ 14.4 31.0 100 17.80 -
SFOD (Fan et al. (2024)) ✓ 11.9 32.1 100 24.40 7.26
EAS-SNN (Wang et al. (2024)) ✓ 25.3 37.5 200 - 28.10
SpikSSD-S ✓ 13.9 39.0 200 10.90 2.58
SpikSSD-L ✓ 19.0 40.8 200 11.59 3.97

Table 2: Comparison with state-of-the-art models on the GEN1 dataset.

This indicates that the SBFM enhances the model’s multi-scale detection capability, achieving a
good balance between effectiveness and energy efficiency.

4.2.4 INFLUENCE OF TIME WINDOW

For event data, the time window of samples varies, providing different bases for prediction. The
larger the time window, the stronger the model becomes at detecting slowly moving objects. Here,
we conduct thorough experiments by adjusting the size of the time window. As shown in rows 8 to
12 of Tab. 1, the model’s mAP improves as the window size increases, while energy consumption re-
mains constant. However, we argue that an unlimited expansion of the time window would impose
an excessive burden on hardware memory, thus we do not experiment with larger time windows.
Furthermore, as indicated in row 12, we discover that training the model with a 100ms window and
inferring with a 200ms window yields excellent results. We attribute the improved performance to
training with a 100ms window, which provides more sparse samples, thus enhancing model perfor-
mance when inferring with a 200ms window. This approach reduces hardware burden and training
time. Therefore, our final model adopts this 100ms/200ms training/inference approach.

4.2.5 INFLUENCE OF INPUT SCALE

We investigate the effect of scaling event data using Nearest Neighbor Interpolation, which has never
been explored before. As shown in rows 13 to 17 of Tab. 1, model performance improves as the scale
increases up to 1.3, but declines beyond this point. This decline is likely due to events becoming
more spatially sparse at larger scales, creating challenges for the model inference.

4.3 BENCHMARK COMPARISONS

Based on ablation experiments, we propose a small model (SpikSSD-S) using MDS-ResNet18 as
the backbone and a large model (SpikSSD-L) using MDS-ResNet34 as the backbone. We compare
our models with other state-of-the-art models on the GEN1, VOC 2007, and COCO 2017 datasets.

On the GEN1 dataset, as shown in Tab. 2, our lightweight SpikSSD-S achieves a significantly higher
mAP while having comparable parameters to other models. Notably, SpikSSD-S demonstrates su-
perior performance compared to the full-spiking model of EAS-SNN, achieving a higher mAP while
utilizing only half the parameters and consuming merely 1/10 of the energy. Our SpikSSD-L further
improves performance, becoming the first full-spiking SNN model to exceed mAP of 40.0, while its
energy consumption is less or comparable to other SNN-based models. Compared to ANN-based
models, our model further narrows the gap with the state-of-the-art, offering significant advantages
in energy consumption. The inference results of SpikSSD-L in comparison with SpikSSD-S and
Ground Truth are presented in Fig. 5. On the VOC 2007 and COCO 2017 datasets, as demonstrated
in Tab. 3, SpikSSD achieves state-of-the-art and second-best mAP@0.5 respectively, while con-
suming less energy compared to existing SNN-based methods. Notably, SpikSSD ranks first among
directly-trained SNN-based methods on COCO 2017. Moreover, when compared to the ANN-based

9
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Method Model
VOC 2007 COCO 2017

Param
(M)

mAP
@0.5

Energy
(mJ)

Param
(M)

mAP
@0.5

Energy
(mJ)

ANNs YOLOv5s (Qu et al. (2024)) 7.2 75.3 - 7.3 54.8 38.41 †
DETR (Zhu et al. (2020)) - - - 41.0 55.7 430.10

ANNs
to

SNNs

Vthfast+Vthacc (Kim et al. (2020a)) 8.7 46.7 - 8.9 21.1 -
Spiking-YOLO (Kim et al. (2020b)) 8.7 51.8 - 8.9 25.7 -

SpiCalib (Li et al. (2022b)) 23.5 75.2 - 23.9 45.4 -
SUHD (Qu et al. (2024)) - 75.3 - - 54.6 -

Dirctly
trained
SNNs

Hybrid-YOLO (Guo et al. (2024)) - 54.2 13.48 † - 26.2 -
EMS-YOLO (Su et al. (2023)) - - - 26.9 50.1 29.00

