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Abstract

Recently, physics-informed neural networks (PINNs) have gained attention in
the scientific community for their potential to solve partial differential equations
(PDEs). However, they face challenges related to resource efficiency and slow
convergence. Adaptive sampling methods, which prioritize collocation points with
high residuals, improve both efficiency and accuracy. However, these methods
often neglect points with medium or low residuals, which can affect stability as the
complexity of the model increases. In this paper, we investigate this limitation and
show that high residual-based approaches require stricter learning rate bounds to
ensure stability. To address this, we propose a Langevin dynamics-based Adaptive
Sampling (LAS) framework that is robust to various learning rates and model
complexities. Our experiments demonstrate that the proposed method outperforms
existing approaches in terms of relative L2 error, and stability across a range of envi-
ronments, including high-dimensional PDEs where Monte Carlo integration-based
methods typically suffer from instability. The implementation code is publicly
available at https://github.com/neurips2025-las/LAS-implementation.

1 Introduction

Partial differential equations (PDEs) describe a wide range of physical phenomena, including heat
transfer [17, 8], fluid flow [37, 18, 33], wave propagation [34, 5], optics, and epidemiology [26, 36].
Accurate and efficient PDE solutions are vital across many industries. With recent advances in deep
learning, physics-informed neural networks (PINNs) have emerged as a promising approach for
solving PDEs. PINNs train by minimizing errors from initial conditions (IC), boundary conditions
(BC), and PDE residuals at collocation points [31, 49, 12, 41, 23]. These error terms are treated as
soft constraints, guiding the model to satisfy essential physical requirements.

This collocation-based learning method enhances the capability of PINNs by reducing the need
for extensive experimental data collection across spatio-temporal ranges, demonstrating success
in various industries as a promising alternative to traditional numerical methods such as the finite
difference method and the finite element method [50, 2, 25]. However, collocation-based PINN
(hereafter referred to as PINNs) encounter challenges in efficiently setting collocation points within
the constraints of a limited sampling budget and in achieving fast convergence to accurate solutions.
A key challenge arises from the presence of small regions with abrupt changes, in contrast to larger,
smoother regions. This issue is particularly evident in stiff PDEs, which are often characterized by
discontinuities, such as sudden transitions or jumps across the spatio-temporal domain.
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Adaptive sampling in PINNs mainly follows two strategies: residual distribution-based methods,
which resample points proportionally to residual magnitudes, and high residual-based methods, which
prioritize large-residual points while neglecting low-residual regions. The latter often yields strong
empirical results but risks distorting the residual distribution. This raises a key question: should
adaptive sampling focus exclusively on high residuals? Addressing this question requires a careful
analysis of the trade-offs and risks inherent in different sampling schemes.

In this work, we respond by proposing a principled alternative: Langevin dynamics-based adap-
tive sampling (LAS). Through a series of theoretical and empirical analyses, we demonstrate that
LAS consistently achieves reliable relative L2 errors and stable convergence across diverse PDEs,
architectures, and hyperparameters, outperforming existing methods in robustness and scalability.

2 Background and Related Work

Physics-informed neural networks. The basic PINN framework [35] utilizes deep neural networks
as function approximators fθ to estimate the solution u of a non-linear PDE:

ut +Nx[u] = 0, x ∈ X ⊂ Rd, t ∈ [0, T ]; (2.1)

u(x, 0) = h(x), x ∈ X ⊂ Rd; (2.2)

u(x, t) = g(x, t), x ∈ ∂X ⊂ Rd, t ∈ [0, T ], (2.3)

where u(x, t) denotes the hidden solution at spatial and temporal coordinates x, t, Nx[·] is the non-
linear differential operator, X is the spatial domain, ∂X is the boundary, and T is the time range.
The spatio-temporal domain is Ω = X × [0, T ], with collocation point x = (x, t) ∈ Ω. The PDE
residualsRθ(x) and loss function on collocation points P = {xn}Npde

n=1 ⊂ Ω are calculated as:

