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ABSTRACT

Given observed data and a probabilistic generative model, Bayesian inference
aims at obtaining the distribution of a model’s latent parameters that could have
yielded the data. This task is challenging for large population studies where thou-
sands of measurements are performed over a cohort of hundreds of subjects, re-
sulting in a massive latent parameter space. This large cardinality renders off-
the-shelf Variational Inference (VI) computationally impractical. In this work, we
design structured VI families that can efficiently tackle large population studies.
Our main idea is to share the parameterization and learning across the different
i.i.d. variables in a generative model -symbolized by the model’s plates. We name
this concept plate amortization, and illustrate the powerful synergies it entitles,
resulting in expressive, parsimoniously parameterized and orders of magnitude
faster to train large scale hierarchical variational distributions. We illustrate the
practical utility of PAVI through a challenging Neuroimaging example featuring
a million latent parameters, demonstrating a significant step towards scalable and
expressive Variational Inference.

1 INTRODUCTION

Population studies analyse measurements over large cohorts of human subjects. These studies are
ubiquitous in health care (Fayaz et al., 2016; Towsley et al., 2011), and can typically involve hun-
dreds of subjects and measurements per subject. For instance in Neuroimaging (Kong et al., 2019),
measurements X can correspond to signals in hundreds of locations in the brain for a thousand
subjects. Given this observed data X , and a generative model that can produce data given model
parameters Θ, we want to recover the parameters Θ that could have yielded the observed X . In
our Neuroimaging example, Θ can be local labels for each brain location and subject, together with
global parameters common to all subjects –such as the connectivity corresponding to each label.
We want to recover the distribution of the Θ that could have produced X . Following the Bayesian
formalism (Gelman et al., 2004), we cast both Θ and X as Random Variables (RVs) and our goal
is to recover the posterior distribution p(Θ|X). Due to the nested structure of our applications
we focus on the case where p corresponds to a Hierarchical Bayesian Model (HBM) (Gelman
et al., 2004). In the context of population studies, the multitude of subjects and measurements per
subject implies a large dimensionality for both Θ and X . This large dimensionality in turn creates
computational hurdles that we tackle through our method.

Several inference methods exist in the literature. Earliest works resorted to Markov Chain Monte
Carlo (Koller & Friedman, 2009), which tend to be slow in high dimensional settings (Blei et al.,
2017). Recent approaches, coined Variational Inference (VI), cast the inference as an optimization
problem (Blei et al., 2017; Zhang et al., 2019; Ruiz & Titsias, 2019). Inference reduces to finding the
distribution q(Θ;ϕ) ∈ Q closest to the unknown posterior p(Θ|X) in a variational family Q chosen
by the experimenter. Historically, VI required to manually derive and optimize over Q, which
remains an effective method where applicable (Dao et al., 2021). In contrast, we follow the idea
of automatic VI: deriving an efficient family Q directly from the HBM p (Kucukelbir et al., 2016;
Ambrogioni et al., 2021a;b). Our method also relies on the pervasive idea of amortization in VI:
deriving posteriors usable across multiple data points, which can be linked to meta-learning (Zhang
et al., 2019; Ravi & Beatson, 2019; Iakovleva et al., 2020; Yao et al., 2019). In particular, Neural
Processes share with our method the conditioning a density estimator by the output of a permutation-
invariant encoder (Garnelo et al., 2018; Dubois et al., 2020; Zaheer et al., 2018). Meta-learning
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studies problems with few hierarchies, similar to many VI methods (Ravi & Beatson, 2019; Tran
et al., 2017). Agrawal & Domke (2021) notably studied the case of 2-level HBMs, providing with
theoretical guarantees. In contrast, our focus is rather computational, and we study generic HBMs
with an arbitrary number of hierarchies, aiming at tackling large population studies efficiently.

Modern VI is effective in low-dimensional settings, but does not scale up to large population studies
–that involve millions of random variables. In this work we identify and tackle 2 challenges to
enable this scale-up. A first challenge with scalability is a detrimental trade-off between expressivity
and high-dimensionality (Rouillard & Wassermann, 2022). To reduce the inference gap, VI requires
the variational family Q to contain distributions closely approximating p(Θ|X) (Blei et al., 2017).
Yet the form of p(Θ|X) is usually unknown to the experimenter. Instead of a lengthy search for a
valid family, one can resort to universal density approximators: normalizing flows (Papamakarios
et al., 2019). But the cost for this generality is a heavy parameterization, and normalizing flows
scale poorly with the dimensionality of Θ. In large populations studies, as this dimensionality
grows, the parameterization of normalizing flows becomes prohibitively large. To tackle this
challenge, Rouillard & Wassermann (2022) recently proposed –in the ADAVI architecture– to
partially share the parameterization of normalizing flows across the hierarchies of a generative
model. While ADAVI tackled the over-parameterization of VI in population studies, it still could
not perform inference in very large data regimes. This is due to a second challenge with scalability:
as the size of Θ increases, the evaluation of a single gradient over the entirety of an architecture’s
weights quickly requires too much memory and compute. This second challenge can be overcome
using stochastic VI (Hoffman et al., 2013), which subsamples the parameters Θ inferred for at each
optimization step. However, using SVI, the weights for the posterior for a local parameter θ ∈ Θ
are only updated when θ is visited by the algorithm. In the presence of hundreds of thousands of
such local parameters, stochastic VI can become prohibitively slow.

In this work, we introduce the concept of plate amortization (PAVI) for fast inference in large
scale HBMs. Instead of considering the inference over local parameters θ as separate problems,
our main idea is to share both the parameterization and learning across those local parameters –or
equivalently across a model’s plates. We first propose an algorithm to automatically derive an ex-
pressive yet parsimoniously-parameterized variational family from a plate-enriched HBM. We then
propose a hierarchical stochastic optimization scheme to train this architecture efficiently, obtaining
orders of magnitude faster convergence. We detail two variants of our method, with different
trade-offs between parameterization and inference quality. PAVI leverages the repeated structure of
plate-enriched HBMs via an original combination of amortization and stochastic training. Through
this combination, our main claim is to enable inference over arbitrarily large population studies –up
to a million RVs– with reduced parameterization and training time as the cardinality of the problem
augments. We illustrate this by applying PAVI to a challenging human brain cortex parcellation,
featuring inference over a cohort of 1000 subjects with tens of thousands of measurements per
subject, demonstrating a significant step towards scalable, expressive and fast VI.

2 METHODS

2.1 HIERARCHICAL BAYESIAN MODELS (HBMS), TEMPLATES AND PLATES

Our objective is to perform inference in large population studies. As an example of how inference
becomes impractical in this context, consider M in fig. 1 as a model for the height distribution in
a population. θ2,0 denotes the mean height across the population. θ1,0, θ1,1, θ1,2 denote the mean
heights for 3 groups of subjects, distributed around the population mean. X0, X1 represent the
observed heights of 2 subjects from group 0, distributed around the group mean. Given the observed
subject heights X , the goal is to determine the posterior distributions of the group means p(θ1,n|X)
and population mean p(θ2,0|X). As the number of groups and subjects per group augments, the
parameterization and time required to infer the posteriors of a growing number of RVs become
prohibitively large. Our goal is to keep this inference computationally tractable.

In the rest of this section, we define the inference problem and the associated notations. Population
studies can be modelled using Hierarchical Bayesian Models (HBMs). Those HBMs feature
samples from common conditional distributions at multiple levels. For instance subject heights are
i.i.d. given group heights, which are i.i.d. given population height. Due to data being collected
across hundreds of subjects (Kong et al., 2019), HBMs representing population studies feature
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thousands of RVs, most of which correspond to symmetrical distributions. For instance, the
distribution of a subject’s height given the group height is the same across all subjects. As a result,
those large HBMs M can be compactly represented via plate-enriched Directed Acyclic Graph
(DAG) templates T (Gilks et al., 1994; Koller & Friedman, 2009). The plates in the template T
translate graphically the hierarchical i.i.d. structure in the model M. We exploit this plate-induced
repeated structure to design scalable inference methods.

Figure 1: Plate Amortized Variational
Inference (PAVI) working principle.
Starting on the left, the graph template
T is grounded into 2 separate HBMs:
M (top) and Mr (down) of respec-
tive plate cardinalities (3, 2) –large– and
(2, 1) –small. Based on Mr, the re-
duced distribution qr is constructed. We
train qr over data slices of small cardi-
nality, before performing inference over
the full model of large cardinality.

We denote T ’s vertices as X and Θ = {θi}i=1..I . X
denotes the RVs observed during inference, and Θ the
parameters we infer: our goal is to approximate the
posterior distribution p(Θ|X). We denote T ’s plates as
{Pp}p=0..P , and the plates θi belongs to as Plates(θi).
In the toy example from fig. 1, there are 2 latent RV
templates: θ1 and θ2, two plates P0,P1 and we want to
approximate p(θ1, θ2|X).

We build upon the interplay between the template T
and the HBM M. To go from one representation to the
other, T can be grounded into M given plate cardinalities
{Card(Pp)}p=0..P (Koller & Friedman, 2009). Card(P)
represents the number of elements in the plate P , for in-
stance the number of groups in the study. The grounding
operation instantiates the repeated structures symbolized
by the plates: a given RV template θi corresponds to mul-
tiple ground RVs {θi,n}n=0..Ni

with the same parametric
form, where Ni =

∏
P∈Plates(θi)

Card(P). Template
grounding is illustrated in fig. 1, where T is instantiated
into models M. In PAVI, we consider the inference
over the ground RVs θi,n as symmetrical problems, over
which we share parameterization and learning.

Our goal is to perform inference over the full model
M, which is associated to the density p. In p, the plate
structure indicates that a RV template θi is associated to a conditional distribution pi shared across
all ground RVs θi,n:

log p(Θ, X) =

NX∑
n=0

log pX(xn|π(xn)) +
I∑

i=1

Ni∑
n=0

log pi(θi,n|π(θi,n)) , (1)

where π(θi,n) are the parents of the RV θi,n –conditioning its distribution. We denote with a •X
index all variables related to the observed RVs X . M typically features large plate cardinalities
Card(P), and thus many ground RVs, making it computationally intractable. Instead of inferring di-
rectly over M, we will train over a smaller replica of M. To this end, we instantiate the template T
into a second HBM Mr –the reduced model– of tractable plate cardinalities Cardr(P) ≪ Card(P).
Mr has the same template as M, meaning the same dependency structure and the same parametric
form for its distributions. The only difference lies in Mr’s smaller cardinalities, resulting in
fewer ground RVs, as visible in fig. 1. We train over the tractable reduced model Mr to obtain a
variational distribution q usable to approximate the posterior for the intractable target model M.

2.2 PAVI ARCHITECTURE

2.2.1 FULL VARIATIONAL FAMILY DESIGN

Here we define the variational distribution q –corresponding to the full model M– introduced in the
previous section. q is the distribution used for inference, but that –due to M’s large cardinalities– we
cannot directly train over. To derive q, we push forward the prior p(Θ) using trainable normalizing
flows, denoted as F (Papamakarios et al., 2019). To every ground RV θi,n, we associate a learnable
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flow Fi,n to approximate its posterior distribution:

log q(Θ) =

I∑
i=1

Ni∑
n=0

log qi,n(θi,n|π(θi,n)) ,

log qi,n(θi,n|π(θi,n)) = − log
∣∣det JFi,n

(ui,n)
∣∣+ log pi(ui,n|π(θi,n)) ,

ui,n = F−1
i,n (θi,n) ,

(2)

where qi,n is the push-forward of the prior pi through the flow Fi,n. This push-forward is illustrated
in fig. 2, where flows F push RVs u into θ. This cascading scheme was first introduced by
Ambrogioni et al. (2021b), and makes q inherit the conditional dependencies of the prior p. More
details about the dependencies modelled in the variational distribution can be found in appendix C.5.

