
Bayes-PD: Exploring a Sequence to Binding Bayesian Neural Network model trained on Phage Display data

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Phage display is a powerful laboratory technique used to study the interactions
2 between proteins and other molecules, whether other proteins, peptides, DNA or
3 RNA. The underutilisation of this data in conjunction with deep learning models
4 for protein design may be attributed to; high experimental noise levels; the complex
5 nature of data pre-processing; and difficulty interpreting these experimental results.
6 In this work, we propose a novel approach utilising a Bayesian Neural Network
7 within a training loop, in order to simulate the phage display experiment and its
8 associated noise. Our goal is to investigate how understanding the experimental
9 noise and model uncertainty can enable the reliable application of such models to
10 reliably interpret phage display experiments. We validate our approach using actual
11 binding affinity measurements instead of relying solely on proxy values derived
12 from ‘held-out’ phage display rounds.

13 1 Introduction

14 Phage display is a high-throughput experimental technique used to screen large protein libraries
15 for their ability to bind to a specific target [13][10]. These libraries typically consist of millions of
16 slightly different proteins, with each protein being present in millions of copies at the start of the
17 experiment. The phage display experiment provides a proxy measure of binding known as selectivity,
18 which represents the change in sequence abundances (or frequencies) before and after the selection
19 process [3].

$$s_i^N = \frac{f_i^{N+1}}{f_i^N} \propto \text{binding affinity} \quad (1)$$

20 where i refers to sequence i , N to the selection step, f_i^N is the frequency of sequence i in the total
21 population at selection step N and \propto refers to approximately correlated as the usual phage display
22 selection step contains more than the selection for the designated target (see negative selection in
23 Figure 1).

24 Although the results of a phage display experiment consist of pairs of integers representing the counts
25 of sequences before and after selection (obtained through high-throughput sequencing, an experimen-
26 tal set up allowing for the reading of hundreds millions of sequences at once), these numbers need to
27 be transformed into frequency comparisons. This transformation is necessary for two main reasons:
28 first, the initial counts (before the selection step) are not uniformly distributed, and second, multiple
29 sampling steps from those libraries occur before sequencing, making the absolute values of these
30 integers less informative.

31 Due to the inherent randomness and noise associated with the binding process (see Appendix Fig-
32 ure 15), along with counting noise and multiple sampling steps involved in the experiment, it is
33 essential to develop a model that can accommodate these intricacies in both its architecture and

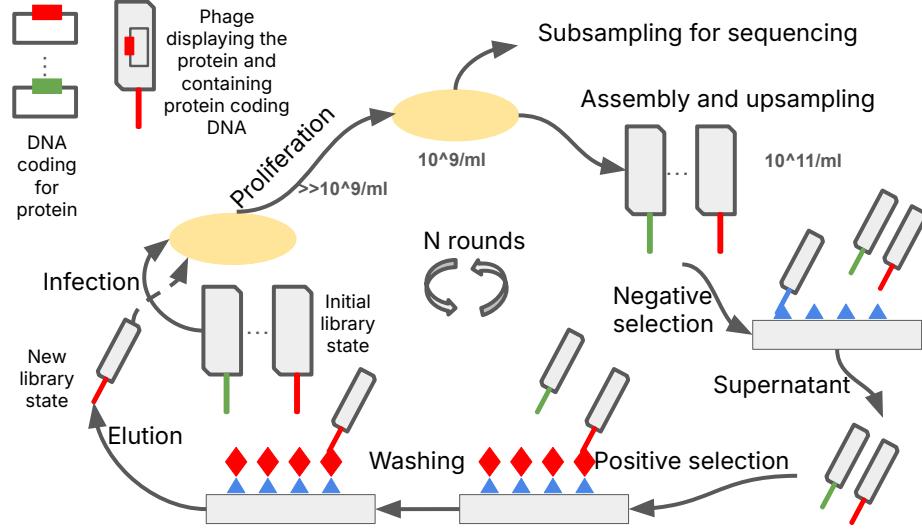


Figure 1: Schematic of a selection step in phage display.

34 training. This need has only recently begun to garner interest [7].
 35 Even in recent undeniably successful research contributions, the outputs from phage display have
 36 been in one case, only utilized to train a binder-non-binder classifier using only the results from the
 37 final selection step [6], while another approach has attempted to directly regress on selectivity [9].
 38 However, we argue that this method of selectivity regression overlooks the actual structure of the
 39 experimental setup, which relies on integers. Consequently, it likely fails to account for counting
 40 noise. In parallel, the accessibility of deep Bayesian modelling has been increasing, largely due to the
 41 availability of Python libraries such as PyMC3 [12] and Pyro [2]. These libraries provide a framework
 42 for training deep Bayesian models. Additionally, they offer ready-to-use training strategies. For
 43 example, Pyro includes scalable Variational Inference (SVI) and simple yet effective variational dis-
 44 tributions, like the multidimensional Gaussian with a diagonal covariance matrix. This functionality
 45 enables exploration of models at a scale at which deep learning could be considered. Indeed when
 46 using a diagonal Gaussian variational distribution, models with millions of parameters can be trained.
 47 While implementing and training Bayesian deep learning models has become easier, progress on the
 48 front of their explainability has also seen great advances [4].
 49 Here we explore how by training a Bayesian deep neural network sequence to binding probability
 50 model within a dedicated training loop simulating the phage display selection experiment, we could
 51 leverage both our understanding of the model uncertainty and model output to propose, with high
 52 confidence, sequences within a known range of binding affinity.
 53 Additionally, our model incorporates strategies for scalability regarding speed and memory manage-
 54 ment, particularly in cases where effective diversity during selection rounds presents challenges.
 55 Finally, since our model is validated using actual binding affinity measurements instead of selectivities
 56 from phage display experiments, we gain valuable insights into the limitations of both the modelling
 57 and the experiments. We have addressed these shortcomings through a series of possible model
 58 enhancements and how we could make them work.

59 2 Methods

60 2.1 Datasets

61 We have access to 3 different phage display experiments performing selection on 3 different targets.
 62 Hence we will have experiment_c related to selection on target_c, *c* going from 1 to 3.
 63 All the phage display data used are round 2 and 3 of the selection process: we assume that the
 64 rounds of selection from 1 to 2 are too noisy and will hardly reflect changes in frequency useful
 65 for computing binding affinity proxies. Indeed, given low initial counts at round 1 and stringent
 66 selection/sampling leading to round 2, a lot of those changes would be mostly accidental or an
 67 example of poorly estimated selection.

68 We only have access to the change in frequency due to the overall selection process which is a
69 convolution between a negative selection step to ensure that proteins are not selected because they
70 bind to something else than the target, and a positive selection step for the target. We do not have
71 access to data enabling a deconvolution of these two steps.
72 We have access to 3 "replicates" of this selection. Those are not real replicates as they differ from
73 each others by the concentration of target being used, yet we show in Appendix (Figure 13) that they
74 could loosely be used as such since those experiments output similar selectivities. For experiment₁
75 we also have access to technical replicates from resequencing of the rounds. All those replicates
76 share the same round 1 and 2. We always use the 2 highest concentrations for training and the lowest
77 one for validation. This makes the validation and the training set quite correlated and so we will not
78 place too much incentive on the difference in metrics between these 2 splits. Although it is still useful
79 to look at them through a qualitative lens. Finally, by choosing the lowest target concentration as
80 our validation, we hope to stay away as far as possible from the training set and put the model in the
81 hardest validation mode.
82 For experiment₁ we also have access to a test set made of sequences from experiment₁ as well as
83 sequences generated by a Bayesian Flow Network (BFN) [1], fine tuned on the output of the phage
84 display (see appendix E), and for which actual binding affinity measurements have been performed.
85 We will consider this set as the appropriate way to test our models.

