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Figure 1: Sample capture from HO-Cap. From top to bottom: RGB frames, overlaid renderings of
3D shape and pose for hands and objects in third-person and egocentric views, and renderings of the
capture within a virtualized scene in the NVIDIA Isaac Sim simulator.

Abstract

We introduce a data capture system and a new dataset, HO-Cap, for 3D recon-
struction and pose tracking of hands and objects in videos. The system leverages
multiple RGB-D cameras and a HoloLens headset for data collection, avoiding
the use of expensive 3D scanners or motion capture systems. We propose a semi-
automatic method for annotating the shape and pose of hands and objects in the
collected videos, significantly reducing the annotation time and cost compared
to manual labeling. With this system, we captured a video dataset of humans
performing various single- and dual-hand manipulation tasks, including simple
pick-and-place actions, handovers between hands, and using objects according to
their affordance. This dataset can serve as human demonstrations for research in
embodied AI and robot manipulation. Our capture setup and annotation framework
will be made available to the community for reconstructing 3D shapes of objects
and human hands, as well as tracking their poses in videos.1

1Data, code, and videos for the project are available at https://irvlutd.github.io/HOCap.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.
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1 Introduction

Hand-object interaction has been a key area of research with broad applications in human-computer
interaction, VR/AR, and robot learning from human demonstration. Specific problems, such as hand
detection [36, 58], hand pose estimation [18, 19], hand shape reconstruction [39, 49, 42], hand-object
detection [45, 11], object pose estimation [53, 52, 30, 7], and object shape reconstruction [51, 56, 9],
are actively studied within the community. To facilitate research and benchmarking of these problems,
several datasets related to hands and objects have been introduced [8, 28, 55, 33, 24, 14, 10, 4].
Most datasets consist of videos of users manipulating objects in front of cameras, with ground-truth
annotations such as hand poses and object poses obtained through various methods.

An easy way to obtain pose annotations is to use motion capture (mocap) systems [5, 14, 4]. However,
mocap systems are not only expensive, but also require the use of artificial markers on hands and
objects during data capture. Alternatively, several datasets, such as DexYCB [8], OakInk [55] and
HOI4D [33], rely on manual labeling. Given the large number of video frames, human annotation
is highly time-consuming. Recently, a few systems have been proposed to automatically or semi-
automatically generate pose annotations for hands and objects [21, 28]. However, these systems are
not scalable to a wide variety of objects or hand-object interactions. For example, HO-3D [21] is
limited to objects with known 3D models and cannot handle unseen objects. Similarly, H2O [28]
requires training an object tracker for each captured object, making it difficult to scale up.

In this work, we introduce a new capture system for hand-object interaction. The system utilizes eight
calibrated RGB-D cameras and a HoloLens headset [1] to provide both third-person and egocentric
views. We propose a semi-automatic annotation method that can accurately obtain 3D shape and
pose annotations for hands and objects in videos. Unlike previous systems, our method does not rely
on motion capture markers or expensive 3D scanners for reconstructing 3D object models, and it
requires no domain-specific training. These properties make our capture system scalable and easily
deployable for hand-object interaction, surpassing existing approaches [21, 28].

Specifically, we leverage recent large pre-trained vision models, including MediaPipe [35] for hand
detection and pose estimation, BundleSDF [50, 51] for 3D object reconstruction and pose estimation,
FoundationPose [52] for object pose tracking, and SAM2 [43] for object segmentation and tracking.
To address noise and errors, we utilize multi-view consistency across 8 RGB-D cameras. Additionally,
we propose a Signed Distance Field (SDF)-based optimization method to refine both hand and object
poses in 3D space. Consequently, our annotation pipeline can automatically process captured RGB-D
videos to generate 3D shapes and poses for hands and objects. The only human annotation required
is to manually select two points for each object in the first frame to generate an initial segmentation
mask using SAM2 [43], and label the object name to register it in our database.

Using our capture system and annotation method, we created a new dataset called HO-Cap for
hand-object interaction research. The dataset includes human demonstration videos of uni- and
bi-manual interactions with objects, covering three interaction types: affordance-driven object use,
pick-and-place, and handovers. It contains 64 videos with 656K RGB-D frames, captured from
9 subjects interacting with 64 objects. Ground-truth annotations of 3D shape and pose for hands
and objects are provided for every frame. Fig. 1 shows some examples, where we also render the
annotations in the NVIDIA Isaac Sim simulator. Our dataset serves as a valuable benchmark for
various hand-object recognition tasks. Specifically, we present baseline results for CAD-based object
detection, open-vocabulary object detection, hand pose estimation, and unseen object pose estimation.
The dataset can be used for training models for hand-object interaction or be used to test zero-shot
capabilities of models trained on external data, enabling evaluation of large models for hand and
object recognition. Additionally, the hand and object trajectories in the dataset can be used as human
demonstrations for research in embodied AI and robot manipulation.

The contributions of this work are as follows:
• We introduce a data capture system and a semi-automatic annotation method for obtaining

3D shapes and poses of hands and objects from multi-view RGB-D videos.
• We release a new dataset for hand-object interaction, focusing on humans performing tasks

with objects. It covers diverse grasping and multi-object rearrangement tasks, which are
novel and valuable for the imitation learning community.

• We provide a benchmark with baseline results for object detection, hand pose estimation,
and object pose estimation, which can benefit future research using our dataset.
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Table 1: Comparison of our HO-Cap with recent hand-object interaction datasets.

dataset year modality #seq. #frames #subj. #obj. #views real
image

marker-
less

bi-
manual

object
reconst.

task label

FPHA [17] 2018 RGB-D 1,175 105K 6 4 ego ✓ × × × multi-task mocap
Obman [22] 2019 RGB-D – 154K 20 3K 1 × ✓ × × grasping synthetic

HO-3D [21] 2020 RGB-D 27 78K 10 10 1-5 ✓ ✓ × × grasping &
manipulation

automatic

ContactPose [5] 2020 RGB-D 2,303 2,991K 50 25 3 ✓ × ✓ × grasping &
manipulation

mocap
& thermal

GRAB [48] 2020 mesh 1,335 1,624K 10 51 – × × ✓ × grasping mocap

DexYCB [8] 2021 RGB-D 1,000 582K 10 20 8 ✓ ✓ × × grasping
& handover

manual

H2O [28] 2021 RGB-D – 571K 4 8 4+ego ✓ ✓ ✓ ✓ multi-task semi-auto
OakInk [55] 2022 RGB-D 792 230K 12 100 4 ✓ × × ✓ multi-task manual
HOI4D [33] 2022 RGB-D 4,000 2,400K 4 800 ego ✓ ✓ × ✓ multi-task manual
AffordPose [24] 2023 mesh – – – 641 – × – × × multi-task synthetic
SHOWMe [47] 2023 RGB-D 96 87K 15 42 1 ✓ ✓ × ✓ grasping semi-auto

