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Abstract

Neuromorphic computing aims to replicate the brain’s capabilities for energy ef-
ficient and parallel information processing, promising a solution to the increasing
demand for faster and more efficient computational systems. Efficient training of
neural networks on neuromorphic hardware requires the development of training
algorithms that retain the sparsity of spike-based communication during training.
Here, we report on the first implementation of event-based backpropagation on the
SpiNNaker2 neuromorphic hardware platform. We use EventProp, an algorithm
for event-based backpropagation in spiking neural networks, to compute exact
gradients using sparse communication of error signals between neurons. Our im-
plementation computes multi-layer networks of leaky integrate-and-fire neurons
using discretized versions of the differential equations and their adjoints, and uses
event packets to transmit spikes and error signals between network layers. We
demonstrate a proof-of-concept of batch-parallelized, on-chip training of spiking
neural networks using the Yin Yang dataset, and provide an off-chip implementa-
tion for efficient prototyping, hyper-parameter search, and hybrid training meth-
ods.
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1 Introduction

Neuromorphic computing seeks to emulate the unparalleled efficiency of biological neural networks
by implementing spiking neural networks which use sparse, spike-based communication between
neurons. This could enable artificial neuronal systems to process temporal, spike-based data with
efficiency similar to biological brains. At the same time, backpropagation proved to be a pivotal
method in machine learning, allowing for efficient gradient computation and enabling the recent
advances in training non-spiking, artificial neural networks on challenging tasks [8]. This suggests
that implementing gradient-based learning algorithms on neuromorphic hardware could enable sim-
ilar achievements while surpassing traditional hardware in terms of energy efficiency. Such learning
algorithms should make use of the temporal sparsity afforded by spike-based processing.

Building on previous work on gradient-based learning in spiking neural networks [3], the Event-
Prop algorithm [26] uses event-based backpropagation to compute exact gradients, retaining the
advantages of temporal sparsity during network training. In contrast, non-spiking neural networks
typically require a dense sampling of neuronal variables for backpropagation which introduces a
memory bottleneck, limits network size and increases energy consumption due to the required stor-
age and transfer of dense state variable samples [20, 16, 12]. Harnessing the potential of event-based
algorithms such as EventProp requires their implementation on suitable event-based hardware archi-
tectures.

Gradient-based learning using neuromorphic hardware has been previously implemented using “in-
the-loop” approaches, where neuromorphic hardware computes spike times and state variables in an
inference phase (the forward pass) while a classical computer computes gradients and implements
backpropagation for the computation of surrogate gradients [4, 5] or exact gradients [6, 18]. Previ-
ous work implemented the E-prop algorithm [1] on SpiNNaker1 [19] and an FPGA-based prototype
of SpiNNaker2 [21]. This algorithm computes surrogate gradients using local eligibility traces and
a global error signal, without error backpropagation through network layers, which prevents scal-
ability. Besides SpiNNaker, the GeNN code generation framework [10] has been used to create a
GPU-based implementation of EventProp [15].

This manuscript presents the first implementation of event-based backpropagation on SpiNNaker2.
SpiNNaker2 is a novel digital neuromorphic hardware platform providing a scalable event-based and
asynchronous computational substrate [7]. While our results are obtained using a single SpiNNaker2
chip, the platform can scale to large numbers of interconnected chips (e.g., more than 5 million
compute cores in the Dresden SpiNNcloud platform [13]).

2 Methods

2.1 SpiNNaker2 Details

SpiNNaker2 is a massively parallel compute architecture for event-based computing. It is based
on a digital, many-core GALS (Globally Asynchronous Locally Synchronous) configuration, where
every chip is composed of 152 ARM-based Processing Elements (PEs) with dedicated accelerators
for both neuromorphic (e.g., true random number generators, exponential and logarithmic acceler-
ators) and deep learning applications (e.g., multiply-and-accumulate arrays). The PEs are arranged
in a two-dimensional array and communicate via a dedicated high-speed Network-On-Chip (NoC).
Communication to a host computer is established via 1Gbit ethernet (UDP) and 2GB of DRAM on
the board can be accessed via two LPDDR4 interfaces. For scalable, system-wide communication,
each chip has a dedicated SpiNNaker2 packet router, containing configurable routing tables, and six
links to neighbouring chips. Different packet types with up to 128-bit payload allow for efficient
communication between PEs, chips and boards. This will allow for SpiNNaker2 systems with up
to 65 000 chips and over 10 million cores [13]. Importantly, these ARM Cortex M4F cores provide
flexibility for the implementation of arbitrary neuron dynamics and event-based models (e.g., [23]).