86 **2.2 Model**

87 A key strength of Bayesian modelling, which extends beyond the neural network architecture itself, is
88 the ability to model stochastic processes more precisely. This detailed representation is then directly
89 incorporated into the calculation of posterior distributions. A visual representation of our model is
90 provided in Figure 2, while its Bayesian representation is available in Appendix Figure 14.

91 **2.2.1 Sequence Pre-processing**

92 Our dataset consists of raw protein sequences that require encoding. To this end, we used a sequence
93 embedder built from a protein language model. After evaluating several state-of-the-art protein
94 LLMs on their metric performance, inference time and memory utilization, we selected the lightest
95 ESM-2 transformer (8 million parameters) [11]. This model, which embeds each amino acid in a
96 320-dimensional vector, was chosen for its effectiveness compared to larger models, facilitating fast
97 and memory-efficient training.

98 **2.2.2 Faithful Modelling of Phage Display Experiments**

99 To closely replicate the biological experiment, our model is designed to take two inputs: the protein
100 sequences and their corresponding counts at step N. The model's output is a predicted count for each
101 sequence after the selection process. This prediction is then compared against the ground truth count
102 observed at step N+1.

103 A key challenge is that the observed sequence counts are several orders of magnitude smaller than
104 the total biological population. To faithfully model the uncertainty associated with this subsampling,
105 our workflow involves three steps. First, we upsample the input counts from step N to the estimated
106 total population size. Second, we apply our selection model at this population scale. Finally, we
107 downsample the predicted post-selection counts to the sequencing scale to generate the final output.
108 Furthermore, to accurately represent the stochasticity of the subsampling process, we incorporate
109 a probabilistic sampling step into our model. The multinomial distribution is a natural choice for
110 this task, as it can model the selection of counts based on the predicted relative abundance of each
111 sequence.

112 Initial models were built using this multinomial distribution and were successfully trained on small-
113 scale experiments. However, the multinomial approach presents a significant computational challenge:
114 the inherent dependency between sequence counts requires all sequences to be processed simulta-
115 neously. This is computationally prohibitive for datasets with a large number of unique sequences,
116 leading to memory issues within the neural network. To overcome this limitation, we demonstrate
117 that the multinomial distribution can be effectively approximated by a set of independent Poisson
118 distributions. This approximation, known as the law of rare events, holds in our context of many
119 sequences with low individual probabilities. Adopting the Poisson approximation provides multiple
120 advantages: it enables mini-batch training, simplifies the model mathematically, and obviates the

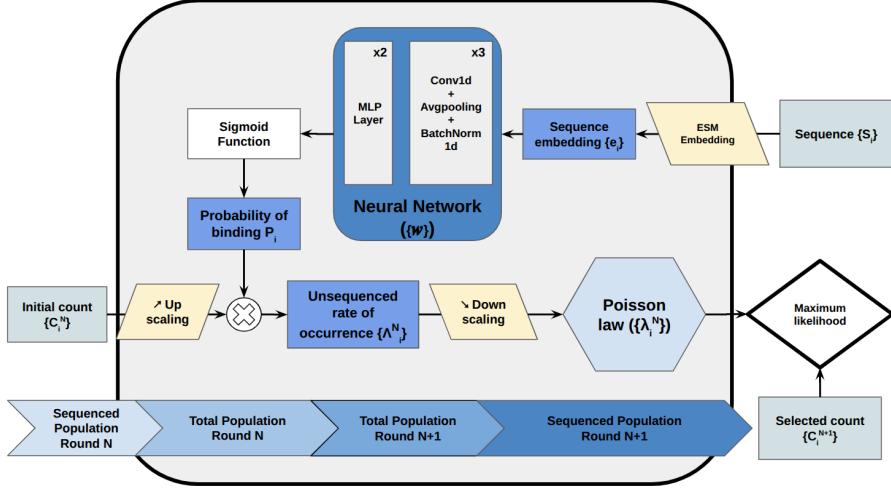


Figure 2: Phage display Poisson model. Unsequenced rate of occurrence Λ_i^N stands for the parameters of our Poisson law at the relevant experimental population size, before downscaling to obtain the sequenced rate of occurrence λ_i^N which is measured (sequenced).

121 need to compute relative abundances. Instead, the predicted count for each sequence directly serves
 122 as the rate parameter λ_i^N for its respective Poisson distribution (see Appendix B).

123 However, even with the Poisson distribution, implementing batch-based training introduces an
 124 approximation. The normalization of the model's output to the scale of the sequenced N+1 population
 125 requires the total sum of predicted counts across the entire dataset. When using mini-batches, this
 126 global sum must be estimated from the counts within the current batch. Consequently, the batch
 127 size cannot be excessively small; a sufficiently large batch is necessary to ensure this estimation
 128 is accurate and to maintain a training consistency comparable to the multinomial approach. The
 129 combination of Poisson's law and reasonable batch size not only allows for better results than the
 130 multinomial case but also regularizes the model by leveraging the estimated total population size
 131 confidence. A study on batch size is provided in Appendix C.

132 **2.2.3 Bayesian Neural Network**

133 Our model is designed to infer the binding probability to the specified target for each sequence. These
 134 inferred probabilities, when combined with the upsampled initial counts, provide the rate parameters
 135 for the corresponding Poisson distributions.

136 Given the sequential nature and contextual information inherent in the sequence embeddings, a
 137 Convolutional Neural Network (CNN) was selected as the core architecture. The training of Bayesian
 138 neural networks can be unstable; therefore, balancing the number of model parameters is crucial to
 139 prevent training collapse. CNNs provide an effective balance in this regard. In contrast, alternative
 140 architectures like Multi-Layer Perceptrons (MLPs) were deemed less suitable, as they either perform
 141 poorly with few parameters or fail to converge when the network is too wide or deep.

142 Our specific architecture, consisting of three convolutional layers with batch normalization and
 143 average pooling, is based on the work of [5]. To further improve training stability and activate
 144 data reconstruction, we implemented standard variational optimization techniques, including loss
 145 scheduling and Kullback-Leibler (KL) annealing [8]. Finally, the hyper-parameters were tuned on the
 146 smallest dataset to establish a robust baseline model that demonstrates strong performance across all
 147 datasets. Depending on the underlying correlation within the dataset, some hyperparameters choice
 148 can be crucial, such as changing the activation function: for instance, ReLU activation tends to be
 149 robust, and tanh will be more sharp to activate the learning. More details about the training process
 150 can be find in Appendix A.

151 **3 Results**

152 Quantifying the model’s performance is complex due to the highly noisy nature of the dataset, the
 153 fact that raw counts do not directly convey the underlying biological insights, and strong correlation
 154 between our splits. In this light, we decided to use, as a validation of our method, a Test dataset
 155 of experimentally derived binding affinity. This dataset, hence, shares little in term of noise and
 156 experimental set up with the phage display dataset, except that its rigorous way of measuring binding
 157 affinity should be related to the selection process at play in the phage display experiment.

158 **3.1 Results Table**

159 The performance of our baseline model, with fixed hyper parameters, is reported in Table 1.

Targets	Train			Valid			Test	
	C_i^N vs C_i^{N+1}	C_i^N vs C_i^{Pred}	P_i vs s_i	C_i^N vs C_i^{N+1}	C_i^N vs C_i^{Pred}	P_i vs s_i	$K_{d,i}$ vs s_i	$K_{d,i}$ vs P_i
Target 1	0.41	0.62	0.50	0.41	0.57	0.42	-0.24	-0.35
Target 2	0.23	0.44	0.31	0.24	0.37	0.22	*	*
Target 3	0.20	0.43	0.46	0.19	0.47	0.45	*	*

Table 1: Spearman correlation metrics for the baseline model across different datasets and targets. The Test set evaluates generalization to a distinct but closer to ground truth experimental set up, that is only available for target 1, as mentioned in Subsection 2.1. It is worth noting that for the test set, the s_i set is contained in the P_i set as the P_i set also contains generated sequences. The gain in performance is coming from the experimental characterization of those generated sequences.