ARCTIC [14] 2023 RGB 399 2,100K 10 11 8+ego ✓ × ✓ ✓
bimanual
manipulation

mocap

OakInk2 [57] 2024 RGB 627 4.01M 9 75 3+ego ✓ × ✓ ✓ multi-task mocap
HOGraspNet [10] 2024 RGB-D – 1.5M 99 30 4 ✓ × × × grasping mocap & semi-auto
HOT3D [4] 2024 RGB-Mono 424 3.4M 19 33 2+ego ✓ × ✓ ✓ multi-task mocap
Ours 2024 RGB-D 64 656K 9 64 8+ego ✓ ✓ ✓ ✓ multi-task semi-auto

2 Related Work

In recent years, a number of hand-object interaction datasets have been introduced. Representative
datasets are summarized in Table 1, compared to ours.

Mocap vs. Natural capture. A straightforward way to obtain hand and object pose is to use mocap
systems. By attaching reflective markers to the hands and objects, a mocap system can track these
markers to obtain the hand pose and the object pose (e.g., FPHA [17], ContactPose [5], ARCTIC [14],
OakInk2 [57], and HOT3D [4]). However, mocap systems are costly, require calibration between
mocap markers and image cameras, and can introduce artifacts. In contrast, our multi-camera setup
captures markerless data, eliminating the need for such calibration.

Manual labeling vs. Automatic labeling. Large-scale datasets such as DexYCB [8], OakInk [55],
and HOI4D [33] rely on manual labeling, which, though accurate, is labor-intensive. In contrast, some
datasets use automated labeling (e.g., HO-3D [21]) or semi-automated labeling (e.g., H2O [28] and
SHOWMe [47]). Fully automated methods often introduce annotation errors, while semi-automatic
approaches integrate manual error correction [28] or initialize tracking processes manually [47]. Re-
cently, HANDAL [20] proposed a semi-automatic pipeline for 6D object pose annotation but includes
only limited dynamic human–object interactions and lacks hand annotations. HOGraspNet [10]
introduced an automatic pipeline for hand pose annotation but still relies on a motion-capture system
for object tracking.

In our work, we introduce a semi-automatic pipeline for annotating 3D shapes and poses of both hands
and objects in videos. The only required human input is selecting two points on the object in the initial
frame as prompts for SAM2 [43] segmentation. The method then automatically annotates subsequent
frames. As highlighted in Table 1, our dataset contains markerless unimanual and bimanual videos,
with the capability for 3D shape reconstruction of novel objects. The most similar work to ours
is H2O [28]. However, unlike H2O, our approach requires no domain-specific training for object
pose trackers. Instead, we leverage pre-trained vision models with a multi-camera setup, making our
annotation method more scalable across diverse hand-object interactions.

3 Data Capture Setup

Our hardware setup (Fig. 2(a)) comprises eight Intel RealSense D455 cameras and one Microsoft
Azure Kinect [2], all mounted above a table to provide comprehensive RGB-D coverage of the
workspace. The higher-resolution Azure Kinect is primarily used for detailed 3D object reconstruction.
We calibrated the intrinsic and extrinsic parameters of all cameras using Vicalib [3], enabling the
fusion of point clouds into a unified 3D coordinate frame (Fig. 2(b)–(c)). To capture additional
egocentric data, users wear a Microsoft HoloLens AR headset [1] during data collection (Fig. 2(c)).
This setup allows us to record synchronized first-person and third-person RGB-D video streams,
along with the 6DoF head-pose data provided by the HoloLens.
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(a) Our hardware setup (b) Visualization of the camera poses (c) Point clouds from the cameras

Figure 2: Illustration of our data capture setup.

4 Annotation Method

Our goal is to provide 3D shapes and poses of both hands and objects in the captured videos, with the
ability to handle arbitrary objects whose 3D models are not available prior to capture. To achieve this,
we propose a semi-automatic annotation method based on a multi-view camera setup, eliminating the
need for expensive 3D scanners or mocap systems.

4.1 3D Object Reconstruction
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Figure 3: Illustration of our pipeline for 3D object reconstruction.

Our annotation process begins with reconstructing 3D object models. Rather than relying on existing
3D meshes (e.g., YCB Object Set [6]) or 3D scanners [47], we use BundleSDF [51], a neural
reconstruction method, to reconstruct a textured 3D mesh for each object, assuming that the object is
rigid. BundleSDF takes a sequence of RGB-D frames and corresponding object segmentation masks
to precisely track its 6D poses and reconstruct a textured mesh. This enables us to use only an RGB-D
camera for object reconstruction and obtain 3D meshes for various objects, as shown in Fig. 3. To
prepare the input data, we manually move and rotate an object in front of the Azure Kinect camera,
ensuring exhaustive coverage of the surfaces for high-fidelity reconstruction. For segmentation, we
prompt SAM2 [43], a unified model for segmenting objects across images and videos, with two
manually selected points in the initial frame to track the object mask throughout the remaining frames.
Given the object masks, BundleSDF leverages feature matching based on LoFTR [46] for coarse
pose initialization, followed by an online pose-graph optimization to estimate the objects’ 6D poses
in video frames. Simultaneously, a neural object field is trained to model object-centric geometry and
appearance, refining keyframe poses to reduce tracking drift. Finally, a textured 3D mesh is extracted
from the neural field using marching cubes [34] and color projection. In total, we reconstructed 64
objects in our dataset, all of which are easily available for purchase online. For visualizations of these
reconstructed objects, please refer to the Appendix.
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Multiview RGB-D frame at time step t
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Figure 4: Our pipeline for obtaining the poses of hands and objects from multi-view RGB-D videos.

4.2 Object Pose Estimation

After obtaining the 3D object models, we use them to estimate object poses in videos where subjects
manipulate these objects. The pipeline for hand and object pose estimation is shown in Fig. 4.