A Python-based software package, PY-SPINNAKER2 [25], allows user to define network architec-
tures and parameters (py-spinnaker2) and is the main entry point for running experiments on-chip.
The Python module interacts with the chip through an intermediate layer implemented in C++ that
sends and receives data and loads up PEs with the memory files needed to run simulations. Interac-
tions between host and chip are detailed in Figure 1.
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2.2 Programs on Processing Elements

Our implementation comprises four programs running on different PEs of a chip: the first injects
input spikes, the second simulates a layer of leaky integrate-and-fire neurons, the third computes a
time-to-first-spike loss and the fourth accumulates gradients and computes weight updates.

A common regularization method in machine learning is to process a subset of the training batch
in parallel: gradients are averaged across a mini-batch [8]. Mini-batch training can achieve better
generalization while speeding up training by processing training examples in a given mini-batch in
parallel. In the case of training on Spinnaker2, we can take advantage of the inherently parallel
nature of the architecture to deploy identical copies of the network on multiple cores. Different
copies of a network process different input samples, implementing mini-batch training. Except
for the optimisation program, all described programs are duplicated on the chip for each training
example processed in parallel.

We detail each program’s implementation next, and provide pseudo-code for each in 6.4. The archi-
tecture and software stack is summarised in Figure 1. This implementation showcases the flexibility
of SpiNNaker2 to implement custom training algorithms on neuromorphic hardware. While our
implementations only uses 128 kB of SRAM available on each PE, future work will interface with
2GB of DRAM on the board to enable larger networks and more complex models.
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Figure 1: Software and Hardware stack: A.1 shows the software architecture stack. The host experi-
ment runner handles network creation, simulation parameters, initial data and mapping, all of which
are detailed in A.2. Necessary data is then sent on-chip. B. details the 4 main programs responsible
for executing the eventprop algorithm on-chip, detailed later on. C. shows a potential mapping of a
multi-batch simulation on the SpiNNaker 2 chip.

Input Spikes Program: This program injects input spikes representing samples of the input data
set into neurons of the first layer. We use a dedicated PE running this program to inject spikes into
the network for clarity and to optimise memory usage. Spike times for every sample are loaded
at the beginning of the simulation and injected using event packets via the network-on-chip to PEs
representing target layers. To process different samples of a training mini-batch in parallel, different
cores run the same program, but transmit different input samples to neuronal input layers during the
simulation.

Neuron Layer Program: This program simulates a layer of leaky integrate-and-fire neurons by
computing the forward and backward pass. It uses a clock-driven simulation based on the discretized
differential equations and their adjoints [26]. In a given time step, different network layers are
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computed asynchronously on different PEs and event packets representing spikes (forward pass) or
error signals (backward pass) are transmitted by the network-on-chip and buffered by the receiving
PEs to update variables in the next time step. PEs store dense weight matrices (in contrast to the
original synapse-based implementation of SpiNNaker) and use incoming spikes’ payloads to retrieve
the synaptic weight corresponding to the arriving spike and to update the synaptic current of the
target neuron.

During the backward pass, spikes are distributed in reverse order, and carry state variables repre-
senting error signals within the 32 bit payload of event packets. At this point, the network runs in
“reverse-time” and follows the adjoint dynamics, with error signals being transmitted at the spike
times computed during the forward pass. In this way, the backward pass implements a spiking neu-
ral network with graded spikes (representing the error signal) at fixed times, making it suited for
an event-based implementation on the neuromorphic platform. The backward pass implements a
discretization of the adjoint system [26], following an “optimize-then-discretize” approach. In this
way, the program uses event-based backpropagation to compute a discretized approximation to the
exact gradients of the simulated spiking neural network. The complete set of discretized equations
is provided in section 6.1.

Time-to-First-Spike Loss Program: The loss program receives spikes from the output layer and
computes the loss as well as the initial error signals sent to the output layer during the backward pass.
At the beginning of the simulation, cores running the loss program are loaded with classification
labels. After receiving spikes from the output layers, loss cores compute derivatives of a cross-
entropy loss based on first spike times as given by

L = − log

(
exp (−(tsl∆t)/τ0)∑3

k=1 exp (−(tsk∆t)/τ0)

)
− α

[
exp

(
tsl∆t

τ1

)
− 1

]
, (1)

where tsk is time step of the first spike of the kth neuron, l is the index of the neuron that should fire
first and τ0, τ1 and α are hyper-parameters of the loss function. Loss cores compute error signals
corresponding to the derivative of eq. (1) which are sent back to the output layer at the respective
spike time steps using spike payloads.