160 For the **Train** and **Validation** sets, each are reporting only one experiment from their set to avoid
 161 pooling the results, and we report two key performance metrics. The first is the correlation between
 162 the model’s predicted binding probabilities (P_i) and the experimentally derived selectivities (s_i).
 163 As selectivities represent a meaningful global statistic, this metric assesses how well the model
 164 captures underlying data properties. The second metric is the correlation between the predicted
 165 counts (C_i^{Pred}) and the ground truth counts (C_i^{N+1}). This directly evaluates performance on the primary
 166 data reconstruction task and allows for a clear comparison against the **null model** to quantify the
 167 benefits of our learning approach. Null model is the correlation between the counts at round N and
 168 N+1 (C_i^N vs C_i^{N+1}), giving us insight on the strength of the selection process in the dataset, because it
 169 underlines the change in repartition count during the round.
 170 The **Test** set is used for a critical biological validation. Here, we evaluate the correlation between the
 171 dissociation constant ($K_{d,i}$) and the predicted binding probability (P_i). A strong **negative correlation**
 172 is biologically expected, as a higher dissociation constant (lower binding affinity) should correspond
 173 to a lower binding probability. Therefore, a more negative correlation coefficient indicates a more
 174 biologically sound and meaningful model. All correlations are calculated using **Spearman’s rank**
 175 **correlation coefficient** to robustly handle the non-linear relationships inherent in the data.
 176 Our model’s reconstruction performance is significantly better than that of the null model (Table 1):
 177 demonstrating that our model learns beyond the simple correlation of frequencies between rounds of
 178 selection.
 179 Our correlation with the test set represents an improvement from what is directly accessible from the
 180 data (using selectivities, Table 1). Comparing only to sequences from the phage display experiment
 181 (Figure 3) we still see an improvement in our correlation (from -0.24 to -0.33) compared to using
 182 selectivities. When looking only at generated sequences this correlation reaches -0.46, showcasing
 183 the model ability to generalize to unseen sequences (hamming distances from seed sequences varies
 184 between 1 to 10) (Figure 3).

185 **3.2 Scatter plots**

186 Analysis of the scatter plots depicted in Figure 3 reveals key insights into the model’s behaviour, par-
 187 ticularly regarding predicted binding probabilities and experimental selectivities. The plot correlating
 188 these two metrics is densely populated, as it aggregates data from multiple experiments .

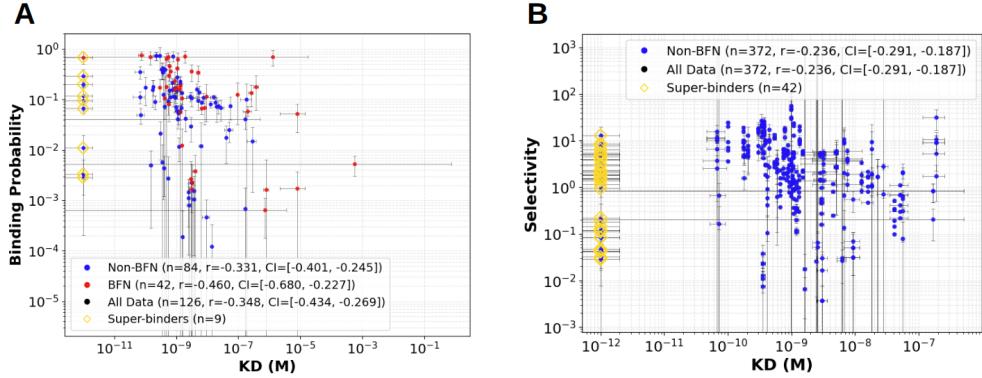


Figure 3: Correlation plots with the dissociation constant test set **(A)**: Correlation with model prediction. Error bars on predicting binding probability (y axis) are estimated errors from N samples of the models while the actual dot markers represent the estimated mean from that same sampling. Error bars on K_d are uncertainty from curve fitting. **(B)** : Correlation with raw Selectivities. Error bars on selectivity are estimated from counting noise following $\frac{\Delta s}{s} = \frac{1}{\sqrt{C_i^N}} + \frac{1}{\sqrt{C_i^{N+1}}} + \mathcal{O}(C_{tot}^N)$. Error bars on K_d are uncertainty from curve fitting. 95% Confidence intervals on correlation are based on 97.5% and 2.5% percentiles of N samples of the model compared to N Gaussian samples of the K_d values. (In our case, $N = 1000$).

189 The model struggles to correctly predict the behaviour of “super-binders” — sequences with ex-
 190 tremely high affinity, capped by an instrument measurement floor of 10^{-12} . We hypothesize that
 191 this could be explained by those sequences also exhibiting a strong affinity for the non-target base,
 192 leading to their elimination during negative selection. This creates a conflicting signal: the strong
 193 negative signal can effectively cancel out the positive signal, resulting in an erroneously low predicted
 194 binding probability.
 195 Despite this specific limitation, the overall correlation plots indicate that the model’s output is
 196 well-structured and successfully captures specific sequence-target binding events.

197 3.3 Explainability (XAI)

198 A primary objective of this study was to identify the most influential amino acid sites for binding to a
 199 specific target. To achieve this, we applied the method developed by [4] to our Bayesian model, which
 200 leverages the posterior distribution to generate robust feature attributions. This approach involves
 201 sampling multiple deterministic networks from the learned posterior, generating an explanation for
 202 each network using an XAI method such as Integrated Gradients (see [14]), and then aggregating
 203 these individual explanations.

204 An example of such an explanation is shown in Figure 4. These visualizations highlight the specific
 205 residues that the model utilized for its predictions. The figure also overlays the Complementarity-
 206 Determining Regions (CDRs) [15], which are theoretically the primary sites of interaction. The
 207 visualization shows that while the explanatory signal is not confined exclusively to the CDRs, they
 208 constitute a significant portion of the attribution. Building upon the methodology proposed by
 209 [4], we employ a quantitative evaluation framework to assess our explanations. We compute the
 210 Area Under the Receiver Operating Characteristic (AUC-ROC) curve by sweeping an absolute
 211 relevance threshold to gauge the overall quality of the attributions. Additionally, we calculate the
 212 Relevance Mass Accuracy, a metric that quantifies the portion of total relevance concentrated within
 213 the Complementarity Determining Regions (CDRs). By averaging these attribution scores across all
 214 sequences, we can identify the sites that are globally most critical for the binding phenomenon.

