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Abstract

The black-box nature of complex deep learning models makes it challenging
to explain the rationale behind model predictions to clinicians and healthcare
providers. Most of the current explanation methods in healthcare provide expla-
nations through feature importance scores, which identify clinical features that
are important for prediction. For high-dimensional clinical data, using individual
input features as units of explanations often leads to noisy explanations that
are sensitive to input perturbations and less informative for clinical interpreta-
tion. In this work, we design a novel deep learning framework that predicts
domain-knowledge driven intermediate high-level clinical concepts from input
features and uses them as units of explanation. Our framework is self-explaining;
relevance scores are generated for each concept to predict and explain in an
end-to-end joint training scheme. We perform systematic experiments on a
real-world electronic health records dataset to evaluate both the performance
and explainability of the predicted clinical concepts.

1 Introduction
Wider availability of Electronic Health Records (EHR) has led to an increase in deep learning
applications for clinical diagnosis and prognosis [18, 13, 20, 5]. While these deep neural networks
allow for accurate and dynamic performance, the black-box nature of these models makes it
challenging to understand the rationale behind model predictions. Particularly, in the healthcare
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setting, explainability is critical in engendering trust amongst clinicians in the usage of deep
learning based clinical decision support systems [17, 24].
Multiple approaches have been proposed to provide explanations for deep learning models applied
to EHR data, with a focus on using input clinical features as the units of explanation [21].
Feature-based explanations in healthcare involve assigning weights to individual clinical features
highlighting their contribution towards model prediction, e.g. saliency maps [14] and Shapley
explanations [16]. For high-dimensional inputs, feature-based explanations are sensitive to input
perturbations leading to noisy explanations and are difficult for coherent interpretation [8, 22]. To
address this challenge, we can operate on higher-level concepts or feature intermediates, derived
from a combination of raw features. These high-level concepts can be understood as aggregated
knowledge which clinical experts often rely on to make decisions. For example, in medical imaging,
high-level concepts driven by expert knowledge such as tissue ruggedness or elongation are strong
predictors of cancerous tumours and can be the natural "units" of explanation for doctors to
make their diagnosis [15]. Recent work on concept-based explanations focus on learning concepts
from images of simpler toy datasets like MNIST, CIFAR10 and UCI datasets [1, 11, 25]. Learning
unsupervised clinical concepts from EHR data without any kind of domain-knowledge supervision
makes it challenging to learn clinically meaningful concepts.
In this work, we propose a novel deep learning framework that learns high-level intermediate
clinical concepts, supervised by domain knowledge as the units of model explanation. The
clinical concepts should satisfy the following desiderata: (i) expert-knowledge driven: well-
validated metric used by clinicians for analyzing the particular clinical outcome. (ii) Intermediate
knowledge: intermediate features derived from an aggregated assessment of individual clinical
variables (iii) high-level: easier for clinical interpretation. Our proposed framework consists of a
recurrent module with missing value imputation for time-series EHR variables, concept network
for predicting clinical concepts as both auxiliary tasks and units of interpretation, relevance
network for generating relevance scores (contribiutions/importance) for each concept, and a
regression module to predict the clinical outcome using the concepts (features) and relevance
scores (weights). Our framework is self-explaining in nature; predictions and explanations are
generated in an end-to-end joint training scheme. Our work is alligned to Mincu et al.[19] where
clinical concepts based on EHR data were used for post-hoc explanations, without learning them
in a supervised setting. To the best of our knowledge, ours is the first end-to-end approach which
learns both supervised high-level clinical concepts from EHR data and intrinsically developed
model explanations in the context of predicting a clinical outcome.
We tested our framework on a publicly available EHR dataset and evaluated explainability based on
the following criteria: (i) explainability-performance tradeoff: does the self-explaining nature
of our model sacrifice prediction performance? (ii) clinically meaningful: are the explanations
understandable to clinicians, (iii) faithfulness: are the relevance scores indicative of "true"
importance? and (iv) grounding: are the concepts grounded or close to domain knowledge?

