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Abstract

Phage display is a powerful laboratory technique used to study the interactions1

between proteins and other molecules, whether other proteins, peptides, DNA or2

RNA. The underutilisation of this data in conjunction with deep learning models3

for protein design may be attributed to; high experimental noise levels; the complex4

nature of data pre-processing; and difficulty interpreting these experimental results.5

In this work, we propose a novel approach utilising a Bayesian Neural Network6

within a training loop, in order to simulate the phage display experiment and its7

associated noise. Our goal is to investigate how understanding the experimental8

noise and model uncertainty can enable the reliable application of such models to9

reliably interpret phage display experiments. We validate our approach using actual10

binding affinity measurements instead of relying solely on proxy values derived11

from ‘held-out’ phage display rounds.12

1 Introduction13

Phage display is a high-throughput experimental technique used to screen large protein libraries14

for their ability to bind to a specific target [13][10]. These libraries typically consist of millions of15

slightly different proteins, with each protein being present in millions of copies at the start of the16

experiment. The phage display experiment provides a proxy measure of binding known as selectivity,17

which represents the change in sequence abundances (or frequencies) before and after the selection18

process [3].19

sNi =
fN+1
i

fN
i

∝∼ bindingaffinity (1)

where i refers to sequence i, N to the selection step, fN
i is the frequency of sequence i in the total20

population at selection step N and ∝∼ refers to approximately correlated as the usual phage display21

selection step contains more than the selection for the designated target (see negative selection in22

Figure 1).23

Although the results of a phage display experiment consist of pairs of integers representing the counts24

of sequences before and after selection (obtained through high-throughput sequencing, an experimen-25

tal set up allowing for the reading of hundreds millions of sequences at once), these numbers need to26

be transformed into frequency comparisons. This transformation is necessary for two main reasons:27

first, the initial counts (before the selection step) are not uniformly distributed, and second, multiple28

sampling steps from those libraries occur before sequencing, making the absolute values of these29

integers less informative.30

Due to the inherent randomness and noise associated with the binding process (see Appendix Fig-31

ure 15), along with counting noise and multiple sampling steps involved in the experiment, it is32

essential to develop a model that can accommodate these intricacies in both its architecture and33
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Figure 1: Schematic of a selection step in phage display.

training. This need has only recently begun to garner interest [7].34

Even in recent undeniably successful research contributions, the outputs from phage display have35

been in one case, only utilized to train a binder-non-binder classifier using only the results from the36

final selection step [6], while an other approach has attempted to directly regress on selectivity [9].37

However, we argue that this method of selectivity regression overlooks the actual structure of the38

experimental setup, which relies on integers. Consequently, it likely fails to account for counting39

noise. In parallel, the accessibility of deep Bayesian modelling has been increasing, largely due to the40

availability of Python libraries such as PyMC3 [12] and Pyro [2]. These libraries provide a framework41

for training deep Bayesian models. Additionally, they offer ready-to-use training strategies. For42

example, Pyro includes scalable Variational Inference (SVI) and simple yet effective variational dis-43

tributions, like the multidimensional Gaussian with a diagonal covariance matrix. This functionality44

enables exploration of models at a scale at which deep learning could be considered. Indeed when45

using a diagonal Gaussian variational distribution, models with millions of parameters can be trained.46

While implementing and training Bayesian deep learning models has become easier, progress on the47

front of their explain-ability has also seen great advances [4].48

Here we explore how by training a Bayesian deep neural network sequence to binding probability49

model within a dedicated training loop simulating the phage display selection experiment, we could50

leverage both our understanding of the model uncertainty and model output to propose, with high51

confidence, sequences within a known range of binding affinity.52

Additionally, our model incorporates strategies for scalability regarding speed and memory manage-53

ment, particularly in cases where effective diversity during selection rounds presents challenges.54

Finally, since our model is validated using actual binding affinity measurements instead of selectivities55

from phage display experiments, we gain valuable insights into the limitations of both the modelling56

and the experiments. We have addressed these shortcomings through a series of possible model57

enhancements and how we could make them work.58

2 Methods59

2.1 Datasets60

We have access to 3 different phage display experiments performing selection on 3 different targets.61