2.2.2 PLATE AMORTIZATION

Here we introduce plate amortization: sharing the parameterization of density estimators across
a model’s plates. Traditional VI searches for a distribution q(Θ;ϕ) that best approximates the
posterior of Θ given a value X0 for X: q(Θ;ϕ0) ≃ p(Θ|X = X0). When presented with a
new value X1, optimization has to be performed again to search for the weights ϕ1, such that
q(Θ;ϕ1) ≃ p(Θ|X = X1). Sample amortized inference (Zhang et al., 2019; Cremer et al., 2018) in-
stead infers in the general case, regressing the weights ϕ using an encoder f of the observed data X:
q(Θ;ϕ = f(X)) ≃ p(Θ|X = X). The cost of learning the encoder weights is amortized since infer-
ence over any new sample X requires no additional optimization. We propose to exploit the concept
of amortization, but to apply it at a different granularity, leading to our notion of plate amortization.

Similar to amortizing across the different data samples X, we amortize across the different ground
RVs {θi,n}n=0..Ni corresponding to the same RV template θi. Instead of casting every flow Fi,n

–defined in eq. (2)– as an separate, fully-parameterized flow, we will share some parameters across
the Fi,n. To the template θi, we associate a conditional flow Fi( · ;ϕi, •) with weights ϕi shared
across all the {θi,n}n=0..Ni . The flow Fi,n associated to a given ground RV θi,n will be an instance
of this conditional flow, conditioned by an encoding Ei,n:

Fi,n = Fi( · ;ϕi,Ei,n) yielding qi,n = qi,n(θi,n|π(θi,n);ϕi,Ei,n) (3)

The distributions qi,n thus have 2 sets of weights, ϕi and Ei,n, creating a parameterization trade-off.
Concentrating all of qi,n’s parameterization into ϕi results in all the ground RVs θi,n having the
same posterior distribution. On the contrary, concentrating all of qi,n’s parameterization into
Ei,n allows the θi,n to have completely different posterior distributions. But in a large cardinality
setting, this freedom can result in a massive number of weights, proportional to the number of
ground RVs times the encoding size. This double parameterization is therefore efficient when the
majority of the weights of qi,n is concentrated into ϕi. Using normalizing flows Fi, the burden of
approximating the correct parametric form for the posterior is placed onto ϕi, while the Ei,n encode
lightweight summary statistics specific to each θi,n. In section 2.3.2, we also see that this shared
parameterization has synergies with stochastic training.

2.3 PAVI STOCHASTIC TRAINING

2.3.1 REDUCED DISTRIBUTION AND LOSS

Because of the large number of RVs in M, optimizing over the full distribution q –defined in eq. (2)–
is computationally intractable. Instead, we optimize over a distribution with the smaller cardinalities
of the reduced model. At each optimization step t, we randomly choose inside M paths of reduced
cardinality, as visible in fig. 2. Selecting paths is equivalent to selecting from X a subset Xr[t] of
size N r

X , and from Θ a subset Θr[t]. For a given θi, we denote as Bi[t] the batch of selected ground
RVs, of size N r

i . Inferring over Θr[t], we will simulate training over the full distribution q:

log qr(Θr[t]) =

I∑
i=1

Ni

N r
i

∑
n∈Bi[t]

log qi,n(θi,n|π(θi,n)) (4)
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where the factor Ni/N
r
i simulates that we observe as many ground RVs as in M by repeating

the RVs from Mr (Hoffman et al., 2013). Similarly, the loss used at step t is the reduced ELBO
constructed using Xr[t] as observed RVs:

log pr(Xr[t],Θr[t]) =
NX

N r
X

∑
n∈BX [t]

log pX(xn|π(xn)) +
I∑

i=1

Ni

N r
i

∑
n∈Bi[t]

log pi(θi,n|π(θi,n))

ELBOr[t] = EΘr∼qr [log p
r(Xr[t],Θr[t])− log qr(Θr[t])]

(5)

Figure 2: PAVI stochastic training scheme
The reduced distribution qr features 2
conditional normalizing flows F1 and F2

respectively associated to the RV templates
θ1 and θ2. During the stochastic training, qr
is instantiated over different branchings of
the full model M –highlighted in blue on the
left. The branchings have the cardinalities of
Mr and change at each stochastic training
step t. The branching determine the encod-
ings E conditioning the flows F –as symbol-
ised by the letters A, B, C– and the observed
data slice –as symbolised by the letters D, E.

This scheme can be viewed as the instantiation
of Mr over batches of M’s ground RVs. In
fig. 2 we see that qr has the cardinalities of Mr,
and replicates its conditional dependencies. This
training is analogous to stochastic VI (Hoffman
et al., 2013), generalized with multiple hierarchies
and minibatches of RVs. Our novelty lies in the
interaction of this stochastic scheme with plate
amortization, as explained in the next section.

2.3.2 SHARING LEARNING ACROSS PLATES

Here we detail how our shared parameterization
–detailed in section 2.2.2– combined with our
stochastic training scheme, results in faster in-
ference. In traditional stochastic VI, every θi,n
corresponding to the same template θi is associated
to individual weights. Those weights are trained
only when θi,n is visited by the algorithm, that is
to say at step t when n ∈ Bi[t]. As plates become
larger, this event becomes rare. If θi,n is furthermore
associated to a highly-parameterized density estima-
tor –such as a normalizing flow– many optimization
steps are required for qi,n to converge. The combi-
nation of those two items leads to slow training.

Instead, our idea is to share the learning across
the ground RVs θi,n. Due to the problem’s plate
structure, we consider the inference over the θi,n as
different instances of a common density estimation
task. In PAVI, a large part of the parameterization
of the estimators qi,n(θi,n|π(θi,n);ϕi,Ei,n) is
mutualized via the plate-wide-shared weights ϕi. This means that most of the weights of the flows
Fi,n –concentrated in ϕi– are trained at every optimization step, across all the selected batches
Bi[t]. This results in drastically faster convergence compared to SVI –as seen in exp. 3.1.

2.4 ENCODING SCHEMES

PAVI shares the parameterization and learning of density estimators across an HBM’s plates. In
practice the distributions qi,n(θi,n|π(θi,n);ϕi,Ei,n) –defined in eq. (3)– with different n only differ
through the value of the encodings Ei,n. We detail one core and one alternate scheme to derive
those encodings:

Free plate encodings (PAVI-F) In our core implementation, Ei,n are free weights. We define
encoding arrays with the cardinality of the full model M, one array Ei = [Ei,n]n=0..N per template
θi. This means that an additional ground RV –for instance adding a subject in a population study–
requires an additional encoding vector. The associated increment in the total number of weights is
much lighter than the addition of a fully parameterized normalizing flow –as would be the case in
the non-plate-amortized regime. The PAVI-F scheme cannot be sample amortized: when presented
with an unseen X, though ϕi can be kept as an efficient warm start, the optimal values for the
encodings Ei,n have to be searched again. During training, the encodings Ei,n corresponding to
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n ∈ Bi[t] are sliced from the arrays Ei and are optimized for along with ϕi. In the toy example
from fig. 2, at t = 0, B1[0] = {1, 2} and the trained encodings are {E1,1,E1,2}, and at t = 1
B1[1] = {0, 1} and we train {E1,0,E1,1}. In appendix A.2, we show that the training of PAVI-F is
unbiased: training over Mr, we converge to the same distribution as if training directly over M.

Deep set encoder (PAVI-E) The parameterization of PAVI-F scales lightly but linearly with
Card(P). This scaling could become unaffordable in large population studies. We thus propose
an alternate scheme –PAVI-E– with a parameterization independent of cardinalities. In this more
experimental scheme, free encodings are replaced by an encoder f with weights η applied to the
observed data: E = f(X; η). As encoder f we use a deep-set architecture exploiting the data’s
plate-induced permutation invariance –detailed in appendix A.1.3 (Zaheer et al., 2018; Lee et al.,
2019). This scheme allows for sample amortization across different data samples X0,X1, .... Note
that an encoder will be used to generate the encodings whether inference is sample amortized or not.
During training, shared learning is further amplified as all the architecture’s weights –ϕi and η– are
trained at every step t. To collect the encodings to plug into qr, we build up on a property of f : set
size generalization (Zaheer et al., 2018). Instead of encoding the full-sized data X, f is applied to
the slice Xr[t]. This amounts to aggregating summary statistics across a subset of the observed data
(Lee et al., 2019; Agrawal & Domke, 2021). This property is intensified in the sample amortized
context: we train a sample amortized family over the lightweight model Mr, and use it ”for free”
over the heavyweight model M. As detailed in appendix A.2, we rely on a computationally efficient
but theoretically biased training scheme for PAVI-E. The negative impact of this bias on PAVI-E’s
performance was seldom noticeable and always marginal throughout our experiments.

Summary In section 2.2 we derived an architecture sharing its parameterization across a model’s
plates. In section 2.3 we derived a stochastic scheme to train this architecture over batches of data.
Our novelty lies in this original combination of amortization and stochastic training, which results
in significantly faster inference, as demonstrated in the following experiments.

3 RESULTS AND DISCUSSION

Throughout this section we use the ELBO as a proxy to the KL divergence between the variational
posterior and the unknown true posterior. ELBO is measured across 20 samples X, 5 random seeds
per sample. The ELBO allows to compare the relative performance of different architectures on a
given inference problem. In appendix B.1 we provide with sanity checks to assess the quality of the
results. In appendix B.2 we evaluate the impact of the reduced model cardinalities on performance.
In appendix B.3 we compare numerically our method against baselines over a Gaussian mixture
model; a model featuring the aggregation of higher order summary statistics; and a smaller version
of our Neuroimaging model used in section 3.4.

Experimentally, we found the PAVI-F scheme overall faster to train and yielding better inference
quality than the PAVI-E scheme. When its parameterization is affordable, PAVI-F should be
preferred. PAVI-E nevertheless opens up promising research directions, with the potential for
parameterization-constant, time-constant sample-amortized inference as cardinality augments.
Though degraded compared to PAVI-F’s, PAVI-E’s performance is still on par or beats baselines in
a variety of inference tasks –see exp. 3.3&B.3.

3.1 PLATE AMORTIZATION AND CONVERGENCE SPEED

In this experiment, we illustrate how plate amortization results in faster training. We consider the
following Gaussian Random Effects model (GRE):

Xn1,n0
|θ1,n1

∼ N (θ1,n1
, σ2

x)
∀n1=1..Card(P1)
∀n0=1..Card(P0)

θ1,n1
|θ2,0 ∼ N (θ2,0, σ

2
1) ∀n1=1..Card(P1) θ2,0 ∼ N (⃗0D, σ

2
2) ,

(6)

where D represents the data X’s feature size, with group means θ1 and population means θ2 as
D-dimensional Gaussians. We opt in this equation for a double indexing scheme instead of a simple
indexing as in our methods. The GRE model features two nested plates: the group plate P1 and the
sample plate P0 as in fig. 1. Inferring over the GRE model, the objective is to retrieve the posterior
distribution of the group and population means given the observed sample.
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Figure 3: Left panel: Plate amortization increases convergence speed Plot of the ELBO (higher
is better) as a function of the optimization steps (log-scale) for our methods PAVI-F (in green) and
PAVI-E (in blue) versus a non-plate-amortized baseline (in purple). Due to plate amortization, our
method converges ten to a hundred times faster to the same asymptotic ELBO as its non-plate-
amortized counterpart.; Right panel: Encodings as ground RVs summary statistics Plot of the
ELBO (higher is better) as a function of the optimization steps for the PAVI-F architecture with
increasing encoding sizes. As the encoding size augments, so does the asymptotic performance, until
reaching the dimensionality of the posterior’s sufficient statistics (D = 8), after which performance
plateaus. Encoding size allows for a clear trade-off between memory and inference quality.