Optimisation Program: After the backward pass, each neuron layer has accumulated gradients. A
single PE is then tasked with gathering gradients and optimisation of the weights. The PE running
this program gathers gradients using direct memory access (DMA) from PEs processing different
samples of a batch and sums them locally, implementing a mini-batch gradient update. The summed
gradients are used to update an internal state which implements the Adam optimization algorithm
[9]. This state is used to compute a new set of weights which is written back to each PE using DMA.
The processing of the next sample is then triggered for all cores using a global interrupt signal,
synchronizing the processing elements.

2.3 Yin Yang Dataset

We consider a learning task using the Yin Yang dataset [11]. This dataset consists of three classes of
points in a two-dimensional space ([0, 1]2), resembling a Yin Yang symbol (Figure 2). Importantly,
the dataset is not linearly separable and designed to be challenging for linear classifiers without
any hidden layers, requiring deep networks for effective classification (a shallow classifier achieves
around 64% accuracy [11]). We use this dataset due to the current memory limitation of our im-
plementation and the clear performance gap between shallow and deep networks, allowing us to
validate that our implementation can train a deep network on non linear-separable data. We encode
the dataset using spikes by translating each coordinate into a spike time in the interval from tmin = 2
to tmax = 27, running the networks for a total of T = 28 timesteps. Following [11], we add coor-
dinates (1 − x, 1 − y) for each data point (x, y). We also add a bias spike at time t = 0, resulting
in a total of 5 input neurons. Spike times are discretized according to the simulation time step, with
ambiguous data points being removed (Figure 2, right plot).

2.4 Off-chip simulation

In addition to the on-chip implementation of the EventProp algorithm, we developed an off-chip
simulation that matches the on-chip simulation and can be used for efficient prototyping, convenient
debugging and parameter search. This off-chip implementation takes the form of a custom PyTorch
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Figure 2: Yin Yang Dataset: Left-hand side shows true coordinates coloured by labels, while right-
hand side shows the time steps of discretized spike-times.

[17] package, and is available at pytorch-eventprop. A quantitative comparison of the on- and off-
chip simulations is provided in Figure 4, Figure 5 and shows a minimal mismatch between state
variables that is expected due to numerical differences. Future work could leverage the off-chip
simulation for a hybrid training approach that trains a base model off-chip and then deploys it to
SpiNNaker2 for on-chip adaptation.

We use the off-chip simulation to perform a Bayesian hyperparameter optimization using the
“Weights and Biases” software package [2]. The resulting parameters are given in Table 1.

3 Results

Yin Yang Dataset

We present learning results using the Yin-Yang dataset and network’s dimensions [5, 120, 3]. Total
training-set size is 5000, processing in parallel mini-batches of size 22 . We train for 40 epochs in
total, and we average results over 10 different random seeds (Figure 3, left). These results demon-
strate successful on-chip training using event-based backpropagation on SpiNNaker2 as well as a
close match between on- and off-chip simulations after training.

In addition to batch-parallelised processing, we report on results where the networks are trained on a
single sample at a time, for a single epoch, on a limited training-set of 300 samples (Figure 3, right).
Such a scenario is particularly relevant for on-line learning on neuromorphic hardware, where the
network is trained on a continuous stream of data, which would be critical for embedded systems and
autonomous agents. Again, the results show a close match between on-chip and off-chip simulations,
and satisfying accuracy considering the heavy limitations.

4 Discussion

This work reports on the first, proof-of-concept implementation of event-based backpropagation on
SpiNNaker2. While our results are limited by the memory capacity of each processing element,
future work will leverage the 2GB of DRAM available on the host board to enable larger networks
and the processing of more complex data sets. However, scaling the current implementation to larger
networks and multi-chip systems will require addressing several challenges. For instance, the dis-
cretization used in this implementation of EventProp may impose constraints on the scalability and
performance of multi-chip systems. Discretization errors accumulate and likely limit the scalability
of this approach, especially for deep networks or networks with long temporal dependencies. This
challenge could be addressed by using other neuron models and numerical schemes that allow for
scalable event-based neural networks.
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Figure 3: Accuracy comparison between on- and off-chip simulations. On the left, we show the
final accuracy of the models after training for 40 epochs on the complete dataset, for both testing
and training sets. On the right we show the final accuracies reached in the ”online” setting, after
only seeing 300 samples one by one. Results are displayed using a standard boxplot, displaying the
median (labelled) and quartiles values of the distribution. All individual points are also overlayed
on top.

