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Abstract

We study the relation between two classical results: the bias-variance decomposition, and the
approximation-estimation decomposition. Both are important conceptual tools in Machine
Learning, helping us describe the nature of model fitting. It is commonly stated that they
are “closely related”, or “similar in spirit”. However, sometimes it is said they are equivalent
(spoiler: no, they’re not). In reality, they have subtle connections, cutting across learning
theory and classical statistics, that (very surprisingly) have not been previously observed. In
this work we uncover the connections, building a bridge between these two seminal results.

1 Introduction

Geman et al. (1992) introduced the bias-variance decomposition to the Machine Learning community, and
Vapnik & Chervonenkis (1974) introduced the approximation-estimation decomposition, founding the field
of statistical learning theory. Both decompositions help us understand model fitting: referring to model size,
and some kind of trade-off. The terms are often used interchangeably. And yet, they are different things.
Given their fundamental nature and similar purposes, it is surprising that explicit connections are not widely
known—perhaps due to differing notations and conventions of their respective communities. Our goal is to
uncover these connections and build a bridge between these two seminal results.

The approximation-estimation decomposition refers to models drawn from some function class F , and con-
siders an excess risk—that is, the risk above that of the Bayes model—breaking it into two components:

excess risk = approximation error + estimation error. (1)
We might choose to increase the size of our function class, perhaps by adding more parameters to our model.
In this situation it is commonly understood that the approximation error will decrease, and the estimation
error will increase (Von Luxburg & Schölkopf, 2011), beyond a certain point resulting in over-fitting of the
model. In contrast to the abstract notion of a “function class”, the bias-variance decomposition considers
the risk of real, trained models, in expectation over possible training sets. Assuming there is a unique correct
response for each given input x (i.e., no noise) it breaks the expected risk into two components:

expected risk = bias + variance. (2)
As we increase model size: the bias tends to decrease, and the variance tends to increase, again determining
the degree of over-fitting. Recently, it has become apparent that this trade-off is not always simple, e.g. with
over-parameterised models; but, the decomposition still holds even if a simple trade-off does not. We note
that this decomposition, as used in the Machine Learning literature, concerns inference of the response/target
variable—and not of the parameters, as is more common in classical statistics.

We therefore have two decompositions: both referring to model size, with some kind of trade-off between
their terms, and with bearing on the nature of over-fitting. It is easy, and common, to conflate these. From
online discussion forums, to the lecture notes of esteemed institutions and well-cited research articles, one
can observe innocent (but imprecise) statements such as stating they are “similar in spirit”, but also the
more extreme (and incorrect/misleading) “the trade-off between estimation error and approximation error
is often called the bias/variance trade-off”—see Appendix D for examples. To the best of our knowledge,
this is the first work to discuss their connection explicitly. We consider a range of loss functions: including
Bregman divergences and the 0/1 loss. We study properties of the decompositions, observing where they
coincide and where they do not.
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Figure 1: Two diagrams (same on left/right is intentional) illustrating how the approximation/estimation
and bias/variance trade-offs are commonly described, and easily confused.

2 Background

We introduce notation and review the two decompositions. We introduce these ideas in an intentionally
didactic/comprehensive manner, to avoid any possibility of confusion in terminology.

2.1 Preliminaries

Consider a standard supervised learning setup, where the task is to map from an input x ∈ X ⊆ Rd to an
output y ∈ Y ⊆ Rk, and assume there exists an unknown distribution P (x, y). This is achieved by learning
the parameters of a model f : x → y, which can also be seen as selecting a function f from a set F ⊂ Fall, a
subset of all measurable functions. The discrepancy of f(x) from the true y is quantified with a loss function
ℓ(y, f(x)), which may or may not be symmetric. Using this, we define the risk of a given model f ,

R(f) := Exy[ℓ(y, f(x))] =
∫

ℓ(y, f(x)) dP (x, y). (3)

The Bayes model y∗ is the hypothetical function which minimizes this quantity at each x, i.e.

y∗ := arg inf
f∈Fall

R(f), (4)

where we acknowledge a slight abuse of notation, using y∗ as a function in Fall or a vector in Rk as needed—
the intention will always be made clear from context. Given that we picked a restricted family F ⊂ Fall, we
have no guarantee that it contains y∗. The best-in-family model f∗ is defined

f∗ := arg inf
f∈F

R(f). (5)

Both of these are defined in terms of the true distribution P (x, y). In practice, we only have a sample
S = {(xi, yi)}n

i=1, drawn from a random variable D ∼ P (x, y)n. We write the empirical risk as:

Remp(f ; S) := 1
n

n∑
i=1

ℓ(yi, f(xi)), (6)

and a model in F that minimizes this, known as an empirical risk minimizer, is defined:

f̂erm := arg inf
f∈F

Remp(f ; S). (7)

We use a ‘hat’ notation to emphasize that the ERM is dependent on D, the random variable over training
data samples. For some models/losses an ERM is achievable—e.g. the closed-form solution for linear models
under squared loss. However in general, a training procedure will not necessarily result in an ERM. We can
now cover the specifics for the two decompositions.
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2.2 The Approximation-Estimation decomposition

The approximation-estimation decomposition is a seminal observation from the 1970s work of Vapnik and
Chervonenkis, reviewed in Vapnik (1999). An excellent historical account can be found in Bottou (2013).
The result deals with the excess risk R(f̂erm)−R(y∗), i.e. the risk of f̂erm above that of the Bayes model, y∗.
The approximation-estimation decomposition, applicable for any loss ℓ, breaks this into two terms:

R(f̂erm) − R(y∗)︸ ︷︷ ︸
excess risk

= R(f̂erm) − R(f∗)︸ ︷︷ ︸
estimation error

+ R(f∗) − R(y∗).︸ ︷︷ ︸
approximation error

(8)

