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Abstract

We explore a feed-forward approach for decomposing a video into layers, where
each layer contains an object of interest along with its associated shadows, re-
flections, and other visual effects. This problem is challenging since associated
effects vary widely with the 3D geometry and lighting conditions in the scene, and
ground-truth labels for visual effects are difficult (and in some cases impractical) to
collect. We take a self-supervised approach and train a neural network to produce a
foreground image and alpha matte from a rough object segmentation mask under a
reconstruction and sparsity loss. Under reconstruction loss, the layer decomposition
problem is underdetermined: many combinations of layers may reconstruct the
input video. Inspired by the game theory concept of focal points—or Schelling
points—we pose the problem as a coordination game, where each player (network)
predicts the effects for a single object without knowledge of the other players’
choices. The players learn to converge on the “natural” layer decomposition in
order to maximize the likelihood of their choices aligning with the other players’.
We train the network to play this game with itself, and show how to design the
rules of this game so that the focal point lies at the correct layer decomposition. We
demonstrate feed-forward results on a challenging synthetic dataset, then show that
pretraining on this dataset significantly reduces optimization time for real videos.

1 Introduction

Identifying and associating effects such as shadows and reflections with the objects that produce
them is a fundamental and difficult task for visual understanding. A variety of cues such as motion,
appearance, and proximity may be used to match an object and an effect, but these cues may vary
widely depending on the 3D geometry and lighting conditions of the scene, and nearby objects may
produce similar effects (Fig 1). There is no simple heuristic to reliably connect an object and the
visual effects it generates.

The recent Omnimatte approach [11, 12] learns to associate an object with its effects by training a
CNN to decompose the video into layers, where each layer contains the object as well as the effects
associated with that object. The CNN is given a binary segmentation mask of an object, omitting
any associated effects, and learns to output a foreground color and alpha matte for that object and its
effects. Notably, no explicit loss is provided for the association of objects and effects: the correct
association emerges through the structure of the optimization and the inductive bias of the CNN. The
optimization requires hours of processing for each video, however, and is vulnerable to errors when
multiple objects have closely correlated motion (Fig 5).
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Figure 1: Example videos and our decomposition result with shadows and reflections. Matching
objects and their effects is challenging: the true object may be further from its shadow (a) or reflection
(b) than another object, and effects may be subtle (reflection (c), soft shadow (d)).

This paper aims to solve the layer decomposition problem directly by training a feed-forward neural
network to predict the layers from the input video and masks. Since ground-truth labels for effects
are not available for real videos, we take a self-supervised approach and train the network only with a
reconstruction and sparsity loss. Unfortunately, reconstruction and sparsity losses do not uniquely
determine a layer decomposition: effects may be shuffled between layers while producing the same
loss (Fig 3). For example, a valid but incorrect solution puts the entire video in the front layer, leaving
the remaining layers blank.

To solve this problem, we take inspiration from the game theory concept of focal points, also known
as Schelling points [16]. In a coordination game, the players must cooperate to achieve a goal
without communicating with each other ahead of time. A classic example is giving several people
the instruction: "Meet in New York City on Tuesday", without giving any details about the exact
location and time when they should meet. Schelling found that the most common strategy, based on
the players’ own prior knowledge of the city, was to go to Grand Central station at noon of that day.
Players converge on such a “natural” solution, or focal point, in order to maximize the likelihood of
their choices aligning with those of other players. In our case, the network plays a coordination game
against itself: it is given an object mask and is asked to predict the appearance of that object and its
visual effects, without knowledge of the other network instances’ choices. We show that by training
the network to predict masked video frames, we can engineer the focal point of this game to lie at the
correct layer decomposition.

We demonstrate the success of the approach on a challenging synthetic dataset of moving objects with
realistic shadows and reflections. The learned prior helps the network overcome ambiguous inputs,
leading to improved quality over single-video optimization [12]. The prior learned from synthetic
data also provides a good starting point for optimization on real videos. Fine-tuning the pretrained
network on a new video reduces optimization time by 10× over single-video optimization, while
producing similar layer decomposition quality.