Hence we will have experimentc related to selection on targetc, c going from 1 to 3.62

All the phage display data used are round 2 and 3 of the selection process: we assume that the63

rounds of selection from 1 to 2 are too noisy and will hardly reflect changes in frequency useful64

for computing binding affinity proxies. Indeed, given low initial counts at round 1 and stringent65

selection/sampling leading to round 2, a lot of those changes would be mostly accidental or an66

example of poorly estimated selection.67
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We only have access to the change in frequency due to the overall selection process which is a68

convolution between a negative selection step to ensure that proteins are not selected because they69

bind to something else than the target, and a positive selection step for the target. We do not have70

access to data enabling a deconvolution of these two steps.71

We have access to 3 "replicates" of this selection. Those are not real replicates as they differ from72

each others by the concentration of target being used, yet we show in Appendix (Figure 13) that they73

could loosely be used as such since those experiments output similar selectivities. For experiment174

we also have access to technical replicates from resequencing of the rounds. All those replicates75

share the same round 1 and 2. We always use the 2 highest concentrations for training and the lowest76

one for validation. This makes the validation and the training set quite correlated and so we will not77

place too much incentive on the difference in metrics between these 2 splits. Although it is still useful78

to look at them through a qualitative lens. Finally, by choosing the lowest target concentration as79

our validation, we hope to stay away as far as possible from the training set and put the model in the80

hardest validation mode.81

For experiment1 we also have access to a test set made of sequences from experiment1 as well as82

sequences generated by a Bayesian Flow Network (BFN) [1], fine tuned on the output of the phage83

display (see appendix E), and for which actual binding affinity measurements have been performed.84

We will consider this set as the appropriate way to test our models.85

2.2 Model86

A key strength of Bayesian modelling, which extends beyond the neural network architecture itself, is87

the ability to model stochastic processes more precisely. This detailed representation is then directly88

incorporated into the calculation of posterior distributions. A visual representation of our model is89

provided in Figure 2, while its Bayesian representation is available in Appendix Figure 14.90

2.2.1 Sequence Pre-processing91

Our dataset consists of raw protein sequences that require encoding. To this end, we used a sequence92

embedder built from a protein language model. After evaluating several state-of-the-art protein93

LLMs on their metric performance, inference time and memory utilization, we selected the lightest94

ESM-2 transformer (8 million parameters) [11]. This model, which embeds each amino acid in a95

320-dimensional vector, was chosen for its effectiveness compared to larger models, facilitating fast96

and memory-efficient training.97

2.2.2 Faithful Modelling of Phage Display Experiments98

To closely replicate the biological experiment, our model is designed to take two inputs: the protein99

sequences and their corresponding counts at step N. The model’s output is a predicted count for each100

sequence after the selection process. This prediction is then compared against the ground truth count101

observed at step N+1.102

A key challenge is that the observed sequence counts are several orders of magnitude smaller than103

the total biological population. To faithfully model the uncertainty associated with this subsampling,104

our workflow involves three steps. First, we upsample the input counts from step N to the estimated105

total population size. Second, we apply our selection model at this population scale. Finally, we106

downsample the predicted post-selection counts to the sequencing scale to generate the final output.107

Furthermore, to accurately represent the stochasticity of the subsampling process, we incorporate108

a probabilistic sampling step into our model. The multinomial distribution is a natural choice for109

this task, as it can model the selection of counts based on the predicted relative abundance of each110

sequence.111

Initial models were built using this multinomial distribution and were successfully trained on small-112

scale experiments. However, the multinomial approach presents a significant computational challenge:113

the inherent dependency between sequence counts requires all sequences to be processed simulta-114

neously. This is computationally prohibitive for datasets with a large number of unique sequences,115

leading to memory issues within the neural network. To overcome this limitation, we demonstrate116

that the multinomial distribution can be effectively approximated by a set of independent Poisson117

distributions. This approximation, known as the law of rare events, holds in our context of many118

sequences with low individual probabilities. Adopting the Poisson approximation provides multiple119

advantages: it enables mini-batch training, simplifies the model mathematically, and obviates the120
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Figure 2: Phage display Poisson model. Unsequenced rate of occurrence ΛN
i stands for the parameters

of our Poisson law at the relevant experimental population size, before downscaling to obtain the
sequenced rate of occurrence λN

i which is measured (sequenced).