The approximation error is the additional risk due to using a restricted family F , rather than the space
of all functions Fall. This is a systematic quantity, not dependent on any particular data sample. The
estimation error is the additional risk due to our finite training data, when trying to find f∗ ∈ F . This a
random variable, dependent on the particular data sample used to obtain f̂erm. There is a natural trade-off
(see Figure 1, left) as we change the size of F , keeping data size fixed. As we increase |F|, approximation
error will likely decrease (potentially to zero, if y∗ ∈ F), but estimation error will increase, as it becomes
harder to find f∗ in the larger space. The reason behind this is, in effect, the classical multiple hypothesis
testing problem—we cannot reliably distinguish many hypotheses when our dataset is small. Bottou &
Bousquet (2007) extended Equation 8, recognising that it is often intractable to find f̂erm, and we can only
have a sub-optimal model f̂ . An additional risk component then emerges, and the excess risk of f̂ now
decomposes into a sum of optimisation error, estimation error, and approximation error:

R(f̂) − R(y∗)︸ ︷︷ ︸
excess risk of f̂

= R(f̂) − R(f̂erm)︸ ︷︷ ︸
optimisation error

+ R(f̂erm) − R(f∗)︸ ︷︷ ︸
estimation error

+ R(f∗) − R(y∗).︸ ︷︷ ︸
approximation error

(9)

These three terms describe the learning process in abstract form: accounting respectively for the choice of
learning algorithm, the quality/amount of data, and the capacity of the model family.

2.3 The Bias-Variance decomposition

A bias-variance decomposition involves the expected risk of a trained model f̂ , where the expectation ED

is over the random variable D ∼ P (x, y)n, i.e., all possible training sets of a fixed size n. Focusing on a
squared loss, and y ∈ R, Geman et al. (1992) showed:

ED

[
Exy[(y − f̂(x))2]

]
︸ ︷︷ ︸

expected risk

= Exy

[
(y − y∗)2

]
︸ ︷︷ ︸

noise

+Ex

[(
y∗ − ED[f̂(x)]

)2
]

︸ ︷︷ ︸
bias

+Ex

[
ED[(f̂(x) − ED[f̂(x)])2]

]
︸ ︷︷ ︸

variance

. (10)

where y∗ = Ey|x[y] is the Bayes-optimal prediction at each point x. The bias is a systematic component,
independent of any particular training sample, and commonly regarded as measuring the ‘strength’ of a
model. The variance measures the sensitivity of f̂ to changes in the training sample, independent of the
true label y. The noise is a constant, independent of any model parameters. There is again a perceived
trade-off with these terms (see Figure 1, right). As the size of the (un-regularised) model increases: bias
tends to decrease, and variance tends to increase. However, the trade-off can be more complex (e.g. with
over-parameterized models) and the exact dynamics are an open research issue.

Bias-Variance decompositions hold for more than just squared loss. In fact, the same form holds
for any Bregman divergence (Bregman, 1967; Pfau, 2013). For a domain Y ⊆ Rk, define ℓ : Y × ri(Y) → R+
as an arbitrary Bregman divergence, parameterised by a strictly convex generator1 function ϕ, then:

ED

[
Exy[ℓ(y, f̂(x))]

]
︸ ︷︷ ︸

expected risk

= Exy

[
ℓ(y, y∗)

]
︸ ︷︷ ︸

noise

+Ex

[
ℓ(y∗,

◦
fϕ(x))

]
︸ ︷︷ ︸

bias

+Ex

[
ED[ℓ(

◦
fϕ(x), f̂(x))]

]
.︸ ︷︷ ︸

variance

(11)

where
◦

fϕ(x) := arg min
z∈Y

ED[ℓ(z, f̂(x))], and y∗ := arg min
z∈ri(Y)

Ey|x[ℓ(y, z)] = Ey|x[y] is again the Bayes model.

1We refer the reader to Banerjee et al. (2005b) for an excellent tutorial on Bregman divergences.
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This general Bregman form covers many well-known losses as special cases, e.g. squared and Poisson loss.
For a squared loss, we have

◦
fϕ(x) = ED[f̂(x)], but this is not always the case. In general,

◦
fϕ(x) is a

generalised measure of centrality, which is known (in the information geometry community) as a Bregman
centroid (Nielsen & Nock, 2009). As this will be important in the coming sections, we define it formally.

Definition 1 (Centroid prediction at x) Assume an arbitrary loss ℓ : Y × Y → R. For a single input x,
given a distribution of predictions from a model f̂ , induced by a random variable D, the centroid prediction
is the point in Y closest on average to all others:

◦
f(x) := arg minz∈Y ED[ℓ(z, f̂(x))].

For the special case of ℓ as a Bregman divergence, this is available in closed-form (Nielsen & Nock, 2009).

Definition 2 (Bregman centroid prediction at x) If ℓ is a Bregman divergence Bϕ : Y × ri(Y) → R+
defined by a strictly convex function ϕ : Y → R, then the centroid prediction at x is:

◦
fϕ(x) := arg min

z∈Y
ED

[
Bϕ(z, f̂(x))

]
= [∇ϕ]−1

(
ED

[
∇ϕ(f̂(x))

])
. (12)

This closed-form for the Bregman centroid2 prediction will turn out to be very useful. Examples of Bregman
centroids can be found in the table below.

Table 1: Examples of losses which admit a bias-variance decomposition, with corresponding centroids.

Name Domain Bϕ(y, f̂(x)) Centroid
◦

fϕ(x)

Squared y ∈ R (y − f̂(x))2 ED[f̂(x)]
Poisson y ∈ {0, 1, 2, ...} y ln y

f̂
− (y − f̂) exp(ED[ln f̂ ])

KL-divergence y ∈ Rk, s.t.
∑

c yc = 1 DKL(y || f̂(x)) Z−1 exp(ED[ln f̂(x)])
Ikatura-Saito y ∈ [0, ∞) y

f̂(x) − ln y

f̂(x) − 1 1/ED[f̂(x)−1]

The bias/variance terms take different functional forms for each Bregman divergence. Note that the KL-
divergence example implies a decomposition for the cross-entropy loss, since the two differ only by a constant.
It is interesting to note that generalised decompositions only appeared in the ML community with Heskes
(1998), but the idea seems to be known much earlier in statistics, e.g., Hastie & Tibshirani (1986, Eq. 19).