While our work is based on spiking neurons, its applicability is not confined to this model class.
Advances in event-based machine learning, such as the event-based gated recurrent unit [23], suggest
the possibility of extending neuromorphic event-based backpropagation to models that use event-
based processing with graded spikes. Hybrid hardware such as SpiNNaker2 that supports both event-
based communication and the acceleration of conventional deep neural networks could facilitate the
integration of dynamic sparsity benefits into broader machine learning applications, leading to order-
of-magnitude improvements in energy efficiency compared to traditional computing [14].

Our on-line learning results suggest that event-based backpropagation could be used for on-chip
learning in applications where training data arrives continuously. The computational complexity of
the backward pass corresponds to that of the forward pass, making it feasible to use EventProp in
such a scenario even if the algorithm is not online strictly speaking. Moreover, it would be possible
to implement reinforcement learning methods such as policy gradient [24] in an on-line fashion,
since EventProp only needs reward signals and not labels. Our framework could use the off-chip
simulation to train a base model that is then deployed and fine-tuned on the neuromorphic hardware
using data arriving in real time. To achieve efficient and adaptive on-chip fine-tuning across a range
of tasks, the off-chip simulation could implement an outer meta-training loop. For example, model
agnostic meta learning (MAML) can be used to find an optimal initialisation that ensures quick and
effective adaptation when deployed on-chip, and has been shown to be successfully applicable to
SNNs [22]. Such a hybrid approach could leverage and combine the advantages of conventional
and neuromorphic computing, and enable the deployment of autonomous and adaptive agents on
edge-devices.

Our work provides a proof-of-concept implementation of event-based backpropagation using Event-
Prop on SpiNNaker2. Event-based backpropagation reduces the demand for memory compared to
backpropagation-through-time in non-spiking neural networks and therefore allows for larger net-
work sizes given a fixed amount of memory. At the same time, implementing event-based backprop-
agation on natively event-based computational substrates such as SpiNNaker2 could enable higher
energy efficiency due to temporally sparse data transfers between neurons. Realising these advan-
tages will require addressing the challenges outlined above, and gradient-based learning in spiking
neural networks remains an active area of research. Our work demonstrates that the flexibility af-
forded by SpiNNaker2 can be used to implement future advances in event-based training methods
for spiking neural networks.
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6 Supplementary Materials

6.1 Complete equations for neuron layer program

6.1.1 Forward

Denoting the synaptic current and membrane potential of the jth neuron in the lth layer at timestep
t as Ij,li and V j,l

i , our implementation computes:

Ij,lt+1 = αII
j,l
t +

Nl−1∑
k=1

W l
jkθ(V

k,l−1
t − 1), (2)

V j,l
t+1 = αV V

j,l
t (1− θ(V j,l

t − 1)) + (1− αV )I
j,l
t+1, (3)

where αV , αI ∈ [0, 1] are the respective decay factors, W l
(jk) is the weight matrix of the lth layer

and θ(·) is the Heaviside theta function. The number of neurons in the lth layer is given by Nl and
the initial conditions are Ij,l0 = V j,l

0 = 0 for all neurons. The decay factors are given by

αI = exp

(
−∆t

τs

)
, (4)

αV = exp

(
−∆t

τm

)
, (5)

where τs and τm are time constants and ∆t is the discretization time step.

6.1.2 Backward

The backward pass implements a discretization of the adjoint system [26] as
λj,l
t = αIµ

j,l
t+1 + (1− αI)λ

j,l−1
t+1 , (6)

µj,l
t = αV µ

j,l
t+1 + θ(V j,l

t+1 − 1)(Ij,lt+1 − V j,l
t+1)

−1

µj,l
t+1 +

Nl+1∑
k=1

W l+1
kj (µk,l+1

t+1 − λk,l+1
t+1 )

 , (7)

with initial conditions λj,l
T = µj,l

T = 0, where T is the final time step.