2 Related Work

Video layer decomposition. Separating videos into layers is a fundamental computer vision problem
that has been studied for decades [18]. It is important for both basic understanding of scenes (e.g.,
for estimating depth [24] and occlusion boundaries [2]), as well as for supporting various operations
on videos such as editing (e.g., [1]) and view synthesis (e.g., [17]). Recently, several works besides
the previously mentioned Omnimatte [11, 12] have applied deep learning to make progress on this
problem. Zhang et al. [23] generate editable free-viewpoint videos of dynamic scenes from sequences
captured by multiple cameras through a learned, layered neural representation that disentangles
location, deformation, and appearance of dynamic objects. Kasten et al. [9] propose a decomposition
method that represents a video as a set of layered 2D atlases that are global to the video, along with
associated (per-frame) alpha maps. Like our work, these methods are self-supervised. However, they
involve slow optimizations, overfitting neural networks’ weights to an input video. In contrast, this
work aims to solve the decomposition problem directly by training a feed-forward model to predict
the layers from the input video and masks.
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Specialized methods and supervised approaches. Several methods exist that learn to decompose
videos or detect objects’ effects (such as reflections and shadows) in a supervised manner. “Visual
Centrifuge” [1] separates videos with transparency and reflections into layers, by training a neural
network on a large and diverse set of synthetically blended videos. This method learns to separate
difficult effects like shadows and reflections, but does not address the problem of associating those
effects with the objects that produce them. Other works such as [10, 7, 22] train a network to detect
and remove shadows specifically by generating synthetic shadow/no-shadow image pairs and using
them as training data. These methods focus on directly removing shadows, not decomposing the
video into layers as in our approach. Like our approach, instance shadow detection [20, 19] aims to
associate objects and their shadows. They take a supervised approach, however, and manually label a
large dataset of photographs. Hu, et al. [6] collect an even larger dataset of manually labeled shadows.
Manual labeling is only practical for hard, clearly visible shadows, however, so models trained on
these datasets are limited to those effects. In contrast, our method makes no assumptions about the
appearance of shadows, reflections, or other effects, and requires no data labeling step.

Structured representation for images and video. Our approach is most similar to recent methods
for image and video understanding that aim to produce an interpretable, structured representation
through self-supervised learning. Methods such as [8, 13, 4] learn keypoint-based representations
for predicting future video frames by training a decoder to map keypoints to RGB through a pixel
reconstruction loss. The learned keypoints are useful for a variety of downstream applications,
such as trajectory prediction and action recognition. Like these methods, we learn a structured
representation using future frame prediction, but where keypoint representations have fewer variables
than the original video, our layer decomposition has more variables, making the optimization problem
underdetermined. Image de-rendering methods [21, 3] aim to construct a detailed scenegraph
description of an image that can be both re-rendered using conventional computer graphics and
used for alternative tasks like image captioning. Like these methods, our reconstruction stage is a
fixed-function operation (alpha compositing), but we operate on video, and our representation is
specifically targeted at matting and associating objects with their visual effects.

3 Method

The goal in this paper is to train a feed-forward network that can decompose an RGB video into
omnimattes, layers that capture an object and all the scene effects related to that object. We give a
formal definition of this problem in Section 3.1. We choose a network architecture that combines
CNNs and a transformer decoder, which allows capturing long-range effects, and binding the objects
with their effects (Section 3.2). The proposed architecture is trained purely with self-supervised
learning (Section 3.3), which enables further improvement of the results via test-time training on real
video sequences (Section 3.4).

3.1 Problem Definition

For a given video with T frames, we aim to train a feed-forward neural network that decompose
the frame containing N dynamic objects into omnimattes; without loss of generality, we present the
problem definition based on frame t:

{L1
t , . . . ,LN

t } = Φ(I1, . . . , IT ,M
1
t , . . . ,M

N
t ; Θ) (1)

where {I1, . . . , IT } denotes the input video sequence, {M1
t , . . . ,M

N
t } denotes N binary segmen-

tation masks, each corresponding to one object of interest, similar to [12]. Li
t refers to the output

i-th RGBA (color and opacity) layer, representing one of the objects and all the scene effects that are
related to it.

We assume known (possibly time-varying) compositing order ot, and known background L0
t , which

can be either given by the synthetic training data or obtained using a simple background estimation
process in the case of a static background (e.g. median pixel value). The input images It may be
reconstructed by compositing Li

t using standard alpha compositing [15], It ≈ Comp(Lt, ot).