SpikeFormer (Yao et al. (2024a)) - - - 75.0 51.2 140.80
SpikSSD-S 14.5 74.1 7.11 16.3 49.2 11.65

SpikSSD-L 19.5 76.0
(76.3‡)

10.16
(11.56‡) 21.3 52.4 15.59

Table 3: Comparison with state-of-the-art models on the VOC 2007 test and COCO 2017 val-
idation datasets. † indicates that energy is recalculated using our energy consumption method for
fair comparison. ‡ denotes results from models pre-trained on COCO and fine-tuned on VOC.
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Figure 5: Inference results on the GEN1 dataset.

methods, SpikSSD-L not only demonstrates comparable performance but also requires only 1/3
(YOLOV5s) or even 1/37 (DETR) of the energy consumption. To the best of our knowledge, since
Hybrid-YOLO is a hybrid model, SpikSSD is the first SNN model to demonstrate performance on
the VOC 2007 dataset through direct training.

5 CONCLUSION

In this paper, we propose a novel and efficient SNN-based object detector, SpikSSD. Specifically,
to enhance the model feature extraction capability, we introduce MDS-ResNet, which stabilizes
membrane synaptic input through MDS, achieving optimal performance with the most efficient fir-
ing pattern. For feature fusion, we introduce the first SNN-based bi-directional fusion module,
the SBFM. Experimental results show that our SpikSSD achieves state-of-the-art performance, sur-
passing other SNN-based models on the GEN1, VOC 2007, and COCO 2017 datasets. Notably,
on the GEN1 dataset, this is the first full-spiking SNN model to achieve an mAP exceeding 40.0,
demonstrating superior feature extraction and fusion capabilities. In the future, we will focus on
optimizing detection heads for SNN-based object detectors, an unexplored area in both our research
and SNN-specific designs.
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A APPENDIX

A.1 DISCUSSION

A.1.1 DEPLOYMENT ON NEUROMORPHIC CHIP

In this paper, we have conducted theoretical energy evaluations to compare energy consumption
between ANNs and SNNs, following common practices in SNN research (Fan et al. (2024); Su
et al. (2023)). Our method shows substantial energy advantages compared to both SNN and ANN
solutions. Detailed evaluation methods are provided in Appendix A.3.2.

It’s worth noting that the above theoretical analysis excludes hardware architecture or data caching.
The efficiency gains may be further amplified when SNNs are deployed on neuromorphic chips.
These neuromorphic platforms, such as the Speck chip (Yao et al. (2024b)), operate in asynchronous
mode without a global clock, leveraging their spike-driven characteristics. This design leads to
minimal static energy consumption during periods without spike inputs. Consequently, the overall
energy consumption of neuromorphic computing primarily scales with the number of spike-induced
ACs (Pei et al. (2019)).

For deployment to real hardware, we take the neuromorphic chip Speck as an example. First, we
need to use Sinabs, a PyTorch-based deep learning library, to build and train SNN models. Through
the Sinabs-Speck plugin, we can complete model quantization and configuration generation. Subse-
quently, we can use the Samna tool for deployment and execution.

A.1.2 THE LEARNING CURVE WITH AND WITHOUT SBFM

In this paper, our proposed SBFM demonstrates advantages in accelerating model convergence and
stabilizing the training process, as shown in Fig. 6. We attribute this improvement to SBFM’s con-
struction of two shorter backpropagation paths from the deepest features to the input, significantly
benefiting training and convergence. Therefore, SBFM not only enhances performance but also
provides these additional advantages.

A.2 PROOF OF BLOCK DYNAMICAL ISOMETRY

Lemma 3. (Addition) Chen et al. (2020) Given J :=
∑

j Jj, where Jj is a series of independent
random matrices. If at most one matrix in Jj is not a central matrix, we have

ϕ
(
JJT

)
=
∑
j

ϕ
(
JjJj

T
)

(9)

Proposition 1. For MDS-Block1, MDS-Block2, and MDS-Block3, when the block output follows
x ∼ N (0, 1), each satisfies: ϕ(JjJ

T
j ) ≈ 1

αj−1
2

.

Proof of MDS-Block1. The MDS-Blocks consist of two distinct pathways: the residual path and
the shortcut path. Consequently, we designate their respective Jacobian matrices as Jres and Jsc. For
brevity, we omit the layer number l where it doesn’t cause ambiguity.
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Figure 6: The Learning Curve with and without SBFM.