2 Proposed Methodology
2.1 Problem formulation

We denote a dataset of multivariate longitudinal EHR data of a single subject as X =
{x1, x2, ...XT } as a sequence of T observations. The tth observation xt ∈ RD consists of
D features {x1

t , x2
t , ...xD

t } and was observed at timestamp st. Let yt ∈ {0, 1} represent the
outcome label at timestep t. Due to missing values in EHR data, md

t represents a masking vector
such that md

t = 0 if xd
t is not observed and 1 otherwise. Since EHR features can be missing

for consecutive timestamps, we denote δd
t to be the time gap from the last observation to the

current timestamp st such that δd
t = st − st−1 + δd

t−1 for md
t−1 = 0,t > 1; δd

t = st − st−1 for
md

t−1 = 1,t > 1 and δt = 0 for t = 1. For clarity, all notations in the following sections represent
a single subject.

2.2 Time-series embedding with missing value imputation

Following the BRITS algorithm [4], we use a recurrent neural network for embedding time-series
features where the missing values are imputed based on recurrent dynamics. We represent a
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standard recurrent neural network as ht = σ(Whht−1 + Uhxt + bh) where σ is the sigmoid
function, Wh, Uh and bh are parameters, and ht is the hidden state of previous time steps. The
missing values are imputed by a regression component which transfers the hidden state ht−1 to
the estimated vector x̂t (Equation (1)). The hidden state ht is updated by (Equation (4)) where
xc

t represents the complement input when xt is missing (Equation (2)) and γt represents the
temporal decay factor to decay the hidden vector ht−1. The temporal decay factor (Equation
(3)) represents the missing patterns in the time-series with smaller γ to decay the hidden state
ht−1 if δt is large (values missing for a long time). The imputation loss (Equation (5)) can be
calculated by the mean squared error between input xt and imputed vector x̂t.

x̂t = Wxht−1 + bx (1)
xc

t = mt · xt + (1 − mt) · x̂t (2)
γt = exp(−max(0, Wγδt + bγ)) (3)
ht = σ(Wh[ht−1 · γt] + Uh[xc

t · mt] + bh) (4)
Limp = MSE(xt, x̂t) (5)
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Figure 1: Our proposed framework has a recurrent module with missing value imputation for
time-series EHR variables, concept network for predicting clinical concepts as both auxiliary
tasks and units of interpretation, relevance network for generating relevance scores (contribiu-
tions/importance) for each concept, and a regression module to predict the clinical outcome
using the concepts (features) and relevance scores (weights).

2.3 Concepts and relevance scores

The output of the recurrent module represents the latent vector (imputed vector x̂t ∈ RT×H)
where H is the hidden layer dimension. x̂t can be passed through the concept network C(x̂t) to
generate |C| concepts K = {k1, k2, ...kC)} such that the c-th concept vector kc = {k1

c , k2
c , ..kT

c }
represent the concept values at each timepoint. Similarly, x̂t is passed through the relevance
network θ(x̂t) to generate the relevance scores for |C| concepts θ = {θ1, θ2, ...θC)} such that
the c-th relevance vector θc = {θ1

c , θ2
c , ..θT

c } represent the relevance scores at each timepoint
corresponding to the c-th concept kc = {k1

c , k2
c , ..kT

c }. Both C(x̂t) and θ(x̂t) can be represented
by a fully-connected neural network.

2.4 Explanations and final outcome

The predicted probability of the final clinical outcome Y outcome can be estimated by a regression
module with the concepts (features) and the relevance scores (weights) as Y = {y1, y2, ..yT }
where yt = σ(

∑|C|
j=1 θt

j × Kt
j) represents the predicted outcome probability at the t-th timepoint.

