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Abstract

Phage display is a powerful laboratory technique used to study the interactions
between proteins and other molecules, whether other proteins, peptides, DNA or
RNA. The underutilisation of this data in conjunction with deep learning models
for protein design may be attributed to; high experimental noise levels; the complex
nature of data pre-processing; and difficulty interpreting these experimental results.
In this work, we propose a novel approach utilising a Bayesian Neural Network
within a training loop, in order to simulate the phage display experiment and its
associated noise. Our goal is to investigate how understanding the experimental
noise and model uncertainty can enable the reliable application of such models to
reliably interpret phage display experiments. We validate our approach using actual
binding affinity measurements instead of relying solely on proxy values derived
from ‘held-out’ phage display rounds.

1 Introduction

Phage display is a high-throughput experimental technique used to screen large protein libraries
for their ability to bind to a specific target [13]][[10]. These libraries typically consist of millions of
slightly different proteins, with each protein being present in millions of copies at the start of the
experiment. The phage display experiment provides a proxy measure of binding known as selectivity,
which represents the change in sequence abundances (or frequencies) before and after the selection
process [3].

o £
s, = }N X bindingafﬁnity (l)
?

where i refers to sequence i, N to the selection step, f;" is the frequency of sequence i in the total
population at selection step N and X refers to approximately correlated as the usual phage display
selection step contains more than the selection for the designated target (see negative selection in
Figure I).

Although the results of a phage display experiment consist of pairs of integers representing the counts
of sequences before and after selection (obtained through high-throughput sequencing, an experimen-
tal set up allowing for the reading of hundreds millions of sequences at once), these numbers need to
be transformed into frequency comparisons. This transformation is necessary for two main reasons:
first, the initial counts (before the selection step) are not uniformly distributed, and second, multiple
sampling steps from those libraries occur before sequencing, making the absolute values of these
integers less informative.

Due to the inherent randomness and noise associated with the binding process (see Appendix Fig-
ure [T5), along with counting noise and multiple sampling steps involved in the experiment, it is
essential to develop a model that can accommodate these intricacies in both its architecture and
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training. This need has only recently begun to garner interest [7].

Even in recent undeniably successful research contributions, the outputs from phage display have
been in one case, only utilized to train a binder-non-binder classifier using only the results from the
final selection step [6], while an other approach has attempted to directly regress on selectivity [9].
However, we argue that this method of selectivity regression overlooks the actual structure of the
experimental setup, which relies on integers. Consequently, it likely fails to account for counting
noise. In parallel, the accessibility of deep Bayesian modelling has been increasing, largely due to the
availability of Python libraries such as PyMC3 [[12] and Pyro [2]. These libraries provide a framework
for training deep Bayesian models. Additionally, they offer ready-to-use training strategies. For
example, Pyro includes scalable Variational Inference (SVI) and simple yet effective variational dis-
tributions, like the multidimensional Gaussian with a diagonal covariance matrix. This functionality
enables exploration of models at a scale at which deep learning could be considered. Indeed when
using a diagonal Gaussian variational distribution, models with millions of parameters can be trained.
While implementing and training Bayesian deep learning models has become easier, progress on the
front of their explain-ability has also seen great advances [4]].

Here we explore how by training a Bayesian deep neural network sequence to binding probability
model within a dedicated training loop simulating the phage display selection experiment, we could
leverage both our understanding of the model uncertainty and model output to propose, with high
confidence, sequences within a known range of binding affinity.

Additionally, our model incorporates strategies for scalability regarding speed and memory manage-
ment, particularly in cases where effective diversity during selection rounds presents challenges.
Finally, since our model is validated using actual binding affinity measurements instead of selectivities
from phage display experiments, we gain valuable insights into the limitations of both the modelling
and the experiments. We have addressed these shortcomings through a series of possible model
enhancements and how we could make them work.