Here we set D = 8, Card(P1) = 100 and Cardr(P1) = 2. We compare our PAVI architecture
to a stochastic non-plate-amortized baseline with the same architecture as PAVI (Hoffman et al.,
2013). The only difference is that ground RVs θi,n are associated in the baseline to individual
fully-parameterized flows Fi,n instead of sharing the same conditional flow Fi –as described in
section 2.2.2. Figure 3 (left) displays the evolution of the ELBO for the baseline and PAVI with free
encoding (PAVI-F) and deep set encoders (PAVI-E). We see that both plate amortized methods reach
asymptotic ELBO equal to the non-plate-amortized baseline’s, but with orders of magnitudes faster
convergence, and more numerical stability. This stems from the individual flows Fi,n in the baseline
only being trained when the corresponding θi,n is visited by the stochastic training, while the shared
flow Fi is updated at every optimization step in PAVI. We also note that the PAVI-E scheme con-
verges faster in theory than PAVI-F –in terms of number of steps– by sharing not only the training
of the flows, but also of the encoder through the optimization. In practice however, computing the
encodings results in longer steps, and in slower convergence, as illustrated in section 3.3.

3.2 IMPACT OF ENCODING SIZE

Here we illustrate the role of encodings as ground RV posterior’s summary statistics –as described
in section 2.2.2. We use the GRE HBM detailed in eq. (6), using D = 8, Card(P1) = 20 and
Cardr(P1) = 2. We use a single PAVI-F architecture, varying the size of the encodings Ei,n –see
section 2.4. Due to plate amortization, encodings determines how much individual information
each RV θi,n is associated to. The encoding size –varying from 2 to 16– is to be compared
with the dimensionality of the problem, D = 8. In GRE, D = 8 corresponds to the size of the
sufficient statistics needed to reconstruct the posterior of a group mean –all other statistics such
as the variance being shared between the group means. Figure 3 (right) shows how the asymptotic
performance steadily increases when the encoding size augments, and plateaus once reaching the
sufficient summary statistic size D = 8. Interestingly, increasing the encoding size also leads
to faster convergence: redundancy can likely be exploited in the optimization. Encoding size
appears as a unequivocal hyperparameter allowing to trade inference quality for computational
efficiency. Increasing the encoding size also leads experimentally to diminishing returns in terms
of performance. This property can be exploited in large settings to drastically reduce the memory
footprint of inference while maintaining acceptable performance –choosing the encoding size
approximately equal to the expected size of the sufficient statistics.

3.3 SCALING WITH PLATE CARDINALITIES

Here we put in perspective the gains from plate amortization when scaling up an inference problem’s
cardinality. We consider the GRE model in eq. (6) with D = 2 and augment the plate cardinalities
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Figure 4: PAVI provides with favorable parameterization and training time as the cardinality
of the target model augments Our architecture PAVI is displayed on the right of each panel. We
augment the cardinality Card(P1) of the GRE model –described in eq. (6). While doing so, we
compare 3 different metrics: In the first panel: inference quality, as measured by the ELBO. None
of the presented SOTA architecture’s performance degrades as the cardinality of the problem aug-
ments. In the second pannel: parameterization, comparing the number of trainable weights of each
architecture. PAVI –similar to ADAVI– displays a constant number of weights as the cardinality of
the problem increases –or almost constant for PAVI-F. Third panel: GPU training time. Benefiting
from learning across plates, PAVI has a short and almost constant training time as the cardinality of
the problem augments. At Card(P1) = 200, CF, UIVI and ADAVI required large GPU memory, a
constraint absent from PAVI due to its stochastic training.

(Card(P1),Card
r(P1)) : (2, 1) → (20, 5) → (200, 20). In doing so, we augment the number of

parameters Θ : 6 → 42 → 402.

Baselines We compare our PAVI architecture against 3 state-of-the-art baselines. Cascading Flows
(CF) (Ambrogioni et al., 2021b) is a non-plate-amortized structured VI architecture improving
on the baseline presented in section 3.1. CF push the prior p into the posterior q using Highway
Flows. CF follows a cascading dependency structure, complemented with a backward auxiliary
coupling. ADAVI (Rouillard & Wassermann, 2022) is a structured VI architecture similar to
PAVI, with constant parameterization with respect to a problem’s cardinality, but large training
times and memory. ADAVI has several limitations compared to PAVI: ADAVI implements a
Mean Field approximation (Blei et al., 2017) while PAVI implements a cascading flow; ADAVI is
limited pyramidal HBMs while PAVI tackles generic plate-enriched HBMs; ADAVI is limited to a
full-model sample-amortized variant. Unbiased Implicit VI (UIVI) is an unstructured implicit VI ar-
chitecture. UIVI infers over the full parameter space –without any SVI-amenable factorization– by
reparameterizing a base distribution with a stochastic transform. For all architectures, we indicate
with the suffix (sa) sample amortization, corresponding to the classical meaning of amortization, as
detailed in section 2.2.2. More implementation details can be found in appendix B.4.

As the cardinality of the problem augments, fig. 4 shows how PAVI maintains a state-
of-the-art inference quality, while being more computationally attractive. Specifically,
in terms of parameterization, both ADAVI and PAVI-E provide with a heavyweight but con-
stant parameterization as the cardinality Card(P1) of the problem augments. Comparatively,
both CF and PAVI-F’s parameterization scale linearly with Card(P1), but with a drastically
lighter augmentation for PAVI-F. For an additional ground RV, CF requires an additional fully
parameterized normalizing flow, whereas PAVI-F only requires an additional lightweight encoding
vector. UIVI’s parameterization scales quadratically with the size of the parameter space Θ, due to
a neural network regressing a transform applied to a base distribution with the size of Θ. In detail,
PAVI-F’s parameterization due to the plate-wide-shared ϕ1 represents a constant ≈ 2k weights,
while the part due to the encodings E1,n grows linearly from 16 to 160 to 1.6k weights. Note that
PAVI’s stochastic training also allows for a controlled GPU memory during optimization, removing
the need for a larger memory as the cardinality of the problem augments –a hardware constraint that
can become unaffordable at very large cardinalities. To remove this memory constraint, CF could
be trained stochastically, but –without plate amortization– would suffer from slower inference, as
illustrated in section 3.1. In contrast, UIVI could not be trained stochastically, as it infers over the
full Θ at once instead of factorizing it. As a result UIVI would be ultimately limited by memory to
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Figure 5: Probabilistic parcellation of Brocas’s area PAVI can be applied in the challenging con-
text of Neuroimaging population studies. For a cohort of 1000 subjects, 2 of which are represented
here –in the bottom 2 items– we present 2 results. First, connectivity networks with the brain’s left
hemisphere –left purple items: those represent the brain regions vertices with each label are ”wired”
to. Second, Broca’s area probabilistic parcellation –rightmost orange items: we cluster the brain’s
vertices, associating them to connectivity networks. Our method models uncertainty: coloring tran-
sitions from red to an uncertain white to blue, representing the probability of a vertex to belong to
one network or the other.

infer over larger problems. In terms of convergence speed, PAVI benefits from plate amortization to
have orders of magnitude faster convergence compared to structured VI baselines CF and ADAVI.
For UIVI, as the cardinality augments, training amounts to evaluating a neural network with
increasingly larger layers. GPU training time is therefore constant, but this property would not
translate to larger problems as the GPU memory would become insufficient. Plate amortization is
particularly significant for the PAVI-E(sa) scheme, in which a sample-amortized variational family
is trained over a dataset of reduced cardinality, yet performs ”for free” inference over a HBM of
large cardinality. Maintaining Cardr(P1) constant while Card(P1) augments allows for a constant
parameterization and training time as the cardinality of the problem augments –without any
maximum cardinality, contrary to UIVI. The effect of plate amortization is particularly noticeable at
Card(P1) = 200 between the PAVI(sa) and CF(sa) architectures, where PAVI performs amortized
inference with 10× fewer weights and 100× lower training time. Scaling even higher the cardinality
of the problem –Card(P1) = 2000 for instance– renders ADAVI, CF and UIVI computationally
intractable, while PAVI maintains a light memory footprint, and a short training time, as exemplified
in the next experiment.

3.4 NEUROIMAGING APPLICATION: BROCA’S AREA PARCELLATION

To illustrate its usefulness, we apply PAVI to a challenging population study for Broca’s area’s
functional parcellation. A parcellation clusters brain vertices into different connectivity networks:
labels describing co-activation with the rest of the brain –as measured using functional Magnetic
Resonance Imaging (fMRI). Different subjects exhibit a strong variability, as in fig. 5. However,
fMRI is costly to acquire: few noisy data is usually gathered for a given subject. It is thus essential
to combine information across subjects and to display uncertainty in the results. Those 2 points
motivate Hierarchical Bayesian Modelling and VI in Neuroimaging (Kong et al., 2019): we search
the posteriors of connectivity networks and vertex labels, measuring fMRI over a large cohort of
subjects. We use the HCP dataset (Van Essen et al., 2012): 2 acquisitions from a 1000 subjects,
with thousands of measures per acquisition, for over a million parameters Θ. We use a model
with 3 plates: subjects, sessions and brain vertices. None of the baselines presented in section 3.3
–CF, ADAVI, UIVI– can computationally tackle this high cardinality problem. We nevertheless
show superior performance over those baselines over a tractable problem size with 2 thousand
parameters in appendix B.3.3. Despite the massive dimensionality of the problem, thanks to plate
amortization PAVI converges in a dozen epochs, under an hour of GPU time. Results are visible
in fig. 5, supporting the hypothesis of a functional bi-partition of Broca’s area into a posterior part
involved in phonology and an anterior part in lexical/semantic processing –following the anatomy
of pars opercularis and triangularis (Heim et al., 2009; Zhang et al., 2020).

Conclusion In this work we present the novel PAVI architecture, combining a structured variational
family and a stochastic training scheme. PAVI is based the concept of plate amortization, allowing
to share parameterization and learning across a model’s plates. We demonstrated the positive impact
of plate amortization on training speed and scaling to large plate cardinality regimes, making a
significant step towards scalable, expressive Variational Inference.

9
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REPRODUCIBILITY STATEMENT

All experiments were performed in Python using the Tensorflow Probability library (Dillon et al.,
2017). All experiments were conducted on computational cluster nodes equipped with a Tesla V100-
16Gb GPU and 4 AMD EPYC 7742 64-Core processors. VRAM intensive experiments in fig. 4
were performed on an Ampere 100 PCIE-40Gb GPU. Appendix B.4 lists implementation details for
all our synthetic experiments. Appendix B.5 is related to our Neuroimaging experiment 3.4, and
details both our data pre-processing steps and our implementation. As part of our submission we
furthermore packaged and release the code associated to our experiments.