Object Pose Initialization. In our framework, each object’s pose is represented as a homogeneous
transformation T = (R, t) ∈ SE(3), where R and t denote the object’s 3D rotation and translation
relative to the world frame. The world frame is defined near the center of the table (see Fig. 2(b)).
Since all cameras are extrinsically calibrated, the transformations between camera frames and
the world frame are known. Our pose estimation algorithm initializes each object’s pose using
the estimation results from FoundationPose [52], a unified foundation model for 6D object pose
estimation and tracking, and then refines the pose with SDF optimization on the segmented point
cloud.

Following the segmentation process described in Section 4.1, we obtain segmentation masks for each
object throughout the sequence (examples shown in Fig. 4). To determine an object’s initial pose at
step t, denoted as Tt = (Rt, tt), we use FoundationPose to track the object pose across all camera
views.

Since FoundationPose operates on single-camera input and can be affected by occlusions during
manipulation tasks, the tracked pose may become inaccurate, leading to tracking failures in subsequent
frames for individual views. To ensure robust tracking across the video sequence, we optimize pose
consistency across views by aligning tracked poses from multiple camera perspectives to reduce
discrepancies and enhance accuracy.

Specifically, given the tracked pose Tci from each camera view ci, we transform these poses from
their respective camera frames into the world frame. If the distribution of pairwise distances between
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all the transformed poses varies significantly, indicating that the poses are noisy, the optimization
process is skipped, and the pose from the previous frame is used instead. If the distances between
all transformed poses and the previous pose Tt−1 are within a predefined threshold, suggesting no
significant pose change, we incorporate the previous frame’s pose into the RANSAC algorithm [16]
to improve robustness in identifying outliers. Finally, RANSAC is applied to identify and filter out
outliers based on the computed distances, resulting in a single, coherent pose for the object. The
optimized initial pose Tt in the world frame is then projected back into each camera frame and
provided as input to FoundationPose to track the object in the next frame, ensuring reliable and
accurate tracking across frames.

SDF-based Object Pose Tracking. Although these initial poses may be effective for FoundationPose
to track in the next frame, small inaccuracies and misalignments with the object point clouds can still
occur. These errors can arise due to occlusions, camera noise, or drift over time. To address this, we
apply a Signed Distance Field (SDF)-based algorithm to optimize the poses across the sequence. Our
SDF-based pose tracking leverages the complete fused point cloud from all eight cameras, resulting
in higher-quality pose annotations. At time step t, our goal is to optimize the initial object pose
Tt given the previous pose Tt−1, where t = 1, 2, . . . , T and T is the total number of frames. We
minimize the loss function

T∗
t = argmin

Tt

(
Lsdf(Tt) + λ1Lsmooth(Tt,Tt−1)

)
, (1)

where λ1 is a weight to balance the two loss terms. The SDF loss function is defined as

Lsdf(Tt) =
1

|Xt|
∑
x∈Xt

|SDF(x,Tt)|2, (2)

where Xt denotes a set of 3D points of the object at time step t in the world frame, which is fused
from multiple camera views. The function SDF(x,Tt) computes the signed distance of a 3D world
point x ∈ R3 transformed into the object frame according to Tt. Minimizing the SDF loss function
results in an object pose that aligns the transformed 3D points with the object model surface. The
smoothness loss term is defined as

Lsmooth(Tt,Tt−1) = ∥qt − qt−1∥2 + ∥tt − tt−1∥2, (3)

where qt and qt−1 are the quaternions of the 3D rotations, and tt and tt−1 denote the 3D translations,
respectively. The smoothness term prevents large jumps in the poses during optimization. By solving
Eq. (1) for every object and every time step, we obtain the poses of all the objects in the video
sequence. These poses provide initializations that are further refined jointly with the hands, as
detailed in Sec. 4.4.

4.3 Hand Pose Estimation

We use the MANO model [44] to represent human hands. This parametric model enables detailed
hand mesh modeling through shape and pose parameters. The shape parameters, β ∈ R10, capture
individual hand identity, reflecting variations among different subjects, while the pose parameters,
θ ∈ R51, describe the dynamic positions and orientations of the hand. Before optimizing hand
poses, we pre-calibrate the MANO shape parameters for each subject in our dataset (see details in the
Appendix).

In our initial attempts to optimize hand poses, we applied the same approach used in Sec. 4.2 for
object pose estimation, expecting similar results. However, it was challenging to obtain accurate
segmentation masks using SAM2. We recognized the need to incorporate additional robust constraints
into our hand pose optimization method. Specifically, we introduced 2D/3D hand keypoints as anchor
points to guide the optimization process. These keypoints serve as strong priors, helping to ensure
more realistic and physically plausible hand poses. At time step t of an input video, our goal is to
estimate the MANO hand pose θt of a hand. We solve the following optimization problem to estimate
the hand pose:

θ∗
t = argmin

θt

(
Lkeypoint(θt) + λ2Lreg(θt)

)
, (4)

where Lkeypoint is a loss function based on the estimated 3D keypoints of the hand, Lreg is a regular-
ization term, and λ2 is a weight to balance the two terms. The regularization term is simply defined
as the squared L2 norm of the pose parameter: Lreg(θt) = ∥θt∥2.
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3D Keypoint Loss Function. To generate accurate 3D keypoints for hand pose optimization, we
first detect 2D hand landmarks across multiple views using MediaPipe [35]. While MediaPipe can
comprehensively identify all 21 hand joints, it lacks confidence scores, making it challenging to
distinguish between occluded or inaccurately estimated joints. This can introduce inaccuracies in
the pose optimization process. To address these challenges, we use a RANSAC [16] based filtering
approach to improve the accuracy of our 3D keypoints. For each hand joint, assume it is detected
by MediaPipe on Cvalid camera views. We compute a set of candidate 3D keypoints, Xi = {xi}Nvalid

i=1 ,
Nvalid = Cvalid(Cvalid − 1)/2 by triangulating pairs of valid views. A projection loss function is
defined for a 3D keypoint:

Lproj(xi) =
∑

c∈Cvalid

∥Πc(xi)− hc
i∥2, (5)

where Πc(·) is the projection function for camera c, and hc
i represents the detected 2D landmark for

the 3D keypoint xi in camera c. This loss measures the discrepancy between each candidate 3D
keypoint and its corresponding 2D landmarks across views. Minimizing this projection loss refines
the 3D keypoint positions, and we select the candidate with the lowest projection error for each joint.
This critical step helps exclude views affected by incorrect MediaPipe detections, enhancing the
reliability of the derived 3D keypoints. These optimized 3D keypoints serve as robust priors in the
subsequent optimization stages.