2 Methods

2.1 Datasets

We have access to 3 different phage display experiments performing selection on 3 different targets.
Hence we will have experiment, related to selection on target., ¢ going from 1 to 3.

All the phage display data used are round 2 and 3 of the selection process: we assume that the
rounds of selection from 1 to 2 are too noisy and will hardly reflect changes in frequency useful
for computing binding affinity proxies. Indeed, given low initial counts at round 1 and stringent
selection/sampling leading to round 2, a lot of those changes would be mostly accidental or an
example of poorly estimated selection.
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We only have access to the change in frequency due to the overall selection process which is a
convolution between a negative selection step to ensure that proteins are not selected because they
bind to something else than the target, and a positive selection step for the target. We do not have
access to data enabling a deconvolution of these two steps.

We have access to 3 "replicates" of this selection. Those are not real replicates as they differ from
each others by the concentration of target being used, yet we show in Appendix (Figure[[3)) that they
could loosely be used as such since those experiments output similar selectivities. For experiment
we also have access to technical replicates from resequencing of the rounds. All those replicates
share the same round 1 and 2. We always use the 2 highest concentrations for training and the lowest
one for validation. This makes the validation and the training set quite correlated and so we will not
place too much incentive on the difference in metrics between these 2 splits. Although it is still useful
to look at them through a qualitative lens. Finally, by choosing the lowest target concentration as
our validation, we hope to stay away as far as possible from the training set and put the model in the
hardest validation mode.

For experiment; we also have access to a test set made of sequences from experiment; as well as
sequences generated by a Bayesian Flow Network (BFN) [[1]], fine tuned on the output of the phage
display (see appendix [E), and for which actual binding affinity measurements have been performed.
We will consider this set as the appropriate way to test our models.

2.2 Model

A key strength of Bayesian modelling, which extends beyond the neural network architecture itself, is
the ability to model stochastic processes more precisely. This detailed representation is then directly
incorporated into the calculation of posterior distributions. A visual representation of our model is
provided in Figure[2} while its Bayesian representation is available in Appendix Figure [T4]

2.2.1 Sequence Pre-processing

Our dataset consists of raw protein sequences that require encoding. To this end, we used a sequence
embedder built from a protein language model. After evaluating several state-of-the-art protein
LLMs on their metric performance, inference time and memory utilization, we selected the lightest
ESM-2 transformer (8 million parameters) [11]. This model, which embeds each amino acid in a
320-dimensional vector, was chosen for its effectiveness compared to larger models, facilitating fast
and memory-efficient training.

2.2.2 Faithful Modelling of Phage Display Experiments

To closely replicate the biological experiment, our model is designed to take two inputs: the protein
sequences and their corresponding counts at step N. The model’s output is a predicted count for each
sequence after the selection process. This prediction is then compared against the ground truth count
observed at step N+1.

A key challenge is that the observed sequence counts are several orders of magnitude smaller than
the total biological population. To faithfully model the uncertainty associated with this subsampling,
our workflow involves three steps. First, we upsample the input counts from step N to the estimated
total population size. Second, we apply our selection model at this population scale. Finally, we
downsample the predicted post-selection counts to the sequencing scale to generate the final output.
Furthermore, to accurately represent the stochasticity of the subsampling process, we incorporate
a probabilistic sampling step into our model. The multinomial distribution is a natural choice for
this task, as it can model the selection of counts based on the predicted relative abundance of each
sequence.

Initial models were built using this multinomial distribution and were successfully trained on small-
scale experiments. However, the multinomial approach presents a significant computational challenge:
the inherent dependency between sequence counts requires all sequences to be processed simulta-
neously. This is computationally prohibitive for datasets with a large number of unique sequences,
leading to memory issues within the neural network. To overcome this limitation, we demonstrate
that the multinomial distribution can be effectively approximated by a set of independent Poisson
distributions. This approximation, known as the law of rare events, holds in our context of many
sequences with low individual probabilities. Adopting the Poisson approximation provides multiple
advantages: it enables mini-batch training, simplifies the model mathematically, and obviates the
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Figure 2: Phage display Poisson model. Unsequenced rate of occurrence A2 stands for the parameters
of our Poisson law at the relevant experimental population size, before downscaling to obtain the
sequenced rate of occurrence A\Y which is measured (sequenced).

need to compute relative abundances. Instead, the predicted count for each sequence directly serves
as the rate parameter AV for its respective Poisson distribution (see Appendix.

