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Abstract
QUIC is the underlying protocol of the next generation HTTP/3,
serving as the major vehicle delivering video data nowadays. As
a userspace protocol based on UDP, QUIC features low transmis-
sion latency and has been widely deployed by content providers.
However, the high computational overhead of QUIC shifts system
knobs to CPUs in high-bandwidth scenarios. When CPU resources
become the constraint, HTTP/3 exhibits even lower throughput
than HTTP/1.1. In this paper, we carefully analyze the performance
bottleneck of QUIC and find it results from ACK processing, packet
sending, and data encryption. By reducing the ACK frequency, acti-
vating UDP generic segmentation offload (GSO), and incorporating
PicoTLS, a high-performance encryption library, the CPU overhead
of QUIC could be effectively reduced in stable network environ-
ments. However, simply reducing the ACK frequency also impairs
the transmission throughput of QUIC under poor network con-
ditions. To solve this, we develop LiteQUIC, which involves two
mechanisms towards alleviating the overhead of ACK processing in
addition to GSO and PicoTLS. We evaluate LiteQUIC in the DASH-
based video streaming, and the results show that LiteQUIC achieves
1.2× higher average bitrate and 93.3% lower rebuffering time than
an optimized version of QUIC with GSO and PicoTLS.

CCS Concepts
• Networks → Transport protocols; Network performance
analysis; • Information systems→Multimedia streaming.
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1 Introduction
Video traffic has accounted for 65.9% of the Internet traffic as of
2022 [57], where HTTP-based adaptive bitrate (ABR) streaming is
the de facto standard [60]. As the underlying protocol of HTTP/3 [8],
QUIC [39] has been widely deployed by content providers. In Face-
book, QUIC delivers 75% of its traffic and higher quality of user
experience (QoE) is received [57]. YouTube stands out as the largest
user of QUIC, experiencing a reduction of over 9% in rebuffering
time and an increase of over 3% in throughput [19].

Despite the superior performance over TCP observed under poor
network conditions [55, 56, 58, 64, 67], QUIC is noticed to have infe-
rior transmission throughput in high-speed networks due to its high
computational cost [34, 38, 68]. We try exposing this problem with
a preliminary experiment, where we run DASH-based streaming
sessions using HTTP/1.1 based on TCP and HTTP/3 based on QUIC.
We measure the average bitrate and rebuffering time of streaming
sessions, and present the results in Figure 1. With increasing clients
connected to the server, HTTP/3 sessions experience degrading
throughput and increasing rebuffering time while HTTP/1.1 ones
do not. When there are 100 clients simultaneously fetching video
data from the server, HTTP/3 has only 40% average bitrate and
21.5× more rebuffering time compared with HTTP/1.1. It is worth
noting that in the experiment, the available bandwidth is always
greater than the demands of all clients so that the QoE degradation
is attributed to the excessive CPU overhead of QUIC.

The computational cost of QUIC can be mainly categorized into
three parts: (1) ACK processing: To ensure reliable transmission,
QUIC clients send acknowledgments (ACKs) upon receiving pack-
ets. However, as a userspace transport protocol, QUIC needs to
frequently read ACKs through system calls, which introduces non-
negligible overhead. Moreover, as QUIC packets are small (∼1KB),
processing packet-wise ACKs also demands a large proportion of
the computational cost. ACK processing plays a major role in in-
curring excessive CPU overhead compared with TCP. (2) packet
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Figure 1: The average bitrate (AB) and rebuffering time (RT) of
DASH-based streaming sessions using HTTP/3 and HTTP/1.1. The
experimental setup is described in Section 5.2.

sending: Unlike TCP that does not limit the data length written
through a system call and assemble packets in the kernel, QUIC
has to organize the small QUIC packets in the userspace and sends
one each system call. The frequent system calls result in significant
overhead as well. (3) data encryption: In HTTP/1.1, data encryp-
tion occurs at the TLS layer above TCP, allowing to encrypt a large
bulk of payload (up to 64KB) at a time. On the other hand, QUIC
integrates the encryption module itself, and it encrypts packets in-
dividually. Switching from bulk-based encryption to packet-based
means more function calls thus higher CPU overhead. Addition-
ally, QUIC encrypts packet headers while TLS does not, which also
introduces additional overhead.

In this paper, we first attempt to reduce the high CPU overhead of
QUIC by reducing ACK frequency, activating UDP generic segmen-
tation offload, and incorporating a high-performance encryption
library, PicoTLS [25]. we find that simply reducing ACK frequency
can impair the transmission performance in poor network condi-
tions because the long queue at the client throttles the in-flight
data. This also requires modifications to the client, which is often
not feasible as most clients are browsers. Therefore, in addition to
GSO and PicoTLS, we design a server-side ACK merging mecha-
nism and an adaptive mechanism of adjusting ACK frequency at
the client-side. In the CPU-limited state, LiteQUIC reads multiple
ACKs that have arrived in a batch from the kernel space and merges
them for processing. The ACK merge mechanism could also ben-
efit GSO, which does not work when the ACK frequency is high.
Additionally, if the client is allowed to install LiteQUIC, the ACK
frequency is adaptively adjusted to further reduce the overhead and
processing ACKs without degrading transmission throughput. Lite-
QUIC achieves up to 1.78× higher transmission throughput than
picoquic [51], a QUIC implementation featuring high-performance,
in the CPU-limited scenarios, and the throughput of LiteQUIC does
not decrease in weak network environments as vanilla HTTP/3.
When deployed in DASH-based video streaming sessions, LiteQUIC
improves the average bitrate by 20.5% and reduces the rebuffering
time by 93.3% compared with an optimized version of QUIC with
GSO and PicoTLS. The contributions of this paper are as follows:

• By carefully analyzing QUIC, we discover that its excessive
computational cost results from ACK processing, packet send-
ing, and data encryption, and simply reducing ACK frequency
impairs the transmission performance in poor networks.

• We design and implement LiteQUIC, which involves two ACK
processing mechanisms towards alleviating the overhead of
ACK processing without impairing transmission performance.

• We evaluate LiteQUIC in both data transmission and DASH-
based streaming sessions, and the results show that LiteQUIC
outperforms the state-of-the-art QUIC implementations, and it
improves the QoE as a large number of clients are connected.

In Section 2, We discuss related work, and in Section 3, we an-
alyze the CPU overhead as well as the impact caused by ACK
frequency in HTTP/3. The design of LiteQUIC is presented in Sec-
tion 4, along with its evaluation in Section 5. Finally, Section 6
concludes our work.

2 Related Work
2.1 High Performance Network Stack
Nowadays, the Linux network stack are struggling to keep up with
rapidly growing link bandwidth, and the CPU resources become
the bottleneck of data transmission. There are a number of stud-
ies devoted to solving this problem, including network stack opti-
mization [27, 30, 41], hardware offloading techniques [3, 23], and
kernel-bypass approaches [46, 66]. There are also optimization
schemes for different application scenarios, such as SPRIGHT [52]
proposed for improving serverless computing and dcPIM [9] for
data transmission in datacenters. A recent work of Cai et al. [10]
analyzes the overhead of kernel stacks and reports that TCP can
achieve ∼42Gbps throughput by leveraging techniques such as seg-
mentation and receive offload, jumbo frames, and packet steering
with commodity NICs. In their follow-up work [11], they propose
NetChannel, which leverages the modern multicore architecture to
saturate link bandwidth more than 100Gbps over a single socket.

2.2 QUIC Protocol
Recently, Yang et al. [65], compare four QUIC implementations for
dissecting their CPU overhead, and propose offloading operations
such as partial encryption and packet reordering to NICs to reduce
the overhead. Other researches [29, 31, 50] also explore offload-
ing TLS encryption to hardware. The performance issue of QUIC
caused by ACKs has been studied [16, 17, 37, 43, 44], where Marx et
al. [44] demonstrate that most implementations currently send an
ACK for every 2-10 received packets instead of the recommended
2, and other studies [16, 17, 37] show that the ACK threshold of 2
imposes significant CPU overhead on the sender, while setting it to
10 can alleviate this issue. Liu et al. [43] design a strategy of dynam-
ically adjusting ACK frequency based on Bandwidth-Delay-Product
(BDP) to reduce the overhead. In addition to the aforementioned
works, we not only show the impact of different ACK frequencies
in various network environments, but also analyze the reasons for
these differences. Moreover, the server-side ACK merging approach
we designed does not require client-side support.

2.3 Video Streaning over QUIC
Since QUIC is proposed, a large body of studies explore if it could
benefit video streaming. A study [6] shows that QUIC-based DASH
video streaming does not necessarily result in QoE enhancement,
while another thread of studies [4, 14, 15] demonstrate that QUIC
outperforms TCP in lossy networks. This is because QUIC enables
packet multiplexing that removes head of line blocking and it has up
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Figure 2: Left: The CPU overhead of different components in HTTP/1.1, vanilla HTTP/3, and HTTP/3 with optimization techniques.
+ACK-100 sets the ACK threshold to 100, +GSO activates GSO on top of +ACK-100, and +PicoTLS incorporates the high-performance PicoTLS.
Right: The throughput gain of setting ACK threshold to 2 over setting to 100.
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Figure 3: Left: The throughput of HTTP/3 with different ACK
thresholds. The red line indicates the throughput of HTTP/1.1.
Right: The impact of varying size of the sending window on trans-
mission throughput when the network BDP is fixed to 300KB.

to 256 NACKs resulting in fast loss recovery, both alleviating the im-
pact of poor network conditions on video playback [5]. Shreedhar et
al. [59] observe that QUIC is faster in establishing connections with
video servers compared to TCP+TLS and reduces stall durations, es-
pecially in lossy networks. And another study [63] evaluates when
multiple connections exist, QUIC reaches higher QoE scores than
TCP as the number of connections increases. In our work, multiple
connected clients are considered one of reasons imposing excessive
computational overhead to the server, which then throttles the
network throughput and impairs QoE. We aim to reduce the CPU
overhead of QUIC to mitigate this.