215 3.4 Error Handling

216 A second objective was to predict the binding affinity of novel sequences. While the model’s pre-
 217 dictive performance was varied, our Bayesian framework provides a distinct advantage: the ability
 218 to quantify the uncertainty associated with each prediction. We estimate the mean and standard
 219 deviation of any prediction by sampling multiple times from the model’s posterior distribution. The

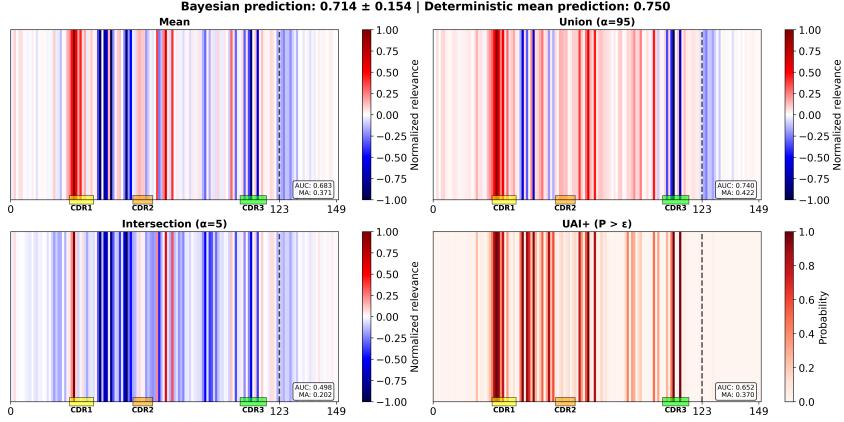


Figure 4: Integrated Gradient bayesian explanation of a sequence. Dash line is a visual representation of the end of the sequence: sequences are batched at prediction time and thus need padding.

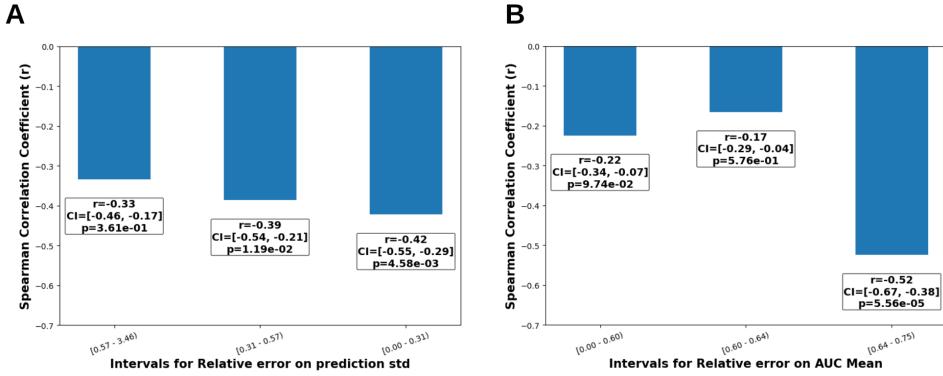


Figure 5: Error handling possibilities within the Bayesian model. (A): Error handling based on relative standard deviation. (B): Error handling based on AUC Mean metric

relative standard deviation serves as a normalized uncertainty metric for each prediction. To demonstrate the relationship between model uncertainty and accuracy, we stratified the test set into three groups (terciles) based on this uncertainty metric. The limited size of the test set prevented stratification into more groups. A similar analysis was performed using an AUC ROC metric, which evaluates how well the model’s explanations distinguish CDR sites from non-CDR sites. Stratifying this metric by uncertainty provides insight into whether the model is more confident when it correctly focuses on the CDRs. The results of these stratified analyses are presented in Figure 5. In conclusion, this study demonstrates that by combining quantified uncertainty with model explanations, we can effectively assess the reliability of individual predictions. Although the confidence interval length remains challenging due to high intrinsic noise, our approach allows us to identify a subset of high-confidence results. The convergence of low uncertainty scores with biologically plausible explanations provides a strong filter for the most trustworthy predictions, offering a practical strategy for extracting reliable insights from complex and noisy data.

4 Discussion

In most cases, phage display experiments are not designed to serve as a training dataset for deep learning-based modelling, even though they could be used for that purpose in principle given some slight modifications. Typically, these experiments are intended to identify interesting clones. Given this objective, it makes sense to adjust the concentration of the target between selection rounds. The same reasoning applies to the omission of recording negative selections. We believe that the last point is crucial for correctly interpreting the phage display data, especially if the goal is to train a deep learning model. This understanding might help us identify the very

241 strong binders that our model overlooked (indicated by the yellow squares in Figure 3). First, K_d
 242 data points only account for target binding, but our binding probability accounts for both negative
 243 and positive selection, with negative selection accounting for base binding, and positive selection
 244 to both base and target binding. We attempted to incorporate negative selection as an additional
 245 latent variable alongside positive selection to explain the outcomes of the phage display experiment.
 246 However, we were unable to break the symmetry between these two latent variables (P_i^{neg} and P_i^{pos})
 247 during training:

$$P_i = P_i^{\text{pos}} \times (1 - P_i^{\text{neg}}) \quad (2)$$

248 The results showed that our model would focus either on the positive or the negative term, and
 249 wouldn't separate the two phenomena (Appendix D).

250 We theoretically broke the symmetry of the selection process by using a model based on the Boltzmann
 251 law, a methodology inspired by [7]. Our architecture uses a flexible number of networks (1, 2, or 4) to
 252 generate four latent variables that represent distinct binding modes. This has a lot of similarities with
 253 a softmax output, that should be well fitted for our neural network. Specifically, the terms $e^{-E_x,i}$
 254 and $e^{-E_{nx,i}}$ describe the binding and non-binding modes for both positive and negative selection,
 255 respectively, with x being b for the base and t for the target.

256 The calculation of probabilities is defined by two key equations:

- 257 • **Negative Selection:** This phase only considers the binding to the base, as shown in the
 258 probability equation below.
- 259 • **Positive Selection:** This phase includes both the base and our target, and the probability is
 260 thus calculated by integrating signals from all four possible modes.

$$P_i^{\text{neg}} = \frac{e^{-E_{b,i}}}{e^{-E_{b,i}} + e^{-E_{nb,i}}}, \quad P_i^{\text{pos}} = \frac{e^{-E_{b,i}} + e^{-E_{t,i}}}{e^{-E_{b,i}} + e^{-E_{nb,i}} + e^{-E_{t,i}} + e^{-E_{nt,i}}} \quad (3)$$

261 Increasing the number of latent variables rapidly expands the solution space, rendering it intractable
 262 and prone to finding non-biological solutions.

263 Despite this added complexity, the model persistently fails to separate the positive and negative
 264 selection signals, which we observe are deeply and intrinsically intertwined within the experimental
 265 data, as shown in the Appendix D. Therefore, we believe that sequencing the data right after negative
 266 selection, or having more rounds to reduce the impact of negative selection may be the only viable
 267 approach moving forward (see [7]). Finally, when combining different rounds of training or pooling
 268 together entirely different experiments while conditioning our model on the target, it is crucial to
 269 ensure that the predicted probabilities share the same scale. One way to achieve this is by incorporating
 270 a measurement of the final population size at the end of the selection phase, by normalizing by the
 271 sum of our model's output.

$$\forall a \in \mathbb{R}, \quad C_i^{N+1} = C_{\text{tot},i}^{N+1} \cdot \frac{a \cdot C_{\text{out},i}^{N+1}}{\sum_j a \cdot C_{\text{out},j}^{N+1}} \quad (4)$$

272 Without this constraint and in this context, since the probabilities are learned as a near multiplicative
 273 constant in order to form a frequency, the solution state is too wide and the model's learning could
 274 significantly suffer.

275 5 Conclusion

276 We have trained a Bayesian Deep learning sequence to binding affinity scorer, carefully using Phage
 277 Display data. Taking advantage of the probabilistic nature of our model as well as its interpretation,
 278 we identified ways to maximize our chance to pick sequences with reliable binding estimates matching
 279 actual binding affinity measurements. In its actual state, our model and strategy might miss a number
 280 of good binders, but would rarely lead to the selection of sequences with bad binding properties. We
 281 also discussed and explored solutions around mismatches between how Phage Display data is usually
 282 produced and the optimal way they could be generated for model training.