However, even with the Poisson distribution, implementing batch-based training introduces an
approximation. The normalization of the model’s output to the scale of the sequenced N+1 population
requires the total sum of predicted counts across the entire dataset. When using mini-batches, this
global sum must be estimated from the counts within the current batch. Consequently, the batch
size cannot be excessively small; a sufficiently large batch is necessary to ensure this estimation
is accurate and to maintain a training consistency comparable to the multinomial approach. The
combination of Poisson’s law and reasonable batch size not only allows for better results than the
multinomial case but also regularizes the model by leveraging the estimated total population size
confidence. A study on batch size is provided in Appendix [C}

2.2.3 Bayesian Neural Network

Our model is designed to infer the binding probability to the specified target for each sequence. These
inferred probabilities, when combined with the upsampled initial counts, provide the rate parameters
for the corresponding Poisson distributions.

Given the sequential nature and contextual information inherent in the sequence embeddings, a
Convolutional Neural Network (CNN) was selected as the core architecture. The training of Bayesian
neural networks can be unstable; therefore, balancing the number of model parameters is crucial to
prevent training collapse. CNNs provide an effective balance in this regard. In contrast, alternative
architectures like Multi-Layer Perceptrons (MLPs) were deemed less suitable, as they either perform
poorly with few parameters or fail to converge when the network is too wide or deep.

Our specific architecture, consisting of three convolutional layers with batch normalization and
average pooling, is based on the work of [3]. To further improve training stability and activate
data reconstruction, we implemented standard variational optimization techniques, including loss
scheduling and Kullback-Leibler (KL) annealing [8]. Finally, the hyper-parameters were tuned on the
smallest dataset to establish a robust baseline model that demonstrates strong performance across all
datasets. Depending on the underlying correlation within the dataset, some hyperparameters choice
can be crucial, such as changing the activation function: for instance, ReLU activation tends to be
robust, and tanh will be more sharp to activate the learning. More details about the training process
can be find in Appendix [A]
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3 Results

Quantifying the model’s performance is complex due to the highly noisy nature of the dataset, the
fact that raw counts do not directly convey the underlying biological insights, and strong correlation
between our splits. In this light, we decided to use, as a validation of our method, a Test dataset
of experimentally derived binding affinity. This dataset, hence, shares little in term of noise and
experimental set up with the phage display dataset, except that its rigorous way of measuring binding
affinity should be related to the selection process at play in the phage display experiment.

3.1 Results Table

The performance of our baseline model, with fixed hyper parameters, is reported in Table[T]

Train Valid Test
Targets | CNvs CNT Pivss; | CNvs CMT Pivss; | Kaivs | Kaivs
CON+1 Vs CON+1 Vs S; P;
¢ Cfred v ClPred
Target 1 0.41 0.62 0.50 0.41 0.57 0.42 -0.24 -0.35
Target 2 0.23 0.44 0.31 0.24 0.37 0.22 * *
Target 3 0.20 0.43 0.46 0.19 047 0.45 *

Table 1: Spearman correlation metrics for the baseline model across different datasets and targets.
The Test set evaluates generalization to a distinct but closer to ground truth experimental set up, that
is only available for target 1, as mentioned in Subsection[2.T} It is worth noting that for the test set,
the s; set is contained in the P; set as the P; set also contains generated sequences. The gain in
performance is coming from the experimental characterization of those generated sequences.