Bias-Variance decompositions do not hold for all losses. The approximation-estimation decom-
position, Equation 9, applies for any loss. This is not so for the bias-variance decomposition. As is well-
documented (Geurts, 2002), the form of Equation 11 does not hold for the 0/1 loss, and we have an inequality:

ED

[
Exy[ℓ0/1(y, f̂(x))]

]
︸ ︷︷ ︸

expected 0/1 risk

̸= Exy

[
ℓ0/1(y, y∗)

]
︸ ︷︷ ︸

noise

+Ex

[
ℓ0/1(y∗,

◦
f(x))

]
︸ ︷︷ ︸

bias

+Ex

[
ED[ℓ0/1(

◦
f(x), f̂(x))]

]
,︸ ︷︷ ︸

variance

(13)

where
◦

f(x) is the modal value. Several authors have proposed alternative decompositions, following sets of
axioms to define what constitutes a ‘bias-variance’ decomposition (Wolpert, 1997; James & Hastie, 1997;
Heskes, 1998). The necessary and sufficient conditions for such a decomposition are an open research question.

2.4 Summary

These decompositions are conceptual tools to describe the nature of model fitting. They are by no means
perfect reflections of the process, most especially in the context of over-parameterized models (Nagarajan
& Kolter, 2019; Zhang et al., 2021). However, it is extremely common to see papers making the incorrect
assumption/claim that the two are equivalent, or that one is a special case of the other. Our purpose with
this work is to correct these false assumptions, identifying precisely how the two connect.

2Note that this is a minimization over the first (left-hand) argument, so it is technically a left centroid. The right centroid
can be similarly defined, turning out to be simply ED[f̂(x)] for any valid ϕ (Banerjee et al., 2005a), which explains why the
Bayes-optimal prediction is y∗ = Ey|x[y] for any Bregman divergence.
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3 Bias/Variance is not the same as Approximation/Estimation

By now it should be evident that these decompositions are related, but are not quite the same thing. Perhaps
the most obvious difference is that they are on different quantities—the excess risk of an ERM, versus the
expected risk of an arbitrary trained model. We now build a bridge between the two. We first define a
concept that we will refer to repeatedly in the coming sections: the ‘centroid model’.

Definition 3 (Centroid model) For a model f̂ dependent on a random variable D, the centroid model
◦

f
is the aggregate formed by taking the centroid prediction at each possible x. Note that whilst by definition

◦
f ∈ Fall, there is no guarantee that

◦
f ∈ F .

Note that this definition is general to any loss, not just Bregman divergences. We now observe that the
estimation error involves R(f̂erm), making it a random variable dependent on D. We take the expectation
with respect to D, and separate it into two components using R(

◦
f), the risk of the centroid model.

Proposition 1 (Decomposing the Expected Estimation Error) For an arbitrary loss ℓ, the expected
estimation error decomposes as follows:

ED

[
R(f̂erm) − R(f∗)

]
︸ ︷︷ ︸

expected estimation error

= ED

[
R(f̂erm) − R(

◦
f)

]
︸ ︷︷ ︸

estimation variance

+ R(
◦

f) − R(f∗).︸ ︷︷ ︸
estimation bias

(14)

The estimation variance, Eest(v), measures the random variations of f̂erm around the centroid model. The
estimation bias, Eest(b), measures the systematic difference between the centroid model and the best-in-family
model. Using these concepts, we can present the relation between the two decompositions.

Theorem 1 (Bias-Variance in terms of Approximation-Estimation) For any Bregman divergence,
ℓ(y, f(x)) = Bϕ(y, f(x)), the following decomposition of the bias and variance applies.

Ex

[
ℓ(y∗,

◦
fϕ(x))

]
︸ ︷︷ ︸

bias

= R(f∗) − R(y∗)︸ ︷︷ ︸
approximation error

+ R(
◦

fϕ) − R(f∗)︸ ︷︷ ︸
estimation bias

(15)

Ex

[
ED[ℓ(

◦
fϕ(x), f̂(x))]

]
︸ ︷︷ ︸

variance

= ED

[
R(f̂) − R(f̂erm)

]
︸ ︷︷ ︸

optimisation error

+ED

[
R(f̂erm) − R(

◦
fϕ)

]
︸ ︷︷ ︸

estimation variance

(16)

This confirms the premise of our work. Bias is not approximation error, and variance is not estimation error.
It is not even the case that one is a special case of the other, as is sometimes stated. The true relation is
more subtle. The approximation error is in fact just one component of the bias, and, the estimation error
contributes to both bias and variance. The theorem above is illustrated in Figure 2.

optimization
error

expected risk

Bayes 
error+ approximation

error+ +estimation
error

variance bias noise

The other way round

expected risk

optimization

noise

Bayes

+ bias +

estimation (v + b) approximation

variance

Figure 2: Illustration of Theorem 1. The bias is only partly determined by approximation error (i.e. choice of
model), while the rest is due to expected estimation error (i.e. choice of data). Similarly, variation in data
accounts for only part of the variance, and the rest is due to optimisation error (i.e. choice of algorithm).
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4 Discussion

A simplistic description of bias and variance would say they are the error ‘due to the model’ (bias) and the
error ‘due to the data’ (variance). Theorem 1 shows there is more nuance to understand. We now discuss
the subtleties and implications of these results.

4.1 The bias is a flawed proxy for model capacity.

It is common to assume the bias is an indication of how simple/complex a model is—expected to be lower
if the model has higher ‘capacity’. But what is model ‘capacity’? If we take it to be the ability to minimize
the population risk, then the ultimate measure of model capacity is the approximation error. We see from
Equation 15 that the bias contains exactly this, but also the additional estimation bias term, which gives it
some surprising dynamics.

For a squared loss with a linear model, Equation 15 has been noted3 before (Hastie et al., 2017, Eq 7.14).
Our result generalises it to a broader range of losses and arbitrary non-linear models. For tractability, their
analyses were restricted to linear models. However tractable, they were unable to observe a critical fact—that
in the general case, estimation bias R(

◦
f) − R(f∗), can take negative values, i.e.

bias =
[

approximation
error

]
︸ ︷︷ ︸

always ≥ 0

+
[

estimation
bias

]
︸ ︷︷ ︸

can be negative

(17)

To understand how this can be, we must accept the somewhat non-intuitive idea that the centroid model can
be outside the hypothesis class F , and thus we can have R(

◦
f) < R(f∗). This was described in Definition 3,

and can be trivially illustrated, even with a simple regression stump evaluated by squared loss.