ETHICS STATEMENT

Our Neuroimaging data come from the Human Connectome Project dataset (Van Essen et al., 2012).
All data in the HCP is strongly anonymized, as per the HCP protocols. We used in this paper only
Open Access imaging data data, following the HCP data use terms.
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Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learn-
ing on heterogeneous systems, 2015. URL https://www.tensorflow.org/. Software
available from tensorflow.org.

Alexandre Abraham, Fabian Pedregosa, Michael Eickenberg, Philippe Gervais, Andreas Mueller,
Jean Kossaifi, Alexandre Gramfort, Bertrand Thirion, and Gael Varoquaux. Machine learning
for neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 8, 2014. ISSN 1662-5196.
doi: 10.3389/fninf.2014.00014. URL https://www.frontiersin.org/article/10.
3389/fninf.2014.00014.

Abhinav Agrawal and Justin Domke. Amortized Variational Inference for Simple Hierarchical Mod-
els. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, volume 34, pp. 21388–21399. Curran As-
sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper/2021/file/
b28d7c6b6aec04f5525b453411ff4336-Paper.pdf.

Luca Ambrogioni, Kate Lin, Emily Fertig, Sharad Vikram, Max Hinne, Dave Moore, and Marcel van
Gerven. Automatic structured variational inference. In Arindam Banerjee and Kenji Fukumizu
(eds.), Proceedings of The 24th International Conference on Artificial Intelligence and Statistics,
volume 130 of Proceedings of Machine Learning Research, pp. 676–684. PMLR, 13–15 Apr
2021a. URL https://proceedings.mlr.press/v130/ambrogioni21a.html.

Luca Ambrogioni, Gianluigi Silvestri, and Marcel van Gerven. Automatic variational inference with
cascading flows. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research, pp.
254–263. PMLR, 18–24 Jul 2021b. URL https://proceedings.mlr.press/v139/
ambrogioni21a.html.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statis-
tics). Springer-Verlag, Berlin, Heidelberg, 2006. ISBN 0387310738.

David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational Inference: A Review for Statis-
ticians. Journal of the American Statistical Association, 112(518):859–877, April 2017. ISSN
0162-1459, 1537-274X. doi: 10.1080/01621459.2017.1285773. URL http://arxiv.org/
abs/1601.00670. arXiv: 1601.00670.

10

https://www.humanconnectome.org/study/hcp-young-adult/project-protocols
https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms
https://www.tensorflow.org/
https://www.frontiersin.org/article/10.3389/fninf.2014.00014
https://www.frontiersin.org/article/10.3389/fninf.2014.00014
https://proceedings.neurips.cc/paper/2021/file/b28d7c6b6aec04f5525b453411ff4336-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/b28d7c6b6aec04f5525b453411ff4336-Paper.pdf
https://proceedings.mlr.press/v130/ambrogioni21a.html
https://proceedings.mlr.press/v139/ambrogioni21a.html
https://proceedings.mlr.press/v139/ambrogioni21a.html
http://arxiv.org/abs/1601.00670
http://arxiv.org/abs/1601.00670


Under review as a conference paper at ICLR 2023
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SUPPLEMENTAL MATERIAL

A SUPPLEMENTAL METHODS

A.1 PAVI IMPLEMENTATION DETAILS

A.1.1 PLATE BRANCHINGS AND STOCHASTIC TRAINING

As exposed in section 2.3.1, at each optimization step t we randomly select branchings inside the
full model M, branchings over which we instantiate the reduced model Mr. In doing so, we define
batches Bi[t] for the RV templates θi. Those batches have to be coherent with one another: they
have to respect the conditional dependencies of the original model M. As an example, if a ground
RV is selected as part of Mr, then its parent RV needs to be selected as well. To ensure this, during
the stochastic training we do not sample RVs directly but plates:

1. For every plate Pp, we sample without replacement Cardr(Pp) indices amongst the
Card(Pp) possible indices.

2. Then, for every RV template θi, we select the ground RVs θi,n corresponding to the sampled
indices for the plates Plates(θi).

3. The selected ground RVs θi,n constitute the set Θr[t] of parameters appearing in eq. (4).
The same procedure yields the observed RV subset Xr[t] and the data slice Xr[t].

For instance, in the toy example from fig. 1, X2 will be chosen iff the index 1 is selected as part
of sub-sampling P1 and the index 0 is selected as part of sub-sampling P0. Less formally, this is
equivalent to going middle, then left in the full graph representing M. This stochastic choice is
illustrated in fig. 2 at t = 1 where X2 corresponds to the node E. This stochastic strategy also
applies to the selected encoding scheme –described in section 2.4&2.3.2– as detailed in the next
sections.

A.1.2 PAVI-F DETAILS

In section 2.4 we refer to encodings Ei = [Ei,n]n=0..N corresponding to RV templates θi. In prac-
tice, we have some amount of sharing for those encodings: instead of defining separate encodings
for every RV template, we define encodings for every plate level. A plate level is a combination of
plates with at least one parameter RV template θi belonging to it:

PlateLevels = {(Pk..Pl) = Plates(θi)}θi∈Θ (A.1)

For every plate level, we construct a large encoding array with the cardinalities of the full model M:

Encodings = {(Pk..Pl) 7→ RCard(Pk)×..×Card(Pl)×D}(Pk..Pl)∈PlateLevels

Ei = Encodings(Plates(θi))
(A.2)

Where D is an encoding size that we kept constant to de-clutter the notation but can vary between
plate levels. The encodings for a given ground RV θi,n then correspond to an element from the
encoding array Ei.

A.1.3 PAVI-E DETAILS

In the PAVI-E scheme, encodings are not free weights but the output of en encoder f( · , η) applied
to the observed data X. In this section we detail the design of this encoder.

As in the previous section, the role of the encoder will be to produce one encoding per plate level.
We start from a dependency structure for the plate levels:

∀(Pa..Pb) ∈ PlateLevels ,

∀(Pc..Pd) ∈ PlateLevels ,

(Pa..Pb) ∈ π((Pc..Pd)) ⇔ ∃θi/Plates(θi)=(Pa..Pb)
∃θj/Plates(θj)=(Pc..Pd)

/θj ∈ π(θi)

(A.3)

note that this dependency structure is in the backward direction: a plate level will be the parent of
another plate level, if the former contains a RV who has a child in the latter. We therefore obtain
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a plate level dependency structure that reverts the conditional dependency structure of the graph
template T . To avoid redundant paths in this dependency structure, we take the maximum branching
of the obtained graph.

Given the plate level dependency structure, we will recursively construct the encodings, starting
from the observed data:

∀x ∈ X : Encodings(Plates(x)) = ρ(x) (A.4)

where x is the observed data for the RV x, and ρ is a simple encoder that processes every observed
ground RV’s value independently through an identical multi-layer perceptron. Then, until we have
exhausted all plate levels, we process existing encodings to produce new encodings:

∀(Pk..Pl) ∈ PlateLevels / ̸ ∃x ∈ X,Plates(x) = (Pk..Pl) :

Encodings((Pk..Pl)) = g(Encodings(π(Pk..Pl)))
(A.5)

where g is the composition of attention-based deep-set networks called Set Transformers (Lee et al.,
2019; Zaheer et al., 2018). For every plate Pp present in the parent plate level but absent in the
child plate level, g will compute summary statistics across that plate, effectively contracting the
corresponding batch dimensionality in the parent encoding (Rouillard & Wassermann, 2022).

In the case of multiple observed RVs, we run this ”backward pass” independently for each observed
data –with one encoder per observed RV. We then concatenate the resulting encodings corresponding
to the same plate level.

For more precise implementation details, we invite the reader to consult the codebase released with
this supplemental material.

A.2 ANALYSIS OF BIAS IN THE STOCHASTIC TRAINING

A key concern in our stochastic training scheme is its unbiasedness: we want our stochastic opti-
mization to converge to the same variational posterior as if we trained over the full model directly
–without any stochasticity. In this section we first show that the PAVI-F is unbiased. Second, we
identify strategies to obtain an unbiased PAVI-E scheme, yet show how the approximations we do
in practice can theoretically result in biased training. As an important note, the negative impact
of this bias on the performance PAVI-E remained limited throughout our experiments –as seen in
experiments 3.3, B.2, B.1 and B.3.

A.2.1 GENERAL DERIVATION (APPLICABLE TO BOTH THE PAVI-F AND PAVI-E SCHEMES)

We first formalize the plate sampling strategy described in appendix A.1.1. To every plate P we
associate the RV IP corresponding to the Cardr(P)-sized set of indices sampled without replace-
ment from the Card(P) possible index values. As an example, with a plate P0 with Card(P0) = 4
and Cardr(P0) = 2, {0, 2} or {2, 3} can be 2 different samples from IP0 . At a given optimization
step t, we sample independently from the RVs {IPp}p=0..P . This defines the batches Bi[t] and the
distribution qr in eq. (4).

To check the unbiasedness of our stochastic training, we need to show that:

EIP0
. . .EIPP

[ELBOr[t]] = ELBO (A.6)

Where:
ELBO = EΘ∼q [log p(X,Θ)− log q(Θ)] (A.7)

And ELBOr[t] is defined in eq. (5). In that expression, q and p have symmetrical roles. As the
ELBO amounts to the difference between the logarithms of distributions p and q, we can prove the
equality in eq. (A.6) if we prove that the expectation of each reduced distribution is equal to the
corresponding full distribution. To prove the equality in eq. (A.6), a sufficient condition is therefore
to prove that:

EIP0
. . .EIPP

[log qr(Θr[t])] = EIP [log qr(Θr[t])] = log q(Θ) (A.8)

where to de-clutter the notations we denote the expectation over the collection of RVs {IPp
}p=0..P

as EIP .
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Consider a given ground RV θi,n corresponding to the RV template θi and to the plates Plates(θi).
At a given stochastic step t, θi,n will be chosen if and only if its corresponding branching is chosen.
Recall that when sampling equiprobably without replacement a set of k elements from a population
of n elements, a given element will be present in the set with probability k/n. We can apply this
reasoning to the choice of branching corresponding to a given ground RV. For instance, in fig. 1, X2

will be chosen iff the index 1 is selected as part of sub-sampling P1 and the index 0 is selected as part
of sub-sampling P0. As Cardr(P1) = 2 indices are chosen inside the plate P1 of full cardinality
3, and Cardr(P0) = 1 indices are chosen inside the plate P0 of full cardinality 2, X2 is therefore
chosen with probability 2/3× 1/2. More formally, for a ground RV θi,n we have:

∀n = 0..Ni : P(θi,n ∈ Bi[t]) =
∏

P∈Plates(θi)

Cardr(P)

Card(P)

=
N r

i

Ni

(A.9)

Applying this reasoning to every RV template θi, we have that:

EIP [log qr(Θr[t])] =

I∑
i=1

Ni

N r
i

EIP

∑
n∈Bi[t]

log qi,n(θi,n|π(θi,n))


=

I∑
i=1

Ni

N r
i

EIP

[
Ni∑
n=0

1n∈Bi[t] log qi,n(θi,n|π(θi,n))

]

=

I∑
i=1

Ni

N r
i

Ni∑
n=0

EIP

[
1n∈Bi[t] log qi,n(θi,n|π(θi,n);ϕi,Ei,n)

]
(A.10)

where we exploited the fact that the expectation of the sum of RVs is the sum of the expectations,
even in the case of dependent RVs. The term 1n∈Bi[t]× log qi,n(θi,n|π(θi,n);ϕi,Ei,n) is the product
of 2 RVs –related to the stochastic choice of plate indices:

• the RV 1n∈Bi[t] is an indicator that θi,n’s branching has been chosen via the stochastic
sampling of plate indices. By construction, this RV depends only on the indices of the
plates P ∈ Plates(θi).