need to compute relative abundances. Instead, the predicted count for each sequence directly serves121

as the rate parameter λN
i for its respective Poisson distribution (see Appendix B).122

However, even with the Poisson distribution, implementing batch-based training introduces an123

approximation. The normalization of the model’s output to the scale of the sequenced N+1 population124

requires the total sum of predicted counts across the entire dataset. When using mini-batches, this125

global sum must be estimated from the counts within the current batch. Consequently, the batch126

size cannot be excessively small; a sufficiently large batch is necessary to ensure this estimation127

is accurate and to maintain a training consistency comparable to the multinomial approach. The128

combination of Poisson’s law and reasonable batch size not only allows for better results than the129

multinomial case but also regularizes the model by leveraging the estimated total population size130

confidence. A study on batch size is provided in Appendix C.131

2.2.3 Bayesian Neural Network132

Our model is designed to infer the binding probability to the specified target for each sequence. These133

inferred probabilities, when combined with the upsampled initial counts, provide the rate parameters134

for the corresponding Poisson distributions.135

Given the sequential nature and contextual information inherent in the sequence embeddings, a136

Convolutional Neural Network (CNN) was selected as the core architecture. The training of Bayesian137

neural networks can be unstable; therefore, balancing the number of model parameters is crucial to138

prevent training collapse. CNNs provide an effective balance in this regard. In contrast, alternative139

architectures like Multi-Layer Perceptrons (MLPs) were deemed less suitable, as they either perform140

poorly with few parameters or fail to converge when the network is too wide or deep.141

Our specific architecture, consisting of three convolutional layers with batch normalization and142

average pooling, is based on the work of [5]. To further improve training stability and activate143

data reconstruction, we implemented standard variational optimization techniques, including loss144

scheduling and Kullback-Leibler (KL) annealing [8]. Finally, the hyper-parameters were tuned on the145

smallest dataset to establish a robust baseline model that demonstrates strong performance across all146

datasets. Depending on the underlying correlation within the dataset, some hyperparameters choice147

can be crucial, such as changing the activation function: for instance, ReLU activation tends to be148

robust, and tanh will be more sharp to activate the learning. More details about the training process149

can be find in Appendix A.150
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3 Results151

Quantifying the model’s performance is complex due to the highly noisy nature of the dataset, the152

fact that raw counts do not directly convey the underlying biological insights, and strong correlation153

between our splits. In this light, we decided to use, as a validation of our method, a Test dataset154

of experimentally derived binding affinity. This dataset, hence, shares little in term of noise and155

experimental set up with the phage display dataset, except that its rigorous way of measuring binding156

affinity should be related to the selection process at play in the phage display experiment.157

3.1 Results Table158

The performance of our baseline model, with fixed hyper parameters, is reported in Table 1.159

Train Valid Test
Targets CN

i vs
CN+1

i

CN+1
i
vs

CPred
i

Pi vs si CN
i vs

CN+1
i

CN+1
i
vs

CPred
i

Pi vs si Kd,i vs
si

Kd,i vs
Pi

Target 1 0.41 0.62 0.50 0.41 0.57 0.42 -0.24 -0.35
Target 2 0.23 0.44 0.31 0.24 0.37 0.22 * *
Target 3 0.20 0.43 0.46 0.19 0.47 0.45 * *

Table 1: Spearman correlation metrics for the baseline model across different datasets and targets.
The Test set evaluates generalization to a distinct but closer to ground truth experimental set up, that
is only available for target 1, as mentioned in Subsection 2.1. It is worth noting that for the test set,
the si set is contained in the Pi set as the Pi set also contains generated sequences. The gain in
performance is coming from the experimental characterization of those generated sequences.