0 1 2 3
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x

y = 6.1 y = 9

x ≥ 1.6x < 1.6

x

y = 7 y = 9.8

x ≥ 2.1x < 2.1

Stump 1 Stump 2 Stump 2

Stump 1

Figure 3: Two regression stumps (red/blue lines), and their centroid model (black line, arithmetic mean).
Notice the centroid model is outside the hypothesis class, i.e. it cannot be represented as a single binary
stump. As a result, the centroid model fits the data better than any f ∈ F , and Eest(b) is negative.

The possibility of negative values here has significant implications. There are two ways in which bias can
be zero. If F contains the Bayes model, then we might have Eapp = Eest(b) = 0. But, there is another way.
For some ϵ > 0, we might have Eapp = ϵ, and Eest(b) = −ϵ. In this case, the model family does not have
sufficient capacity, since Eapp > 0. And yet, the bias is zero. Hence, the bias is a flawed proxy for the true
model capacity.

To illustrate the point, we show experiments on a synthetic regression problem. Details in Appendix C.

3Hastie et al. described the first term on the right as “the error between the best-fitting linear approximation and the true
function”. This is exactly the definition of approximation error for the linear model. We provide a proof of this relation and
further discussion in the appendix.
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Figure 4 shows results increasing the depth of a decision tree. The left panel shows excess risk, and the
bias/variance components. We observe the classical bias/variance trade-off, including overfitting, as the
depth increases beyond a certain point. It is notable that the bias decreases to zero, after depth 6. Does this
imply the model is ‘unbiased’, in the sense that it has sufficient capacity to capture the full data distribution?

Figure 4: Risk components as we increase the depth of a regression tree.

The answer is no. A decomposition of the bias into two components (right panel) shows that the approx-
imation error is non-zero, i.e. the best possible model cannot achieve zero testing error. The cause of the
bias going to zero is that the estimation bias is negative, hence the bias is not a good proxy for the true
model capacity. Very similar results are obtained with a k-nearest neighbour regression (Figure 5), where
increasing complexity is obtained by decreasing the value of k.

Figure 5: Risk components as we decrease the number of neighbours in a k-nn.

We can formally characterise this phenomenon, by studying the geometry of the hypothesis class F . In
particular, if the set F is dual-convex (Amari, 2008) with respect to ϕ, then

◦
f ∈ F , and hence estimation

bias is guaranteed to be non-negative.

Theorem 2 (Sufficient condition for a non-negative estimation bias.) If the hypothesis class F is
dual-convex then the estimation bias is non-negative.

A simple example of a non-dual convex set is the class of regression stumps evaluated by squared loss, where
◦

f(x) = ED[f̂(x)], illustrated in Figure 3. A simple example of a dual-convex set is the class of Generalized
Linear Models evaluated by their corresponding deviance measure.

Theorem 3 (GLMs have non-negative estimation bias.) For a Bregman divergence with generator
function ϕ, define F as the set of all GLMs with inverse link [∇ϕ]−1 and natural parameters θ ∈ Rd.
Then, the estimation bias is non-negative.

An example of this would be a logistic regression, f̂(x) = [∇ϕ]−1(θ̂T x) = 1/(1 + exp(−θ̂T x)), which results
from ϕ(f) = f ln f + (1 − f) ln(1 − f) and the binary KL as the deviance.

7
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4.2 New insights into the bias/variance trade-off.

In the age of deep learning, the relevance (and even existence) of a trade-off between bias and variance
has been debated, with voices both against (Neal et al., 2018; Dar et al., 2021) and in favour (Witten,
2020). Proposition 1 places a constraint between Eest(b) and Eest(v), the estimation bias and the estimation
variance. When the estimation bias is negative (e.g. Figure 3), it obviously reduces the bias. However, it
simultaneously increases the variance, since Eest(v) has an imposed lower bound, satisfying the constraint.
Therefore, for every single reduction in bias attributable to a negative estimation bias, the same quantity
will be lost in the increased variance. This is an unavoidable trade-off. Obviously other components of the
bias/variance may mask this behaviour, making the trade-off less visible.

4.3 The estimation variance plays a role in double descent.

In many models, an increasing degree of over-parameterisation has been associated with a ‘peaking’ trend
in the variance (Nakkiran, 2019; Yang et al., 2020), ultimately causing a double descent in the risk.

Figure 6: Illustration of double descent, caused by a ‘peaking’ variance (red line) and monotonically decreas-
ing bias (blue line). Image credit Yang et al. (2020).

Such models often fit their training data perfectly (Belkin et al., 2019; Zhang et al., 2021), i.e. they interpolate
the data. If we consider this in the context of Equation 16, we see that:

variance =
[

estimation
variance

]
+

[
optimisation

error

]
.︸ ︷︷ ︸

≈ 0 for interpolating models

i.e., the optimization error is close to zero. This observed ‘peaking’ variance must therefore be primarily due
to the estimation variance, Eest(v). Furthermore, very deep models are likely to be able to fit any function,
i.e. their approximation error is zero. In these scenarios, the only terms remaining in the expected risk
are Eest(b) and Eest(v). Why such models can push training error to zero, even on random labels, and still
generalise well, remains an open question for modern machine learning (Zhang et al., 2021). Overall, we
believe this warrants further study in the context of deep models.

4.4 What if a bias-variance decomposition doesn’t hold?

Our goal has been to build a ‘bridge’ between the bias-variance decomposition, and the approximation-
estimation decomposition. So far, we have considered this for a restricted class of losses, Bregman divergences,
where we know a bias-variance decomposition holds. However, as mentioned, a bias-variance decomposition
in the form of Equation 11 does not hold for all losses. One side of our ‘bridge’ seems to be missing.