Unfortunately, the layer decomposition problem is ill-defined, with multiple sets of Li
t that reconstruct

It. For example, one obvious solution would be to place all objects and effects in one layer and leave
the others empty, i.e. Li

t = It, Lj
t = 0, ∀j ∈ [1, N ], j ̸= i. Thus, in order to train a feed-forward

network for associating objects and effects, the model must be trained to exploit the correlations in
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Figure 2: Overview of the training pipeline. The input is a short RGB video clip I and masks M i.
The target frame It is masked from the input of the network. The transformer decoder is given
features extracted from the RGB input and a single mask layer, and produces a single output layer.
The output layers Li

t are composited over the background L0 to form the predicted frame I ′t, which is
compared to the target frame It. No direct supervision is provided for Li

t.

video data and avoid learning trivial solutions. Our solution is to run the network separately on each
layer, and task it with predicting unseen frames of the video from object masks and nearby frames.
We give intuition for this approach as a coordination game with a designed focal point in Section 3.5.

3.2 Architecture

Our model combines CNNs and Transformer modules; an overview is shown in Figure 2. For
an input video sequence with T frames, we parameterize the image encoder with a shared CNN,
F = {f1, . . . , fT } = {Φenc(I1), . . . ,Φenc(IT )}, where Ii ∈ RH×W×3, and fi ∈ RH

16×
W
16×D,

where H , W , D are the spatial height, width and channel dimensions. Similarly, the objects
in frame t are represented by their rough binary segmentation mask, and fed to another CNN,
M = {m1, . . . ,mN} = {Φmask(M

i
t ), . . . ,Φmask(M

N
t )}, with each mi ∈ RH

16×
W
16×D.

As input to the transformer decoder, we treat the image features as keys and values, with the positional
information injected by learnable spatio-temporal embeddings. The encoded masks are treated as
queries to the transformer decoder independently, i.e. only one of the object’s masks are used as
the query at a time. The output query maintains its spatial resolution, and we further upsample the
features with a CNN decoder to produce the final RGBA layers corresponding to the input masks.

Discussion. Here, we have made two critical choices on the architecture design: first, we use a
transformer decoder for associating objects with their effects, this architecture is naturally suited
to our task, as self-attention allows the queries to learn across multiple frames, to determine object
motion and deformation, and thus identify the effects that are correlated with the object of interest
in motion and/or shape; Second, each object’s layer is predicted without knowledge of the other
objects, which enables to correctly assign scene effects to the layer of the object that causes them.
Additionally, running the network separately on each layer also has the benefit of generalizing to an
arbitrary number of layers.

3.3 Self-supervised Learning

To train the proposed architecture, we define the proxy task as frame reconstruction. Specifically, we
randomly mask a subset of frames from the input sequence, and task the model to only reconstruct
the unseen frames based on the input object masks and other frames in the sequence.

In detail, we follow the same loss formulations as [12], with minor modifications. The primary loss
for training is a reconstruction loss Ergb-recon, with sparsity regularization losses Ereg to encourage
sparse alpha mattes, and a mask initialization loss Emask to bootstrap training. The reconstruction
loss is defined as:

Ergb-recon =
1

T

∑
t

∥Wt ⊙ (It − Comp(Lt, ot))∥1, (2)
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where ⊙ is element-wise product and Wt = 1 − λw
∑

i M
i
t is a spatial weight to emphasize

reconstruction of shadows and reflection effects over object regions.

The alpha sparsity term, aimed to prevent all layers from trivially reconstructing the entire frame, is:

Ereg =
1

T

∑
t

γ ∥Comp(αt, ot)∥1 +Φ0(Comp(αt, ot)), (3)

where Φ0(x) = 2 · Sigmoid(5x)− 1 smoothly penalizes non-zero values of the alpha map, and γ
controls the relative weight between the terms.

The bootstrapping, or mask initialization, loss is:

Emask =
1

T

1

N

∑
t

∑
i

∥∥∥bit ⊙ (M i
t − αi

t)
∥∥∥
2

(4)

where bit is a spatial weight that balances the loss in positive and negative mask regions. This
bootstrapping loss ensures the optimization starts from a roughly accurate layer decomposition, where
the predicted alpha maps αi

t match the input masks M i
t .

The complete loss term is:
Ergb-recon + λrEreg + λmEmask (5)

where λr and λm are weighting coefficients. The weight λm is gradually decreased during training to
reduce the effect of the bootstrapping loss as the optimization converges (see supplemental material).

3.4 Training Procedure

Training proceeds in two stages, namely, pre-training and test-time training.

Pretraining. At this stage, we pre-train our model on a large corpus of video data, specifically, we
sample a sequence of T video frames and their corresponding object masks, we then select a subset
of K frames to mask, or hide from the network, and tasked the model to reconstruct these the unseen
frames based on their input object masks.