• the RV log qi,n(θi,n|π(θi,n);ϕi,Ei,n) depends on Ei,n, whose construction depends on the
encoding scheme:

– In the PAVI-F scheme, Ei,n is a constant.

– In the PAVI-E scheme, Ei,n results of the application of an encoder to the observed
data of a subset of θi,n’s descendants. By construction, this subset will only depend
on the indices of plates containing θi’s descendants, but not containing θi. The value
of Ei,n therefore only depends on the indices of plates P /∈ Plates(θi)

As an example of this reasoning, consider the model M illustrated in fig. 2. We can evaluate both
terms for the ground RV θ1,2 in the PAVI-E scheme:

• 12∈B1[t] depends on whether the index 2 is chosen as part of sub-sampling the plate P1,
and therefore only depends on the RV IP1

. In this case the associated probability is 2/3;

• to evaluate log q1,2(θ1,2|θ2,0;ϕ1,E1,2), the value of E1,2 will result from the application
of the encoder f over the value of either X4 or X5. This choice depends on whether the
index 0 or 1 is chosen as part of sub-sampling the plate P0. Therefore, the value of the term
log q1,2 only depends on the RV IP0

.

In both PAVI-F and PAVI-E– the terms 1n∈Bi[t] and log qi,n(θi,n|π(θi,n);ϕi,Ei,n) are therefore
independent, meaning that the expectation of their product can be rewritten as the product of their
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expectations:

EIP [log qr(Θr[t])] =

I∑
i=1

Ni

N r
i

Ni∑
n=0

EIP

[
1n∈Bi[t]

]
EIP [log qi,n(θi,n|π(θi,n))]

=

I∑
i=1

Ni

N r
i

Ni∑
n=0

N r
i

Ni
EIP [log qi,n(θi,n|π(θi,n))]

=

I∑
i=1

Ni∑
n=0

EIP [log qi,n(θi,n|π(θi,n);Ei,n)]

(A.11)

This equality can be further simplified in the PAVI-F case –proving its unbiasedness– but not in the
PAVI-E case, as detailed in the sections below.

A.2.2 UNBIASEDNESS OF THE PAVI-F SCHEME

In the PAVI-F scheme, detailed in section 2.4, the encodings Ei,n are constants with respect to the
branching choice, therefore we have:

EIP [log qr(Θr[t])] =

I∑
i=1

Ni∑
n=0

EIP [log qi,n(θi,n|π(θi,n);Ei,n)]

=

I∑
i=1

Ni∑
n=0

log qi,n(θi,n|π(θi,n);Ei,n)

= log q(Θ)

(A.12)

which proves eq. (A.8) and eq. (A.6). In the above example of θ1,2 in M, in the PAVI-F scheme the
expression EIP [log qi,n(θi,n|π(θi,n);ϕi,Ei,n)] can be evaluated into log q1,2(θ1,2|θ2,0;ϕ1,E1,2).
This demonstrates that the PAVI-F scheme is unbiased: training over stochastically chosen sub-
graphs for qr is in expectation equal to training over the full graph of q.

A.2.3 APPROXIMATIONS IN THE PAVI-E SCHEME

In the PAVI-E scheme, detailed in section 2.3.2, the encodings Ei,n are computed from the ob-
served data X . Specifically, considering the ground RV θi,n, we have Ei,n = f(Xr

i,n[t]) where
Xr
i,n[t] corresponds to the observed data of a subset of θi,n’s descendants. Depending on the

chosen branching downstream of θi,n, the value of Ei,n can therefore vary. This means we can-
not further simplify eq. (A.11): the terms log qi,n(θi,n|π(θi,n);Ei,n) are not constants with re-
spect to the RVs IP . In the above example of θ1,2 in M, in the PAVI-E scheme the expression
EIP [log qi,n(θi,n|π(θi,n);ϕi,Ei,n)] can be evaluated into:

1

2
(log q1,2(θ1,2|θ2,0;ϕ1, f(X4)) + log q1,2(θ1,2|θ2,0;ϕ1, f(X5)))

How could the PAVI-E scheme be made unbiased? Specifically, by making the value of Ei,n

independent of the choice of downstream branching. A possibility would be to parameterize Ei,n

as an average –an expectation– over all the possible sub-branchings downstream of θi,n. Yet, in
practical cases, the cardinalities of the reduced model are much inferior to the ones of the full model:
Cardr(P) ≪ Card(P). This means that numerous Cardr(P)-sized subsets can be chosen inside
the Card(P) possible descendants. In order to average over all those subset choices to compute Ei,n,
numerous encoding calculations would be required at each stochastic training step. For large-scale
cases, we deemed this possibility impractical. Other possibilities could exist, all revolving around
the problematic of aggregating collections of stochastic estimators into one general estimator –in an
unbiased and efficient manner. To our knowledge, this is a complex and still open research question,
whose advancement could much benefit our applications.

Practical approximation for the PAVI-E scheme In practice, we compute the encoding Ei,n based
on the single downstream branching corresponding to the sampling of the RVs IP . Compared to
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the previous paragraph, this amounts to estimating the expectation of Ei,n –over all downstream
branchings– using a single one of those branchings. Note that, even if this encoding estimate was
unbiased, log qi,n would remain an highly non-linear function of Ei,n. As a consequence, we need
to rely on the approximation:

EIP

[
log qi,n(θi,n|π(θi,n);ϕi, f(Xr

i,n[t]))
]
≃ log qi,n(θi,n|π(θi,n);ϕi, f(Xi,n)) (A.13)

which can theoretically introduce some bias in our gradients. The approximation eq. (A.13) can
be interpreted as follow: ”the expectation of the density of θi,n when collecting summary statistics
over a stochastic subset of θi,n’s descendants is approximately equal to the density of θi,n when
collecting summary statistics over the entirety of θi,n’s descendants”. Another interpretation is that
the distribution associated to the summary of the full data can be approximated by an annealing of
the distributions associated to summaries of subsets of this data. In practice, this approximation did
not yield significantly worse performance for the PAVI-E scheme over the generative models we
tested. At the same time, computing the encodings over a single branching allows to compute all
the Ei,n encodings in a single lightweight pass over the data Xr[t]. This simple solution therefore
provided with a substantial increase in training speed with seldom noticeable bias. Yet, we do not
bar the existence of pathological generative HBMs where this approximation would become coarse.
Experimenters should bear in mind this possibility when using the PAVI-E scheme. In practice,
using the PAVI-F scheme as a sanity check over synthetic, toy-dimension implementations of the
considered generative models is a good way to validate the PAVI-E scheme –before moving onto the
real problem instantiating the same generative model with a larger dimensionality.

A.3 PAVI ALGORITHMS

More technical details can be found in the codebase provided with this supplemental material.

A.3.1 ARCHITECTURE BUILD

Algorithm 1: PAVI architecture build
Input: Graph template T , plate cardinalities {(Card(Pp),Card

r(Pp))}p=0..P , encoding
scheme

Output: q distribution
for i = 1..I do

Construct conditional flow Fi;
Define conditional posterior distributions qi,n as the push-forward of the prior via Fi,

following eq. (2);
Combine the qi,n distributions following the cascading flows scheme, as in section 2.2.1

(Ambrogioni et al., 2021b) ;
if PAVI-F encoding scheme then

Construct encoding arrays {Ei = [Ei,n]n=0..Ni
}i=1..I as in appendix A.1.2 ;

else if PAVI-E encoding scheme then
Construct encoder f as in appendix A.1.3 ;
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A.3.2 STOCHASTIC TRAINING

Algorithm 2: PAVI stochastic training
Input: Untrained architecture q, observed data X, encoding scheme, number of steps T
Output: trained architecture q
for t = 0..T do

Sample plate indices to define the batches Bi[t], the latent Θr[t] and the observed Xr[t] and
Xr[t], following appendix A.1.1 ;

Define reduced distribution pr ;
if PAVI-F encoding scheme then

Collect encodings Ei,n by slicing from the arrays Ei the elements corresponding to the
batches Bi[t] ;

else if PAVI-E encoding scheme then
Compute encodings as E = f(Xr[t]);

Feed obtained encodings into qr ;
Compute reduced ELBO as in eq. (5), back-propagate its gradient ;
Update conditional flow weights {ϕi}i=1..I ;
if PAVI-F encoding scheme then

Update encodings {Ei,n}i=1..I,n∈Bi,t
;

else if PAVI-E encoding scheme then
Update encoder weights η;

A.3.3 INFERENCE

Algorithm 3: PAVI inference
Input: trained architecture q, observed data X, encoding scheme
Output: approximate posterior distribution
if PAVI-F encoding scheme then

Collect full encoding arrays Ei ;
else if PAVI-E encoding scheme then

Compute encodings as E = f(X) using set size generalization ;
Feed obtained encodings into q ;

A.4 INFERENCE GAPS

In terms of inference quality, the impact of our architecture can be formalized following the gaps
terminology (Cremer et al., 2018). Consider a joint distribution p(Θ, X), and a value X for the RV
template X . We pick a variational family Q, and in this family look for the parametric distribution
q(Θ;ϕ) that best approximates p(Θ|X = X). Specifically, we want to minimize the Kulback-Leibler
divergence (Blei et al., 2017) between our variational posterior and the true posterior, that Cremer
et al. (2018) refer to as the gap G:

G = KL(q(Θ;ϕ)||p(Θ|X))

= log p(X)− ELBO(q;ϕ)
(A.14)

We denote q∗(Θ;ϕ∗) the optimal distribution inside Q that minimizes the KL divergence with the
true posterior:

Gapprox(Q;ϕ∗) = log p(X)− ELBO(q∗;ϕ∗)

≥ 0

Gvanilla VI = Gapprox

(A.15)

The approximation gap Gapprox depends on the expressivity of the variational family Q, specifically
whether Q contains distributions arbitrarily close to the posterior –in the KL sense.

Note: Gapprox is a property of the variational family Q. Gapprox is an asymptotic bound for the KL
divergence between any distribution q ∈ Q and the true posterior. This gap is therefore a form of
bias, but is not to be mistaken with the stochasticity-induced bias studied in appendix A.2. The bias
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in appendix A.2 relates to whether q∗ can be found by training stochastically over Q, whereas Gapprox
relates to the the bias between q∗ and the true posterior.

Cremer et al. (2018) demonstrate that, in the case of sample amortized inference, when the weights
ϕ no longer are free but the output of an encoder f ∈ F , inference cannot be better than in the
non-sample-amortized case, and a positive amortization gap is introduced:

Gsa(Q,F ; η∗) = Gapprox(Q; f(X, η∗))− Gapprox(Q;ϕ∗)

≥ 0

Gsample amortized VI = Gapprox + Gsa

(A.16)

Where we denote as η∗ the optimal weights for the encoder f inside the function family F . The gap
terminology can be interpreted as follow: ”theoretically, sample amortization cannot be beneficial
in terms of KL divergence for the inference over a given sample X.”