For video frames where MediaPipe does not successfully detect hand landmarks across all camera
views, we use linear interpolation between adjacent frames to estimate missing data. After filling these
gaps, we further refine the hand motion trajectory using cubic spline interpolation. This approach
not only smooths the spatial transitions of the hand joints but also ensures continuity in the first and
second derivatives of the motion trajectory, corresponding to the hand’s velocity and acceleration.
By implementing this refinement, we achieve a more cohesive and realistic representation of hand
motion across the entire sequence, enhancing the fluidity and naturalness of the observed actions.
Using the estimated 21 3D hand joints (x1, . . . ,x21), the 3D keypoint loss function is defined as:

Lkeypoint(θt) =
1

21

21∑
i=1

∥Ji(θt)− xi∥2, (6)

where Ji(θt) ∈ R3 represents the ith 3D hand joint from the MANO model under pose θt. Solving
Eq. (4) will find the MANO hand pose θt that fits the estimated 3D keypoints.

4.4 Joint Hand-Object Pose Optimization

Separately solving hand and object poses can lead to unrealistic scenarios, such as intersections
between hand and object meshes. To address this limitation and improve pose accuracy, we propose a
joint pose optimization method that refines hand and object poses together. This approach reduces
mesh intersections and enhances the physical realism of the estimated poses. For a sequence
with NH ∈ {1, 2} hands and NO objects, at each time step t, we jointly refine the object poses
PO
t = {To

t}
NO
o=1 and hand poses PH

t = {θh
t }

NH

h=1. Our idea is to utilize the SDFs of objects and
hands to optimize the poses as in our object pose estimation method. The loss function for this joint
optimization is defined as

Ljoint(PO
t ,PH

t ) =
1

NO

NO∑
o=1

 1

|X o
t |

∑
x∈Xo

t

∣∣SDFo(x,T
o
t )
∣∣2

+
1

NH

NH∑
h=1

 1

|X h
t |

∑
x∈Xh

t

∣∣SDFh(x,θ
h
t )
∣∣2 + λ3∥θh

t ∥2
 . (7)

where X o
t and X h

t denote the segmented point clouds for object o and hand h at time step t in the
world frame, while SDFo and SDFh represent the signed distance fields of the object and the hand,
respectively. λ3 is a weight to balance the regularization term for the hand pose. Additionally, the
smoothness loss (Eq. (3)) is applied to ensure temporal consistency of object poses and hand global
translation and rotation.

The point clouds of objects can be obtained using the depth images and the segmentation masks of
the objects. To obtain point clouds for hands, given the optimized 3D hand keypoints, we can get
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Table 2: Detailed dataset statistics grouped by handness (R: right hand, L: left hand, B: both hands)
and task type (T1: pick-and-place, T2: handover, T3: affordance usage).

Statistics Handness Tasks
R L B T1 T2 T3

# Sequences 35 8 21 28 21 15
# Frames 41,327 8,373 23,244 29,706 23,244 19,994

Table 3: Evaluation of annotation accuracy and physical plausibility across refinement stages. “2D/3D”
indicates the mean ± standard deviation of 2D pixel error and the average 3D distance error (mm).
Penetration depth (mm) and intersection volume (cm3) measure physical consistency between the
hand and object.

Stage Obj ↓ L-Hand ↓ R-Hand ↓ Pen. (mm) ↓ Vol. (cm3) ↓
Initial 3.67±3.05 / 6.26 5.31±3.43 / 47.38 5.16±3.73 / 46.43 — —
SDF-Refined 3.50±1.70 / 5.01 4.58±2.73 / 14.26 3.83±2.29 / 11.52 6.20±3.29 3.88±2.90
Jointly-Refined 3.42±1.73 /3.42 4.58±2.72 /14.25 3.82±2.29 /11.51 6.01±3.17 3.45±2.50

the bounding box and 2D keypoints on camera images. Using these 2D keypoints along with the
bounding box as input, we employ SAM2 [43] to generate high-quality hand masks. We further
isolate hand points from the surrounding environment using a point-to-mesh distance threshold
based on the initial hand pose. Hand and object poses are initialized from the previous stages of our
annotation process, and joint optimization requires only a few refinement steps to achieve robust
results. This process effectively reduces mesh intersections and enhances the realism of hand-object
interactions, providing accurate and cohesive pose annotations. After estimating the poses of hands
and objects in the world frame, we project their 3D shapes to the camera views and obtain 2D
annotations of images as shown in Fig. 4. We also estimate the camera poses of the HoloLens in the
world frame as described in Appendix B.

5 The HO-Cap Dataset

Dataset Statistics. Our HO-Cap dataset contains 64 video sequences capturing 9 participants
performing three hand–object interaction tasks with 64 unique objects. The approximately 656K
frames provide rich temporal information for studying dynamic interactions, where each frame is
captured from 8 calibrated RealSense cameras plus a first-person-view camera from the HoloLens,
facilitating 3D reconstruction and egocentric understanding. The 64 different objects, each with
a textured 3D mesh model, enabling fine-grained 6D pose annotations, and a diverse set of 9
subjects ensures variability in hand shapes, grasping styles, and interaction patterns. The both single-
hand and bimanual interactions, supporting tasks that require complex hand coordination. Table 2
provides handedness statistics for left/right hands and bi-manual interactions, and a breakdown of
task categories. Additional details on object shape variability, hand–object pose diversity and grasp
types are provided in the Appendix.

Annotation Quality. Using our annotation pipeline, we generated 3D shapes and world-space poses
for both hands and objects. To assess annotation accuracy, we randomly selected 800 images across
eight RealSense camera views and manually annotated the visible hand joints and object keypoints.
The object keypoints were chosen from predefined mesh vertices that are easily identifiable. We
evaluated the annotation quality using two error metrics: (1) the Euclidean distance between the
2D projections of our 3D annotations and the corresponding human-labeled 2D points, and (2) the
Euclidean distance between our 3D annotations and the 3D points triangulated from the human-
labeled 2D keypoints. To further evaluate physical plausibility, we measured two interaction-specific
metrics introduced in [23]: penetration depth and intersection volume. Table 3 summarizes the results.
The final annotation error is within 5 pixels in 2D and exhibits low 3D error for both hands and
objects, demonstrating the reliability of our method. Moreover, the error consistently decreases across
the refinement stages, confirming the effectiveness of our optimization strategy and the improved
physical consistency between hand and object.
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Table 4: Evaluation of hand pose estimation. The numbers in parentheses denote the thresholds used
for PCK, and the unit of MPJPE is millimeters (mm).