James & Hastie (1997) present an alternative decomposition, for any loss, which links neatly with our results.
In the special case of a loss with a bias-variance decomposition, their decomposition is equivalent. The key
observation is to distinguish the measurement of variance, from its effect on the expected risk. Similarly, they
distinguish two terms for the bias: the measurement, and its effect on the expected risk. The measurement

8



Under review as submission to TMLR

and the effect of each are not necessarily the same numerical quantity. In their own words: “This double role
of both bias and variance is so automatic that we often fail to consider it”. The measurement is considered
to be the ‘natural’ form for the terms, as in Equation 13. They then proceed to define the effect of the terms:
bias-effect and variance-effect. When averaged over P (x, y), for any loss, these are:

bias-effect := R(
◦

f) − R(y∗), (18)

variance-effect := ED

[
R(f̂) − R(

◦
f)

]
. (19)

These quantify the effect on the risk of using one predictor versus another. The bias-effect is the change in
risk, for the centroid model versus the Bayes model. A link to our results is apparent—the bias-effect term is
simply the excess risk of the centroid model. The variance-effect is defined similarly: the change in risk for
a model f̂ versus the centroid model, averaged over the distribution of D. For losses where a bias-variance
decomposition holds, the measurement is equal to the effect. For example, with squared loss, the bias-effect
is equal to the bias, Exy[(ED[f̂ ] − y∗)2]. For the 0/1 loss, this is not the case. However, they observe that
with these definitions, for any loss, we have the decomposition:

ED

[
R(f̂)

]
︸ ︷︷ ︸

expected risk

= R(y∗)︸ ︷︷ ︸
noise

+ R(
◦

f) − R(y∗)︸ ︷︷ ︸
bias-effect

+ED[R(f̂) − R(
◦

f)].︸ ︷︷ ︸
variance-effect

(20)

If the loss is a Bregman divergence, Equation 20 reduces to Equation 11. We can relate the terms above to
the approximation-estimation decomposition, using the same overall strategy as before.

Proposition 2 (Bias/Variance Effects, in terms of Approximation-Estimation) For any loss ℓ,
we have the following decomposition of the bias-effect and variance-effect.

R(
◦

f) − R(y∗)︸ ︷︷ ︸
bias-effect

= R(f∗) − R(y∗)︸ ︷︷ ︸
approximation error

+ R(
◦

f) − R(f∗),︸ ︷︷ ︸
estimation bias

(21)

ED[R(f̂) − R(
◦

f)]︸ ︷︷ ︸
variance-effect

= ED

[
R(f̂) − R(f̂erm)

]
︸ ︷︷ ︸

optimisation error

+ED

[
R(f̂erm) − R(

◦
f)

]
.︸ ︷︷ ︸

estimation variance

(22)

And the full relation to our earlier observations can be illustrated as follows.

Equality	only	when	a	BV	
decomposition	holds Equality	for	any	loss

bias bias-effect approximation
error

estimation
bias+

variance variance-effect estimation
variance

optimisation
error +

Figure 7: Relations between several decompositions that we have considered in this work.

It is notable that James & Hastie (1997) also use the concept of the centroid for an arbitrary loss, i.e.
Definition 1. For 0/1 loss, the centroid prediction is the modal value of the predictions. Taking the mode
is equivalent to a plurality/majority vote across the distribution of predictions from f̂ . Weighted voting
classifiers are well-studied, e.g., Boosting (Schapire, 2003). In this context it is well-appreciated that a voted
combination of weak (half-plane linear) models results a non-linear decision boundary. This implies

◦
f /∈ F ,

and thus again it is possible for estimation bias to be negative. Further characterisation of the terms in
Figure 7, for the general case of any loss, would therefore be desirable.

9
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5 Conclusions

We analysed the precise connections between two seminal results: the bias-variance decomposition, and
the approximation-estimation decomposition. Perhaps the most surprising aspect of this work was that
it had not been explored before—two such foundational ideas, not previously connected. In a literature
review (see Appendix D), we found numerous sources stating the two were equivalent, or related as a special
case / general case. This is false. The true relation, given by Theorem 1, is more intricate, and yielded
interesting novel observations that we detailed, including links to the phenomenon of double descent in deep
learning. We focused on Bregman divergences, but also briefly considered the case of general losses, where
a bias-variance decomposition does not hold, e.g., 0/1 loss. In this case the geometry of such losses is not
well-understood, leaving several open issues. In all cases, the centroid model (Definition 3), turned out to be
a key mathematical object in bridging the decompositions. We conjecture that further study of this object,
and its role in generalisation, may yield yet deeper and interesting insights.
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Appendix

A Proofs of Theorems

A.1 Proof of Theorem 1 (Bias-Variance in terms of Approximation-Estimation).

We wish to prove the following statements:

Ex

[
ℓ(y∗,

◦
fϕ(x))

]
︸ ︷︷ ︸

bias

= R(f∗) − R(y∗)︸ ︷︷ ︸
approximation error

+ R(
◦

fϕ) − R(f∗)︸ ︷︷ ︸
estimation bias

(23)

Ex

[
ED

[
ℓ(

◦
fϕ(x), f̂(x))

]]
︸ ︷︷ ︸

variance

= ED

[
R(f̂) − R(f̂erm)

]
︸ ︷︷ ︸

optimisation error

+ED

[
R(f̂erm) − R(

◦
fϕ)

]
︸ ︷︷ ︸

estimation variance

(24)

To show Equation 23, we note that the R(f∗) terms cancel, so we just need to prove:

Ex

[
ℓ(y∗,

◦
fϕ(x))

]
= R(

◦
fϕ) − R(y∗). (25)

The proof below builds on the Bregman 3-point property (Nielsen & Nock, 2009).

Definition (Bregman three-point identity) The Bregman three-point property states, for any p, q, r,

Bϕ(p, r) = Bϕ(p, q) + Bϕ(q, r) + ⟨ p − q , ∇ϕ(q) − ∇ϕ(r) ⟩ (26)

We then have the following, where we apply the three-point property to y,
◦

fϕ, with y∗ as the mid-point.

Bϕ(y,
◦

fϕ) = Bϕ(y, y∗) + Bϕ(y∗,
◦

fϕ) + ⟨ y − y∗ , ∇ϕ(y∗) − ∇ϕ(
◦

fϕ) ⟩ (27)

Take the expected value w/r p(y|x) and the inner product term vanishes, since y∗ = Ey|x[y]. Rearranging
terms and further taking expectation w/r x, we recover:

R(
◦

fϕ) − R(y∗) = Ex

[
Bϕ(y∗,

◦
fϕ)

]
(28)

which is the desired result, proving Equation 23.