For the Train and Validation sets, each are reporting only one experiment from their set to avoid160

pooling the results, and we report two key performance metrics. The first is the correlation between161

the model’s predicted binding probabilities (Pi) and the experimentally derived selectivities (si).162

As selectivities represent a meaningful global statistic, this metric assesses how well the model163

captures underlying data properties. The second metric is the correlation between the predicted164

counts (CPred
i ) and the ground truth counts (CN+1

i ). This directly evaluates performance on the primary165

data reconstruction task and allows for a clear comparison against the null model to quantify the166

benefits of our learning approach. Null model is the correlation between the counts at round N and167

N+1 (CN
i vs CN+1

i ), giving us insight on the strength of the selection process in the dataset, because it168

underlines the change in repartition count during the round.169

The Test set is used for a critical biological validation. Here, we evaluate the correlation between the170

dissociation constant (Kd,i) and the predicted binding probability (Pi). A strong negative correlation171

is biologically expected, as a higher dissociation constant (lower binding affinity) should correspond172

to a lower binding probability. Therefore, a more negative correlation coefficient indicates a more173

biologically sound and meaningful model. All correlations are calculated using Spearman’s rank174

correlation coefficient to robustly handle the non-linear relationships inherent in the data.175

Our model’s reconstruction performance is significantly better than that of the null model (Table 1):176

demonstrating that our model learns beyond the simple correlation of frequencies between rounds of177

selection.178

Our correlation with the test set represents an improvement from what is directly accessible from the179

data (using selectivities, Table 1). Comparing only to sequences from the phage display experiment180

(Figure 3) we still see an improvement in our correlation (from -0.24 to -0.33) compared to using181

selectivities. When looking only at generated sequences this correlation reaches -0.46, showcasing182

the model ability to generalize to unseen sequences (hamming distances from seed sequences varies183

between 1 to 10) (Figure 3).184

3.2 Scatter plots185

Analysis of the scatter plots depicted in Figure 3 reveals key insights into the model’s behaviour, par-186

ticularly regarding predicted binding probabilities and experimental selectivities. The plot correlating187

these two metrics is densely populated, as it aggregates data from multiple experiments .188
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Figure 3: Correlation plots with the dissociation constant test set (A): Correlation with model
prediction. Error bars on predicting binding probability (y axis) are estimated errors from N samples
of the models while the actual dot markers represent the estimated mean from that same sampling.
Error bars on Kd are uncertainty from curve fitting. (B) : Correlation with raw Selectivities. Error
bars on selectivity are estimated from counting noise following ∆s

s = 1√
CN

i

+ 1√
CN+1

i

+O(CN
tot).

Error bars on Kd are uncertainty from curve fitting. 95% Confidence intervals on correlation are
based on 97.5% and 2.5% percentiles of N samples of the model compared to N Gaussian samples of
the Kd values. (In our case, N = 1000).

The model struggles to correctly predict the behaviour of “super-binders” — sequences with ex-189

tremely high affinity, capped by an instrument measurement floor of 10−12. We hypothesize that190

this could be explained by those sequences also exhibiting a strong affinity for the non-target base,191

leading to their elimination during negative selection. This creates a conflicting signal: the strong192

negative signal can effectively cancel out the positive signal, resulting in an erroneously low predicted193

binding probability.194

Despite this specific limitation, the overall correlation plots indicate that the model’s output is195

well-structured and successfully captures specific sequence-target binding events.196

3.3 Explainability (XAI)197

A primary objective of this study was to identify the most influential amino acid sites for binding to a198

specific target. To achieve this, we applied the method developed by [4] to our Bayesian model, which199

leverages the posterior distribution to generate robust feature attributions. This approach involves200

sampling multiple deterministic networks from the learned posterior, generating an explanation for201

each network using an XAI method such as Integrated Gradients (see [14]), and then aggregating202

these individual explanations.203

An example of such an explanation is shown in Figure 4. These visualizations highlight the specific204

residues that the model utilized for its predictions. The figure also overlays the Complementarity-205

Determining Regions (CDRs) [15], which are theoretically the primary sites of interaction. The206

visualization shows that while the explanatory signal is not confined exclusively to the CDRs, they207

constitute a significant portion of the attribution. Building upon the methodology proposed by208

[4], we employ a quantitative evaluation framework to assess our explanations. We compute the209