Method PCK(0.05) ↑ PCK(0.1) ↑ PCK(0.15) ↑ PCK(0.2) ↑ MPJPE (mm) ↓
A2J-Transformer [25] 12.1 26.8 39.4 50.5 78.7
InterWild [37] 51.7 60.9 70.0 78.6 57.6
HaMeR [42] 43.7 79.2 88.5 91.4 28.9

Table 5: Evaluation of object detection. Results are reported as mean Average Precision (AP) under
different IoU thresholds and object scales. Marker * denotes models trained on our dataset.

Method AP AP50 AP75 APS APM APL

CNOS [40] 25.3 27.9 24.8 1.6 27.6 24.9
GroundingDINO [32] 17.0 27.6 21.5 1.4 24.3 7.5
YOLO11* [26] 71.4 85.9 78.7 20.7 75.2 72.6
RT-DETR* [59] 75.9 90.0 83.4 21.1 79.8 84.8

Table 6: Evaluation of object pose estimation for novel objects. Results are reported as the Area
Under the Curve (AUC, %) of the ADD and ADD-S metrics on all 64 objects in our dataset.

Method ADD (%) ADD-S (%)

MegaPose [29] 67.1 83.0
FoundationPose [52] 89.3 95.7

6 Baseline Experiments

Hand Pose Estimation. First, our dataset supports hand pose estimation by providing 2D and 3D
annotations for 21 hand joints. In this experiment, we evaluated three recent hand pose estimation
models: A2J-Transformer [25], InterWild [37] and HaMeR [42] which are trained on external data,
using ground truth hand bounding boxes as inputs. The evaluation results are presented in Table 4.
We used the PCK (Percentage of Correct Keypoints) metric for 2D hand pose estimation and the
MPJPE (Mean Per-Joint Position Error) metric for 3D hand pose estimation. A2J-Transformer
extends the depth-based A2J [54] to RGB input and incorporates a transformer architecture to capture
non-local information. This model was trained on the InterHand2.6M dataset [38]. InterWild [37]
aligns motion-capture and in-the-wild hand data into shared 2D and geometry-based appearance-
invariant domains, enabling robust 3D recovery of interacting hands in unconstrained environments.
HaMeR [42] uses a large-scale ViT backbone [13] followed by a transformer decoder to regress the
parameters of the hand, and was trained on a large-scale dataset of 2.7M images from 10 hand pose
datasets. In Table 4, HaMeR significantly outperforms A2J-Transformer and InterWild, likely due to
its ViT backbone and large-scale training data. The MPJPE of HaMeR is 28.9mm, which is much
larger than the errors reported in other datasets in [42]. This suggests our dataset presents unique
challenges for hand pose estimation, especially in cases of occlusions between hands and objects.

Object Detection. We evaluated object detection in two scenarios: novel object detection and
seen object detection. For novel object detection, the model detects objects not encountered during
training. While for seen object detection, models are trained specifically on our dataset. CNOS [40]
and GroundingDINO [32] served as baselines for novel object detection, while YOLO11 [26] and
RT-DETR [59] were trained for seen object detection on our dataset.

Novel Object Detection Baselines: CNOS [40] is a CAD-based approach that generates object
templates by rendering CAD models and uses SAM [27] and DINOv2 CLS tokens [41] to classify
proposals based on template similarity. GroundingDINO [32], a vision-language model, was tested
with concatenated object names from our dataset as text prompts to detect objects.

Seen Object Detection Baselines: We trained YOLO11 and RT-DETR on our train/val split, which
includes all subjects, views, and objects, and evaluated them on a test split with sequences not shared
with train/val split. YOLO11, the latest in the YOLO series, features improved architecture and
training methods for efficient detection. RT-DETR, a transformer-based model, is designed for robust
performance across diverse object scales and complex scenes.
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The results, shown in Table 5 with MSCOCO [31] Average Precision (AP) metrics, reveal challenges
in novel object detection, as CNOS and GroundingDINO produced many false positives due to mis-
matches and ambiguities. For seen object detection, YOLO11 and RT-DETR both show particularly
strong performance on medium and large objects. These results highlight the utility of our dataset for
training object detectors, with RT-DETR and YOLO11 excelling on objects seen during training.

Novel Object Pose Estimation. Traditional object pose estimation methods [53, 12] require the same
objects to be used in both training and testing, preventing to generalize to new objects. Recent novel
object pose estimation approaches have been developed to address this limitation by leveraging large-
scale datasets and pre-trained models. Methods such as MegaPose [29] and FoundationPose [52]
can estimate poses for unseen objects using only 3D models, without per-instance training. We thus
evaluated MegaPose and FoundationPose on our dataset, providing ground truth 2D bounding boxes
as input. Table 6 reports the AUC of ADD and ADD-S metrics [53, 12]. FoundationPose outperforms
MegaPose, likely due to its powerful transformer-based architecture and extensive synthetic training.
See supplemental for more visualizations.

7 Conclusion and Discussion

We introduced HO-Cap, a novel capture system and dataset for hand-object interaction research.
Our system uses multiple RGB-D cameras and a HoloLens headset to capture videos from third-
and first-person views. A semi-automatic annotation pipeline integrates pre-trained vision models
for object reconstruction, segmentation, pose estimation, and hand joint detection, requiring no
domain-specific training. We further refine pose accuracy using SDF-based optimization. HO-Cap
captures diverse hand-object interactions and offers a valuable resource for research in embodied AI
and robotic manipulation.

Limitations. Our annotation method has three key limitations. (1) BundleSDF [51] struggles
with textureless or reflective objects (e.g., metal), which were excluded from the dataset. (2)
MediaPipe [35] occasionally fails to detect hand joints, preventing pose estimation in affected frames.
(3) Small or cylindrical objects (e.g., spatulas, hammers) are often heavily occluded when grasped,
limiting visual cues and causing pose inconsistencies across views. These challenges hinder reliable
multi-view tracking, leading us to discard affected videos. Addressing these issues is an important
direction for future work.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s main contributions and scope are clearly outlined in the abstract
and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the main limitations of the work in Sec. 7.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not propose any theoretical results. Therefore, this question is
not applicable to our work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides all necessary details to reproduce the main experimental
results. Detailed experimental settings are provided in Sec. 6 and Appendix E. Additionally,
a link to the project page is included in the abstract.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to both the code and dataset through the
project page linked in the abstract, which includes detailed instructions on setting up the
environment, accessing and preparing the data, and running the experiments.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the necessary training and test details to help understand
the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The paper reports results based on a single run per experiment, following the
common practice in prior works on the same task.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides detailed information on the computer resources used for
each experiment in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper adheres to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper includes a discussion on the potential societal impacts of the work
in Appendix J.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The HO-Cap dataset and annotation pipeline do not pose a high risk of misuse
as they are focused on hand-object interaction in controlled environments using volunteer
participants and do not include personally identifiable information, web-scraped data, or
generative models. Therefore, the paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper credits the creators and original owners of all used assets and
explicitly states the licenses and terms of use in Appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Details regarding the data collection protocol, licensing, and limitations are
provided in Appendix A. Additional documentation, including the dataset structure and
usage guidelines, is available on the project page linked in the abstract.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Details about the data collection process involving human subjects are provided
in Appendix A.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: The data collection protocol involving human subjects was reviewed and
approved by the IRB at our institution. All participants were informed about the purpose of
the study and any potential risks before giving their consent.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methods developed in this research do not involve the use of large
language models (LLMs) as important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Details on Data Collection