The use of a regression module using the concepts and relevance scores is motivated by the
interpretability of a linear model yt = θt

i × xt
i where the constant coefficient θt

i represents the
explicit contribution of input feature xt

i. Building on a linear regression model and making it
more complex, both θ(x) and K(x) can be learnt from input features and θt

j(x) represents the
contribution (relevance) of concept Kt

j(x) towards the final outcome at each timestep.
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2.5 Loss function

The final loss function L can be represented by L = λ1Ly + λ2
∑|C|

c=1 Lc + λ3Limp where Ly is
the cross-entropy classification loss for the final predicted outcome, Lc is the auxiliary concept
loss for the cth concept, represented by the mean squared error and Limp is the imputation
loss calculated in Equation (5). λ1, λ2 and λ3 represent the coefficients of the different losses
respectively. The supervised auxiliary concept loss encourages the predicted concepts to be similar
to the domain-knowledge values. The coefficients of the loss terms are set as λ1 = 1, λ2 = 0.8
and λ3 = 0.05 after hyper-parameter tuning using grid search.

3 Experimental Design
3.1 Dataset and feature preprocessing

We conducted our experiments on the Medical Information Mart for Intensive Care IV (MIMIC-IV
v0.4) database [12]. Our cohort consists of 22,944 ICU admitted patients between 2008-2019, of
which 2043 (8.9%) experienced in-hospital mortality. Only the first admission was considered in
case of multiple ICU admissions. For each patient, we extracted 87 time-series features which
includes laboratory test results and vital signs. Feature pre-processing of time-series variables
include clipping the outlier values to the 1st and 99th percentile values and standardization using
the RobustScalar package from sklearn [2]. Time-varying variables were aggregated into hourly
time buckets using the median for repeated values.

3.2 Clinical outcome

Our aim is to predict the risk(probability) of a patient’s death at each timestep within his/her
stay in the ICU. At each timepoint within the patient’s ICU trajectory, the model predicts if the
patient will die within the next 24 hours period (Figure 2 left). For example, if a patient stays
within the ICU from t=0 to t=56 hours(death time) then the clinical outcome labels (ground
truth) from t=0 to t=32 will be 0 (survival) and 1 (death) from t=32 onwards.

Figure 2: Calculating longitudinal ground-truth label for mortality (left) and auxiliary concepts
(right).At each timepoint, mortality label is positive if patient dies within the next 24 hours
window. The concept ground truth value at each timepoint is the maximum SPOFA organ-failure
scores within a 24-hour window following the current timepoint.

3.3 Domain-knowledge concepts

Our proposed framework uses Sequential Organ Failure Assessment (SOFA) organ-failure risk
scores as high-level clinical concepts to explain patient mortality in the ICU [23]. The six
concepts in our model correspond to the organ-failure risk scores for each of the six organ
systems: respiratory, cardiovascular, neurological hepatic, hematologic (coagulation) and renal
systems. SOFA organ scores vary between 0-4 with high scores indicating severe organ system
conditions [10]. The SOFA organ scores satisfy the properties of clinical concepts since they
are (i) expert-knowledge driven: well-validated metric used by clinicians to understand ICU
mortality, (ii) intermediate knowledge: each organ-failure score is an aggregated assessment of
clinical features and (iii) high-level: easier for human cognition since we are moving one level up
from feature-level to organ level. Similar to the final clinical outcome, the predicted explanations
are also anticipated longitudinal predictions. At each timestep, the model predicts anticipated
organ-failure risk scores (maximum score within the next 24 hour window) (Figure 2 right).
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3.4 Baselines and ablation studies

Our goal is to analyze if the self-explaining nature of our proposed model sacrifices prediction
performance (explainability-performance trade-off). We compared the prediction performance of
our proposed model with following state-of-the-art baseline methods on ICU mortality prediction
from MIMIC: (i)Support Vector Machines (SVM) [9](ii) Random Forests (RF) [9], (iii) XgBoost
(XGB) [7], (iv) Fully Connected Network (FCN) [3] (v) Gated Recurrent Unit (GRU) + MLP
(multi-layer perceptron) [6]. We also performed a set of ablation studies to understand the utility
of learning concepts and the imputation module. Our ablation baselines are as follows: (vi)
proposed framework without the concepts and relevance scores (RNN+MLP), (vii) Proposed
framework without the missing value imputation and (viii) using only the SOFA organ scores as
input features (same network as in (vi)) to predict mortality.