Test-time finetuning. As our proposed model is trained from purely self-supervised learning, it
is possible to adapt to any test video sequence in the same form of optimisation-based approach,
supporting the model to generalise to a different data domain, e.g. sim2real. For this test-time training
stage, we use the same losses and training setup as for pretraining, with the exception of a lower
weight for the bootstrapping loss.

3.5 Layer decomposition as a coordination game

Input Correct decomposition

Incorrect decomposition, same loss

Figure 3: Ambiguity of the decomposition prob-
lem. Under a reconstruction loss, effects may be
moved between layers without cost. The task and
architecture must be designed to produce the cor-
rect (top) instead of an incorrect (bottom) solution.

The reconstruction task can be seen as a co-
ordination game between multiple players: N
instances of the network ΦΘ. Each is respon-
sible for producing a single layer Li

t, and each
instance is blind to the layer produced by the oth-
ers. The (negative) total loss Eq. 5 is the reward
shared by all players. Even with the sparsity
regularization term Ereg and mask term Emask,
the reconstruction is underdetermined: for any
given decomposition Li

t, an equally good recon-
struction and sparsity score is obtained by re-
moving effects from one layer and adding them
to another (Fig. 3). Any decomposition that
minimizes Eq. 5 may be thought of as a Nash
equilibrium [14] of this game.

In a coordination game with multiple equilibria,
the players tend to choose the most prominent equilibrium, otherwise know as a focal point or
Schelling point, based on some shared knowledge the players bring from outside the game [16].
Importantly for our case, the most prominent equilibrium need not be explicitly defined (i.e., super-
vised). Instead, it may be implicitly defined by the shared knowledge of the players. Over many
rounds of this game, the players learn rules to find a focal point, without the rules or the focal point
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being explicitly specified. In other words, this approach allows the players (multiple instances of
the network ΦΘ) to be trained with self-supervision. The exact focal point that is found through
this method depends on the structure of the task. By asking each instance to produce a single layer,
providing a single object mask, and bootstrapping the network to match that mask, we bias the
network towards explaining a single object with each instance. As shown by Lu, et al. [11], effects
that are correlated with the object mask are easier to predict than uncorrelated effects, so a single
object’s associated effects tend to be predicted in the object’s layer. Forcing the network to predict
the layers of an unseen frame, rather than providing the entire video clip as input, helps train the
network to find and exploit these correlations (Section 5.4).

4 Dataset Description

For our experiments, we use a mixture of synthetic and real data. Specifically, we use the Kubric
codebase [5] to generate a large-scale synthetic data for pretraining, while our model is self-supervised,
and can thus be pretrained on real data, we choose to use synthetic data for this stage due to the costly
procedure for curating video datasets with interesting effects, such as shadows and reflections, and
which also meet our constraints (a background that can be well-estimated, and objects undergoing
significant motion). An additional benefit of a synthetic dataset is that the objects can be rendered
individually, providing a ground truth decomposition that can be used for numerical evaluation, so
long as the original scene does not contain collisions between objects.

4.1 Synthetic shadows and reflections

For all synthetic videos, we use a randomly selected high dynamic range image (HDRI) as the
background texture. Objects are randomly sampled from the Google Scanned Objects (GSO) dataset
of 3D scanned household items. We split the HDRIs into 450 train and 59 test images. For the GSO
objects, we use Kubric’s default train/test split (90/10) of the 1033 objects.

We render all videos under a fixed camera position with three light sources at random positions in
the scene, and an additional 4th fill light at a fixed location. We use default settings to initialize the
position and velocity of objects. Each video is 2s long at 12 fps, totalling 24 frames.

Shadow dataset is generated to understand our model’s ability to associate objects with their
shadows. For training, we render 10k videos with 2 objects, while for numerical evaluation, we only
keep the generated test videos that do not contain object collisions, resulting in 323 2-object test
videos and 86 4-object test videos, with the latter to test our model’s ability to generalize to more
objects than seen during training.

Reflection dataset is generated with under the same physical conditions as the Shadows dataset,
but with an additional mirror object that reflects about 50% of the scene.1 We randomly jitter the
placement and orientation of the mirror. As with the Shadows dataset, we generate 10k 2-object
training videos, and 315 2-object videos and 38 4-object videos with objects not colliding.

4.2 Real videos

Apart from evaluating on the synthetic data, we also test on the challenging real sequences with
various effects. We use real videos from Lu et. al [12] for comparison, including Reflections,
which contains two people passing each other with their reflections visible; Trampoline, which
involves six people jumping on trampolines; Dogwalk, which involves a person walking a dog while
both cast long shadows; and Soccer, which contains a player kicking a ball and also casting long
shadows. These videos range in length from 80 - 200 frames, sampled at 30 fps.