To show Equation 24, we follow a similar pattern. Take the 3-point property for y, f̂ with
◦

fϕ as the mid-point.

Bϕ(y, f̂) = Bϕ(y,
◦

fϕ) + Bϕ(
◦

fϕ, f̂) + ⟨ y −
◦

fϕ , ∇ϕ(
◦

fϕ) − ∇ϕ(f̂) ⟩ (29)

Take the expected value w/r D and the inner product term vanishes, since ∇ϕ(
◦

fϕ) = ED

[
∇ϕ(f̂)

]
.

Rearranging terms and further taking expectation over p(x), we recover:

ED

[
R(f̂) − R(

◦
fϕ)

]
= Ex

[
ED

[
Bϕ(

◦
fϕ, f̂)

]]
(30)

which is the desired result, completing the theorem.
■
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Special case of Theorem 1 for squared loss. The following presents the special case of squared loss,
included for didactic purposes due to its ubiquity and links to the results for linear models. We wish to
prove the following statements:

Ex

[
(ED[f̂(x)] − Ey|x[y])2

]
= Eapp + Eest(b) (31)

Ex

[
ED[(f̂(x) − ED[f̂(x)])2]

]
= Eopt + Eest(v) (32)

Exy[(y − Ey|x[y])2] = R(y∗) (33)

To show Equation 33, we simply note that y∗ = Ey|x[y], so the expression is true by definition.

To show Equation 31 we note, as an intermediate step, that:

Eapp + Eest(b) =
(

R(f∗) − R(y∗)
)

+
(

R(ED[f̂ ]) − R(f∗)
)

= R(ED[f̂ ]) − R(y∗). (34)

We then have the following, again using the definition of y∗.

R(ED[f̂ ]) − R(y∗) = Exy

[
(ED[f̂ ] − y)2

]
− Exy

[
(y − Ey|x[y])2]

.

= Exy

[(
ED[f̂ ]

)2
− 2yED[f̂ ] − Ey|x[y]2 + 2yEy|x[y]

]
= Ex

[(
ED[f̂ ]

)2
− 2Ey|x[y]ED[f̂(x)] − Ey|x[y]2 + 2Ey|x[y]2

]
= Ex

[(
ED[f̂ ]

)2
− 2Ey|x[y]ED[f̂(x)] + Ey|x[y]2

]
= Ex

[
(ED[f̂ ] − Ey|x[y])2

]
,

which is the bias, and the desired result.

To show Equation 32, we follow a similar pattern. From definitions:

Eopt + Eest(v) = ED

[
R(f̂) − R(f̂erm)

]
+ ED

[
R(f̂erm) − R(ED[f̂ ])

]
= ED

[
R(f̂) − R(ED[f̂ ])

]
. (35)

We then have the following.

ED

[
R(f̂) − R(ED[f̂ ])

]
= ED

[
Exy

[
(f̂ − y)2

]
− Exy

[
(ED[f̂ ] − y)2

]]
= ED

[
Exy

[
f̂2 − 2yf̂ − ED[f̂ ]2 + 2yED[f̂ ]

]]
= Exy

[
ED[f̂2] − 2yED[f̂ ] − ED[f̂ ]2 + 2yED[f̂ ]

]
= Ex

[
ED[f̂2] − ED[f̂ ]2

]
= Ex

[
ED[(f̂ − ED[f̂ ])2]

]
where the final step is the standard definition of variance, giving the desired result.
■
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A.2 Proof of Theorem 2 (Sufficient condition for a non-negative estimation bias).

To prove Theorem 2, we demonstrate that under a certain condition,
◦

f ∈ F , which implies R(
◦

f) ≥ R(f∗),
and therefore R(

◦
f) − R(f∗) ≥ 0. We use the following definition, due to Amari (2008).

Definition 4 (Dual convex set) Let ϕ be a strictly convex function. A set F is dually convex with respect
to ϕ iff, for any pair of points f, g ∈ F and for all λ ∈ [0, 1]

λ∇ϕ(f) + (1 − λ)∇ϕ(g) ∈ F

i.e. the set F is dual-convex iff it is convex in its dual coordinate representation.

An arbitrary set C is convex iff for any random variable X defined over elements of C, its expectation is also
in C, i.e. E[X] ∈ C.

Therefore, for a dual convex set F , we have that the point ED[∇ϕ(f)] ∈ F . The primal coordinate
representation of this point, ∇ϕ−1(ED[∇ϕ(f)]), is also a member of F , i.e.

◦
f ∈ F , proving the theorem.

■

A.3 Proof of Theorem 3 (GLMs have non-negative estimation bias).

We demonstrate that Eest(b) ≥ 0 if f̂ is a GLM of a particular form. We give two proofs: a direct one and
one that makes use of Theorem 2.

Direct proof. The estimation bias is defined:

Eest(b) = R(
◦

f) − R(f∗). (36)

This involves the definition of the centroid prediction, which for a Bregman divergence is,
◦

fϕ(x) := [∇ϕ]−1
(
ED

[
∇ϕ(f̂(x))

])
. (37)

Given a Bregman divergence with generator ϕ, define F as the class of GLMs with inverse link [∇ϕ]−1,
parameterised by θ ∈ Rd. In this case, each f̂ ∈ F takes the form:

f̂(x) := [∇ϕ]−1 (
θT x

)
, (38)

where θ are the natural parameters. Substituting this into the centroid prediction gives us,
◦

fϕ(x) = [∇ϕ]−1
(
ED

[
∇ϕ

(
[∇ϕ]−1 (

θT x
))])

,

= [∇ϕ]−1
(
ED [θ]T x

)
. (39)

Since ED[θ] is within the convex hull of the distribution of θ induced by D, the centroid prediction is the
same form of GLM as f̂(x), for all x, and therefore the centroid model

◦
fϕ ∈ F . Then, since by definition f∗

is the risk minimizer in F , we must have that R(
◦

fϕ) ≥ R(f∗), and therefore Equation 36 is non-negative.
■
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Proof using Theorem 2. To show that the estimation bias is non-negative, it suffices to show that the
class of GLMs of a particular form is dually-convex. We verify that the property of dual-convexity holds.
Define F = GLMs with inverse link ∇ϕ−1.