3 HTTP/3 Analysis and Optimization
In this section, we test transmission sessions using HTTP/3 for an-
alyzing its CPU overhead and identifying performance bottlenecks.
Testbed:We set up the testbed using two machines directly con-
nected via a 10Gbps link. Both machines are equipped with 10Gbps
LREC6880BT NICs and run Ubuntu 20.04 LTS with Linux kernel
5.15.0. We evaluate the performance in the client-server mode. The
server uses the nginx-quic [48], which supports both HTTP/1.1
and HTTP/3, and it has an Intel Xeon CPU at 2.90GHz. The client
employs nghttp2 [47], a stress testing tool that can evaluate both
HTTP/1.1 and HTTP/3, running in a docker environment on the
other machine with an Intel Xeon CPU at 2.10GHz.
Experimental metrics:We launch ten clients concurrently to re-
quest a 1GB file and analyze the CPU overheads using perf [21]. We
measure the network throughput and CPU overhead of HTTP/1.1
and HTTP/3 sessions. The CPU overhead of protocols are sum-
marized as follows: 1) Packet sending: This is the overhead of
sending TCP packets in HTTP/1.1 and sending UDP packets in

HTTP/3. For TCP, we measure sock_write(), which eventually
calls tcp_sendmsg(). For QUIC, we measure ngx_quic_send(),
which eventually calls udp_sendmsg().2) Data encryption: This
is mainly incurred by encryption modules in the protocol stack. For
HTTP/1.1, we measure tls_seal_record(). For HTTP/3, we mea-
sure ngx_quic_encrypt(), which contains ngx_quic_tls_seal()
and ngx_quic_tls_hp() to encrypt the payloads and headers of
the QUIC packets, respectively.3) ACK processing: This involves
the overhead of reading ACK frames from the socket, as well as
parsing and processing them. For TCP, we measure tcp_ack(). For
QUIC, we measure ngx_quic_recvmsg() that has recvmsg() and
ngx_quic_input_handler().4) Reading file: This is the overhead
of reading files from the disk. We measure ngx_read_file() for
both HTTP/1.1 and HTTP/3.5) Others: Any other overhead.

After the transmission experiments, we find that the average
throughput of HTTP/3 is 1.79Gbps, which is only 20% of HTTP/1.1.
The dissection of CPU overhead of two protocols is presented as
the leftmost two pillars in Figure 2. For HTTP/3, its CPU overhead
is mainly composed of packet sending, ACK processing and data
encryption. The three modules account for 82.83% of total CPU
cycles, where packet sending takes 48.24%, ACK processing takes
18.43%, and data encryption takes 16.16%. Compared to HTTP/1.1,
ACK processing is the most increased component.

Towards the three major bottlenecks, we first attempt to reduce
the CPU overhead by reducing the ACK frequency, activating GSO
and incorporating the efficient encryption library PicoTLS.

3.1 Reducing ACK Frequency
HTTP/3 incurs higher CPU overhead of ACK processing because
ACKs now are processed in the userspace instead of the kernel
space as HTTP/1.1. To process ACKs, QUIC has to frequently read
them from the kernel to the application layer. ACK threshold is
defined in RFC 9000 [33] to alleviate such overhead. The client
could determine the frequency of acknowledging QUIC packets
with ACK threshold. For example, the default value of 2 in RFC
means we send an ACK upon receiving two QUIC packets. We
measure how ACK frequency impacts the transmission throughput,
and the results are shown in the left of Figure 3. Note that the larger
the ACK threshold value, the lower the frequency of ACKs sent
by the client. When it is set to 100, we find that the throughput of
HTTP/3 is 2.65Gbps, which is 1.48× higher than that setting ACK
threshold to 2. We also plot CPU overhead of this setting in Figure
2, where we can find that the cycles required by ACK processing is
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reduced to 2.65%, and it means that the throughput improvement
results from the reduced CPU overhead.

Reducing the frequency of ACKs decreases the CPU overhead
at the server, thus improving throughput when CPU resources are
constrained. However, when CPU resources are abundant and
bandwidth resources are limited, what are the impacts of
reducing ACK frequency? To answer this, we use tc [2] to set la-
tency from 5ms to 100ms and bandwidth from 50Mbps to 1000Mbps
based on values commonly discovered in modern networks [12, 28].
Additionally, we set a 200KB shallow buffer and a 1 MB deep buffer
to simulate the bottleneck buffer [7]. To test performance in poor
network conditions, we also introduced an additional 0.5% random
packet loss ratio. In each scenario, we request a file with a size of
1GB and define 𝑇𝑃𝐺𝑎𝑖𝑛 as the throughput gain by comparing the
throughput of setting ACK threshold as 2 (ACK-2) to that of setting
ACK threshold to 100 (ACK-100):

𝑇𝑃𝐺𝑎𝑖𝑛 =
𝑇𝑃𝐴𝐶𝐾−2 −𝑇𝑃𝐴𝐶𝐾−100

𝑇𝑃𝐴𝐶𝐾−100
.