Area Under the Receiver Operating Characteristic (AUC-ROC) curve by sweeping an absolute210

relevance threshold to gauge the overall quality of the attributions. Additionally, we calculate the211

Relevance Mass Accuracy, a metric that quantifies the portion of total relevance concentrated within212

the Complementarity Determining Regions (CDRs). By averaging these attribution scores across all213

sequences, we can identify the sites that are globally most critical for the binding phenomenon.214

3.4 Error Handling215

A second objective was to predict the binding affinity of novel sequences. While the model’s pre-216

dictive performance was varied, our Bayesian framework provides a distinct advantage: the ability217

to quantify the uncertainty associated with each prediction. We estimate the mean and standard218

deviation of any prediction by sampling multiple times from the model’s posterior distribution. The219
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Figure 4: Integrated Gradient bayesian explanation of a sequence. Dash line is a visual representation
of the end of the sequence: sequences are batched at prediction time and thus need padding.

Figure 5: Error handling possibilities within the Bayesian model. (A): Error handling based on
relative standard deviation. (B): Error handling based on AUC Mean metric

relative standard deviation serves as a normalized uncertainty metric for each prediction.220

To demonstrate the relationship between model uncertainty and accuracy, we stratified the test set221

into three groups (terciles) based on this uncertainty metric. The limited size of the test set prevented222

stratification into more groups. A similar analysis was performed using an AUC ROC metric, which223

evaluates how well the model’s explanations distinguish CDR sites from non-CDR sites. Stratifying224

this metric by uncertainty provides insight into whether the model is more confident when it correctly225

focuses on the CDRs. The results of these stratified analyses are presented in Figure 5.226

In conclusion, this study demonstrates that by combining quantified uncertainty with model expla-227

nations, we can effectively assess the reliability of individual predictions. Although the confidence228

interval length remains challenging due to high intrinsic noise, our approach allows us to identify229

a subset of high-confidence results. The convergence of low uncertainty scores with biologically230

plausible explanations provides a strong filter for the most trustworthy predictions, offering a practical231

strategy for extracting reliable insights from complex and noisy data.232

4 Discussion233

In most cases, phage display experiments are not designed to serve as a training dataset for deep234

learning-based modelling, even though they could be used for that purpose in principle given some235

slight modifications. Typically, these experiments are intended to identify interesting clones. Given236

this objective, it makes sense to adjust the concentration of the target between selection rounds. The237

same reasoning applies to the omission of recording negative selections.238

We believe that the last point is crucial for correctly interpreting the phage display data, especially239

if the goal is to train a deep learning model. This understanding might help us identify the very240
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strong binders that our model overlooked (indicated by the yellow squares in Figure 3). First, Kd241

data points only account for target binding, but our binding probability accounts for both negative242

and positive selection, with negative selection accounting for base binding, and positive selection243

to both base and target binding. We attempted to incorporate negative selection as an additional244

latent variable alongside positive selection to explain the outcomes of the phage display experiment.245

However, we were unable to break the symmetry between these two latent variables (P neg
i and P pos

i )246

during training:247

Pi = P pos
i × (1− P neg

i ) (2)

The results showed that our model would focus either on the positive or the negative term, and248

wouldn’t separate the two phenomenons (Appendix D).249

We theoretically broke the symmetry of the selection process by using a model based on the Boltzmann250

law, a methodology inspired by [7]. Our architecture uses a flexible number of networks (1, 2, or 4) to251

generate four latent variables that represent distinct binding modes. This has a lot of similarities with252

a softmax output, that should be well fitted for our neural network. Specifically, the terms e−Ex,i253

and e−Enx,i describe the binding and non-binding modes for both positive and negative selection,254

respectively, with x being b for the base and t for the target.255

The calculation of probabilities is defined by two key equations:256

• Negative Selection: This phase only considers the binding to the base, as shown in the257

probability equation below.258

• Positive Selection: This phase includes both the base and our target, and the probability is259

thus calculated by integrating signals from all four possible modes.260

P neg
i =

e−Eb,i

e−Eb,i + e−Enb,i
, P pos

i =
e−Eb,i + e−Et,i

e−Eb,i + e−Enb,i + e−Et,i + e−Ent,i
(3)