A.1 Protocol

The HO-Cap dataset was collected with the participation of nine individuals in a controlled laboratory
environment. To ensure participant privacy and data anonymization, all individuals were instructed to
remove any items that could reveal their identity. No facial or biometric data was captured during the
collection process.

Prior to the recording sessions, each participant was guided to calibrate their personalized MANO
hand shape parameters. Additionally, participants were trained to properly wear and operate the
HoloLens headset used for egocentric video capture.

During the data collection, participants were asked to perform one of three general categories of hand-
object manipulation tasks: (1) pick-and-place, (2) handovers between hands, and (3) object usage
based on functional affordances. To encourage natural and diverse interactions, no strict constraints
were imposed on task execution. Participants were free to choose the initial object poses, the pace of
their actions, and the order of object interactions. The only explicit instructions were to maintain
visual focus on the manipulated object and to begin and end each task with their hands resting in a
neutral pose on the table. This consistency facilitates downstream segmentation, synchronization,
and initialization processes.

A.2 MANO Shape Calibration

Figure 5: Visualization of the rendered MANO hand mesh used as a reference for participants during
calibration.

We calibrated each subject’s hand shape using a three-step process, assuming both hands share the
same shape. First, we performed initial pose estimation and 3D points collection. Participants were
instructed to align their right hand with a rendered neutral MANO hand mesh displayed in front of a
camera (Fig. 5). During this process, 3D points around the mesh were dynamically collected and
filtered based on their distance to the mesh surface, retaining only those within a predefined threshold.
The hand pose was then optimized by fitting the 3D points to the signed distance field (SDF) of the
MANO model, keeping the shape parameter β fixed at zero to focus solely on pose refinement. The
optimized pose and filtered 3D points were saved for the next step. Second, we iteratively optimized
both the hand shape β and pose θ using the saved pose and points. This involved alternately fixing
one parameter while optimizing the other, gradually improving alignment between the hand mesh
and the collected 3D point data. Finally, the optimized hand shape could be further refined by using
sequences collected in the dataset. Once finalized, the calibrated hand shape was fixed throughout the
following optimization process for hand pose estimation.
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A.3 Synchronization of the Camera Streams

To facilitate efficient control and data collection, all cameras are integrated into a ROS server for
seamless acquisition. The 8 static RealSense cameras are connected via wired cables to the server,
where they publish synchronized RGB and depth images. The HoloLens, connected via an Ethernet
cable, operates in Research Mode to access and publish RGB camera streams and head tracking
data over TCP/IP. All image frames and pose data are recorded into a single ROS bag file, with
synchronization performed based on timestamps to ensure temporal alignment.

B HoloLens Camera Pose Estimation
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Figure 6: Comparison between the published and refined HoloLens poses

During data collection, the HoloLens head pose data often exhibited jitter and non-uniform movement
speeds, making it difficult to compute precise HoloLens camera poses in real time. Therefore, we
cannot directly use the pose data from HoloLens. We applied an optimization technique to refine the
head poses provided by HoloLens.

At each time step t, we have the HoloLens camera pose TH
t in the world frame published from the

device. To refine this camera pose, we obtain the optimized object poses PO
t as described in Sec. 4.4.

By treating the group of objects as a single merged entity, we define the combined object pose as
TO

t in the world frame. By transforming this object pose into the HoloLens camera frame (denoted
as TOH

t ), and assuming proper synchronization between the HoloLens and RealSense frames, we
can proceed with further refinement. Using FoundationPose [52], we optimize the object pose TOH

t
in the HoloLens camera frame using the RGB image from HoloLens, resulting in a refined camera
pose T∗H

t . As shown in Fig. 6, this refinement reduces jitter and improves alignment accuracy for
the projected objects in the HoloLens camera frame.

C Properties of HO-Cap

C.1 Annotation Details

The HO-Cap dataset provides MANO-based 3D hand pose and 6D object pose annotations, optimized
within a global world frame using 8 RealSense cameras. Camera intrinsics and extrinsics for all views
are included, enabling the transformation of world-frame annotations into camera-frame 3D poses.
The 2D hand joint keypoints are obtained by projecting the 3D hand joints onto the image plane.
Additionally, segmentation masks offer pixel-wise annotations for objects and hands, facilitating
precise scene understanding. The First-Person View (FPV) data from the HoloLens headset provides
egocentric perspectives crucial for human perception research and assistive AR applications.

C.2 Visualization and Scene Simulation

The HO-Cap dataset provides textured 3D meshes for 64 objects (Fig. 7), compatible with physics
simulators, enabling realistic scene reconstruction and interaction modeling. For sequence data
visualization and scene replay in Isaac Sim, please refer to the supplementary video.
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Figure 7: Reconstructed textured meshes of the 64 objects in HO-Cap

C.3 Shape and Pose Diversity

As illustrated in Fig. 8, our dataset (1) encompasses a diverse range of hand-held object shapes and
sizes. and (2) offers a broader variety of hand poses compared to HO-3D [21], capturing more natural
and dynamic interactions.

(a) (b)

Figure 8: Distribution of (a) object volume (mm3), (b) hand pose with comparison to HO-3D (first
two MANO PCA coefficients).