For the Train and Validation sets, each are reporting only one experiment from their set to avoid
pooling the results, and we report two key performance metrics. The first is the correlation between
the model’s predicted binding probabilities (F;) and the experimentally derived selectivities (s;).
As selectivities represent a meaningful global statistic, this metric assesses how well the model
captures underlying data properties. The second metric is the correlation between the predicted
counts (CTd) and the ground truth counts (CN*!). This directly evaluates performance on the primary
data reconstruction task and allows for a clear comparison against the null model to quantify the
benefits of our learning approach. Null model is the correlation between the counts at round N and
N+1 (CN vs CN*1), giving us insight on the strength of the selection process in the dataset, because it
underlines the change in repartition count during the round.

The Test set is used for a critical biological validation. Here, we evaluate the correlation between the
dissociation constant (K ;) and the predicted binding probability (F;). A strong negative correlation
is biologically expected, as a higher dissociation constant (lower binding affinity) should correspond
to a lower binding probability. Therefore, a more negative correlation coefficient indicates a more
biologically sound and meaningful model. All correlations are calculated using Spearman’s rank
correlation coefficient to robustly handle the non-linear relationships inherent in the data.

Our model’s reconstruction performance is significantly better than that of the null model (Table [I):
demonstrating that our model learns beyond the simple correlation of frequencies between rounds of
selection.

Our correlation with the test set represents an improvement from what is directly accessible from the
data (using selectivities, Table [T). Comparing only to sequences from the phage display experiment
(Figure [3)) we still see an improvement in our correlation (from -0.24 to -0.33) compared to using
selectivities. When looking only at generated sequences this correlation reaches -0.46, showcasing
the model ability to generalize to unseen sequences (hamming distances from seed sequences varies
between 1 to 10) (Figure[3).

3.2 Scatter plots

Analysis of the scatter plots depicted in Figure |3|reveals key insights into the model’s behaviour, par-
ticularly regarding predicted binding probabilities and experimental selectivities. The plot correlating
these two metrics is densely populated, as it aggregates data from multiple experiments .
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Figure 3: Correlation plots with the dissociation constant test set (A): Correlation with model
prediction. Error bars on predicting binding probability (y axis) are estimated errors from N samples
of the models while the actual dot markers represent the estimated mean from that same sampling.
Error bars on K are uncertainty from curve fitting. (B) : Correlation with raw Selectivities. Error
bars on selectivity are estimated from counting noise following % = \/é—N + ﬁ + O(Ch)).

Error bars on K are uncertainty from curve fitting. 95% Confidence intervals on correlation are
based on 97.5% and 2.5% percentiles of N samples of the model compared to N Gaussian samples of
the K4 values. (In our case, N = 1000).

The model struggles to correctly predict the behaviour of “super-binders” — sequences with ex-
tremely high affinity, capped by an instrument measurement floor of 10~!2. We hypothesize that
this could be explained by those sequences also exhibiting a strong affinity for the non-target base,
leading to their elimination during negative selection. This creates a conflicting signal: the strong
negative signal can effectively cancel out the positive signal, resulting in an erroneously low predicted
binding probability.

Despite this specific limitation, the overall correlation plots indicate that the model’s output is
well-structured and successfully captures specific sequence-target binding events.

3.3 Explainability (XAI)

A primary objective of this study was to identify the most influential amino acid sites for binding to a
specific target. To achieve this, we applied the method developed by [4] to our Bayesian model, which
leverages the posterior distribution to generate robust feature attributions. This approach involves
sampling multiple deterministic networks from the learned posterior, generating an explanation for
each network using an XAI method such as Integrated Gradients (see [14]), and then aggregating
these individual explanations.