Increasing the number of latent variables rapidly expands the solution space, rendering it intractable261

and prone to finding non-biological solutions.262

Despite this added complexity, the model persistently fails to separate the positive and negative263

selection signals, which we observe are deeply and intrinsically intertwined within the experimental264

data, as shown in the Appendix D. Therefore, we believe that sequencing the data right after negative265

selection, or having more rounds to reduce the impact of negative selection may be the only viable266

approach moving forward (see [7]). Finally, when combining different rounds of training or pooling267

together entirely different experiments while conditioning our model on the target, it is crucial to268

ensure that the predicted probabilities share the same scale. One way to achieve this is by incorporating269

a measurement of the final population size at the end of the selection phase, by normalizing by the270

sum of our model’s output.271

∀a ∈ R, CN+1
i = CN+1

tot,i ·
a · CN+1

out,i∑
j a · CN+1

out,j

(4)

Without this constraint and in this context, since the probabilities are learned as a near multiplicative272

constant in order to form a frequency, the solution state is too wide and the model’s learning could273

significantly suffer.274

5 Conclusion275

We have trained a Bayesian Deep learning sequence to binding affinity scorer, carefully using Phage276

Display data. Taking advantage of the probabilistic nature of our model as well as its interpretation,277

we identified ways to maximize our chance to pick sequences with reliable binding estimates matching278

actual binding affinity measurements. In its actual state, our model and strategy might miss a number279

of good binders, but would rarely lead to the selection of sequences with bad binding properties. We280

also discussed and explored solutions around mismatches between how Phage Display data is usually281

produced and the optimal way they could be generated for model training.282
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Figure 6: Loss tracking during training, with ELBO Loss decomposition

Figure 7: Training Correlation metrics during training

A Training332

The Bayesian model was trained using Stochastic Variational Inference (SVI), a scalable method333

for approximating the intractable posterior distribution of the network’s weights. For this process,334

we employed a multivariate Normal variational distribution as our guide, which means that each of335

our weight distributions follows independent Normal laws. While we also experimented with more336

complex guides that account for dependencies between weights, they did not yield better results and337

came with a significant increase in computational cost.338

To enhance performance and stability, the CNN architecture includes common layers such as a ReLU339

activation function, BatchNorm1d for feature normalization, and AvgPool1d to drastically reduce340

the latent spaces. The model has a total of 474,562 parameters. As a side note, a Bayesian model341

requires two times more weights than a deterministic one, because each weight would be represented342

by a mean (µ) and a standard deviation (σ), to define its normal distribution. It was optimized using343

AdamW optimizer, with a cyclical annealing to enhance the ELBO loss optimization, and a learning344

rate scheduling containing a warm up and then an exponential learning rate scheduler. A batch size345

of 21, 000 is applied, accounting for approximately 50% of the largest experiments in the training.346

As illustrated in Figure 6, the training process is monitored by tracking the value of the different347

losses. The primary objective is to minimize the Evidence Lower Bound (ELBO), which can be348

decomposed into two parts with different roles. The correlation value tracking during training for our349

baseline model is also available in in Figure 7 .350
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Figure 8: Phage display Multinomial model

The first component is the reconstruction loss (or data likelihood term). Its purpose is to quantify how351

well the model’s predictions fit the observed data. Minimizing this term drives the model to learn352

accurate representations.353

The second component is the Kullback–Leibler (KL) divergence term. This acts as a regularizer by354

measuring the distance between the learned posterior distribution of the weights and a simple prior355

distribution. Minimizing the KL divergence prevents overfitting by ensuring that the model does not356

diverge too far from its prior assumptions, thereby promoting generalization.357

Often, the learning process only optimizes the KL loss, leading to an useless training. Several tech-358

niques, such as annealing or regularization can help solve this problem and enable the reconstruction359

learning process.360

B Multinomial model to Poisson model361

The initial approach to modelling sequence subsampling was based on the multinomial distribution,362

as it naturally accounts for multiple outcomes from a fixed number of trials. This is depicted in363