Wedraw the heatmaps of𝑇𝑃𝐺𝑎𝑖𝑛 in different network conditions
in the right of Figure 2. We notice that with a shallow bottleneck
buffer of 200KB, the throughput of ACK-2 surpasses that of ACK-
100 in high-latency and high-bandwidth network conditions. The
largest gap occurs at (800Mbps, 100ms), where the throughput of
ACK-2 is 1.33× higher than ACK-100. However, in deep bottleneck
buffer scenarios, there is little difference between ACK-2 and ACK-
100. In networks with random packet loss, the overall throughput
of ACK-2 is superior to ACK-100. In the network of (1000Mbps,
5ms), ACK-2 achieves 1.7× higher throughput than ACK-100.

We now analyze these phenomenon. First, when the in-flight data
matches BDP of the network, the bandwidth is fully utilized [13].
Additionally, when it surpasses the BDP, the surplus data is queued
in the buffer of the bottleneck link. Conversely, when the in-flight
data is lower than the BDP, the link bandwidth is underutilized. By
setting the ACK threshold to 100, the client delays sending an ACK
until 100 packets are received. As a result, the actual in-flight data
within the network is

𝑖𝑛𝑓 𝑙𝑖𝑔ℎ𝑡 = 𝑠𝑤𝑛𝑑 − 𝑑𝑎𝑡𝑎𝑐 ,

where 𝑠𝑤𝑛𝑑 represents the size of sending window at server and
𝑑𝑎𝑡𝑎𝑐 denotes the amount of data awaiting at the client. Since 𝑠𝑤𝑛𝑑
is usually converges to a fixed value in a session, 𝑖𝑛𝑓 𝑙𝑖𝑔ℎ𝑡 is then
determined by 𝑑𝑎𝑡𝑎𝑐 . As more data are queued at the client, the
less in-flight data in the network. This can be verified by varying
the sending window size. We configure the network with a BDP of
300KB (80Mbps, 30ms), and changes 𝑠𝑤𝑛𝑑 from 200KB to 350KB.
We measure the throughput of ACK-2 and ACK-100 and present the
results in the right of Figure 3. When the sending window is less
than the BDP of 300KB, both configurations fail to fully utilize the
bandwidth, and ACK-100 with lower 𝑖𝑛𝑓 𝑙𝑖𝑔ℎ𝑡 has lower throughput.
ACK-2 can fully utilize the bandwidth when the sending window
reaches the BDP of 300KB, while ACK-100 requires additional 50KB
to cover the data queued at the client. We now interpret the results
of the Figure 2. In scenarios with shallow bottleneck buffers, where
congestion-induced packet loss leads to a sending window smaller
than the BDP, ACK-2 outperforms than ACK-100 because the dif-
ference of in-flight data volume. The same explanation applies to
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Figure 4: Left: The CDF of how many packets are sent per system
call with GSO turned on. Right: The CPU overhead of components
of BoringSSL, OpenSSL and PicoTLS.

scenarios involving random packet loss. In cases with deep buffer-
ing, the sending window is approximately the BDP plus the buffer
size. Even after accounting for data queued at the client side, the
𝑖𝑛𝑓 𝑙𝑖𝑔ℎ𝑡 still exceeds the BDP. Consequently, ACK-2 and ACK-100
exhibit the similar performance.

In summary, while reducing the frequency of ACKs can
decrease the overhead of ACK processing, it also leads to
inferior transmission throughput in poor network condi-
tions Additionally, it requires modifications to the client, making
it unsuitable for clients those are not open to setup like browsers.

3.2 UDP Segmentation Offload
In Figure 2, setting ACK threshold to 100 shifts the bottleneck of
HTTP/3 to packet sending, with the overhead of 57.64% compared
to 32.03% of HTTP/1.1. Based on TCP, HTTP/1.1 is allowed to
send millions of bytes of data to the socket in a single system call,
whereas the QUIC protocol used by HTTP/3 is realized to send one
QUIC packet (∼1KB) per system call. Such frequent system calls
consume more CPU cycles.

We attempt to mitigate the overhead of packet sending by lever-
aging UDP GSO [20], which can combine up to 64 packets in a
single system call.However, we notice that GSO is not effective
when the ACK threshold is low. During a transmission session,
the server moves forward its sending window according to the
data acknowledged. As a result, When the ACK threshold is low,
the sending window is updated in a small but frequent manner.
As a result, every time QUIC sends packets to the kernel, the data
allowed to be sent are smaller than the GSO capacity, thus failing to
reduce the number of system calls. As the ACK threshold increases,
more space is released in the sending window after receiving an
ACK, and GSO can starts to show its power. In the left of Figure 3,
the transmission throughput is barely improved by activating GSO
when the ACK threshold is 2. By increasing ACK threshold to 10,
50, and 100, enabling GSO increases the throughput by 0.74×, 1.04×,
and 1.09×, respectively. We also collect the number of bytes sent
per system call at different ACK thresholds in Figure 4. When the
ACK threshold is 10, over 99.4% of system calls can send more than
10KB of data. As the ACK threshold increases to 100, over 50.2% of
system calls send data more than 60KB.