An example of such an explanation is shown in Figure d These visualizations highlight the specific
residues that the model utilized for its predictions. The figure also overlays the Complementarity-
Determining Regions (CDRs) [[15], which are theoretically the primary sites of interaction. The
visualization shows that while the explanatory signal is not confined exclusively to the CDRs, they
constitute a significant portion of the attribution. Building upon the methodology proposed by
[4], we employ a quantitative evaluation framework to assess our explanations. We compute the
Area Under the Receiver Operating Characteristic (AUC-ROC) curve by sweeping an absolute
relevance threshold to gauge the overall quality of the attributions. Additionally, we calculate the
Relevance Mass Accuracy, a metric that quantifies the portion of total relevance concentrated within
the Complementarity Determining Regions (CDRs). By averaging these attribution scores across all
sequences, we can identify the sites that are globally most critical for the binding phenomenon.

3.4 Error Handling

A second objective was to predict the binding affinity of novel sequences. While the model’s pre-
dictive performance was varied, our Bayesian framework provides a distinct advantage: the ability
to quantify the uncertainty associated with each prediction. We estimate the mean and standard
deviation of any prediction by sampling multiple times from the model’s posterior distribution. The
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Figure 4: Integrated Gradient bayesian explanation of a sequence. Dash line is a visual representation
of the end of the sequence: sequences are batched at prediction time and thus need padding.
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Figure 5: Error handling possibilities within the Bayesian model. (A): Error handling based on
relative standard deviation. (B): Error handling based on AUC Mean metric

relative standard deviation serves as a normalized uncertainty metric for each prediction.

To demonstrate the relationship between model uncertainty and accuracy, we stratified the test set
into three groups (terciles) based on this uncertainty metric. The limited size of the test set prevented
stratification into more groups. A similar analysis was performed using an AUC ROC metric, which
evaluates how well the model’s explanations distinguish CDR sites from non-CDR sites. Stratifying
this metric by uncertainty provides insight into whether the model is more confident when it correctly
focuses on the CDRs. The results of these stratified analyses are presented in Figure 3]

In conclusion, this study demonstrates that by combining quantified uncertainty with model expla-
nations, we can effectively assess the reliability of individual predictions. Although the confidence
interval length remains challenging due to high intrinsic noise, our approach allows us to identify
a subset of high-confidence results. The convergence of low uncertainty scores with biologically
plausible explanations provides a strong filter for the most trustworthy predictions, offering a practical
strategy for extracting reliable insights from complex and noisy data.

4 Discussion

In most cases, phage display experiments are not designed to serve as a training dataset for deep
learning-based modelling, even though they could be used for that purpose in principle given some
slight modifications. Typically, these experiments are intended to identify interesting clones. Given
this objective, it makes sense to adjust the concentration of the target between selection rounds. The
same reasoning applies to the omission of recording negative selections.

We believe that the last point is crucial for correctly interpreting the phage display data, especially
if the goal is to train a deep learning model. This understanding might help us identify the very
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strong binders that our model overlooked (indicated by the yellow squares in Figure 3)). First, Ky
data points only account for target binding, but our binding probability accounts for both negative
and positive selection, with negative selection accounting for base binding, and positive selection
to both base and target binding. We attempted to incorporate negative selection as an additional
latent variable alongside positive selection to explain the outcomes of the phage display experiment.
However, we were unable to break the symmetry between these two latent variables (P;® and P*")
during training:

P, = ]DZ-pOS % (1 - Pineg) 2)

The results showed that our model would focus either on the positive or the negative term, and
wouldn’t separate the two phenomenons (Appendix D).

We theoretically broke the symmetry of the selection process by using a model based on the Boltzmann
law, a methodology inspired by [7]. Our architecture uses a flexible number of networks (1, 2, or 4) to
generate four latent variables that represent distinct binding modes. This has a lot of similarities with
a softmax output, that should be well fitted for our neural network. Specifically, the terms e~ =+
and e~ Fr=.i describe the binding and non-binding modes for both positive and negative selection,
respectively, with x being b for the base and ¢ for the target.