Figure 8. However, this model’s inherent dependencies among variables and its computational364

complexity led to a significant bottleneck, particularly with large experiments, as this dependency365

constrains a batch to contain a whole experiment.366

A key observation that led to the bypass of this issue was the nature of our total count, N . As N367

is extremely large and imprecise (approximately 1013), we can approximate its distribution with a368

Poisson distribution, using the total count itself as the rate parameter, λ. This approximation is the369

foundation for a more tractable model.370

This strategic choice enables a powerful mathematical transformation known as Poissonization. By371

modelling the total count as a Poisson random variable, we can exactly transform the dependent372

multinomial variables into a set of independent Poisson variables. This transition from a dependent373

to an independent framework dramatically simplifies subsequent calculations and resolves the initial374

computational bottleneck.375

Proof:376

Let Y = (Y1, . . . , Yk) be a vector of counts where the total count N =
∑k

i=1 Yi follows a Poisson
distribution with parameter λ. Given N = n, the counts follow a multinomial distribution:

P (Y1 = y1, . . . , Yk = yk | N = n) =
n!

y1! . . . yk!
py1

1 . . . pyk

k
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Figure 9: Empirical Equivalence of Poisson and Multinomial on Model Performance.

where
∑

pi = 1 and
∑

yi = n.377

The joint unconditional probability is found by combining the multinomial and the Poisson distribu-378

tions:379

P (Y1 = y1, . . . , Yk = yk) = P (Y1 = y1, . . . , Yk = yk | N = n) · P (N = n)

=
n!

y1! . . . yk!
py1

1 . . . pyk

k · e
−λλn

n!

=
1

y1! . . . yk!
(p1λ)

y1 . . . (pkλ)
yke−λ

Letting λi = piλ, and noting
∑

λi = λ, we can split the exponential term:

P (Y1 = y1, . . . , Yk = yk) =

(
λy1

1 e−λ1

y1!

)(
λy2

2 e−λ2

y2!

)
. . .

(
λyk

k e−λk

yk!

)
This is the product of the probability mass functions of k independent Poisson distributions. Therefore,380

each Yi is an independent Poisson random variable with parameter λi.381

Concerning the experimental result, it was observed that the training process and the final results were382

identical for both the multinomial and Poisson distribution, with the same hyper parameters. This383

consistency, as shown in Figure 9 for one training experiment, provides a strong empirical validation384

of our approach. The same consistency can be observed for every training and validation correlations.385

C Batch size study386

As shown in the upper appendix section, we enabled batch training with Poisson law. But, before the387

stochastic pass, we encounter a downsampling to the N+1 sequenced population scale, which needs388

the total sum of the unsequenced survivor population scale. When using stochastic mini batches,this389

particular total sum is not directly accessible, so, an approximation needs to be done on this total390

unsequenced count.391

Several methods were tested, such as the naive approximation, which would just increase to the total392

population, for instance, with randomized batch, if the randomized batch size is 1
x of the population,393

this will translate to multiplying by x to rescale to the total population which, assuming batches being394

independent, would have approximately the same sum output. A second idea is to take the total sum395

calculated at the precedent step with, for first value, the naive method applied. Finally, a moving396

average could also be used. Empirically, when using a batch size near 50% of the largest experiment,397

the naive method is really powerful. But the more batches sizes are reduced, the less powerful this398

approximation is.399

Results for full, half and quarter batch sizes are provided in Figure 10. We observed that the400

asymptotic correlation of the model’s performance decreases as the batch size becomes a smaller401
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Figure 10: Impact of batch size on model training and performance. (A): Binding Probability versus
Selectivity comparison. (B): Ground truth versus Predicted count comparison.

fraction of the total experiment size. Furthermore, a smaller batch size leads to an increased training402

instability, a known effect that can also act as a form of regularization. In certain scenarios, this403

regularization effect can be beneficial and enables learning.404

D Multiple output model symmetry and collapse405

As discussed in the paper, our work addresses two key issues with phage display data. First, the406

inherent noise is handled effectively by our Bayesian approach. Second, a more fundamental407

challenge arises from our sequencing protocol, which occurs only once per round. This prevents a408

clear, experimental separation of negative and positive selection.409

To tackle this, we explored various models, as detailed in Section 4, featuring one or more networks410

designed to output two or four logits. Theoretically, these logits should allow the model to disentangle411

the two selections using only the mathematical relationships we provided.412

However, a significant practical issue arises from the non-uniqueness of the solution. As illustrated by413