283 **References**

- 284 [1] Timothy Atkinson, Thomas D. Barrett, Scott Cameron, Bora Guloglu, Matthew Greenig,
285 Charlie B. Tan, Louis Robinson, Alex Graves, Liviu Copoiu, and Alexandre Laterre. Protein
286 sequence modelling with bayesian flow networks. *Nature Communications*, 16(1):3197, Apr
287 2025.
- 288 [2] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis
289 Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: Deep
290 Universal Probabilistic Programming. *Journal of Machine Learning Research*, 2018.
- 291 [3] Sébastien Boyer, Dipanwita Biswas, Ananda Kumar Soshee, Natale Scaramozzino, Clément
292 Nizak, and Olivier Rivoire. Hierarchy and extremes in selections from pools of randomized
293 proteins. *Proceedings of the National Academy of Sciences*, 113(13):3482–3487, 2016.
- 294 [4] Kirill Bykov, Marina M. C. Höhne, Adelaida Creosteanu, Klaus-Robert Müller, Frederick
295 Klauschen, Shinichi Nakajima, and Marius Kloft. Explaining bayesian neural networks, 2021.
- 296 [5] A. Chandra, A. Sharma, I. Dehzangi, T. Tsunoda, and A. Sattar. PepCNN deep learning tool for
297 predicting peptide binding residues in proteins using sequence, structural, and language model
298 features. *Scientific Reports*, 13(1):20882, Nov 2023.
- 299 [6] Giancarlo Croce, Rachid Lani, Delphine Tardivon, Sara Bobisse, Mariastella de Tiani, Maia
300 Bragina, Marta A. S. Perez, Justine Michaux, Hui Song Pak, Alexandra Michel, Talita Gehret,
301 Julien Schmidt, Philippe Guillame, Michal Bassani-Sternberg, Vincent Zoete, Alexandre Harari,
302 Nathalie Rufer, Michael Hebeisen, Steven M. Dunn, and David Gfeller. Phage display enables
303 machine learning discovery of cancer antigen–specific tcrs. *Science Advances*, 11(24):eads5589,
304 2025.
- 305 [7] Jorge Fernandez-de Cossio-Diaz, Guido Uguzzoni, Kévin Ricard, Francesca Anselmi, Clément
306 Nizak, Andrea Pagnani, and Olivier Rivoire. Inference and design of antibody specificity: From
307 experiments to models and back. *PLOS Computational Biology*, 20(10):1–13, 10 2024.
- 308 [8] Hao Fu, Chunyuan Li, Xiaodong Liu, Jianfeng Gao, Asli Celikyilmaz, and Lawrence Carin.
309 Cyclical annealing schedule: A simple approach to mitigating kl vanishing, 2019.
- 310 [9] Tomoyuki Ito, Thuy Duong Nguyen, Yutaka Saito, Yoichi Kurumida, Hikaru Nakazawa, Sakiya
311 Kawada, Hafumi Nishi, Koji Tsuda, Tomoshi Kameda, and Mitsuo Umetsu. Selection of
312 target-binding proteins from the information of weakly enriched phage display libraries by deep
313 sequencing and machine learning. *mAbs*, 15(1):2168470, 2023. PMID: 36683172.
- 314 [10] Weronika Jaroszewicz, Joanna Morcinek-Orłowska, Karolina Pierzynowska, Lidia Gaffke, and
315 Grzegorz Węgrzyn. Phage display and other peptide display technologies. *FEMS Microbiology
316 Reviews*, 46(2):fuab052, 10 2021.
- 317 [11] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos
318 Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, and Alexander Rives. Language
319 models of protein sequences at the scale of evolution enable accurate structure prediction.
320 *bioRxiv*, 2022.
- 321 [12] John Salvatier, Thomas Wiecki, and Christopher Fonnesbeck. Probabilistic programming in
322 python using pymc, 2015.
- 323 [13] Brenda Pei Chui Song, Angela Chiew Wen Ch’ng, and Theam Soon Lim. Review of phage
324 display: A jack-of-all-trades and master of most biomolecule display. *International Journal of
325 Biological Macromolecules*, 256:128455, 2024.
- 326 [14] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In
327 Doina Precup and Yee Whye Teh, editors, *Proceedings of the 34th International Conference on
328 Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pages 3319–3328.
329 PMLR, 06–11 Aug 2017.
- 330 [15] Winnie Ka-Wah Wong, Junsik Leem, and Charlotte M. Deane. Comparative analysis of the cdr
331 loops of antigen receptors. *Frontiers in Immunology*, 10:2454, 2019.

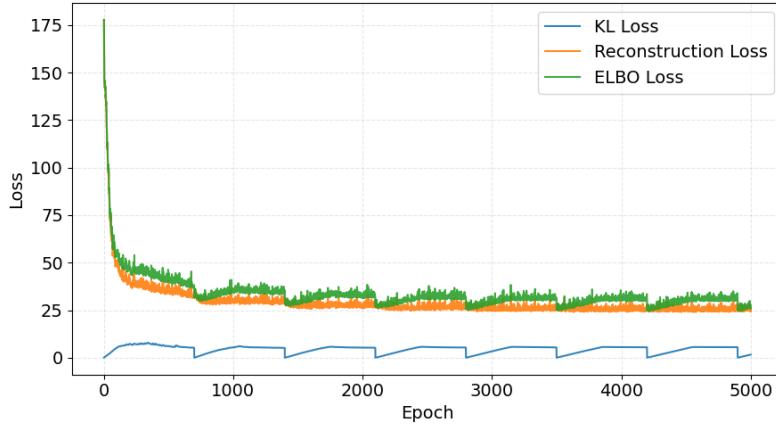


Figure 6: Loss tracking during training, with ELBO Loss decomposition

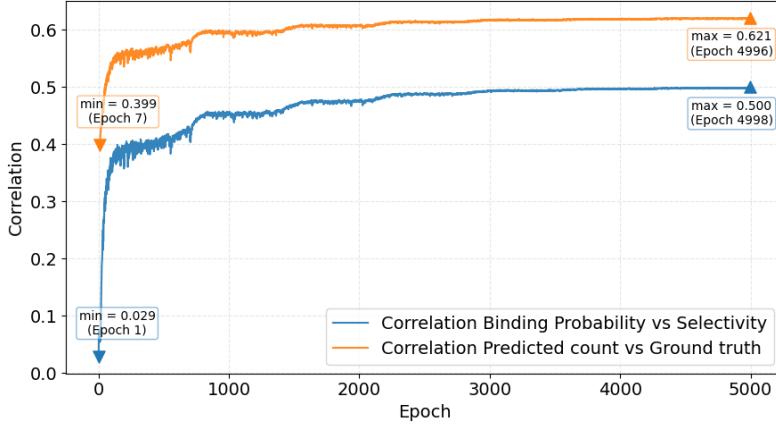


Figure 7: Training Correlation metrics during training

332 A Training

333 The Bayesian model was trained using Stochastic Variational Inference (SVI), a scalable method
 334 for approximating the intractable posterior distribution of the network’s weights. For this process,
 335 we employed a multivariate Normal variational distribution as our guide, which means that each of
 336 our weight distributions follows independent Normal laws. While we also experimented with more
 337 complex guides that account for dependencies between weights, they did not yield better results and
 338 came with a significant increase in computational cost.

339 To enhance performance and stability, the CNN architecture includes common layers such as a ReLU
 340 activation function, BatchNorm1d for feature normalization, and AvgPool1d to drastically reduce
 341 the latent spaces. The model has a total of 474,562 parameters. As a side note, a Bayesian model
 342 requires two times more weights than a deterministic one, because each weight would be represented
 343 by a mean (μ) and a standard deviation (σ), to define its normal distribution. It was optimized using
 344 AdamW optimizer, with a cyclical annealing to enhance the ELBO loss optimization, and a learning
 345 rate scheduling containing a warm up and then an exponential learning rate scheduler. A batch size
 346 of 21,000 is applied, accounting for approximately 50% of the largest experiments in the training.