Using the same gap terminology, we can define gaps implied by our PAVI architecture. Instead of
picking the distribution q inside the family Q, consider picking q from the plate-amortized family
Qpa corresponding to Q. Distributions in Qpa are distributions from Q with the additional constraints
that some weights have to be equal. Consequently, Qpa is a subset of Q:

Qpa ⊂ Q (A.17)
As such, looking for the optimal distribution inside Qpa instead of inside Q cannot result in better
performance, leading to a plate amortization gap:

Gpa(Q,Qpa;ψ
∗, ϕ∗) = Gapprox(Qpa;ψ

∗)− Gapprox(Q;ϕ∗)

≥ 0

GPAVI-F = Gapprox + Gpa

(A.18)

Where we denote as ψ∗ the optimal weights for a variational distribution q inside Qpa –in the KL
sense. The equation A.18 is valid for the PAVI-F scheme –see section 2.4. We can interpret it as
follow: ”theoretically, plate amortization cannot be beneficial in terms of KL divergence for the
inference over a given sample X”.

Now consider that encodings are no longer free parameters but the output of an encoder f . Similar
to the case presented in eq. (A.16), using an encoder cannot result in better performance, leading to
an encoder gap:

Gencoder(Qpa,F ;ψ∗, η∗) = Gapprox(Qpa; f(X, η∗))− Gapprox(Qpa;ψ
∗)

≥ 0

GPAVI-E = Gapprox + Gpa + Gencoder

(A.19)

The equation eq. (A.19) is valid for the PAVI-E scheme –see section 2.4.

The most complex case is the PAVI-E(sa) scheme, where we combine both plate and sample amor-
tization. Our argument cannot account for the resulting GPAVI-E(sa) gap: both the PAVI-E and PAVI-
E(sa) schemes rely upon the same encoder f . In the PAVI-E scheme, f is overfit over a dataset
composed of the slices of a given data sample X. In the PAVI-E(sa) scheme, the encoder is trained
over the whole distribution of the samples of the reduced model Mr. Intuitively, it is likely that the
performance of PAVI-E(sa) will always be dominated by the performance of PAVI-E, but –as far as
we understand it– the gap terminology cannot account for this discrepancy.

Comparing previous equations, we therefore have:
Gvanilla VI ≤ GPAVI-F ≤ GPAVI-E (A.20)

Note that those are theoretical results, that do not necessarily pertain to optimization in practice. In
particular, in section 3.1&3.3, this theoretical performance loss is not observed empirically over the
studied examples. On the contrary, in practice our results can actually be better than non-amortized
baselines, as is the case for the PAVI-F scheme in fig. 4 or experiments B.3. We interpret this as
a result of a simplified optimization problem due to plate amortization –with fewer parameters to
optimize for, and mini-batching effects across different ground RVs. A better framework to explain
those discrepancies could be the one from Bottou & Bousquet (2007): performance in practice is not
only the reflection of an approximation error, but also of an optimization error. A less expressive
architecture –using plate amortization– may in practice yield better performance. Furthermore, for
the experimenter, the theoretical gaps Gpa,Gencoder are likely to be well ”compensated for” by the
lighter parameterization and faster convergence entitled by plate amortization.
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B SUPPLEMENTAL RESULTS

B.1 GRE RESULTS SANITY CHECK

As exposed in the introduction of section 3, in this work we focused on the usage of the ELBO as
an inference performance metric (Blei et al., 2017):

ELBO(q) = log p(X)−KL(q(Θ)||p(Θ|X)) (B.21)

Given that the likelihood term log p(X) does not depend on the variational family q, differences
in ELBOs directly transfer in differences in KL divergence, and provide with a straightforward
metric to compare different variational posteriors. Nonetheless, the ELBO doesn’t provide with an
absolute metric of quality. As a sanity check, we want to assert the quality of the results presented
in section 3.3 –that are transferable to section 3.1&3.2, based on the same model. In fig. B.1 we plot
the posterior samples of various methods against analytical ground truths, using the Card(P1) = 20
case. All the method’s results are aligned with the analytical ground truth, with differences in ELBO
translating meaningful qualitative differences in terms of inference quality.

B.2 EFFECT OF THE REDUCED MODEL CARDINALITIES ON THE TRAINING EFFICIENCY

In fig. B.2 we show the impact of the augmentation of Cardr(P1) on the efficiency of the variational
posterior’s optimization.

In practice, we noticed that the most efficient choice in the case of the PAVI-F scheme was to
maximize the cardinalities of the reduced model given the memory constraints of the GPU. Indeed,
training over larger cardinalities does make each optimization step slightly slower but also make
the ELBO gradient estimates less noisy and allows to train more encoding vectors Ei,n at a given
optimization step.

In the case of the PAVI-E scheme, the training speed is constant with respect to Cardr(P1). This
is due to the compute of the encodings being vectorized across plates in our deep-set encoder –
see appendix A.1.3 (Lee et al., 2019). We observe a slight if barely noticeable reduction of the
inference bias when augmenting Cardr(P1). Similar to the PAVI-F scheme, Cardr(P1) should be
maximized with respect to the GPU memory constraint. The intuition behind this choice is that the
generalization of the learning of summary statistics across sets of data points is easier the closer the
reduced set size is to the full set size. This constant training speed allows for a controlled memory
footprint of the stochastic training: contrary to the PAVI-F scheme, Cardr(P1) could be maintained
at a value manageable by the GPU without reducing the training speed. This example also displays
a pathological choice for Cardr(P1): the encoder fails to learn to compute the correct summary
statistics over sets of size 1. However trivial, this example underlines that Cardr(P1) should be
chosen at a value logical with respect to the posterior’s sufficient statistics. When generalizing
to moments of higher order –such as the variance– there is therefore a theoretical lower bound to
consider when fixating the value of Cardr(P1). Our intuition is that the more complex to estimate
the statistic is, the larger Cardr(P1) should be.

Note that in practice non-stochastic VI is intractable for large-scale models, because of its memory
requirement. In large scale experiments such as the one presented in fig. 5, stochastic training is
necessary. Our claim is to be faster than non-plate-amortized stochastic VI in those large-scale
contexts –but not necessarily to be faster then non-stochastic VI in the small-scale regime of this
experiment. For PAVI-F we nonetheless obtain similar training speed compared to non-stochastic
VI with Cardr(P1) as small as 8. For PAVI-E, the stochastic training is as fast as the non-stochastic
one.
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Figure B.1: GRE Sanity check Inference methods present qualitatively correct results, making
ELBO comparisons relevant in our experiments. On the topmost line, we represent 4 different X
samples for the GRE model described in eq. (6) with Card(P1) = 20. Each set of colored points
represent the Xn1,• points belonging to one of the 20 groups. Bottom lines represent the posterior
samples for the methods used in section 3.3. Colored points are sampled from the posterior of the
groups means θ1, whereas black points are samples from the population mean θ2. We represent as
black circles an analytical ground truth, centered on the correct posterior mean, and with a radius
equal to 2 times the analytical posterior’s standard deviation. Correct posterior samples should be
centered on the same point as the corresponding black circle, and 95% of the points should fall
within the black circle. PAVI is represented on the 3 last lines. Some minor bias can be observed
for the PAVI-E scheme, but this approximation error is marginal compared to the optimization error
that can be observed for unbiased methods, such as CF(sa) (Bottou & Bousquet, 2007). We can
observed a superior quality for the PAVI-F scheme, rivaling ADAVI and CF’s performance with
orders of magnitude less parameters and training time, as visible in fig. 4.
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Figure B.2: Both panels: Effect of Cardr(P1) on the training efficiency Experiment performed
on the GRE model (see eq. (6)). We increase the cardinality of the reduced model Cardr(P1) from 1
to 20 while keeping Card(P1) = 20 fixed. At Cardr(P1) = 20, there is no stochasticity in the train-
ing, meaning we train directly on M. This experiment is interesting to evaluate the bias introduced
in the stochastic training, as detailed in appendix A.2. Left panel: PAVI-F scheme As Cardr(P1)
augments, the training gets faster and less noisy, likely due to less stochasticity in the gradient esti-
mates and more encodings vectors Ei,n being trained at once. This increase in speed quickly caps,
and the speed is approximately the same between Cardr(P1) = 8 and Cardr(P1) = 16. This ex-
periment also illustrates the unbiasedness of the stochastic training: at Cardr(P1) = 20 there is no
stochasticity in the training, and the asymptotic performance is the same as for the stochastic train-
ing (see appendix A.2). Right panel: PAVI-E scheme The case of Cardr(P1) = 1 is pathological:
the encoder ”learns” to collect summary statistics across a set of 1 element, and –not surprisingly–
the learnt function doesn’t generalize well on sets of size 20. In all of the other cases, the ELBO
converges approximately to the same values as with Cardr(P1) = 20, that is to say when there is
no stochasticity in the training (black curve). We furthermore observe a slight reduction of the in-
ference bias as Cardr(P1) augments. This illustrates how the theoretical bias of the PAVI-E scheme
identified in appendix A.2 does not translate in significantly worse empirical results –albeit in the
pathological case of Cardr(P1) = 1. Interestingly, the training speed is approximately constant
across all values of Cardr(P1). This feature is essential in the PAVI-E scheme: we can train over a
reduced version of our model –with a light memory footprint– and apply the obtained architecture
to the full model. Note that this feature wouldn’t necessarily be present when training on CPU:
computing summary statistics over larger sets would make the training slower when Cardr(P1)
augments.
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Architecture ELBO (101) Optimization time (s)

CF - 16.2 (± 2.9) 3,100
ADAVI - 20.0 (± 2.3) 3,000

UIVI - 26.3 (± 1.2) 500
PAVI-E (ours) -15.2 (±2.8) 470
PAVI-F (ours) - 11.1 (±1.1) 300

Table 1: Analytical performance over a Gaussian mixture HBM PAVI shows superior perfor-
mance. PAVI converges in a fraction of CF’s optimization time –the second best performing archi-
tecture.

B.3 ADDITIONAL COMPARATIVE EXPERIMENTS

B.3.1 GAUSSIAN MIXTURE MODEL

In this experiment we test out various baselines over a challenging model: a Gaussian mixture with
random effects.

D, Card(P1), Card(P0) = 2, 20, 10

∀n1=1..Card(P1)
∀n0=1..Card(P0)

Xn1,n0
|θ1,n1

, πn1
∼ Mixture(

[
N (θ11,n1

, σ2
x), . . . ,N (θL1,n1

, σ2
x)
]
, πn1

)

∀n1 = 1..Card(P1) πn1
∼ Dirichlet(1× 1⃗L)

∀n1=1..Card(P1)
∀l=1..L

θl1,n1
|θl2,0 ∼ N (θl2,0, σ

2
1)

∀l = 1..L θl2,0 ∼ N (⃗0D, σ
2
2) ,

(B.22)

where Mixture([D1, . . . ,DL], π) denotes a mixture between the distributions [D1, . . . ,DL] with
mixture weights π. Results are visible in table 1, where PAVI displays the best asymptotic ELBO,
as well as the shortest optimization time. On that note, we underline that stochastic training over
a mixture distribution is challenging, as –due to the sub-sampling of points– only a fraction of the
mixture components could be expressed at a given step, requiring the architecture to dynamically
cluster the data points across time.