For the shortcut path, as proven in Su et al. (2023), it satisfies:

ϕ(JscJsc
T ) =

αmaxpool
2

αl−1
2

(
cj−1

cj
+
δj
cj
ϕ
(
HjHj

T
)
)

=
1

αl−1
2

(
αmaxpool
2 cj−1

cj
+
αmaxpool
2 δj
cj

(
αbn
2

αmaxpool
2

)
)

(10)

The Jacobian matrix of the LCB block Su et al. (2023) is represented by Hj. The input and output
channels for concatenation are represented by cj−1 and cj respectively. Additionally, δj represents
the difference between cj and cj−1. Since αl−1

2 and αmaxpool
2 can be set as fixed values, we only

need to initialize the BN layer such that αbn
2 =

2cj−αmaxpool
2 cj−1

δj
. This initialization ensures that

ϕ(JscJsc
T ) = 1

αl−1
2

.

For the residual path, since all its components satisfy Definition 1, we can derive:

αl,res
2 = ϕ(JresJres

T )αl−1
2 (11)

ϕ(JresJres
T ) =

αl,res
2

αl−1
2

(12)

According to Lemma 3, we can derive:

ϕ(JMDS−Block1JMDS−Block1
T ) = ϕ(JscJsc

T ) + ϕ(JresJres
T )

=
1 + αl,res

2

αl−1
2

(13)

In residual learning, the goal is to have the residual path learn a small perturbation relative to
the shortcut path to optimize the model’s feature representation. To achieve this, as in Su et al.
(2023); Hu et al. (2024), we initialize the tdBN of the residual path with a mean of 0 and a vari-
ance close to 0, avoiding loss of learning ability due to 0 variance. Correspondingly, we initialize
the tdBN of the shortcut path with a mean of 0 and a variance of 1. Consequently, at this point,
the output distribution of the block is approximately equal to the output of the shortcut, following
x ∼ N (0, 1). Therefore, their firing patterns are also approximately the same, achieving the goal of
learning a small perturbation. This implies that αl,res

2 ≈ 0. As a result, the MDS-Block1 satisfies:
ϕ(JMDS−Block1JMDS−Block1

T ) ≈ 1

αj−1
2

.

Proof of MDS-Block2. For the shortcut path in MDS-Block2, each of its components satisfies
Definition 1. Therefore, we can draw a conclusion similar to that of the residual path in MDS-
Block1:

ϕ(JscJsc
T ) =

αl,sc
2

αl−1
2

(14)
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Regarding the residual path in MDS-Block2, its structure is identical to that in MDS-Block1, so we
don’t elaborate on it here. According to Lemma 3, we can derive:

ϕ(JMDS−Block2JMDS−Block2
T ) =

αl,sc
2 + αl,res

2

αl−1
2

(15)

According to the proof of MDS-Block1, similarly, as long as we ensure that the output of the block
follows x ∼ N (0, 1), the MDS-Block2 satisfies: ϕ(JMDS−Block2JMDS−Block2

T ) ≈ 1

αj−1
2

.

Proof of MDS-Block3. For the shortcut path in MDS-Block3, each of its components satisfies
Definition 1. Moreover, the residual path of MDS-Block3 is identical to that of MDS-Block1 and
MDS-Block2. Therefore, we can also conclude similar to that of MDS-Block2:

ϕ(JMDS−Block3JMDS−Block3
T ) =

αl,sc
2 + αl,res

2

αl−1
2

(16)

Therefore, with the output of the block following the distribution x ∼ N (0, 1), the MDS-Block2
satisfies: ϕ(JMDS−Block2JMDS−Block2

T ) ≈ 1

αj−1
2

.

Proposition 2. For MDS-ResNet, when the encoding layer output follows x ∼ N (0, 2NMDS-Block4) and
each block output follows x ∼ N (0, 1), the network satisfies: ϕ(JJT ) ≈ 1.

For MDS-Block4, its structure is consistent with MS-Block Hu et al. (2024). Therefore, according
to the results in Su et al. (2023), we can derive:

ϕ(JMDS−Block4JMDS−Block4
T ) =

αj−1
2 + 1

αj−1
2

(17)

At this point, if the output of each block follows x ∼ N (0, 1), then αj−1
2 = 1. Thus, we can

conclude that MDS-Block4 satisfies: ϕ(JMDS−Block4JMDS−Block4
T ) = 2.