3.3 Efficient Encryption Library: PicoTLS
By setting ACK threshold to 100 and enabling GSO, the throughput
of HTTP/3 reaches 62.7% of HTTP/1.1. The component consuming
the most CPU cycles is now data encryption. Encrypting the same
length of data in HTTP/3 imposes the CPU overhead of 46.91%
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compared to 28.80% in HTTP/1.1. This discrepancy arises because
HTTP/1.1 encrypts data at the SSL layer, allowing the encryption
of up to 64KB of data in one pass. In contrast, QUIC encrypts each
packet individually, which means more frequent function calls. It is
reported that the performance of OpenSSL degrades by around 30%
when encrypting small blocks [36]. Furthermore, QUIC encrypts
the header of packets, incurring additional overhead.

PicoTLS is a lightweight library realizing TLS protocol. It elimi-
nates the overhead of encrypting QUIC packet headers and reduces
the overhead of encrypting small blocks of data from ∼30% to
∼10% [36]. We integrate PicoTLS into LiteQUIC and compare its
performance with BoringSSL and OpenSSL, two widely used en-
cryption libraries. In Figure 4, we investigate the fraction of CPU
cycles of different encryption components. The results show that
PicoTLS reduces the overhead of encrypting headers from 12.12%
to 0.61% and payload encryption overhead from 33.25% to 21.91%
compared to BoringSSL. With PicoTLS, the throughput of HTTP/3
reached 8.02Gbps, which is 90.6% of HTTP/1.1 as shown in Figure 3.

4 LiteQUIC Design
Reducing ACK frequency could reduce the CPU overhead of QUIC,
but it fails to adapt to poor network conditions as discussed in
Section 3.1. Furthermore, it requires modifications to the client,
which is often not feasible. To address these, we design the following
two mechanisms to reduce the overhead of ACK processing:

• ACK merge: We read ACK frames in batches and merge them
into one for processing at server.

• Adaptive ACK frequency: If the client is configurable, we dy-
namically adjust the ACK frequency, only reducing it in CPU-
limited scenarios.

With these two mechanisms and by additionally incorporating
GSO and PicoTLS, we have LiteQUIC, a lightweight QUIC that
works well in various environments.

4.1 ACK Merge
In QUIC, a UDP packet carrying an ACK frame is read from the
kernel by recvmsg(), which is further parsed for data acknowledg-
ment. However, in high-speed network scenarios, frequent system
calls may saturate the CPUs on server. As the CPUs become the
bottleneck, a backlog of UDP packets carrying ACKs appears in
the server kernel. This could be alleviated by recvmmsg() provided
by Linux kernel, which can read multiple packets in a single call.
With these packets, we then merge the ACK frames parsed from
them into one for further processing. The original ACK processing
pipeline and the new one are presented in the left of Figure 5.

To merge the ACK frames, we need first understand their format
as shown in Figure 6. The fields required in the merge are as follows:
1) Largest ACK: The largest packet identifier (starting from 0 in
a session) to be acknowledged 2) First ACK Range: The number
of packets to be acknowledged following the first packet (includ-
ing the first packet and with decreasing identifier) 3) ACK Range
Count: The number of acknowledgment ranges. 4) ACK Range: It
points to the list of acknowledged ranges, Gap means the distance
(calculated in packet number) from the previous acknowledgment
range, Range Length means the number of packets in the current
range. An ACK frame contains multiple acknowledgment ranges.
In QUIC, the acknowledgment ranges are processed individually,
and by processing a range, the server has to traverse the sending
queue for removing packets that have been received. This means
even we can retrieve multiple packets using recvmmsg(), it still
demands excessive CPU cycles to processing ACK range by repeat-
edly traversing the sending queue. As a result, we merge their ACK
ranges before the processing. We give an example of merging ACK
ranges in the right of Figure 6, three ACK frames, each with one
ACK range, are merged into one frame containing two ranges. With
this method, we can quickly clear the backlogged ACK frames in a
CPU-constraint scenario.
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We test ACK merge by limiting bandwidth with tc to 10Gbps,
8Gbps, 6Gbps, 4Gbps, and 2Gbps. We collect the number of ACK
frames received by each recvmmsg() and present the results in
the right of Figure 5. When the bandwidth is limited to 2Gbps,
the CPU resources are abundant, and all arriving ACK frames can
be handled promptly. In this case, 48% of recvmmsg() read only
one ACK frame, and 84% read three or fewer ACK frames. If the
bandwidth increases to 4Gbps, The CPU resources do not throttle
the transmission throughput only if ACK merge is used (without
ACK merge, only 2.28Gbps is achieved as shown in Figure 3) In
this case, 80% of recvmmsg() read 60 ACK frames or fewer. As the
bandwidth exceeds 6Gbps, the server becomes CPU-limited, and
more than 97% of recvmmsg() read 128 ACK frames, which is the
maximum set to read each time. We can see that our ACK merge
mechanism effectively reduces the CPU consumption of server and
thus improves the transmission throughput.

Additionally, as mentioned in Section 3.1, the default ACK thresh-
old of 2 fails the GSO optimization because it pushes forward the
sending window in a frequent but small manner. However, with
this new mechanism, processing the merged ACK frames allows
the sending window to release a wide range of space, enabling GSO
to combine enough packets.