1At the time of submission, Kubric did not support reflections for HDRI backgrounds; thus the mirror
contains the reflections of the scene objects but not that of the textured background.
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5 Experiments

5.1 Training details

For our experiments, we first pretrain the model on a synthetic 2-object dataset at for 60k iterations,
as inputs, we sample 5-frame sequences with a 3-frame gap, each frame is of 128×128 resolution.
We randomly mask out 3 out of the 5 frames during training, which we have explored the effects of
varying these choices in Sec. 5.4.

During the second stage, we adapt our model to a test video by test-time training on the single video.
We use the same frame sampling and masking strategy as the pretraining stage, with the exception
that real videos are sampled with a frame gap of 1, which we empirically find yields better results.
We implement all of our experiments in JAX and train on a TPU v3 with 16 cores. We refer the reader
to supplementary material for additional details.

5.2 Evaluation

At inference time, we provide the model with the same number of frames as during training. We
always mask out the last 3 frames in the sequence, and keep the middle frame prediction, and run the
model over the entire video in a sliding window fashion. For numerical evaluation, we report IoU on
binarized masks of each object layer. We render each object individually and use the resulting frames
as the ground-truth alpha layer. To obtain the ground-truth binary mask Bi

t for object i at time t, we
do a background subtraction, i.e. compute the squared distance between the ground-truth single-object

scene and background layer, and threshold it: Bi
t =

{
1, if

∑
C(Comp(Li

t, ot)− L0
t )

2 ≥ β
0, otherwise

where C indicates the RGB channels. We obtain the predicted binary mask using the same procedure.

5.3 Synthetic results and generalization to more objects

We train separate models on the 2-object Shadows and Reflections datasets and show results on
both the 2-object and 4-object test sets in Table 1. For pretraining we use the estimated background
(see supplementary for details), and for test-time training, we report both results from using the
estimate (Ours-B) and from using the ground truth background (Ours-C). Using a more accurate
background results in improved performance, but our model obtains strong results even with the
estimated background. Despite only seeing 2-object videos during training, the model is able to
generalize to scenes containing 4 objects due to it being structured to predict each layer separately,
without knowledge of the other objects in the scene. Even without the test-time training stage, our
data-driven method outperforms the single-video optimization method of Lu et al. [12] by a large
margin. Finetuning on the test videos brings about further improvements in as few as 50 training
steps, with additional performance gains as training time increases (see Figure 4).

Table 1: IoU for 2- and 4-object test sets. For
2-object videos, we evaluate on a random subset
of 50 videos. ‘TTT’ refers to the number of test-
time training iterations. ‘Masks’ refers to using the
input object masks directly.

Shadows Reflections

Model TTT it. 2 ob ↑ 4 ob ↑ 2 ob ↑ 4 ob ↑
Masks – 0.372 0.368 0.348 0.317
Lu et al. [12] – 0.469 0.420 0.451 0.353
Ours-A 0 0.607 0.572 0.593 0.569
Ours-B (est. bg) 200 0.802 0.752 0.806 0.747
Ours-C (gt bg) 200 0.843 0.814 0.843 0.798

Figure 4: Performance (IoU) vs. number of
test-time training iterations (TTT) for 4-object
Shadows and Reflections test sets, using the
ground truth background.

We show qualitative results on synthetic videos from the Reflections dataset in Figure 5. The
Omnimatte method of Lu et al. [12] struggles to correctly associate objects with their reflections,
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Figure 5: Results of training our model on 2-object scenes and testing on 2- and 4-object scenes. We
show (a) the original video frames input to our model and the masked frame (red border) that must be
reconstructed by our model, (b) the input object masks for the masked frame, (c) the result from [12],
(d) our zero-shot result (pretrained network without test-time training), (e) our result after test-time
training, and (f) the ground truth rendering. Whereas [12] places certain reflections in the incorrect
object layer (yellow boxes), our pretrained network makes an accurate coarse association while
test-time training further improves the reconstruction quality. Best viewed on a display, zoomed-in.

often assigning elements based on proximity (Figure 5, rows 1 and 2, column (c)). Our method,
however, coarsely places the reflections in the correct layer out of the box (column (d)), reconstruction
quality is further refined by test-time training, capturing additional details such as the shadows of the
reflections (last row, column (e)).