According to Lemma 2, based on the properties of individual blocks, the MDS-ResNet satisfies:

ϕ(JJT ) =
2NMDS-Block4

α0
2

(18)

Therefore, it suffices to maintain the condition that each block follows x ∼ N (0, 1) and to establish
α0
2 = 2NMDS-Block4 . Under these conditions, the following holds: ϕ(JJT ) ≈ 1.

A.3 MORE EXPERIMENTAL SETUP

A.3.1 DATASETS INTRODUCTION

The GEN1 dataset (De Tournemire et al. (2020)) represents the initial large-scale collection for ob-
ject detection using event cameras. It comprises car footage spanning over 39 hours, captured by
the GEN1 device with a spatial resolution of 304x240. The dataset includes bounding box annota-
tions for vehicles and pedestrians, provided at rates of 1 to 4Hz. These labels accumulate to a total
exceeding 255,000 across the recordings.

The PASCAL VOC dataset (Everingham et al. (2010)) is a popular large-scale object detection
dataset. It is divided into two subsets: VOC 2007 and VOC 2012. As the test set of VOC 2012 is
not publicly available, we use VOC 2007+2012 trainval for training and VOC 2007 test for testing.
The VOC 2007+2012 trainval contains a total of 16,551 images and 40,058 objects, while the VOC
2007 test comprises 4,952 images and 12,032 objects.

The COCO 2017 (Lin et al. (2014)) is a large-scale object detection benchmark with 118,287 train-
ing and 5000 validation images. Objects from 80 categories are annotated with their classes and
locations.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Stage Output Size MDS-ResNet10 MDS-ResNet18 MDS-ResNet34

Conv1 1/2 7×7, 32, stride 2

Conv2 x 1/4
[
3× 3, 32
3× 3, 64

]
× 1

[
3× 3, 32
3× 3, 64

]
× 2

[
3× 3, 32
3× 3, 64

]
× 3

Conv3 x 1/8
[
3× 3, 64
3× 3, 128

]
× 1

[
3× 3, 64
3× 3, 128

]
× 2

[
3× 3, 64
3× 3, 128

]
× 4

Conv4 x 1/16
[
3× 3, 128
3× 3, 256

]
× 1

[
3× 3, 128
3× 3, 256

]
× 2

[
3× 3, 128
3× 3, 256

]
× 6

Conv5 x 1/32
[
3× 3, 256
3× 3, 512

]
× 1

[
3× 3, 256
3× 3, 512

]
× 2

[
3× 3, 256
3× 3, 512

]
× 3

Table 4: The Structure of MDS-ResNet. The x indicates that the corresponding block is repeated
x times.

A.3.2 ENERGY CONSUMPTION

The energy efficiency of SNNs primarily comes from performing accumulation calculations (AC)
only when neurons fire. However, many current SNN-based works cannot guarantee a full-spiking
network. Therefore, when calculating the energy consumption of these networks, we also consider
multiplication and addition (MAC) operations. For ANNs, as the vast majority of their operations
are MAC computations with only a small number of AC operations, we ignore these AC operations
in our calculations. Furthermore, in line with previous works Fan et al. (2024); Su et al. (2023), we
quantify the specific energy consumption values using EMAC = 4.6pJ and EAC = 0.9pJ. The energy
consumption calculation formulas for SNNs and ANNs are shown respectively as follows, where fr
represents the firing rate of the model, and T denotes the number of time steps.

ESNNs = T × fr × (EAC ×NAC + EMAC ×NMAC) (19)

EANNs = T × EMAC ×NMAC (20)

A.3.3 MORE IMPLEMENTATION DETAILS

The MDS-ResNet structure is illustrated in Tab. 4. Notably, we employ MDS-Block1 for downsam-
pling in the first block of each stage. In MDS-ResNet18, given the shallower depth of the model,
gradient propagation is not a concern. Therefore, we opt for MDS-Block3 when no downsampling
is required, without using MDS-Block4. In MDS-ResNet34, we utilize MDS-Block3 in the middle
block of each stage to enhance the stability of membrane synaptic input distribution. The remain-
ing blocks implement MDS-Block4 to facilitate gradient propagation. Furthermore, for the object
detection task in this study, we incorporate two additional downsampling stages, Conv6 and Conv7,
both composed exclusively of MDS-Block2.