4.2 Adaptive ACK Frequency
The server-side ACK merge mechanism does not require any modi-
fications to the client and can be easily deployed. But if the client is
allowed to be changed, we design an adaptive ACK frequency mech-
anism to further reduce the CPU overhead of server. This mech-
anism dynamically adjusts the ACK frequency based on network
conditions, only reducing it when the server CPU resources
are constrained. We utilize the extension specified in a working
IETF draft [32] to dynamically adjust the ACK frequency in a ses-
sion, which designs a ACK-FREQUENCY frame. At the beginning of a
session, the server and client exchange the newly defined transport
parameter, min_ACK-delay to notify each other of their support
to this extension. If both parties support it, the server can send
a ACK-FREQUENCY frame to the client at any time, informing it to
modify the ACK threshold. When the server is in the CPU-limited
state, most recvmmsg() read multiple ACK frames. Therefore, we
calculate the average number of ACK frames read by recvmmsg()
per RTT as 𝐴𝐶𝐾𝑎𝑣𝑔 and use it to determine that

𝑠𝑡𝑎𝑡𝑒 =

{
𝐶𝑃𝑈 -𝑙𝑖𝑚𝑖𝑡𝑒𝑑, 𝑖 𝑓 𝐴𝐶𝐾𝑎𝑣𝑔 ≥ 2
𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ-𝑙𝑖𝑚𝑖𝑡𝑒𝑑, 𝑖 𝑓 𝐴𝐶𝐾𝑎𝑣𝑔 < 2

When 𝐴𝐶𝐾𝑎𝑣𝑔 exceeds 2, it indicates that the processing of ACK
frames on the server is slower than the arrival of ACKs. We consider
this to be a CPU-limited state, and at this point, we adjust the ACK
threshold on the client to

𝑇𝑛𝑒𝑤 = ⌊𝑇𝑜𝑙𝑑 ×𝐴𝐶𝐾𝑎𝑣𝑔⌋,

where 𝑇𝑛𝑒𝑤 is the updated ACK threshold and 𝑇𝑜𝑙𝑑 is the old value.
This implies that the client should reduce the ACK frequency be-
cause the server expects to receive one ACK per system call, which
consumes the least CPU resources. When𝐴𝐶𝐾𝑎𝑣𝑔 is less than 2, we
consider it to be in a bandwidth-limited state, and we update the

ACK threshold to

𝑇𝑛𝑒𝑤 = max(⌊𝑇𝑜𝑙𝑑
2

⌋,𝑇𝑚𝑖𝑛),

where 𝑇𝑚𝑖𝑛 is a lower bound set to 2. This method ensures that
when the transmission session transitions from CPU-limited to
bandwidth-limited state, the frequency of ACKs is updated accord-
ingly to avoid impairing throughput.

5 Evaluation
In this section, we evaluate HTTP/3 with our LiteQUIC in both data
transmission and DASH-based streaming sessions.
Implementation: We implement the ACK merge and adaptive
ACK frequency mechanism in nginx-quic. We replace recvmsg()
with recvmmsg(). After reading packets from the kernel, packets
from different connections are separated and the ACK frames from
the same connection are merged for further processing. When
merging ACK frames, we only merge their ACK ranges. Occasion-
ally, ACK frames carry processing delays of client and ECN counts,
which are handled as the vanilla QUIC. For the adaptive ACK fre-
quency mechanism, both the server-side nginx-quic and the client-
side nghttp2 have undergone modifications. We add the new trans-
mission parameter, min_ACK-delay, to be exchanged during con-
nection establishment to ensure mutual support. The server sends
the ACK-FREQUENCY frame only if both sides support this feature.
The nghttp2 client is added a module to handle ACK-FREQUENCY
frame, extracting the updated value from the server to adjust the
frequency of sending ACK frames.

5.1 Data Transmission
We first evaluate the performance of LiteQUIC in terms of data
transmission, with the experimental setup identical to that in Sec-
tion 3. We compare it against picoquic, ngtcp2 [49], lsquic [42],
quic-go [53], xquic [1], msquic [45], quicly [26] and mvfst [22].
Most of them have participated in the interoperability tests [54] of
QUIC and have high stars on GitHub. We evaluate two versions
of LiteQUIC in this experiment. LiteQUIC+ means we only incor-
porate ACK merge, and LiteQUIC++ additionally adopts adaptive
ACK frequency. We also test HTTP/3 with optimizations. HTTP/3
is the vanilla version, +GSO means we activate GSO, and +PicoTLS
means have both GSO and PicoTLS in HTTP/3.