347 As illustrated in Figure 6, the training process is monitored by tracking the value of the different
 348 losses. The primary objective is to minimize the Evidence Lower Bound (ELBO), which can be
 349 decomposed into two parts with different roles. The correlation value tracking during training for our
 350 baseline model is also available in Figure 7.

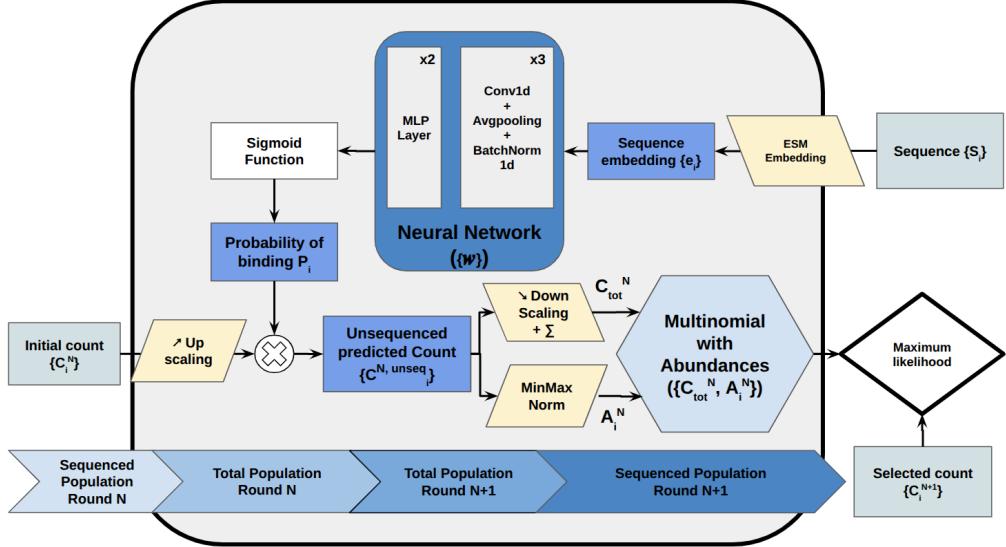


Figure 8: Phage display Multinomial model

- 351 The first component is the reconstruction loss (or data likelihood term). Its purpose is to quantify how
 352 well the model's predictions fit the observed data. Minimizing this term drives the model to learn
 353 accurate representations.
- 354 The second component is the Kullback–Leibler (KL) divergence term. This acts as a regularizer by
 355 measuring the distance between the learned posterior distribution of the weights and a simple prior
 356 distribution. Minimizing the KL divergence prevents overfitting by ensuring that the model does not
 357 diverge too far from its prior assumptions, thereby promoting generalization.
- 358 Often, the learning process only optimizes the KL loss, leading to an useless training. Several tech-
 359 niques, such as annealing or regularization can help solve this problem and enable the reconstruction
 360 learning process.

361 B Multinomial model to Poisson model

362 The initial approach to modelling sequence subsampling was based on the **multinomial distribution**,
 363 as it naturally accounts for multiple outcomes from a fixed number of trials. This is depicted in
 364 Figure 8. However, this model's inherent dependencies among variables and its computational
 365 complexity led to a significant bottleneck, particularly with large experiments, as this dependency
 366 constrains a batch to contain a whole experiment.

367 A key observation that led to the bypass of this issue was the nature of our total count, N . As N
 368 is extremely large and imprecise (approximately 10^{13}), we can approximate its distribution with a
 369 **Poisson distribution**, using the total count itself as the rate parameter, λ . This approximation is the
 370 foundation for a more tractable model.

371 This strategic choice enables a powerful mathematical transformation known as **Poissonization**. By
 372 modelling the total count as a Poisson random variable, we can exactly transform the dependent
 373 multinomial variables into a set of independent Poisson variables. This transition from a dependent
 374 to an independent framework dramatically simplifies subsequent calculations and resolves the initial
 375 computational bottleneck.

376 Proof:

Let $Y = (Y_1, \dots, Y_k)$ be a vector of counts where the total count $N = \sum_{i=1}^k Y_i$ follows a Poisson distribution with parameter λ . Given $N = n$, the counts follow a multinomial distribution:

$$P(Y_1 = y_1, \dots, Y_k = y_k \mid N = n) = \frac{n!}{y_1! \dots y_k!} p_1^{y_1} \dots p_k^{y_k}$$

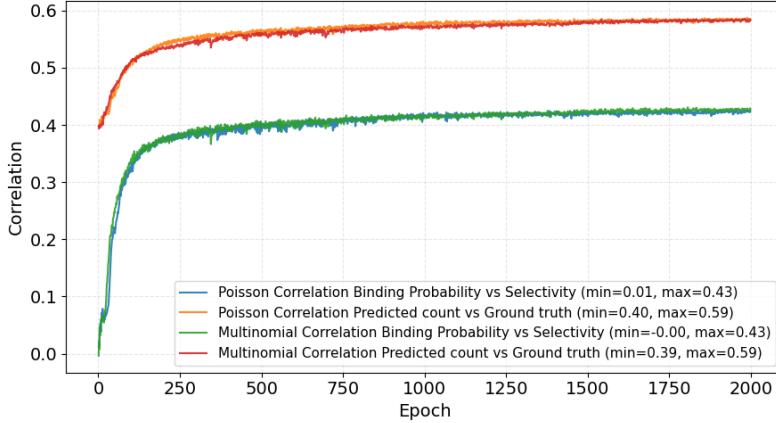


Figure 9: Empirical Equivalence of Poisson and Multinomial on Model Performance.

377 where $\sum p_i = 1$ and $\sum y_i = n$.

378 The joint unconditional probability is found by combining the multinomial and the Poisson distributions:

$$\begin{aligned}
 P(Y_1 = y_1, \dots, Y_k = y_k) &= P(Y_1 = y_1, \dots, Y_k = y_k \mid N = n) \cdot P(N = n) \\
 &= \frac{n!}{y_1! \dots y_k!} p_1^{y_1} \dots p_k^{y_k} \cdot \frac{e^{-\lambda} \lambda^n}{n!} \\
 &= \frac{1}{y_1! \dots y_k!} (p_1 \lambda)^{y_1} \dots (p_k \lambda)^{y_k} e^{-\lambda}
 \end{aligned}$$

Letting $\lambda_i = p_i \lambda$, and noting $\sum \lambda_i = \lambda$, we can split the exponential term:

$$P(Y_1 = y_1, \dots, Y_k = y_k) = \left(\frac{\lambda_1^{y_1} e^{-\lambda_1}}{y_1!} \right) \left(\frac{\lambda_2^{y_2} e^{-\lambda_2}}{y_2!} \right) \dots \left(\frac{\lambda_k^{y_k} e^{-\lambda_k}}{y_k!} \right)$$

380 This is the product of the probability mass functions of k independent Poisson distributions. Therefore,
381 each Y_i is an independent Poisson random variable with parameter λ_i .

382 Concerning the experimental result, it was observed that the training process and the final results were
383 identical for both the multinomial and Poisson distribution, with the same hyper parameters. This
384 consistency, as shown in Figure 9 for one training experiment, provides a strong empirical validation
385 of our approach. The same consistency can be observed for every training and validation correlations.

386 C Batch size study

387 As shown in the upper appendix section, we enabled batch training with Poisson law. But, before the
388 stochastic pass, we encounter a downsampling to the $N+1$ sequenced population scale, which needs
389 the total sum of the unsequenced survivor population scale. When using stochastic mini batches, this
390 particular total sum is not directly accessible, so, an approximation needs to be done on this total
391 unsequenced count.