The calculation of probabilities is defined by two key equations:

» Negative Selection: This phase only considers the binding to the base, as shown in the
probability equation below.

* Positive Selection: This phase includes both the base and our target, and the probability is
thus calculated by integrating signals from all four possible modes.

e Ev,i e Eb,i 4 e~ Eti

P.neg = - PPOS -
t e Evi 4 e=Enbi’ t

e~ i + e~ Enb,i + e Lt + e~ Ent,i (€)
Increasing the number of latent variables rapidly expands the solution space, rendering it intractable
and prone to finding non-biological solutions.

Despite this added complexity, the model persistently fails to separate the positive and negative
selection signals, which we observe are deeply and intrinsically intertwined within the experimental
data, as shown in the Appendix [D| Therefore, we believe that sequencing the data right after negative
selection, or having more rounds to reduce the impact of negative selection may be the only viable
approach moving forward (see [7]). Finally, when combining different rounds of training or pooling
together entirely different experiments while conditioning our model on the target, it is crucial to
ensure that the predicted probabilities share the same scale. One way to achieve this is by incorporating
a measurement of the final population size at the end of the selection phase, by normalizing by the
sum of our model’s output.

a- CN+1
t,i
Ya € ]R, CiN+1 = ngl . % @
Zj a- Con,j

Without this constraint and in this context, since the probabilities are learned as a near multiplicative
constant in order to form a frequency, the solution state is too wide and the model’s learning could
significantly suffer.

5 Conclusion

We have trained a Bayesian Deep learning sequence to binding affinity scorer, carefully using Phage
Display data. Taking advantage of the probabilistic nature of our model as well as its interpretation,
we identified ways to maximize our chance to pick sequences with reliable binding estimates matching
actual binding affinity measurements. In its actual state, our model and strategy might miss a number
of good binders, but would rarely lead to the selection of sequences with bad binding properties. We
also discussed and explored solutions around mismatches between how Phage Display data is usually
produced and the optimal way they could be generated for model training.
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Figure 6: Loss tracking during training, with ELBO Loss decomposition
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Figure 7: Training Correlation metrics during training

A Training

The Bayesian model was trained using Stochastic Variational Inference (SVI), a scalable method
for approximating the intractable posterior distribution of the network’s weights. For this process,
we employed a multivariate Normal variational distribution as our guide, which means that each of
our weight distributions follows independent Normal laws. While we also experimented with more
complex guides that account for dependencies between weights, they did not yield better results and
came with a significant increase in computational cost.

To enhance performance and stability, the CNN architecture includes common layers such as a ReLU
activation function, BatchNorm1d for feature normalization, and AvgPoolld to drastically reduce
the latent spaces. The model has a total of 474,562 parameters. As a side note, a Bayesian model
requires two times more weights than a deterministic one, because each weight would be represented
by a mean () and a standard deviation (o), to define its normal distribution. It was optimized using
AdamW optimizer, with a cyclical annealing to enhance the ELBO loss optimization, and a learning
rate scheduling containing a warm up and then an exponential learning rate scheduler. A batch size
of 21, 000 is applied, accounting for approximately 50% of the largest experiments in the training.

As illustrated in Figure[6] the training process is monitored by tracking the value of the different
losses. The primary objective is to minimize the Evidence Lower Bound (ELBO), which can be
decomposed into two parts with different roles. The correlation value tracking during training for our
baseline model is also available in in Figure[7].
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The first component is the reconstruction loss (or data likelihood term). Its purpose is to quantify how
well the model’s predictions fit the observed data. Minimizing this term drives the model to learn
accurate representations.

The second component is the Kullback—Leibler (KL) divergence term. This acts as a regularizer by
measuring the distance between the learned posterior distribution of the weights and a simple prior
distribution. Minimizing the KL divergence prevents overfitting by ensuring that the model does not
diverge too far from its prior assumptions, thereby promoting generalization.