6.1.3 Gradients computation

The gradient matrix is accumulated as

Gl
jk = −τs

T∑
t=1

θ(V k,l−1
t − 1)λj,l

t . (8)

6.2 Off-chip simulation

Figure 4 shows the differences of voltage traces (forward and backward) between off-chip and on-
chip implementations when processing a single sample. The minor deviations, which are likely
caused by numerical differences, imply that the off-chip implementation can be used to optimise
hyperparameters for on-chip deployment. we can see in Figure 5 that the resulting gradients and
weights end up almost perfectly identical, only deviating of minor numerical values.

6.3 Optimized Hyperparameters
• Loss Parameters : We tune α (regularization strength in the loss function), τ0 and τ1 (see

1)
• Initialisation Parameters: We tune scales to initialise the neuron populations. By default,

the population is initialised following a normal distribution M(µ, σ), where µ = σ =
1√
nin

, nin being the number of input neurons of the layer. We fine-tune this distribution by
scaling σ, µ by factors slσ, s

l
µ for each layer l.

• Optimization Parameters: We tune lr, γ and λ, the optimizer’s learning rate, scheduler’s
decay rate, and weight-decay parameter respectively
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Figure 4: Voltage differences of the on-chip and off-chip implementations after processing a single
sample.
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Figure 5: Scatterplot of gradients and weights of the on-chip and off-chip implementations after
processing a single sample.

α τ0 τ1 lr γ λ batch size T (s0µ, s
0
σ) (s1µ, s

1
σ)

0.01 1.5 100 0.002 0.93 6.5e-7 22 28 (3.2, 3.2) (5.2, 2.8)
Table 1: Best hyper-parameters discovered by Bayesian search

6.4 Pseudo Code for Chip Programs

We present here pseudo code for all chip programs to enable readers a clearer idea of the way
computation is done on-chip. These should not be taken literally, albeit being close to the actual
code they include simplifications for better reading comprehension.

Listing 1: Neuron Population Simulation

void reset_and_sync():
reset_input_buffers();
reset_neuron_states();
reset_recordings();
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// timestep counter reset
systicks = UINT32_MAX ;
total_systicks = UINT32_MAX;
backward = False;
run = 1;
// wait for interrupt from control node to ensure optimization is finished
wait_for_start_signal();
reset_neuron_gradients();
timer_init();
timer_start();

void neuron_process_sample():
while total_systicks <= n_total_systicks:

total_systicks++
if not backward :

// receive last spikes but do not process
if systicks == n_timesteps:

receive_spikes();
// initialize backward pass
else if systicks == n_timesteps + 1:

systicks--;
backward = True;
neuron_initialize_backward();

// Forward Pass
else:

systicks++;
receive_spikes();
neurons_update();

// Backward Pass
else:

systicks--;
receive_spikes_backward();
neuron_do_backward_update();
accumulate_gradients();
send_errors_backward();

run = 0;

while epoch <= n_epochs:
while sample <= n_samples:

reset_and_sync();
while run:

neuron_process_sample();
sample++;

sample = 0;
epoch++;

Listing 2: Loss Population Simulation

void reset_and_sync():
reset_recordings();
// timestep counter reset
systicks = UINT32_MAX;
total_systicks = UINT32_MAX;
backward = False;
run = 1;
// wait for interrupt from control node to ensure optimization is finished
wait_for_start_signal();
reset_loss_and_errors();

11



timer_init();
timer_start();

void loss_process_sample():
while total_systicks <= n_total_systicks:

// Prepare for backward
if not backward:

if systicks == n_timesteps:
receive_spikes();
backward = True;
systicks--;
compute_loss();

// Forward pass
else:

systicks++;
// Receive spikes from output layer
receive_spikes();

// Bacward Pass
else:

systicks--;
// Bacpropagate errors at spike time
send_spikes_backward();

run = 0;

while epoch <= n_epochs:
while sample <= n_samples:

reset_and_sync();
while run:

loss_process_sample();
sample++;

sample = 0;
epoch++;

Listing 3: Control Node

while epoch <= n_epochs:
while sample <= n_samples:

// Synchronize PEs' start
send_start_signal();
// Nothing to do while PEs complete their simulations
wait_for_completion();
// Get gradients from all neuron PEs
gather_gradients();
// Adam algorithm
update_adam();
// Update weights and send back to PEs after simulation
update_weights();
sample++;

sample = 0;
epoch++;
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