By definition, if f ∈ F , it is parameterised by a vector θ as follows: f(x) = ∇ϕ−1(θT x).

Let h be the function, expressed in primal coordinates, corresponding to the convex combination of two
arbitrary GLMs in their dual coordinates, i.e. h = ∇ϕ−1(λ∇ϕ(f) + (1 − λ)∇ϕ(g)), with λ ∈ [0, 1], and with
f and g two GLMs f = ∇ϕ−1(θT x) and g = ∇ϕ−1(ξT x). We need to show that h ∈ F . But

h = ∇ϕ−1(λ∇ϕ(f) + (1 − λ)∇ϕ(g)))
= ∇ϕ−1(λ∇ϕ(∇ϕ−1(θT x)) + (1 − λ)∇ϕ(∇ϕ−1(ξT x))))
= ∇ϕ−1(λθT x + (1 − λ)ξT x)
= ∇ϕ−1((λθT + (1 − λ)ξT )x)

which is again a GLM in F .
■

B Discussion of related work by Hastie et al, 2017

We detail related observations by Hastie et al. (2017), who assume a linear model with squared loss, i.e.
ℓ(y, f̂(x)) = (y − θ̂T x)2. The optimal parameters are θ∗ := arg minθ̂ Exy[(y − θ̂T x)2] = Ex[xxT ]−1Ex[xy∗],
and the Bayes model is y∗ = arg minz Ey|x[(y − z)2] = Ey|x[y]. In this case, the bias-variance decomposition
is,

ED

[
Exy

[
(y − θ̂T x)2

]]
︸ ︷︷ ︸

expected risk

= Exy

[
(y − y∗)2

]
︸ ︷︷ ︸

noise

+Ex

[
(y∗ − ED[θ̂T x])2

]
︸ ︷︷ ︸

bias

+Ex

[
ED

[
(θ̂T x − ED[θ̂T x])2

]]
︸ ︷︷ ︸

variance

. (40)

Hastie et al. (2017, Eq 7.14) show that the bias decomposes more finely:

Ex

[
(y∗ − ED[θ̂T x])2

]
= Ex

[
(y∗ − θT

∗ x)2
]

+ Ex

[
(θT

∗ x − ED[θ̂T x])2
]
. (41)

Hastie et al. describe this expression as:

“The first term on the right-hand side is the average squared model bias, the error between
the best-fitting linear approximation and the true function. The second term is the average
squared estimation bias, the error between the average estimate [..] and the best-fitting linear
approximation.”

The first point to note is that Hastie et al. deal only with a decomposition for squared loss. When referring
to bias, they use nomenclature ‘squared bias’, whereas in fact the square is an artefact of using squared loss,
and is not present in the general case.

When they refer to the error between “the best-fitting linear approximation and the true function”, we note
that this is precisely a description of the approximation error for a linear model. This is no coincidence. To
see the connection precisely, we note the following property of the approximation error.

Theorem 4 For a loss ℓ, if a bias-variance decomposition holds, then the approximation error R(f∗)−R(y∗)
simplifies as follows.

Eapp = R(f∗) − R(y∗)
= Exy[ℓ(y∗, f∗(x)]. (42)

i.e. the difference-of-risks is equal to the divergence between the two models themselves.
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Proof sketch. Use the 3-point theorem in exactly the same manner as in the proof of Theorem 1, i.e.
between y, f∗ with y∗ as the mid-point, then take expectation successively over P (y|x) then P (x). ■

For the case of squared loss, this yields the term from Hastie et al, shown above in Equation 41, i.e.,

R(θT
∗ x) − R(y∗) = Ex

[
(y∗ − θT

∗ x)2
]
. (43)

Overall, this shows that Hastie et al. (2017, Eq 7.14) is the special case of our Equation 15 for squared
loss/linear models.

Estimation bias: The second term on the right of equation 41 is described as the error between the expected
model and the best-fitting linear approximation. This is equivalent to the standard definition of estimation
bias, but for the specific case of a linear model and squared loss, i.e.

R(ED[θ̂T x]) − R(θT
∗ x)︸ ︷︷ ︸

estimation bias

= Ex

[
(θT

∗ x − ED[θ̂T x])2
]
. (44)

However, the squared loss seems to be unique in that Equation 44 holds. This is a consequence of taking
an expectation over x, and the properties of the OLS solution. In the general Bregman case we have an
inequality:

R(
◦

fϕ) − R(f∗)︸ ︷︷ ︸
estimation bias

̸= Ex

[
Bϕ(f∗(x),

◦
fϕ(x))

]
. (45)

Hastie et al. observed that in unregularized linear models, the estimation bias will4 be zero. With ridge
regression, θ∗ := Ex[xxT + λ]−1Ex[xy∗], and thus the estimation bias will be non-negative for λ > 0. Since
the OLS solution is closed-form, Eopt = 0, and the estimation variance is simply V ar(θ̂T x).

Hastie et al. (2017, Figure 7.2) also briefly alludes to the idea of estimation variance—from this we assume
that Hastie et al. were well aware of these terms in the context of squared loss / linear models. However,
the difference-of-risks formulation that we use generalises these ideas to any model family, and any Bregman
divergence.

4Assuming the Gauss-Markov conditions hold.
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C Experimental details

We summarise our methodology to generate the illustrative experiments shown in the paper. For the
purposes of anonymous submission, an outline is provided below. For the final submission we
will supply all code for reproducible research.

We use a synthetic 1-d problem: x ∈ [0, 15], and the true label is y = x + 5 sin(2x) + ϵ, where ϵ is Gaussian
noise with zero mean and σ = 3. Training data is n = 100 points, illustrated below.

Figure 8: Synthetic problem for experiments.

Since this is a regression problem, ℓ(y, f(x)) = (y − f(x))2, and
◦

f(x) := ED[f̂(x)].