To ensure the network’s firing rate, we set the threshold Vth of the LIF/PLIF neurons to 1, to maintain
the balance between the membrane synaptic input and the neuron firing threshold (Zheng et al.
(2021)). On the Gen1 dataset, the model is trained for 50 epochs with batch size 32. However, we
observe that MDS-ResNet34 fails to converge after 50 epochs on this dataset. Therefore, we extend
the training to 100 epochs for all models using MDS-ResNet34 as the backbone. For PASCAL
VOC, we train for 400 epochs with batch size 32. For COCO 2017, we train for 300 epochs with
batch size 24.

To address the inefficiency in non-overlapping cases and aspect ratio insensitivity of IoU-based
losses, we employ the Complete IoU (CIOU) Loss (Zheng et al. (2020)). CIOU Loss optimizes
overlap area, central point distance, and aspect ratio simultaneously, enhancing accuracy and con-
vergence in object detection. Furthermore, to address the disparity in class distribution between
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Backbone Neuron Fusion Fusion
Layers mAP mAP

@0.5
Param
(M)

Firing
Rate(%)

Energy
(mJ)

MDS-ResNet34† LIF None 0 35.7 62.1 14.8 17.26 2.34
MDS-ResNet34‡ LIF None 0 35.8 62.3 15.7 11.83 1.74
MDS-ResNet34 LIF None 0 37.4 64.1 15.2 12.41 1.73
MDS-ResNet18 LIF SFM 5 36.2 63.4 12.6 16.49 8.04
MDS-ResNet18 LIF SSFM 5 36.5 63.2 12.5 11.01 1.43
MDS-ResNet18∗ LIF SBFM 5 36.9 63.6 12.1 11.32 1.25
MDS-ResNet18 PLIF SBFM 5 37.5 63.9 13.9 10.39 1.44
MDS-ResNet18 LIF SBFM 3 33.9 59.9 8.2 10.06 1.33
MDS-ResNet18 LIF SBFM 4 36.2 62.7 12.2 10.70 1.48
MDS-ResNet18 LIF SBFM 5 37.6 64.3 13.9 10.57 1.47
MDS-ResNet18 LIF SBFM 6 38.4 65.6 15.4 10.76 1.50

Table 5: Results of the more ablation studies on the GEN1 dataset. A ∗ indicates that Spiking
Depthwise Separable Convolution is not used in SBFM. A † indicates that only MDS-Block4 is
used, and ‡ indicates that only MDS-Block3 is used when the model does not downsample.

Backbone Neuron Input
size mAP mAP

@0.5
Param
(M)

Firing
Rate(%)

Energy
(mJ)

MDS-ResNet34∗ LIF 512 45.8 73.3 19.5 13.83 9.90
MDS-ResNet34∗ PLIF 512 46.3 73.8 19.5 13.77 9.85
MDS-ResNet34 PLIF 300 45.4 72.4 19.5 13.55 3.48
MDS-ResNet34 PLIF 512 48.9 76.0 19.5 14.19 10.16
MDS-ResNet34 PLIF 576 47.6 75.0 19.5 13.88 12.58
MDS-ResNet34 PLIF 640 48.8 76.0 19.5 14.19 15.88
MDS-ResNet34 PLIF 800 48.1 73.6 19.5 13.90 24.36

Table 6: Results of the more ablation studies on the VOC 2007 dataset. A ∗ indicates that the
model is trained for 300 epochs.

objects and non-objects during detector training, we adopt Focal Loss (Lin et al. (2017)) as our
classification criterion.

The formula for CIOU Loss is shown in Equation 21, where IoU is the intersection over union,
ρ2(b, bgt) is the squared central point distance, c2 is the enclosing box’s diagonal length squared,
and αv addresses aspect ratio consistency. The Focal Loss formula is shown in Equation 22, where
pt is the model’s estimated probability for the true class, αt is a balancing factor for class frequency,
and γ is the focusing parameter that reduces the loss contribution from easy examples.

CIOU = 1− IoU +
ρ2(b, bgt)

c2
+ αv (21)

FL(pt) = −αt(1− pt)
γ log(pt) (22)

A.4 MORE ABLATION STUDIES

In this section, we present additional ablation studies.