3.5 Implementation details

Both the proposed and baseline models were trained with the same set of longitudinal EHR
variables. The dataset was split into training, validation and test set (70:15:15), with the validation
set used for early stopping. All deep learning models were trained using the same set of parameter
configurations as follows: Adam optimizer with learning rate = 0.001, β1 = 0.9, β2 = 0.999
and L2 regularization factor = 0.0001 and the number of recurrent layers was set to 3, each of
dimension 128. Both the concept network and the relevance network were implemented using
fully connected layers of dimensions 256, 12, 64 respectively. All the models were trained for
500 epochs with batch size 128 and dropout rate = 0.5. The non-neural models (SVM, RF and
XGB) were implemented using Scikit-learn 1.0.1 (default parameters) with Python. The deep
learning models were implemented using PyTorch 1.10.2.

3.6 Evaluation metric

We evaluated the explainability and performance of our framework based on the following
criteria: (i) explainability-performance tradeoff: does the self-explaining nature of our model
sacrifice prediction performance? (ii) added cost of explainability: extra computational cost
(training time) of our proposed model compared to baselines (iii) clinically meaningful: are the
explanations clinically informative for clinicians and (iv) faithfulness: are the relevance scores
indicative of "true" importance? Prediction performance of all models were compared using the
Area under the Receiver Operating Characteristics (AUROC) and Area under the Precision Recall
(AUPRC) curves.

4 Experimental Results
4.1 Explainability-performance trade-off

Our proposed model has better prediction performance (AUROC/AUPRC) compared to the both
state-of-the-art machine learning and deep learning models on ICU mortality prediction using
MIMIC (Table 1). We believe that the improved performance of our proposed model can be
attributed to missing value imputation using recurrent dynamics and using the anticipated organ-
failure scores to predicted mortality. Performance metrics of the non-deep learning models are
comparatively lower, suggesting that deep neural networks are necessary for predictive modelling
with high-dimensional complex datasets. The ablation model using only the six SOFA organ-
specific scores as features performs poorly, indicating that it’s necessary to learn the concepts
(anticipated organ-failure risk scores) compared to directly using them as features. Our proposed
model without the missing value imputation shows significant drop in performance. Our proposed
model without the concepts and relevance scores does not lead to any performance improvement.
This suggests that the self-explaining nature of our proposed model does not sacrifice prediction
performance.

4.2 Added complexity of explainability layer

Our proposed model more training time than the baselines, but it’s still within a reasonable
limit (6 minutes). We believe that the added computational cost is due to the missing value
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Table 1: Mortality prediction performance (AUROC, AUPRC and training time in seconds). The
values indicate mean and 95% values confidence interval after repeated experiments.

Model AUROC AUPRC Training time
SVM [9] 0.737 [0.725-0.747] 0.432 [0.415-0.452] 56s
Random Forest [9] 0.723 [0.708-0.734] 0.443 [0.422-0.461] 74s
XgBoost [7] 0.784 [0.775-0.791] 0.526 [0.497-0.556] 36s
FCN [3] 0.812 [0.785-0.847] 0.495 [0.482-0.514] 112s
GRU + MLP [6] 0.894 [0.865-0.918] 0.532 [0.517-0.558] 140s
SOFA_only 0.715 [0.695-0.727] 0.378 [0.362-0.385] 78s
No missing imputation 0.825 [0.805-0.847] 0.472 [0.452-0.481] 282s
RNN + MLP (no concept) 0.902 [0.875-0.933] 0.524 [0.517-0.533] 128s
Proposed 0.923 [0.915-0.947] 0.529 [0.505-0.551] 342s

imputation and the additional concept and relevance network. We believe that the trade-off
between performance and computational cost of our model is reasonable.