Equation 2, a single observable probability, Pi, can correspond to an infinite number of combinations414

of positive and negative selection probabilities {P pos
i , Pneg

i }. This inherent ambiguity means that415

the model cannot reliably converge on a single, true biological solution.416

As shown in Figure 11, this issue leads to a wide variety of learning behaviours and final solutions417

across different model runs. The figure compares three models using the naive approach and three418

using the Boltzmann model. In most cases, the model "collapses" and relies predominantly on only419

one of the two selection probabilities. For instance, in Figure 11B, model 3 shows an asymptotic420

correlation of zero, indicating that it exclusively uses what we termed "positive selection probability."421

In practice, however, we cannot apply this name with certainty, as the model’s learned representation422

may not correspond to the true biological process.423

E BFN generated sequences424

We fine tuned the foundational BFN model [1] with a subset of sequences from the lowest target425

concentration of experiment1round 3. Typically we only considered sequences appearing with a426

count superior to 40. Then this fined tuned version of BFN was used for in painting seed sequences427

from the Phage display data.428

Seeds were chosen following two paths. 10 were chosen because of their low noise over signal429

ratio both in our model and in term of selectivities, high expected binding affinity, while spanning430

a large predicted probability of binding dynamical range, diversity of CDR3. 8 more were chosen431

from previous experimental characterization, privileging here again spanning the binding affinity432

dynamical range.433

In painting was done following 3 different strategies:434
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Figure 11: Model Comparison with different Selection Separation and hyper parameters, such as the
number of parameters or number of networks. (A): Positive binding probability for naive models.
(B): Negative binding probability for naive models. (C): Positive binding probability for Boltzmann
models. (D): Negative binding probability for Boltzmann models.

• only CDR3435

• all CDRs436

• all CDRS and framework 3437

This has lead to roughly 1800 generated sequences from which we subsampled greedily for diversity,438

predicted binding probability and predicted sequence naturalness, to end up with the sequences that439

have been presented here. Here shown in the Figure 12, the result of our model on only the BFN440

data points Kd, where we can see that our artificial intelligence model seems to perform better on AI441

generated sequences.442
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Figure 12: Correlation plot for the dissociation constant test set, using only the BFN values

Figure 13: Correlations across the different experiments for target 1. The data shows the experiments
are highly correlated. (A): Scatter plot of the selectivity from Experiment 1 versus Experiment 2. (B):
Initial frequency versus selected frequency for each experiment, showing that the distributions are
quite similar. The relationship between selectivity and frequency is described in Equation 1.
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Figure 14: Bayesian Network of our Poisson law model. This diagram illustrates the dependencies
between the variables in our Bayesian model. The nodes represent the following: W are the weights
of the Bayesian neural network; Pi is the probability of binding for sequence i; Si denotes the
amino acid sequence i; λN

i is the rate parameter for sequence i at round N of the corresponding
Poisson distribution; CN

i is the count for sequence i at round N ; and CN+1
i is the predicted count

for sequence i at the next round, N + 1. The shaded nodes, Si and CN
i , are observed, while the

unshaded nodes are latent.

Figure 15: The provided plots characterize the measurement noise for target 1 by displaying the data
versus its corresponding error on a log-log scale. The concentration of points near the identity line
reveals a consistently high relative error throughout the dataset. (A): The error in selectivity ∆s) is
estimated assuming Poisson-distributed counts, using the approximation: ∆s

s = 1√
CN

i

+ 1√
CN+1

i

+

O(CN
tot). However, this approximation is inadequate for a large portion of the data, as over 77% of

the entries exhibit a selectivity of zero. For these points, the error is undefined, presenting a significant
challenge for modelling. (B): A similar trend of high uncertainty is observed for the dissociation
constant (Kd). Notably, "super-binders" exhibit particularly large errors. This is attributed to their
high affinity, which saturates the instrument’s detectors and caps the measurements at the limit of the
device’s dynamic range.
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