The Omnimatte method [12] is a randomly initialized network that is optimized on a single video,
and thus shorter sequences such as these provide a greater challenge due to the ambiguity (e.g. the
motions of objects can appear correlated under a short observation window). Pretraining on many
such short sequences, however, allows our method to overcome this limitation, and to do so in much
fewer training iterations on the test video than is required for [12].

5.4 Ablations

We investigate the effects of pretraining with different numbers of masked input frames and different
masking strategies. For all experiments, we report IoU on the 2-object datasets. In Table 2, we
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sample 5 frame sequences during training and vary the number of frames K that we mask. For these
experiments we mask either the first or the last K frames in the sequence. For K = 0, we apply the
reconstruction loss to all of the frames, whereas when K > 0, reconstruction loss is applied only
to masked frames. In Table 3, we set K = 3 and vary the method of selecting the masked frames:
(i) random, (ii) inpainting (masking the middle frames), (iii) ‘prediction’ (masking the last or the
first frames). For models trained under the random or prediction schemes, during inference time we
generate masks under the prediction scheme and use the model output for the first masked frame only
(i.e. frame index 5 −K), running in a sliding-window fashion. As seen in Table 3, the choice of
masking strategy does not have a significant effect. The number of masked frames similarly does
not have a strong impact, as long as at least one frame is masked. When K = 0, performance drops
significantly, showing the importance of the frame prediction task.

Table 2: Varying the number of input frames masked
during training (out of 5). We report IoU and stan-
dard deviation computed from 3 random seeds.

# Masked Shadows ↑ Reflections ↑
0/5 0.453 ± 2e-4 0.440 ± 0.002
1/5 0.679 ± 0.012 0.605 ± 0.007
3/5 0.638 ± 0.002 0.625 ± 7e-4
4/5 0.626 ± 0.003 0.617 ± 0.004

Table 3: Varying the strategy for masking the
frame. We report IoU and standard deviation
computed from 3 random seeds.

Strategy Shadows ↑ Reflections ↑
Random 0.599 ± 0.005 0.611 ± 0.004

Inpainting 0.615 ± 0.017 0.605 ± 0.004
Prediction 0.585 ± 0.003 0.596 ± 0.002

5.5 Transfer to real videos

We adapt our pretrained model to real videos containing complex shadows, reflections, and trampoline
deformations. We finetune our pretrained model for 1k iterations on each real video, taking about 12
minutes, compared with two hours for the optimization-based approach [12]. Our method achieves
comparable results to single-video optimization (Fig. 6). The separation of effects in the Trampoline
video is improved (rows 1 and 2), even though no trampoline effects are present in the training data,
suggesting pretraining helps the network generalize to new effects. Other real videos are partially
successful. In Dogwalk, the network separates the shadows of the dog and person correctly and even
inpaints the shadow for most of the video (rows 3 and 4), but becomes confused as the dog obscures
more of the person’s shadow (rows 5 and 6). In this case, the single-video optimization method
produces superior results, possibly due to our synthetic training data lacking large shadow occlusions.
We created an additional synthetic dataset with larger shadows to better mimic these videos. Please
see supplementary for additional results using this new dataset.

6 Discussion and Impact

We have demonstrated that a feed-forward network may be trained to successfully perform the
Omnimatte task. On our synthetic dataset the feed-forward network even performs better than single-
video optimization, showing the utility of the learned prior. Our model is trained with self-supervised
losses, so it can be applied to real videos where ground-truth labels are not available, dramatically
reducing the time required to produce video layer decompositions. Viewing the decomposition
problem as a coordination game provides an intuitive explanation for the success of this approach: the
network must learn to find a focal point of the game, and since each instance is tasked with predicting
a single layer from a single object mask, the most prominent focal point lies where each instance
predicts the effects of its object and nothing else.

Ethical considerations. Any technique that allows for new image editing effects could possibly be
misused to produce fake or misleading images and videos. A layered decomposition of video only
allows rearrangement of content already present, but even simple rearrangement can significantly
alter the effect of a video. As with other research work in image editing, we hope publicly presenting
the technique can help inform readers about editing capabilities that may exist in the near future.
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Figure 6: Results of our method on real videos. Our network pretrained on synthetic data requires
much fewer training iterations (<10%) on test videos than Lu, et al., and achieves comparable results
in many cases (trampoline deformations and shadows grouped with the correct person/animal, top 4
rows). However, our method can fail in challenging scenarios involving heavy occlusion (part of the
person’s shadow is incorrectly placed in the dog’s layer, rows 3 and 4).
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Board (IRB) approvals, if applicable? [N/A]
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