C.4 Grasp Types

To further validate the diversity of HO-Cap, we analyzed the dataset using the 33 grasp taxonomies
defined by [15]. As shown in Table 7, HO-Cap covers 28 out of 33 grasp types—substantially
more than HO-3D (15) and DexYCB (14)—demonstrating its broader coverage of human grasp
behaviors. Each count indicates the number of unique sequences containing at least one instance
of the corresponding grasp type. We also grouped these grasp types by task category (Table 8) to
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Table 7: Grasp type distribution based on the 33 grasp taxonomies defined by [15].
Grasp Type #Seq Grasp Type #Seq Grasp Type #Seq

01_Large_Diameter 49 12_Precision_Disk 18 23_Adduction_Grip 2
02_Small_Diameter 12 13_Precision_Sphere 1 24_Tip_Pinch 1
03_Medium_Wrap 5 14_Tripod 10 25_Lateral_Tripod 0
04_Adducted_Thumb 24 15_Fixed_Hook 1 26_Sphere_4_Finger 0
05_Light_Tool 4 16_Lateral_Type 6 27_Quadpod 10
06_Prismatic_4_Finger 3 17_Index_Finger_Extension 19 28_Sphere_3_Finger 3
07_Prismatic_3_Finger 4 18_Extension_Type 17 29_Stick 8
08_Prismatic_2_Finger 1 19_Distal_Type 0 30_Palmar 33
09_Palmar_Pinch 3 20_Writing_Tripod 0 31_Ring 5
10_Power_Disk 5 21_Tripod_Variation 0 32_Ventral 8
11_Power_Sphere 0 22_Parallel_Extension 48 33_Inferior_Pincer 9

Table 8: Grasp type distribution across task categories: pick-and-place (T1), handover (T2), and
affordance usage (T3).

Grasp Type T1 T2 T3

01_Large_Diameter 23 15 11
02_Small_Diameter 5 5 2
03_Medium_Wrap 2 1 2
04_Adducted_Thumb 15 5 4
05_Light_Tool 0 1 3
06_Prismatic_4_Finger 3 0 0
07_Prismatic_3_Finger 2 0 2
08_Prismatic_2_Finger 0 0 1
09_Palmar_Pinch 1 1 1
10_Power_Disk 4 1 0
12_Precision_Disk 9 7 2
13_Precision_Sphere 0 1 0
14_Tripod 1 5 4
15_Fixed_Hook 0 0 1
16_Lateral_Type 2 4 0
17_Index_Finger_Extension 9 4 6
18_Extension_Type 5 10 2
22_Parallel_Extension 19 17 12
23_Adduction_Grip 0 0 2
24_Tip_Pinch 0 0 1
27_Quadpod 0 9 1
28_Sphere_3_Finger 0 2 1
29_Stick 3 1 4
30_Palmar 17 13 3
31_Ring 1 4 0
32_Ventral 2 1 5
33_Inferior_Pincer 4 4 1

# Grasp Types 19 21 22

examine their distribution across pick-and-place (T1), handover (T2), and affordance-usage (T3)
tasks. The results reveal the richness and realism of everyday hand–object manipulation patterns
captured in HO-Cap: T3 exhibits the greatest variety of grasp types, followed by T2 and T1, reflecting
the increasing complexity of interactions across task categories.

D Comparison to Similar Datasets

The most related datasets to HO-Cap are DexYCB[8], HO-3D[21], and H2O [28]. DexYCB focuses
on 20 objects from the YCB benchmark, primarily capturing single-hand grasping and handover
interactions using 8 camera views. In contrast, HO-Cap provides 64 unique objects with textured
3D meshes, offering greater object diversity. Additionally, HO-Cap includes both single-hand and
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Table 9: Statistics of the evaluation setup for seen object detection.
Split #Sub #Obj #View #Seq #Image #Obj Anno
Train 9 64 8 48 36,295 177,564
Val 9 64 8 48 9,073 44,535
Test 8 64 8 16 12,336 62,598

bimanual interactions and incorporates egocentric (FPV) data, enhancing its applicability for AR/VR
and human-centered AI research. HO-3D features grasping-centric hand poses with 10 objects,
captured from 1–5 views per sequence, and relies on marker-based motion capture for annotations. In
contrast, HO-Cap supports a significantly wider range of hand poses and grasps across 64 objects and
employs a semi-automatic optimization-based annotation pipeline that does not require markers. H2O
is one of the few datasets that support bimanual hand-object interactions while providing 6D object
poses and 3D hand poses. However, it is limited to 8 objects. In comparison, HO-Cap extends this
to 64 objects, enabling a wider range of bimanual grasping scenarios and more diverse hand-object
interactions.

E Experimental Details

We benchmarked three tasks using our dataset: hand pose estimation, object detection, and novel
object pose estimation. To enhance evaluation efficiency, all methods were tested on sampled
keyframes from the dataset. All experiments were implemented using PyTorch and conducted on a
desktop workstation equipped with a single Intel(R) Core(TM) i9-10900X CPU, dual NVIDIA RTX
A5000 GPUs, 64 GB of RAM, and running Ubuntu 20.04.

For hand pose estimation, the evaluation frames were subsampled at 10 frames per second (FPS) across
all eight RealSense cameras, resulting in 189,435 frames. This subset is sufficiently representative to
capture the diversity of hand poses in the dataset. When computing the mean per joint position error
(MPJPE), predictions and ground truths are aligned by replacing the root (wrist) location with the
ground truth, eliminating translational ambiguity.

For 6D object pose estimation, due to significant occlusions at the two lowest camera angles and the
egocentric perspectives dominated by hand views, we selected 11,758 frames from the remaining six
viewpoints for evaluation. These chosen frames encompass diverse poses of objects. Ground truth
bounding boxes were provided as input for the pose estimation methods.

For 2D object detection, evaluation frames were sampled from the RealSense camera feeds. The
YOLO11 model was trained from scratch using the YOLO11m configuration, while RT-DETR was
trained under default setting. For novel object detection, a random sampling strategy was employed,
yielding 7,293 frames. Table 9 provides the statistics of the evaluation setup for seen object detection.
Full frames were sampled across all eight RealSense cameras with a subsampling factor of 10 and
divided into train/val/test splits. For each split, we list the number of subjects (“#sub”), objects
(“#obj”), views (“#view”), sequences (“#seq”), image samples (“#image”), and the object annotations
(“#obj anno”).