B.3.2 HIERARCHICAL VARIANCE MODEL

In this experiment we test out our architectures over a non-canonical model, in which parent RVs
play the role of variance for the distribution of their children. Our goal is in particular to evaluate
a potential empirical bias for the PAVI-E scheme –as studied in appendix A.2. We will refer the
following HBM as the Hierarchical Variance model:

D, Card(P1), Card(P0) = 2, 15, 15

∀n1=1..Card(P1)
∀n0=1..Card(P0)

logX(n1,n0)|θ1,n1
∼ N (0, θ1,n1

)

∀n1 = 1..Card(P1) log θ1,(n1)|θ2,0 ∼ N (0, θ0,0)

log θ2,0 ∼ N (⃗0D, 1)

(B.23)

In this model, the encoder –used in the PAVI-E scheme– has to collect non-trivial summary statistics:
empirical variances across variable subsets of the observed data. This is the context in which we
would expect to observe the most bias due to the approximation in eq. (A.13). The performance of
PAVI-E remains nonetheless competitive. This illustrates how PAVI-E’s theoretical bias –introduced
in the stochastic training– does not result in significantly worse inference compared to state-of-the-
art architectures. PAVI also displays the best ELBO, in conjunction with UIVI, but in a 5 times
shorter optimization time.

B.3.3 SMALL DIMENSION VERSION OF OUR NEUROIMAGING MODEL

In this experiment we validate the performance of our architecture on synthetic data generated using
a small dimension version of the model presented in eq. (B.24). To allow the use of the comparative
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Architecture ELBO (102) Optimization time (s)

CF - 11.2 (± 2.9) 500
UIVI -6.7 (± 0.8) 100

PAVI-E (ours) -6.7 (±1.0)1 90
PAVI-F (ours) - 6.7 (±0.8) 20

Table 2: Analytical performance over a Hierarchical Variance HBM In this setting with hard-
to-estimate summary statistics, PAVI-E doesn’t show any empirical bias. 1: PAVI-E suffers from
numerical instability on this example, with runs degenerating into NaN results.

Architecture ELBO (104) Optimization time (s)

CF - 139.7 (± 21) 3,200
ADAVI — —

UIVI — —
PAVI-F (ours) - 8.2 (± 0.1) 1,600

Table 3: Analytical performance over our Neuroimaging HBM This HBM is not pyramidal and
consequently cannot be processed by the ADAVI architecture. Due to the large parameter space
(approximately 2k parameters) and the complex density involved, despite intensive efforts we did
not manage to obtain a numerically stable UIVI optimization. PAVI shows superior compared to CF,
in half its optimization time.

baselines, we fixate S, Sr = 5, 3, T, T r = 6, 3, N,N r = 12, 3, D = 4, L = 7. Results are visible in
table 3: PAVI can deal with HBMs unavailable to the ADAVI architecture (Rouillard & Wassermann,
2022), and so so with a performance superior to the CF baseline (Ambrogioni et al., 2021b). Despite
intensive efforts we did not manage to obtain a numerically stable UIVI optimization. This is likely
due to the complexity of this inference problem: a large dimensionality (2k parameters) combined
with complex dependencies between RVs in the posterior. In this context, automatic structured VI
baselines such as CF or PAVI exploit the parametric form of the prior p to help with inference. PAVI’s
plate amortization likely facilitates the inference, resulting in a reduced optimization error (Bottou
& Bousquet, 2007).

B.4 EXPERIMENTAL DETAILS - ANALYTICAL EXAMPLES

All experiments were performed in Python, using the Tensorflow Probability library (Dillon et al.,
2017). Throughout this section we refer to Masked Autoregressive Flows (Papamakarios et al., 2018)
as MAF. All experiments are performed using the Adam optimizer (Kingma & Ba, 2015). At train-
ing, the ELBO was estimated using a Monte Carlo procedure with 8 samples. All architectures were
evaluated over a fixed set of 20 samples X, with 5 seeds per sample. Non-sample-amortized archi-
tectures were trained and evaluated on each of those points. Sample amortized architectures were
trained over a dataset of 20, 000 samples separate from the 20 validation samples, then evaluated
over the 20 validation samples.

B.4.1 PLATE AMORTIZATION AND CONVERGENCE SPEED (3.1)

All 3 architectures (baseline, PAVI-F, PAVI-E) used:

• for the flows Fi, a MAF with [32, 32] hidden units;

• as encoding size, 128

For the encoder f in the PAVI-E scheme, we used a multi-head architecture with 4 heads of 32 units
each, 2 ISAB blocks with 64 inducing points.
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B.4.2 IMPACT OF ENCODING SIZE (3.2)

All architectures used:

• for the flows Fi, a MAF with [32, 32] hidden units, after an affine block with triangular
scaling matrix.

• as encoding size, a value varying from 2 to 16

B.4.3 SCALING WITH PLATE CARDINALITIES (3.3)

ADAVI (Rouillard & Wassermann, 2022) we used:

• for the flows Fi, a MAF with [32, 32] hidden units, after an affine block with triangular
scaling matrix.

• for the encoder, an encoding size of 8 with a multi-head architecture with 2 heads of 4 units
each, 2 ISAB blocks with 32 inducing points.

Cascading Flows (Ambrogioni et al., 2021b) we used:

• a mean-field distribution over the auxiliary variables r
• as auxiliary size, a fixed value of 8
• as flows, Highway Flows as designed by the Cascading Flows authors

PAVI-F we used:

• for the flows Fi, a MAF with [32, 32] hidden units, after an affine block with triangular
scaling matrix.

• an encoding size of 8

PAVI-E we used:

• for the flows Fi, a MAF with [32, 32] hidden units, after an affine block with triangular
scaling matrix.

• for the encoder, an encoding size of 16 with a multi-head architecture with 2 heads of 8
units each, 2 ISAB blocks with 64 inducing points.

UIVI we used as Card(P1) = 2 → 20 → 200:

• as base distribution, a standard Gaussian with dimensionality 6 → 42 → 402

• as transform h, an affine transform with diagonal scale
• as embedding distribution, a standard Gaussian with dimensionality 3 → 6 → 9

• as transform weights regressor, a MLP with hidden units [32, 32] → [64, 64] → [128, 128]

• to sample uncorrelated samples ϵ, a HMC run with 5 burn-in steps and 5 samples
• an Adam optimizer with exponential learning rate decay, starting at 1e−2, ×0.9 every 300

steps

B.4.4 GAUSSIAN MIXTURE (B.3.1)

ADAVI (Rouillard & Wassermann, 2022) we used:

• for the flows Fi, a MAF with [32] hidden units, after an affine block with diagonal scaling
matrix.

• for the encoder, an encoding size of 16 with a multi-head architecture with 2 heads of 8
units each, 2 ISAB blocks with 8 inducing points.

Cascading Flows (Ambrogioni et al., 2021b) we used:
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• a mean-field distribution over the auxiliary variables r
• as auxiliary size, a fixed value of 16
• as flows, Highway Flows as designed by the Cascading Flows authors

PAVI-F we used:

• for the flows Fi, a MAF with [32] hidden units, after an affine block with diagonal scaling
matrix.

• an encoding size of 16
• Cardr(P1) = 5

PAVI-E we used:

• for the flows Fi, a MAF with [128, 128] hidden units, after an affine block with traingular
scaling matrix.

• for the encoder, an encoding size of 128 with a multi-head architecture with 4 heads of 32
units each, 2 ISAB blocks with 128 inducing points.

• Cardr(P1) = 5

UIVI we used:

• as base distribution, a standard Gaussian with dimensionality 82

• as transform h, an affine transform with diagonal scale
• as embedding distribution, a standard Gaussian with dimensionality 6

• as transform weights regressor, a MLP with hidden units [64, 64]
• to sample uncorrelated samples ϵ, a HMC run with 5 burn-in steps and 5 samples
• an Adam optimizer with exponential learning rate decay, starting at 1e−2, ×0.9 every 300

steps

B.4.5 HIERARCHICAL VARIANCES (B.3.2)

Cascading Flows (Ambrogioni et al., 2021b) we used:

• a mean-field distribution over the auxiliary variables r
• as auxiliary size, a fixed value of 32
• as flows, Highway Flows as designed by the Cascading Flows authors

PAVI-F we used:

• for the flows Fi, a MAF with [32, 32] hidden units, after an affine block with diagonal
scaling matrix.

• an encoding size of 32
• Cardr(P1) = 3

• Cardr(P0) = 3

PAVI-E we used:

• for the flows Fi, a MAF with [128, 128] hidden units, after an affine block with diagonal
scaling matrix.

• for the encoder, an encoding size of 128 with a multi-head architecture with 4 heads of 32
units each, 2 ISAB blocks with 128 inducing points.

• Cardr(P1) = 3

• Cardr(P0) = 3
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UIVI we used:

• as base distribution, a standard Gaussian with dimensionality 32

• as transform h, an affine transform with diagonal scale
• as embedding distribution, a standard Gaussian with dimensionality 3

• as transform weights regressor, a MLP with hidden units [64, 64]
• to sample uncorrelated samples ϵ, a HMC run with 5 burn-in steps and 5 samples
• an Adam optimizer with exponential learning rate decay, starting at 1e−2, ×0.9 every 300

steps

B.4.6 SMALL NEUROIMAGING EXAMPLE (B.3.3)

Cascading Flows (Ambrogioni et al., 2021b) we used:

• a mean-field distribution over the auxiliary variables r
• as auxiliary size, a fixed value of 32
• as flows, Highway Flows as designed by the Cascading Flows authors

PAVI-F we used:

• for the flows Fi, a MAF with [32, 32] hidden units, after an affine block with diagonal
scaling matrix.

• an combination of encoding sizes of 32 and 8

UIVI we used:

• as base distribution, a standard Gaussian with dimensionality 1, 802

• as transform h, an affine transform with diagonal scale
• as embedding distribution, a standard Gaussian with dimensionality 16

• as transform weights regressor, a MLP with hidden units [128, 256, 512, 1024]
• to sample uncorrelated samples ϵ, a HMC run with 5 burn-in steps and 5 samples
• an Adam optimizer with exponential learning rate decay, starting at 1e−3, ×0.9 every 300

steps

Optimization systematically degenerated into NaN results after around 200 optimization steps.

B.5 DETAILS ABOUT OUR NEUROIMAGING EXPERIMENT (3.4)

B.5.1 DATA DESCRIPTION

In this experiment we use data from the Human Connectome Project (HCP) dataset (Van Essen et al.,
2012). We randomly select a cohort of S = 1, 000 subjects from this dataset, each subject being
associated with T = 2 resting state fMRI sessions (Smith et al., 2013). We minimally pre-process
the signal using the nilearn python library (Abraham et al., 2014):

1. removing high variance confounds
2. detrending the data
3. band-filtering the data (0.01 to 0.1 Hz), with a repetition time of 0.74 seconds
4. spatially smoothing the data with a 4mm Full-Width at Half Maximum

For every subject, we extract the surface Blood Oxygenation Level Dependent (BOLD) signal of
N = 314 vertices corresponding to an average Broca’s area (Heim et al., 2009). We compare
this signal with the extracted signal of D = 64 DiFuMo components: a dictionary of brain spatial
maps allowing for an effective fMRI dimensionality reduction (Dadi et al., 2020). Specifically,
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we compute the one-to-one Pearson’s correlation coefficient of every vertex with every DiFuMo
component. The resulting connectome, with S subjects, T sessions, N vertices and a connectivity
signal withD dimensions, is of shape (S×T×N×D). We project this data –correlation coefficients
lying in ]−1; 1[– in an unbounded space using an inverse sigmoid function.

B.5.2 MODEL DESCRIPTION

We use a model inspired from the work of Kong et al. (2019). We hypothesize that every vertex in
Broca’s area belongs to either one of L = 2 functional networks. This functional bi-partition would
reflect the anatomical partition between pars opercularis and pars triangularis (Heim et al., 2009;
Zhang et al., 2020).