We first set the ACK threshold to 2 and 10, which is currently
adopted by most QUIC implementations [18], and simultaneously
initiate 10 client requests for a 1GBfile, recording their total through-
put. The results are shown in Figure 7, and we see that when the
ACK threshold is 2, the throughput of HTTP/3 without any op-
timization is 1.79Gbps. Even after adding GSO and PicoTLS opti-
mizations, the throughput is only 2.28Gbps, which is only a 27.3%
increase. This is because, as mentioned earlier, the server can only
release space for two packets in the sending window after receiving
an ACK, and GSO cannot effectively combine multiple packets for
sending, thus does not work as expected. When ACK merge is used,
in CPU-limited states, the server not only reduces the overhead
of ACK processing but also releases more sending window, which
allows GSO work effectively, leading to a throughput of 5.20Gbps
in LiteQUIC+. This is 2.28× of HTTP/3 with GSO and PicoTLS, and
a 20.3% improvement over picoquic and quicly. When additionally
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Figure 7: Left: Throughput of different QUIC implementations. Right: The throughput gain of LiteQUIC++ compared to itself with the
ACK threshold is fixed to 2.

using the adaptive ACK frequency mechanism, the throughput
of LiteQUIC++ reaches 7.72Gbps, which is 87.2% of HTTP/1.1, a
48.4% improvement over LiteQUIC+, and a 78.7% improvement over
picoquic and quicly.

When the ACK threshold is set to 10, which is the by default
configuration of Chrome browsers, HTTP/3 achieves a throughput
of 2.43Gbps. At this point, the bottleneck lies in packet sending and
data encryption. Significant improvements can be observed when
utilizing GSO and PicoTLS, resulting in a throughput of 6.11Gbps,
marking a 2.51× enhancement compared to without them. The
performance of HTTP/3 closely approaches that of picoquic, which
is the best among QUIC implementations at 6.17Gbps. LiteQUIC+
demonstrates a throughput of 7.09Gbps, surpassing HTTP/3 with
GSO and PicoTLS by 16%. LiteQUIC++ achieves the highest through-
put at 7.75Gbps, a 9% improvement over LiteQUIC+.

When the ACK threshold is set to 100, the overhead of ACK
processing is supposed to be significantly reduced. However, with
this optimization, the throughput of HTTP/3 remains as low as
2.65Gbps, showing only a 9% increase compared to when the ACK
threshold is set to 10. This suggests that the bottleneck at this
stage is not primarily due to ACK processing. With the integra-
tion of GSO and PicoTLS, the proportion of overhead caused by
ACK processing becomes more prominent. Therefore, reducing
the ACK frequency leads to substantial benefits. In this scenario, a
throughput of 8.02Gbps is achieved, marking a 31% improvement
over the performance with an ACK threshold of 10. LiteQUIC+ and
LiteQUIC++ achieve throughputs of 7.94Gbps and 7.97Gbps, respec-
tively, closely rivaling HTTP/3 with GSO and PicoTLS, and both
outperform other QUIC implementations. However, as mentioned
in Section 3.1, simply reducing the ACK frequency can also lead to
performance degradation in poor network conditions. LiteQUIC++
only reduces the ACK frequency when CPU is limited, thus not
impacting throughput in bandwidth-limited scenarios. Analogous
to Section 3.1, we also report the throughput gains of LiteQUIC++
compared to itself but always setting ACK threshold to 2 under
different network conditions. The results are shown in the right
of Figure 7. The throughput of LiteQUIC++ is similar to setting
the ACK threshold to 2, without the performance degradation that
occurs when the ACK threshold is set to 100.

5.2 Dash Video Streaming
We also assess LiteQUIC for DASH-based streaming sessions com-
pared to HTTP/1.1 and HTTP/2. Both HTTP/1.1 and HTTP/2 use
TLS/TCP, and their performance is almost similar, so we chose

HTTP/1.1 as the representative. We deploy our DASH client in the
Chrome browser, and the server based on nginx-quic. Since QUIC
implemented in Chrome does not support the ACK-FREQUENCY
frame, only ACK merge is effective in LiteQUIC.
Experimental setup: We build a DASH-based video streaming
system based on HTTP/3 protocol. We use a 5-min video Red Bull1,
which is encoded into {1, 5, 10, 20, 30, 40, 50}Mbps using FFmpeg,
and is further split into 10s segments using GPAC MP4Box [24].
We use dash.js, the most widely used browser-based DASH player,
as the client. We carry out the experiments with different ABR
algorithms, including Dynamic [61], BOLA [62], Throughput rule,
L2A [35], and LoLP [40]. Throughput rule is a naive method that
chooses the highest bitrate lower than the bandwidth measured
most recently.
Metrics: We use two metrics, average bitrate (AB) and rebuffering
time (RT), to evaluate the QoE.

• Average bitrate: The average bitrate (from 1Mbps to 50Mbps)
of all played segments. The higher the AB, the higher the QoE.

• Rebuffering time: The total time of rebuffering during playback.
The higher the RT, the lower the QoE.

We gather QoE metrics across various number of clients, various
ABR algorithms, and in poor network conditions. Figure 8 shows
the average bitrates, while Figure 9 displays the rebuffering time.