392 Several methods were tested, such as the naive approximation, which would just increase to the total
393 population, for instance, with randomized batch, if the randomized batch size is $\frac{1}{x}$ of the population,
394 this will translate to multiplying by x to rescale to the total population which, assuming batches being
395 independent, would have approximately the same sum output. A second idea is to take the total sum
396 calculated at the precedent step with, for first value, the naive method applied. Finally, a moving
397 average could also be used. Empirically, when using a batch size near 50% of the largest experiment,
398 the naive method is really powerful. But the more batches sizes are reduced, the less powerful this
399 approximation is.

400 Results for full, half and quarter batch sizes are provided in Figure 10. We observed that the
401 asymptotic correlation of the model's performance decreases as the batch size becomes a smaller

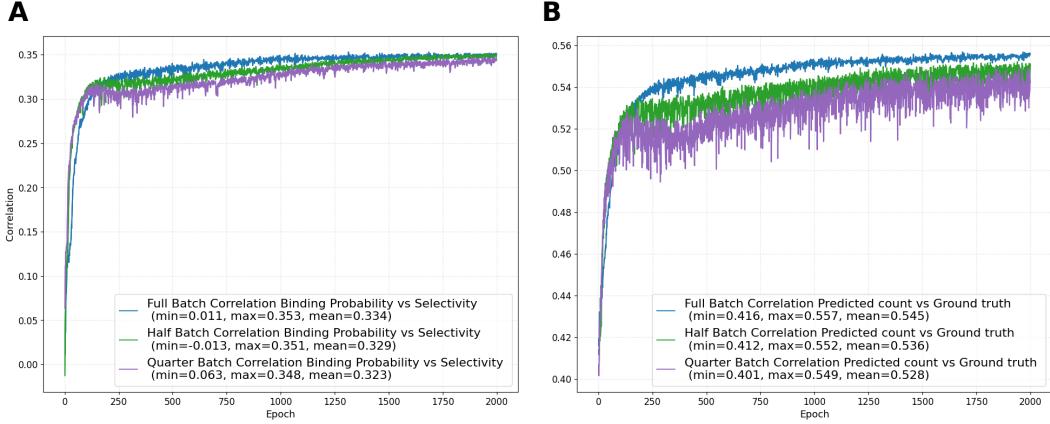


Figure 10: Impact of batch size on model training and performance. **(A)**: Binding Probability versus Selectivity comparison. **(B)**: Ground truth versus Predicted count comparison.

402 fraction of the total experiment size. Furthermore, a smaller batch size leads to an increased training
 403 instability, a known effect that can also act as a form of regularization. In certain scenarios, this
 404 regularization effect can be beneficial and enables learning.

405 **D Multiple output model symmetry and collapse**

406 As discussed in the paper, our work addresses two key issues with phage display data. First, the
 407 inherent noise is handled effectively by our Bayesian approach. Second, a more fundamental
 408 challenge arises from our sequencing protocol, which occurs only once per round. This prevents a
 409 clear, experimental separation of negative and positive selection.

410 To tackle this, we explored various models, as detailed in Section 4, featuring one or more networks
 411 designed to output two or four logits. Theoretically, these logits should allow the model to disentangle
 412 the two selections using only the mathematical relationships we provided.

413 However, a significant practical issue arises from the non-uniqueness of the solution. As illustrated by
 414 Equation 2, a single observable probability, P_i , can correspond to an infinite number of combinations
 415 of positive and negative selection probabilities $\{P_i^{pos}, P_i^{neg}\}$. This inherent ambiguity means that
 416 the model cannot reliably converge on a single, true biological solution.

417 As shown in Figure 11, this issue leads to a wide variety of learning behaviours and final solutions
 418 across different model runs. The figure compares three models using the naive approach and three
 419 using the Boltzmann model. In most cases, the model "collapses" and relies predominantly on only
 420 one of the two selection probabilities. For instance, in Figure 11B, model 3 shows an asymptotic
 421 correlation of zero, indicating that it exclusively uses what we termed "positive selection probability."
 422 In practice, however, we cannot apply this name with certainty, as the model's learned representation
 423 may not correspond to the true biological process.

424 **E BFN generated sequences**

425 We fine tuned the foundational BFN model [1] with a subset of sequences from the lowest target
 426 concentration of experiment round 3. Typically we only considered sequences appearing with a
 427 count superior to 40. Then this fine tuned version of BFN was used for in painting seed sequences
 428 from the Phage display data.

429 Seeds were chosen following two paths. 10 were chosen because of their low noise over signal
 430 ratio both in our model and in term of selectivities, high expected binding affinity, while spanning
 431 a large predicted probability of binding dynamical range, diversity of CDR3. 8 more were chosen
 432 from previous experimental characterization, privileging here again spanning the binding affinity
 433 dynamical range.

434 In painting was done following 3 different strategies:

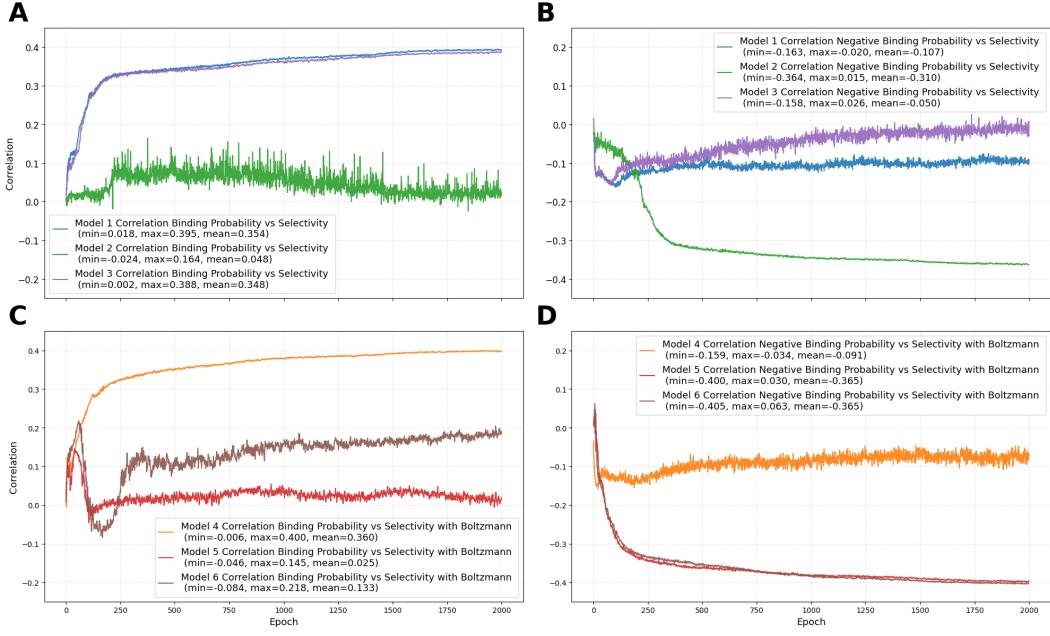


Figure 11: Model Comparison with different Selection Separation and hyper parameters, such as the number of parameters or number of networks. **(A):** Positive binding probability for naive models. **(B):** Negative binding probability for naive models. **(C):** Positive binding probability for Boltzmann models. **(D):** Negative binding probability for Boltzmann models.

- 435 • only CDR3
 436 • all CDRs
 437 • all CDRS and framework 3
 438 This has lead to roughly 1800 generated sequences from which we subsampled greedily for diversity,
 439 predicted binding probability and predicted sequence naturalness, to end up with the sequences that
 440 have been presented here. Here shown in the Figure 12, the result of our model on only the BFN
 441 data points K_d , where we can see that our artificial intelligence model seems to perform better on AI
 442 generated sequences.