Figure 3: Explaination-relevance visualization of a single patient who died 56 hours after ICU
admission. The topmost plot represents mortality probability while the following points represent
the explanations. The x-axis represents time (hours into ICU admission) and the plotted values
represent either the ground truth label (black) or the predicted value (red).The colormap within
each row indicates the weight/importance (relevance score) given to the explanations where dark
hues corresponds to higher relevance given to a particular organ system at a specific time point.
Both concepts and relevances were scaled between 0 and 1 for easier interpretation.

4.3 Clinical interpretation : Are the explanations clinically informative for clinicians?

We investigated the explanation relevance visualization of the longitudinal trajectory (death)
of a single patient who died 56 hours after ICU admission (Figure 3). At each timestep, the
clinical outcome (mortality) labels from t=0 to t= 32 will be 0 (survival) and the the labels will
be 1 from t=32 onwards. As the predicted probability of mortality rises, the model is shown to
pay more importance to anticipated failures in the respiratory, cardiovascular and hepatic organ
systems, highlighting their contribution towards mortality. The predicted auxiliary concepts along
with the relevance scores are clinically informative in the sense that they can inform clinicians 24
hours in advance the potential organ-system failures that can lead to patient mortality.
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4.4 Are relevance scores indicative of true concept importance?

In MIMIC IV, the exact reason behind patient mortality is not available.We measured the
faithfulness of relevance scores with respect to the model using a proxy notion of importance:
observing the effect of removing features on the model’s prediction. In this case, we dropped each
of the six concepts (6 SOFA organ-failure scores) during inference time, measured the drop in
predicted probability of mortality, and compared them with the corresponding concept’s relevance
scores. The relevance scores (aggregated across all patients and timepoints) are correlated with
the probability drop with for each concept. (Figure 4 left).SOFA respiratory, SOFA cardiovascular
and SOFA hepatic with higher relevance scores have a greater drop in mortality probability
indicating the importance of these organ-failure risk scores for estimating mortality.

4.5 Grounding of concepts

Our proposed model performs relatively well in predicting risk scores for all the six organ systems
(Figure 4 right). This indicates that the predicted organ scores are grounded in terms of expert
knowledge and are clinically meaningful choices to select as concepts for our framework.

5 Discussion and Conclusion
In this work, we designed a novel deep learning framework that predicts domain-knowledge
driven intermediate high-level clinical concepts from input features and uses them as units of
explanation. Our framework is self-explaining; relevance scores are generated for each concept
to predict and explain in an end-to-end joint training scheme. Experiments on a real-world
electronic health records dataset suggest that (i) the self-explaining nature of our model does
not sacrifice prediction performance, (ii) the generated explanations for clinically informative and
(iii) the relevance scores reflects true importance (contribution) of the concepts towards the final
outcome.
Due to the ever-increasing volume of EHR data, clinicians often rely on existing intermediate
knowledge derived from clinical variables for their diagnosis. With the availability of intermediate
knowledge as concepts specific to each clinical prediction problem, our proposed framework
is generalizable and can be applied on other datasets too. Future work includes learning the
plausible clinical concepts in an unsupervised manner without relying on expert knowledge.
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Figure 4: Left: Relation between the relevance score and corresponding probability drop for
each concept. Right: Performance of our proposed model on the auxiliary concept prediction
(aggregated across all patients and all timepoints). SOFA organ scores ranging between (0,1,2,3,4)
were scaled between (0,1) to (0,0.25,0.5,0.75.1). The dotted line in each figure represents the
ideal scenario where the predicted and actual values are same.
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