A.4.1 THE COMBINATION OF MDS-BLOCK3 AND MDS-BLOCK4

To validate the effectiveness of combining MDS-Block3 and MDS-Block4, we conduct experiments
as shown in rows 1 to 3 of Tab. 5. In deeper networks, using MDS-Block3 alone only marginally
improves mAP compared to MDS-ResNet18, due to the gradient degradation problem. Furthermore,
as shown in row 1, employing only MDS-Block4 also results in performance degradation, which
validates the effectiveness of our proposed MDS. Consequently, the integration of both blocks proves
to be both necessary and effective.
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A.4.2 BI-DIRECTION FUSION VERSUS ONE-WAY FUSION

In Section 3.4, we qualitatively analyze the superiority of bi-directional fusion over one-way fusion.
We quantitatively demonstrate this point in rows 4, 5 and 10 of Tab. 5. To facilitate this comparison,
we create two variants: replacing SBFM with SFM (Fan et al. (2024)), and removing the up-down
fusion process from SBFM to create a Spiking Single Fusion Module (SSFM) that performs one-way
fusion. We then compare their performance against the complete SBFM. As observed, the model
employing SBFM achieves a significant improvement in mAP while consuming almost the same
or even less energy. This evidence supports our claim that the SBFM with a bi-directional fusion
strategy enables more comprehensive feature integration.

A.4.3 THE EFFECTIVENESS OF SPIKING DEPTHWISE SEPARABLE CONVOLUTION

In Section 3.4, to enhance fusion in both channel and spatial dimensions, we replace the MDS
in MDS-Block3 with spiking depthwise separable convolution to form MDSF-Block. As shown
in rows 6 and 10 of Tab. 5, experimental results demonstrate that this substitution significantly
improves performance. We attribute this improvement to the addition of spiking depthwise con-
volution in the spiking depthwise separable convolution, which, despite increasing the parameters,
enhances spatial feature extraction capability compared to the original MDS, thereby boosting our
model performance.

A.4.4 THE NUMBER OF FUSION LAYERS IN SBFM

We conduct a quantitative investigation into the number of fusion layers in SBFM. As shown in rows
8-11 of Tab. 5, increasing the number of fusion layers from 3 to 6 leads to significant performance
improvements. We attribute this to the fact that SNNs inherently have limited feature representation
capability due to their spike-based computation nature, and incorporating multiple-scale features
helps enhance multi-scale detection performance. While increasing the number of fusion layers
to 6 exhibits the highest mAP, we observe that the gains are marginal compared to the additional
parameters and energy consumption introduced. Therefore, we determine that using 5 fusion layers
achieves the optimal balance between performance and computational efficiency.

A.4.5 THE LIF NEURON VERSUS PLIF NEURON

We compare the two most commonly used spiking neuron models (LIF and PLIF) on both the event-
based Gen1 dataset and the frame-based VOC 2007 dataset. As shown in rows 7 and 10 of Tab. 5
and rows 1 and 2 of Tab. 6, LIF neurons outperform PLIF neurons on the event-based dataset,
while PLIF neurons excel on the frame-based dataset. We attribute this difference to PLIF neurons
providing the model with greater expressive power. This becomes particularly advantageous for
SNNs when processing frame-based datasets, which are inherently more complex and challenging
for SNNs compared to event-based datasets, as the latter’s sparse nature makes them naturally suited
for SNN processing.

A.4.6 INFULENCE OF INPUT SIZE ON PASCAL VOC

We also analyze the influence of input size on performance for the frame-based Pascal VOC dataset.
As shown in rows 3-7 of Tab. 6, similar to the results on the GEN1 dataset, the model’s mAP@0.5
increases when the input scale is enlarged to 512. However, further increasing the input size leads
to a decline in mAP@0.5. This phenomenon might be attributed to excessively large input sizes
reducing the number of small and medium-sized objects in the input, thereby diminishing the multi-
scale detection capabilities of the model.

A.5 MORE VISUALIZATION

In this section, we present the visualization results of our model on the PASCAL VOC dataset, as
shown in Fig. 7. These results demonstrate that our model can achieve excellent performance on
frame-based datasets. Moreover, we observe that the effectiveness of model improves significantly
as its depth increases.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Sp
ik

SS
D

-S
Sp

ik
SS

D
-L

G
ro

u
p

 T
ru

th
Sp

ik
SS

D
-S

Sp
ik

SS
D

-L
G

ro
u

p
 T

ru
th

Figure 7: Inference results on the PASCAL VOC dataset.
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