Often, the learning process only optimizes the KL loss, leading to an useless training. Several tech-
niques, such as annealing or regularization can help solve this problem and enable the reconstruction
learning process.

B Multinomial model to Poisson model

The initial approach to modelling sequence subsampling was based on the multinomial distribution,
as it naturally accounts for multiple outcomes from a fixed number of trials. This is depicted in
Figure [8] However, this model’s inherent dependencies among variables and its computational
complexity led to a significant bottleneck, particularly with large experiments, as this dependency
constrains a batch to contain a whole experiment.

A key observation that led to the bypass of this issue was the nature of our total count, N. As N
is extremely large and imprecise (approximately 10'), we can approximate its distribution with a
Poisson distribution, using the total count itself as the rate parameter, A. This approximation is the
foundation for a more tractable model.

This strategic choice enables a powerful mathematical transformation known as Poissonization. By
modelling the total count as a Poisson random variable, we can exactly transform the dependent
multinomial variables into a set of independent Poisson variables. This transition from a dependent
to an independent framework dramatically simplifies subsequent calculations and resolves the initial
computational bottleneck.

Proof:
LetY = (Y1,...,Y)) be a vector of counts where the total count N = Zle Y; follows a Poisson
distribution with parameter A. Given N = n, the counts follow a multinomial distribution:
n! y y
PYi=vy,....Yy =y | N=n)= ﬁpll...pkk
Yiieo Yk
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Figure 9: Empirical Equivalence of Poisson and Multinomial on Model Performance.

where > p; =land > y; = n.

The joint unconditional probability is found by combining the multinomial and the Poisson distribu-
tions:

PYi=vy,....Yis=yr)=PY1=vy1,....Ye =y [ N=n) - P(N =n)

n! e A"
_ Y1 Yk .
_yll...yk!pl P n!

1 _
= T (P M)V ... (pr\)VEe ™

Letting A; = p; A, and noting > \; = A, we can split the exponential term:

Aylefkl Ay2efA2 Ayke—kk
P(leylv"'7Yk':yk‘):< ! | )(2 | )< k ! )
Yi: Ya! Yk

This is the product of the probability mass functions of k independent Poisson distributions. Therefore,
each Y; is an independent Poisson random variable with parameter ;.

Concerning the experimental result, it was observed that the training process and the final results were
identical for both the multinomial and Poisson distribution, with the same hyper parameters. This
consistency, as shown in Figure 9] for one training experiment, provides a strong empirical validation
of our approach. The same consistency can be observed for every training and validation correlations.

C Batch size study

As shown in the upper appendix section, we enabled batch training with Poisson law. But, before the
stochastic pass, we encounter a downsampling to the N+1 sequenced population scale, which needs
the total sum of the unsequenced survivor population scale. When using stochastic mini batches,this
particular total sum is not directly accessible, so, an approximation needs to be done on this total
unsequenced count.

Several methods were tested, such as the naive approximation, which would just increase to the total
population, for instance, with randomized batch, if the randomized batch size is % of the population,
this will translate to multiplying by x to rescale to the total population which, assuming batches being
independent, would have approximately the same sum output. A second idea is to take the total sum
calculated at the precedent step with, for first value, the naive method applied. Finally, a moving
average could also be used. Empirically, when using a batch size near 50% of the largest experiment,
the naive method is really powerful. But the more batches sizes are reduced, the less powerful this
approximation is.

Results for full, half and quarter batch sizes are provided in Figure [I[0] We observed that the
asymptotic correlation of the model’s performance decreases as the batch size becomes a smaller

12
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Figure 10: Impact of batch size on model training and performance. (A): Binding Probability versus
Selectivity comparison. (B): Ground truth versus Predicted count comparison.

fraction of the total experiment size. Furthermore, a smaller batch size leads to an increased training
instability, a known effect that can also act as a form of regularization. In certain scenarios, this
regularization effect can be beneficial and enables learning.