F Qualitative: 3D Hand Pose Estimation

Fig. 9 shows qualitative results of 3D hand pose estimation using HaMeR [42] and A2J-
Transformer [25] methods. As shown in the figure, the results include both 2D hand joints and
3D hand joints. HaMeR demonstrates superior accuracy in hand pose estimation compared to A2J-
Transformer. Due to the limitations of the A2J-Transformer training process, it lacks consideration
for the interaction between the hand and surrounding objects. The results show that as the interaction
area between the hand and the object increases or when the hand is occluded by the object, the
performance of A2J-Transformer deteriorates. Conversely, HaMeR exhibits a robust adaptability to
these challenging conditions by training a ViT model with large-scale training images.
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G Qualitative: Novel Object Detection

Fig. 10 shows qualitative results of 2D novel object detections with GroundingDINO [32] and
CNOS [40]. For GroundingDINO, we used combined object product names as prompt captions. For
CNOS, feature templates were created for each object by rendering textured 3D models from multiple
viewpoints. Both methods exhibit a significant number of false positives when tested on our dataset.
Given that each scene contains only four objects, Fig. 10 highlights the top four detected bounding
boxes with the highest detection scores.

H Qualitative: 6D Object Pose Estimation

Fig. 11 shows qualitative results of 6D object pose estimation. The object models, rendered us-
ing the estimated poses, are overlaid onto a darkened input image for visualization. As shown,
FoundationPose[52] generates more accurate 6D pose predictions compared to MegaPose [29] on
novel objects.

I Quantitative: 6D Object Pose Estimation

For 6D object pose estimation, we include more detailed results for the evaluation metrics—namely,
Average Distance (ADD) and Symmetric Average Distance (ADD-S)—on a per-object basis in
Table 10. The relationships of objects and their IDs can be found in Fig. 12. We observe that
FoundationPose [52] significantly surpasses MegaPose [29] in handling novel objects, demonstrating
a substantial improvement in accuracy.

J Societal Impact

The HO-Cap dataset contributes to advancements in embodied AI, robotics, and augmented reality.
By enabling research on hand-object manipulation, it supports applications in assistive robotics for
people with disabilities, more natural human-computer interaction, and better simulation of human
dexterity in learning systems. To protect privacy and minimize potential risks, the dataset does not
contain facial data, speech, or biometric identifiers. We strongly encourage the responsible use of this
dataset in accordance with the terms outlined in our dataset license, and discourage any applications
that could lead to surveillance, profiling, or other unethical uses.

K License

The HO-Cap dataset is released under the Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC 4.0) license. This license permits non-commercial use, sharing, and
adaptation with appropriate attribution.

The BundleSDF [51] and FoundationPose [52] components are distributed under the NVIDIA Source
Code License, which restricts usage to research and academic purposes only.

The SAM2 [43] image and video prediction code, along with the MediaPipe [35] hand landmark
prediction code, are licensed under the Apache License 2.0, which allows for broad use, modification,
and distribution under open-source terms.
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Table 10: 6D object pose estimation results of representative approaches in ADD and ADD-S.

Object ID FoundationPose [52] MegaPose [29] Object ID FoundationPose [52] MegaPose [29]

ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S

G01_1 93.66 96.00 88.90 93.59 G11_1 89.40 95.74 66.49 82.61
G01_2 93.55 96.18 80.08 88.33 G11_2 89.43 95.74 66.20 82.51
G01_3 92.98 95.96 71.38 81.96 G11_3 89.39 95.67 65.92 82.62
G01_4 88.39 95.58 69.44 82.26 G11_4 89.42 95.67 65.45 82.21
G02_1 89.60 95.72 69.37 82.89 G15_1 89.43 95.67 65.37 82.18
G02_2 90.19 95.79 71.22 84.50 G15_2 89.41 95.67 65.33 82.18
G02_3 90.82 95.93 71.72 85.56 G15_3 89.42 95.67 65.31 82.18
G02_4 91.00 95.83 70.88 85.11 G15_4 89.53 95.68 65.28 82.10
G04_1 91.10 95.85 69.84 84.39 G16_1 89.57 95.69 65.56 82.14
G04_2 91.25 95.88 69.17 84.33 G16_2 89.65 95.70 65.57 82.18
G04_3 91.29 95.87 69.33 84.37 G16_3 89.67 95.69 65.42 81.97
G04_4 91.36 95.87 70.08 84.73 G16_4 89.72 95.70 65.57 82.03
G05_1 90.54 95.90 69.25 84.79 G18_1 89.67 95.61 65.41 82.05
G05_2 90.86 95.92 69.14 84.76 G18_2 89.70 95.61 65.48 82.04
G05_3 90.82 95.94 69.21 84.80 G18_3 89.72 95.61 65.68 82.13
G05_4 86.23 95.90 66.57 85.10 G18_4 89.77 95.59 65.92 82.25
G06_1 87.28 95.94 67.48 85.33 G19_1 89.75 95.57 66.25 82.32
G06_2 88.13 95.99 66.02 84.59 G19_2 88.11 95.59 65.90 81.72
G06_3 88.42 96.01 66.97 84.84 G19_3 87.67 95.56 64.78 81.61
G06_4 88.41 95.83 65.75 82.95 G19_4 87.70 95.57 65.09 81.75
G07_1 88.52 95.81 65.58 82.50 G20_1 87.76 95.57 64.57 81.79
G07_2 88.57 95.81 65.65 82.52 G20_2 87.83 95.58 64.64 81.88
G07_3 88.72 95.84 66.04 82.66 G20_3 87.59 95.58 64.89 82.01
G07_4 88.78 95.81 66.14 82.50 G20_4 87.64 95.59 64.30 81.84
G09_1 88.96 95.71 67.04 82.84 G21_1 87.73 95.60 64.40 81.99
G09_2 89.20 95.68 68.11 83.26 G21_2 87.79 95.59 64.68 82.15
G09_3 89.51 95.73 67.68 83.27 G21_3 87.68 95.56 64.29 81.63
G09_4 89.72 95.75 67.51 83.34 G21_4 87.65 95.56 63.87 81.13
G10_1 89.82 95.77 67.64 83.44 G22_1 87.63 95.57 64.01 81.23
G10_2 89.81 95.78 67.58 83.48 G22_2 87.69 95.57 63.68 81.13
G10_3 89.88 95.78 67.72 83.51 G22_3 87.73 95.58 63.64 81.12
G10_4 89.52 95.76 66.92 83.03 G22_4 89.33 95.74 63.53 80.97

28



HaMeR A2J-Transformer

Figure 9: Qualitative results of the predicted 3D hand pose using HaMeR [42] (left two columns) and
A2J-Transformer [25] (right two columns).
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Figure 10: Qualitative results for novel object detection
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Figure 11: Qualitative results of 6D object pose estimation. (Top to down: Input RGB frame,
FoundationPose [52], MegaPose [29])
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Figure 12: Objects with their IDs in our dataset.
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