The function class F is defined as the set of all trained models obtained over T = 1000 independently
sampled datasets, each of size n = 100. The best-in-class model is the minimum across the T trials:

f∗ := arg min
D

R̂(f̂D) (46)

where the risk R(f) is approximated by sample of uniformly sampled points at a resolution of 0.001, giving
a total of n = 15, 000 test points. To simplify analysis, we assume f̂ = f̂erm.
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D Example Literature Conflating the Decompositions

D.1 Published work with incorrect statements

Daumé (2017, Section 5.9)

“The trade-off between estimation error and approximation error is often called the
bias/variance trade-off, where “approximation error” is “bias” and “estimation error” is
“variance.”

Lee et al. (2022) states:

“Model selection is a fundamental task in supervised learning and statistical learning theory.
Given a sequence of model classes, the goal is to optimally balance the approximation error
(bias) and estimation error (variance)”

Cucker & Smale (2002) (1964 Google Scholar citations, as of Dec 2023) state

“Then, typically, the approximation error will decrease when enlarging H, but the sample
error will increase. This latter feature is sometimes called the bias-variance trade-off” [...]
“The ‘bias’ is the approximation error and the ‘variance’ is the sample error.”

Barron (1994) (1039 Google Scholar citations, as of Dec 2023) states

“...the non-parametric statistical theory of curve estimation and classification (which has
seen extensive development for the last 35 years), has shown that one can deal effectively
with the total risk of the estimation of functions, including both the approximation error
(bias) and the estimation error (variance)”

Kwok & Yeung (1996) states

“This is however not the case for R in the absence of a bias term, because then the universal
approximation property does not hold for any fixed finite R and thus the approximation error
(i.e., bias) cannot be made as small as desired by trading variance.

Lei et al. (2014)

“To see this, we identify two factors determining the model’s generalization performance by
recalling the following bias-variance decomposition” [...] “The first term is often called the
estimation error, while the second is the approximation error [24], [28].”

The equation they state is the approximation-estimation decomposition. The same authors repeat the
mistake with almost identical text in Lei & Ding (2013).

Wang et al. (2021) state:

“Hence, we follow the conventional approximation–estimation decomposition (or
bias–variance trade-off) to decompose the empirical norm”

The next equation they state is the approximation-estimation decomposition for squared loss.
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Masson et al. (1999) state:

“The more flexible the model is, the greater is its ability to approach any function, but the
more instable is the estimation problem from a finite amount of data. This is known as the
approximation/estimation or bias/variance tradeoff.”

In a PhD thesis, Merckling (2021) states

“The two terms Eapp and Eest constitute the approximation-estimation tradeoff (a.k.a. bias-
variance tradeoff) where high bias is similar to high approximation error known as underfit-
ting, and high variance is similar to high estimation error known as overfitting.”

D.2 Published work with ambiguous statements

Von Luxburg & Schölkopf (2011) introduce the issue of fitting models with differing complexities:

“In classical statistics, it has been studied as the bias-variance dilemma.” [...] ”A related
dichotomy is the one between estimation error and approximation error.”

“In statistics, estimation error is also called the variance, and the approximation error is
called the bias of an estimator.

Whilst, from context, it is clear the authors here understand the distinction between the two decompositions,
the writing does not make it clear for casual readers.

Poggio et al. (2003) states:

“The decomposition of equation (12) is indirectly related to the well-known bias and variance
decomposition in statistics.”

“More generally, however, there is a tradeoff between minimizing the sample error and min-
imizing the approximation error—what we referred to as the bias-variance problem.”

This is again a slightly misleading use of language.

Niyogi & Girosi (1996), also in a 1995 MIT PhD thesis (Niyogi, 1995) state

“As the number of parameters (proportional to n) increases, the bias (which can be thought of
as analogous to the approximation error) of the estimator decreases and its variance (which
can be thought of as analogous to the estimation error) increases for a fixed size of the data
set. Finding the right bias-variance trade-off is very similar in spirit to finding the trade-off
between network complexity and data complexity.”

Wang & Lin (2023) states:

“These empirical findings deeply challenge the conventional wisdom that optimal general-
ization should be achieved by trading off bias (or approximation error) and variance (or
estimation error).”

“The error bounds in Theorem 2 decompose into a bias term or approximation error that
arises from using a finite-width neural network to approximate the non-parametric model
(1), and a variance term or estimation error that accounts for the variability in estimating
the finite width network.”
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Dubois et al. (2023)

“In supervised learning, one can get more fine-grained insights using the estima-
tion/approximation (or bias/variance) risk decomposition,”

“The estimation/approximation or the bias/variance decomposition has been very useful for
practitioners and theoreticians to focus on specific risk components”

though in the Appendix of the same article they state “the approximation-estimation tradeoff (or the related
bias-vias tradeoff)”. [sic, including typo]

Fan et al. (2021) state:

“We follow the conventional approximation-estimation decomposition (sometimes, also bias-
variance tradeoff)

The next equation they state is the approximation-estimation decomposition.

In a PhD thesis, Haury (2012) uses a figure caption:

Figure 1.3: Approximation error and estimation error. The error made when choosing [a
model] can be seen as the sum of bias and variance. The bias refers to the approximation
error and the variance to the estimation error.

D.3 Lecture notes with incorrect/ambiguous/vague statements

At the time of writing this article, all material was available at the URLs below. As these are not archived
in perpetuity, we cannot guarantee availability in the future.

New York University:

Slide 30 states Approximation error = “bias”, and Estimation error = “variance”.
https://davidrosenberg.github.io/mlcourse/Archive/2016/Lectures/1b.
intro-slt-riskdecomp.pdf

MIT:

Module 9.520 lecture slides 17-19 use the title “Bias-Variance Tradeoff” but proceed to
discuss the approximation-estimation decomposition.
https://www.mit.edu/~9.520/fall18/slides/Class14_SL.pdf

University of Wisconsin:

“This decomposition into stochastic and approximation errors is similar to the bias-variance
tradeoff which arises in classical estimation theory: the approximation error is like a bias
squared term, and the estimation error is like a variance term.”
https://nowak.ece.wisc.edu/SLT09/lecture3.pdf

University of Warwick:

“The dichotomy between estimation and approximation is closely related to the concept of
bias-variance tradeoff in statistics.”
https://homepages.warwick.ac.uk/staff/Martin.Lotz/files/learning/lect4.pdf
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