5.2.1 Various number of clients: Using the Dynamic algorithm
with 20 clients, even without any optimizations, HTTP/3 can ad-
equately meet video transmission requirements. However, as the
number of clients increases to 40, CPU resources become insuf-
ficient, resulting in a 23% decrease in AB and introducing a 0.96-
second RT. As the number of clients increases to 80, both +GSO
and +PicoTLS fail to meet bandwidth requirements. Nonetheless,
LiteQUIC still maintains a satisfactory watching experience, achiev-
ing an AB of 47.68Mbps and an RT of only 0.17 seconds, marking
a 19% improvement in AB and an 83% reduction in RT compared
to +PicoTLS. Upon reaching 100 clients, LiteQUIC experiences a
decline in QoE, yet it still outperforms +PicoTLS. Its AB reaches
41.24Mbps, which is 88% of HTTP/1.1, surpassing +GSO and +Pi-
coTLS by 48% and 20%, respectively. Moreover, LiteQUIC maintains
a low RT of 0.22 seconds, representing a 97%, 96%, and 93% reduction
compared to HTTP/3, +GSO, and +PicoTLS, respectively. Notably,
although LiteQUIC falls behind HTTP/1.1 in AB, it achieves lower
RT, with average rebuffering times of 0.13 seconds for 20 to 100
clients, compared to 0.23 seconds of HTTP/1.1, a reduction of 43%.
1Available at https://dash.akamaized.net/akamai/customerconference2013/redbull/
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Figure 8: The average bitrate (AB) of DASH-based streaming sessions. +GSO represents the activation of GSO optimization for HTTP/3,
and +PicoTLS represents the further utilization of PicoTLS on top of enabling GSO.
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Figure 9: The rebuffering time (RT) of DASH-based streaming sessions. +GSO and +PicoTLS have the same meaning as in Figure 8.

This is primarily attributed to the latency introduced during the
startup phase, whereas the 0-RTT handshake of QUIC facilitates
rapid connection establishment, resulting in low startup latency.

5.2.2 Various ABR algorithms: At 100 clients, with different ABR
algorithms, Dynamic achieves the lowest RT, while the highest
RT is observed in HTTP/3 without any optimizations at 9.27 sec-
onds. Throughput rule and LoLP receive the similarly high RTs,
which are 32.37 seconds and 31.63 seconds, respectively, leading
to inferior QoE. Meanwhile, LiteQUIC continues to maintain the
lowest average RT of 0.23 seconds, a reduction of 50% compared
to HTTP/1.1 and 96% compared to +PicoTLS. Regarding AB, the
performance trend of HTTP/3 with different optimizations is con-
sistent. LiteQUIC consistently outperforms +PicoTLS across all ABR
algorithms, with up to a 20% improvement observed in Dynamic.
Specifically, in terms of Throughput rule, L2A, and LoLP, LiteQUIC
achieves AB values of over 48.30Mbps, marking increases of 17%
compared to Dynamic. Overall, when throughput is insufficient,
Dynamic performs better by adopting a more conservative strat-
egy, ensuring a lower RT. On the other hand, Throughput rule and
LoLP introduce excessively high RTs, severely degrading the user
viewing experience. Conversely, when throughput just satisfies
requirements, the conservative strategy of Dynamic leads to lower
AB compared to other ABR algorithms with LiteQUIC. For example,
L2A with LiteQUIC reaches both high AB and low RT.

5.2.3 Poor network conditions: We introduce a latency of 20ms
and packet loss of 0.5% to compare the performance in a weak
network environment. Using L2A as the ABR algorithm due to
its high bandwidth utilization and low rebuffering time. When
the latency is introduced, there is no significant change in perfor-
mance. However, with the introduction of packet loss, a notable
deterioration in the performance of HTTP/1.1 is observed. Due to

the elimination of head-of-line blocking and wider acknowledg-
ment scope compared to TCP, QUIC exhibits superior performance
in high packet loss scenarios. With 20 clients, even unoptimized
HTTP/3 outperforms HTTP/1.1. At this point, it achieves 1.28× the
AB of HTTP/1.1 and reduces RT by 89.9%. As the number of clients
exceeds 60, HTTP/3 enters a CPU-limited state, unable to match
available bandwidth due to its overhead, resulting in performance
dropping below HTTP/1.1. However, by reducing CPU overhead,
LiteQUIC maintains a high QoE even with 100 clients and performs
well in weak network environments. At this stage, it achieves 1.28×
the AB of HTTP/1.1 and lowers RT by 85.2%. In summary, HTTP/1.1
has low CPU overhead but suffers in high packet loss scenarios.
The vanilla QUIC achieves superior performance in poor network
conditions but its performance quickly degrades as more clients
are connected. With our optimizations on reducing CPU overhead,
LiteQUIC achieves high QoE no matter in a poor network scenario
or with a large number of clients connected.

6 Conclusion
In this work, we identify three major sources of CPU overhead in
QUIC: ACK processing, packet sending, and data encryption. By re-
ducing the ACK frequency, activating UDP GSO, and incorporating
a high-performance encryption library, the CPU overhead of QUIC
could be effectively reduced. However, directly reducing the ACK
frequency leads to low throughput in poor network environments
and GSO does now work well with high ACK frequency. Therefore,
we propose LiteQUIC, a lightweight QUIC for complex network
environments that has the server-side ACK merging and the client-
side adaptive ACK frequency mechanism. We test LiteQUIC in both
data transmission and DASH-based streaming sessions. The results
show that LiteQUIC achieves high throughput and QoE, regardless
of whether the server CPU is heavily crammed due to an increasing
number of connected clients or the network environment is poor.
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