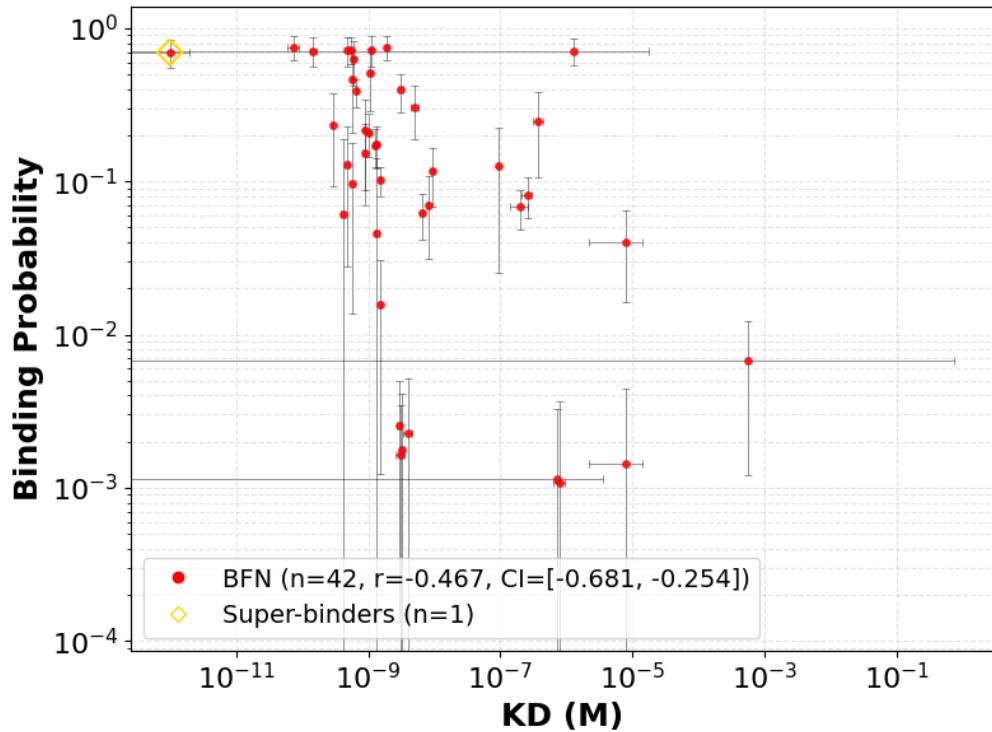


Figure 12: Correlation plot for the dissociation constant test set, using only the BFN values

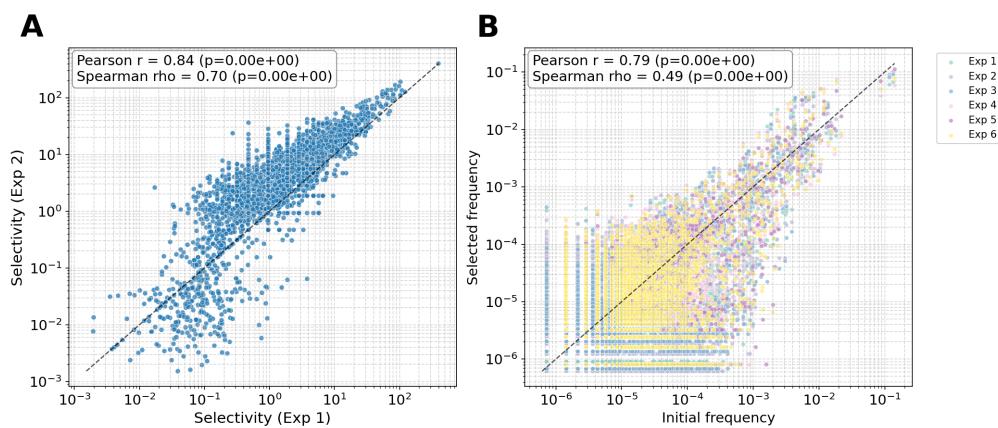


Figure 13: Correlations across the different experiments for target 1. The data shows the experiments are highly correlated. **(A):** Scatter plot of the selectivity from Experiment 1 versus Experiment 2. **(B):** Initial frequency versus selected frequency for each experiment, showing that the distributions are quite similar. The relationship between selectivity and frequency is described in Equation 1.

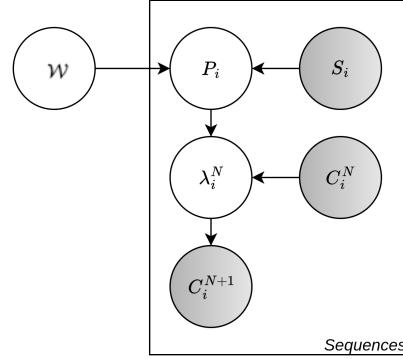


Figure 14: Bayesian Network of our Poisson law model. This diagram illustrates the dependencies between the variables in our Bayesian model. The nodes represent the following: \mathcal{W} are the weights of the Bayesian neural network; P_i is the probability of binding for sequence i ; S_i denotes the amino acid sequence i ; λ_i^N is the rate parameter for sequence i at round N of the corresponding Poisson distribution; C_i^N is the count for sequence i at round N ; and C_i^{N+1} is the predicted count for sequence i at the next round, $N + 1$. The shaded nodes, S_i and C_i^N , are observed, while the unshaded nodes are latent.

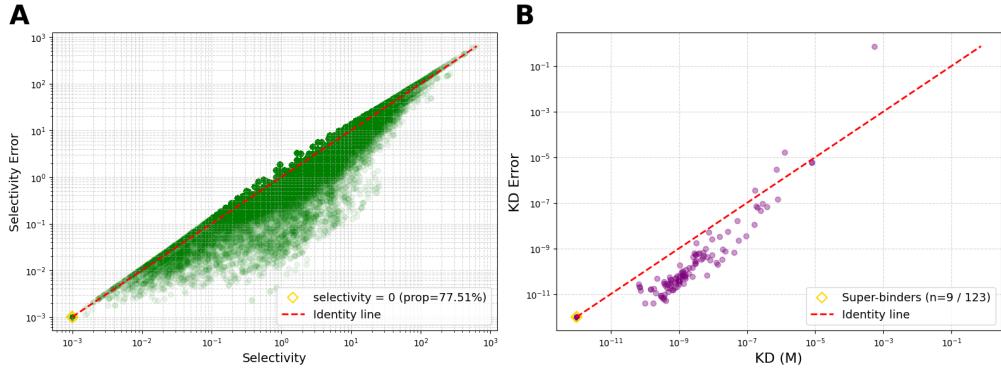


Figure 15: The provided plots characterize the measurement noise for target 1 by displaying the data versus its corresponding error on a log-log scale. The concentration of points near the identity line reveals a consistently high relative error throughout the dataset. **(A):** The error in selectivity Δs is estimated assuming Poisson-distributed counts, using the approximation: $\frac{\Delta s}{s} = \frac{1}{\sqrt{C_i^N}} + \frac{1}{\sqrt{C_i^{N+1}}} + \mathcal{O}(C_{tot}^N)$. However, this approximation is inadequate for a large portion of the data, as over 77% of the entries exhibit a selectivity of zero. For these points, the error is undefined, presenting a significant challenge for modelling. **(B):** A similar trend of high uncertainty is observed for the dissociation constant (K_d). Notably, "super-binders" exhibit particularly large errors. This is attributed to their high affinity, which saturates the instrument's detectors and caps the measurements at the limit of the device's dynamic range.