Each network is a pattern of connectivity with the brain cortex, represented as a the correlation of
the BOLD signal with the signal from the D = 64 DiFuMo components. We define L = 2 such
functional networks at the population level, that correspond to some ”average” across the cohort of
subjects. Every subject has an individual connectivity, and therefore individual L = 2 networks,
that are considered as a Gaussian perturbation of the population networks, with variance ϵ. The
connectivity of a given subject also evolves through time, giving rise to session-specific networks,
that are a Gaussian perturbation of the subject networks with variance σ. Finally, every vertex in
Broca’s area has its individual connectivity, and is a perturbation of one network’s connectivity or
the other’s. We model this last step as a Gaussian mixture distribution with variance κ. We explicitly
model the label label of a given vertex, and we consider this label constant across sessions.

The resulting model can be described as:

S, T,N,D,L = 1000, 2, 314, 64, 2

s−, s+ = −6, 0

∀l=1..L : µl ∼ Uniform(−4× 1⃗D, 4× 1⃗D)

∀l=1..L : log ϵl ∼ Uniform(s− × 1⃗D, s
+ × 1⃗D)

∀l=1..L
∀s=1..S : µl,s|µl, ϵl ∼ N (µl, ϵl)

∀l=1..L : log σl ∼ Uniform(s− × 1⃗D, s
+ × 1⃗D)

∀l=1..L
∀s=1..S
∀t=1..T

: µl,s,t|µl,s, σl ∼ N (µl,s, σl)

∀l=1..L : log κl ∼ Uniform(s− × 1⃗D, s
+ × 1⃗D)

∀s=1..S
∀n=1..N : probss,n ∼ Dirichlet(1× 1⃗L)

∀s=1..S
∀n=1..N : labels,n |probss,n ∼ Categorical(probss,n)

∀s=1..S
∀t=1..T
∀n=1..N

: Xs,t,n|[µl,s,t]l=1..L, [κl]l=1..L, labels,n ∼ N (µlabels,n,s,t, κlabels,n)

(B.24)

The model contains 4 plates: the network plate of full cardinality L (that we did not exploit in our
implementation), the subject plate of full cardinality S, the session plate of full cardinality T and
the vertex plate of full cardinality N .

Our goal is to recover the posterior distribution of the networks µ –represented as networks in
fig. 5– and the labels label –represented as the parcellation in fig. 5– given the observed connectome
described in appendix B.5.1.

B.5.3 PAVI IMPLEMENTATION

We used in this experiment the PAVI-F scheme, using:

• for the RVs µl, µl,s, µl,s,t:

– for the flows Fi, a MAF with [128, 128] hidden units, following an affine block with
diagonal scale

– for the encoding size: 128

• for the RVs ϵl, σl, κl,probss,n, labelss,n:
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– for the flows Fi, a MAF with [8, 8] hidden units, following an affine block with diag-
onal scale

– for the encoding size: 8
• for the reduced model, we used Sr = 30, T r = 1 and N r = 32.

To allow for the optimization over the discrete labels,n RV, we used the Gumbell-Softmax trick,
using a fixed temperature of 1.0 (Jang et al., 2017; Maddison et al., 2016).

C SUPPLEMENTAL DISCUSSION

C.1 PLATE AMORTIZATION AS A GENERALIZATION OF SAMPLE AMORTIZATION

In section 2.2.2 we introduced plate amortization as the application of the generic concept of amor-
tization to the granularity of plates. There is actually an even stronger connection between sample
amortization and plate amortization.

A HBM p models the distribution of a given observed RV X –jointly with the parameters Θ. Dif-
ferent samples X0,X1, ... of the model p are i.i.d. draws from the distribution p(X). p can thus be
considered as the model for ”one sample”. Consider, instead of p, a ”macro” model for the whole
population of samples one could draw from p. The observed RV of that macro model would be
the infinite collection of samples drawn from the same distribution p(X). In that light, the i.i.d.
sampling of different X values from p could be interpreted as a plate of the macro model. Thus,
we could consider sample amortization as a instance of plate amortization for the ”sample plate”.
Or equivalently: plate amortization can be seen as the generalization of amortization beyond the
particular case of sample amortization.

C.2 ALTERNATE FORMALISM FOR SVI – PAVI-E(SA) SCHEME

In this work, we propose a different formalism for SVI, based around the concept of full HBM
Mfull versus reduced HBM Mredu sharing the same template T . This formalism is helpful to set up
GPU-accelerated stochastic VI (Dillon et al., 2017), as it entitles a fixed computation graph -with
the cardinality of the reduced model Mredu- in which encodings are ”plugged in” -either sliced from
larger encoding arrays or as the output of an encoder applied to a data slice, see section 2.2.1&2.3.2.
Particularly, our formalism doesn’t entitle a control flow over models and distributions, which can
be hurtful in the context of compiled computation graphs such as in Tensorflow (Abadi et al., 2015).

The reduced model formalism is also meaningful in the PAVI-E(sa), where we train and amortized
variational posterior over Mredu and obtain ”for free” a variational posterior for the full model Mfull

–see section 2.3.2. In this context, our scheme is no longer a different take on hierarchical, batched
SVI: the cardinality of the full model is truly independent from the cardinality of the training, and is
only simulated as a scaling factor in the stochastic training –see section 2.3.1. We have the intuition
that fruitful research directions could stem from this concept.

C.3 BENEFITING FROM STRUCTURE IN INFERENCE

Our contributions can be abstracted through the concept of plate amortization -see section 2.2.2.
Plate amortization is particularly useful in the context of heavily parameterized density approxima-
tors such as normalizing flows, but is not tied to it: plate-amortized Mean Field (Blei et al., 2017),
ASVI (Ambrogioni et al., 2021a), or implicit (Yin & Zhou, 2018; Titsias & Ruiz, 2019) schemes
are also possible to use. Plate amortization can be viewed as the amortization of common density
approximators across different sub-structures of a problem. This general concept could have ap-
plications in other highly-structured problem classes such as graphs or sequences (Wu et al., 2020;
Salehinejad et al., 2018).

C.4 CONNECTION WITH META-LEARNING

In section 2.2.2 we introduced plate amortization: sharing the parameterization and learning across
a model’s plates. In this section we discuss the connection between plate amortization and meta-
learning(Ravi & Beatson, 2019; Iakovleva et al., 2020; Yao et al., 2019).
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Supervised learning can be seen as the mapping from a given context set C = {(x, y)} to a predictive
function f (Bishop, 2006) such that f(x) = y. Meta-learning –or ”learning to learn”– instead
recovers this mapping C 7→ f in the general case. Once the meta-training is completed, a predictive
function f conditioned by an unseen context C can be obtained in a single forward pass –without
any training done on C. As an instance of meta-learning, the Neural Process Family encodes the
context C via a deep set encoder (Garnelo et al., 2018; Dubois et al., 2020; Zaheer et al., 2018). The
encoded context, along with the data point x are then used to condition an estimator for the density
q(y|x, C).
This framework is similar to the PAVI-E scheme, where a combination of a deep set encoder and
a normalizing-flow-based density estimator output the posterior probability of a ground RV θi,n.
This encoder-estimator pair is repeatedly used across a plate. This is analogous to meta-learning to
solve the inference problem across the different elements of a plate –such as the different subjects
of a population study. In PAVI-E, the encoding Ei,n at a lower hierarchy play a role similar to the
context C in meta-leaning. A few differences however exist between the two frameworks:

• meta-learning is typically concatenated to the 1-plate regime, whereas PAVI is designed for
the multi-hierarchy scenario;

• meta-learning typically considers a set of i.i.d. tasks, whereas in PAVI the inference of
different ground RVs θi,n are conditionally dependent through the hierarchical model p;

• meta-learning is trained using the forward KL loss, that is to say in the sample-amortized
regime, maximizing the probability q(y) of samples from the underlying generative pro-
cess. In contrast PAVI –though possible to train using the forward KL loss– is trained via
the reverse KL, needing to explicitly evaluate the density of the generative process.

We suspect there would be interesting applications for the PAVI architecture in hierarchical meta-
learning scenarios.

C.5 CONDITIONAL DEPENDENCIES MODELLED IN THE VARIATIONAL FAMILY

The Mean-Field approximation was originally introduced in VI to facilitate computation, allowing
dedicated optimization schemes (Blei et al., 2017). Nonetheless, this approximation assumes in-
dependence between RVs in the posterior, and ultimately limits the expressivity of the variational
family. To remove this approximation, modelling complex conditional dependencies in the varia-
tional family is an open research subject (Ambrogioni et al., 2021b; Webb et al., 2018). In the PAVI
design, we inherit our statistical dependency structure from the prior distribution p, as detailed in
eq. (2). This choice of dependencies follows the line of research from Hoffman & Blei (2014) and
Ambrogioni et al. (2021a). As pointed out by Ambrogioni et al. (2021b), when modelling only those
forward dependencies, the modelling of colliders can be an issue.

In the case of a single plate –the 2-level case– Agrawal & Domke (2021) demonstrate that modelling
only the forward dependencies does not result in reduced expressivity compared to the modelling of
the full dependencies. Yet this result does not hold in the n-level case, as Webb et al. (2018) show
that faithful inversion features conditional dependencies in the posterior between ground RVs of the
same template. We can dub those dependencies as horizontal dependencies, across RVs in the same
plate. Similar to Structured SVI (Hoffman & Blei, 2014) or Automatic SSVI (Ambrogioni et al.,
2021a), the PAVI design therefore results in reduced expressivity when stacking multiple plates in
the model p. This issue can be partially alleviated with the usage of a backward encoding scheme
–going in the reverse direction compared to the prior’s dependencies– as in the PAVI-E design (see
section 2.3.2) or in Cascading Flows (Ambrogioni et al., 2021b).

In practice, though limiting our expressivity, horizontal dependencies are difficult to inject back into
our architecture. Critically, in the PAVI design, the use of a common density estimator across the
ground RVs of the same template (see section 2.2), and the stochastic training over batches of those
RVs (see section 2.3.1) prevent the direct modeling horizontal dependencies. Put differently, the
fact that we consider the inference over different ground RVs as conditionally independent inference
problems is central to our design, and adverse to the modeling of horizontal dependencies.

Injecting horizontal dependencies back into our variational family is therefore a non-trivial research
direction, that is not at the core of this paper. This opens up promising research directions: how
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could arbitrary conditional dependencies be modelled in the variational posterior in the context of
stochastic training?

C.6 TOWARDS USER-FRIENDLY VARIATIONAL INFERENCE

By re-purposing the concept of amortization at the plate level, our goal is to propose clear compu-
tation versus precision trade-offs in VI. Hyper-parameters such as the encoding size –as illustrated
in fig. 3 (right)– allow to clearly trade inference quality in exchanged for a reduced memory foot-
print. On the contrary, in classical VI, changing Q’s parametric form –for instance switching from
Gaussian to Student distributions– can have a strong and complex impact both on number of weights
and inference quality (Blei et al., 2017). By allowing the usage of normalizing flows in very large
cardinality regimes, our contribution aims at disentangling approximation power and computational
feasibility. In particular, having access to expressive density approximators for the posterior can help
experimenters diversify the proposed HBMs, removing the need of properties such as conjugacy to
obtain meaningful inference (Gelman et al., 2004). Combining clear hyper-parameters and scalable
yet universal density approximators, we tend towards a user-friendly methodology in the context of
large population studies VI.
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