D Multiple output model symmetry and collapse

As discussed in the paper, our work addresses two key issues with phage display data. First, the
inherent noise is handled effectively by our Bayesian approach. Second, a more fundamental
challenge arises from our sequencing protocol, which occurs only once per round. This prevents a
clear, experimental separation of negative and positive selection.

To tackle this, we explored various models, as detailed in SectionEI, featuring one or more networks
designed to output two or four logits. Theoretically, these logits should allow the model to disentangle
the two selections using only the mathematical relationships we provided.

However, a significant practical issue arises from the non-uniqueness of the solution. As illustrated by
Equation 2] a single observable probability, P;, can correspond to an infinite number of combinations
of positive and negative selection probabilities { P/°°, P;"’}. This inherent ambiguity means that
the model cannot reliably converge on a single, true biological solution.

As shown in Figure[TT] this issue leads to a wide variety of learning behaviours and final solutions
across different model runs. The figure compares three models using the naive approach and three
using the Boltzmann model. In most cases, the model "collapses" and relies predominantly on only
one of the two selection probabilities. For instance, in Figure [TTB, model 3 shows an asymptotic
correlation of zero, indicating that it exclusively uses what we termed "positive selection probability."
In practice, however, we cannot apply this name with certainty, as the model’s learned representation
may not correspond to the true biological process.

E BFN generated sequences

We fine tuned the foundational BFN model [[1] with a subset of sequences from the lowest target
concentration of experiment;round 3. Typically we only considered sequences appearing with a
count superior to 40. Then this fined tuned version of BFN was used for in painting seed sequences
from the Phage display data.

Seeds were chosen following two paths. 10 were chosen because of their low noise over signal
ratio both in our model and in term of selectivities, high expected binding affinity, while spanning
a large predicted probability of binding dynamical range, diversity of CDR3. 8 more were chosen
from previous experimental characterization, privileging here again spanning the binding affinity
dynamical range.

In painting was done following 3 different strategies:
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This has lead to roughly 1800 generated sequences from which we subsampled greedily for diversity,
predicted binding probability and predicted sequence naturalness, to end up with the sequences that
have been presented here. Here shown in the Figure[T2] the result of our model on only the BFN
data points K4, where we can see that our artificial intelligence model seems to perform better on Al
generated sequences.
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are highly correlated. (A): Scatter plot of the selectivity from Experiment 1 versus Experiment 2. (B):
Initial frequency versus selected frequency for each experiment, showing that the distributions are
quite similar. The relationship between selectivity and frequency is described in Equationm
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Figure 14: Bayesian Network of our Poisson law model. This diagram illustrates the dependencies
between the variables in our Bayesian model. The nodes represent the following: WV are the weights
of the Bayesian neural network; P; is the probability of binding for sequence i; .S; denotes the
amino acid sequence i; A is the rate parameter for sequence i at round N of the corresponding
Poisson distribution; C7V is the count for sequence i at round N; and C¥ " is the predicted count
for sequence ¢ at the next round, N + 1. The shaded nodes, .S; and CiN , are observed, while the
unshaded nodes are latent.
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Figure 15: The provided plots characterize the measurement noise for target 1 by displaying the data
versus its corresponding error on a log-log scale. The concentration of points near the identity line
reveals a consistently high relative error throughout the dataset. (A): The error in selectivity As) is
S

. . . c s . . . As i 1
estimated assuming Poisson-distributed counts, using the approximation: =% = Jor + o +

O(CY,). However, this approximation is inadequate for a large portion of the data, as over 77% of
the entries exhibit a selectivity of zero. For these points, the error is undefined, presenting a significant
challenge for modelling. (B): A similar trend of high uncertainty is observed for the dissociation
constant (K ;). Notably, "super-binders" exhibit particularly large errors. This is attributed to their
high affinity, which saturates the instrument’s detectors and caps the measurements at the limit of the
device’s dynamic range.
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