Rθ(x) =
∂

∂t
fθ(x) +Nx[fθ](x),x ∈ Ω; (2.4)

Lpde({xn}; θ) = Ex∼U(Ω)|Rθ(x)|k ≈
1

Npde

Npde∑
n=1

|Rθ(xn)|k, (2.5)

where U(Ω) is the uniform distribution over Ω and Npde represents the number of sample points of
PDE loss. Then, in a similar manner, the total loss function L is defined as:

L({xtotal
n }; θ) = λpdeLpde({xn}; θ) + λicLic({xic

n}; θ) + λbcLbc({xbc
n }; θ).

Hyperparameters λpde, λic, and λbc control the balance between the PDE, IC, and BC loss terms.
Then, fθ is trained to estimate appropriate solution u for PDEs by minimizing the total loss L.

Adaptive sampling based on residual distribution. Classical PINNs generally adopt uniform
collocation sampling. To improve efficiency, a residual-based adaptive sampling strategy was
proposed [31], where each point xn is drawn with probability p(xn) :=

|Rθ(xn)|k∑
m |Rθ(xm)|k . Building on

this idea, the residual-based adaptive distribution (RAD) [47] introduces a hyperparameter c: p(x) ∝
|Rθ(x)|k

E[|Rθ(x)|k] + c. Here, k highlights high-residual regions, while c enforces a degree of uniformity.
By tuning these parameters, RAD flexibly balances exploration and exploitation depending on the
problem structure. More recently, Gaussian mixture distribution-based adaptive sampling (GAS) has
been proposed [20], where high-residual validation points serve as the means of a Gaussian mixture
model (GMM), and the reciprocals of residual gradients determine the diagonal covariances.

Adaptive sampling focused on high residuals. Alongside residual distribution-based approaches,
another major line of work explores sampling methods that do not explicitly approximate the
underlying distribution. These methods can often be viewed as special cases of RAD under extreme
k, c settings, but we categorize them here based on whether they estimate a sampling distribution.

A representative approach is residual-based adaptive refinement (RAR) [27], which iteratively selects
the top-M high-residual points until the mean residual falls below a tolerance. Although effective,
RAR continually accumulates points and increases computational cost. To improve efficiency, the
R3 method [10] retains high-residual points, uniformly resamples for diversity, and discards low-
residual points. Similarly, failure-informed PINNs (FI-PINNs) adaptively sample from regions where
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residuals exceed a threshold, using strategies such as self-adaptive importance sampling or subset
simulation [14, 13]. Beyond these sampling strategies, recent work has questioned the appropriateness
of the L2 loss for solving Hamilton-Jacobi-Bellman (HJB) equations [43]. In response, adversarial
training methods targeting the L∞ norm have been introduced. As we discuss later, this framework
leverages partial gradient information and inherently emphasizes high-residual regions in sampling.

Theoretical analysis of the concentration effect. While many adaptive sampling methods have
shown promising results, several theoretical aspects remain unclear. In particular, there is a lack of
theoretical analysis regarding the concentration effect. Although numerous studies report success
with adaptive sampling, there is limited analysis on the impact of focusing primarily on high residuals.

To bridge this analytical gap, we investigate how learning stability is influenced by the extent to which
high residuals are emphasized relative to model complexity. Our analysis reveals that an excessive
focus on high residuals may lead to performance degradation in PINN training.

3 Analysis of the Learning Stability

3.1 The Effect of Sampling Concentration

In this work, we define sampling concentration as the spatial aggregation of collocation points within
regions characterized by large residual magnitudes. Such strategies have been shown to improve
accuracy, efficiency [28, 24], stability [7, 45], and physical consistency [21, 46, 39] in PINN training.
In this section, we analyze the effects of sampling concentration theoretically.

Setup. Consider the partial differential equation defined over the domain Ω = X × [0, T ]. Assume
that we have N collocation points forming the sample population P = {xn}Nn=1 ⊂ Ω, sampled from
a uniform distribution U(Ω).
Assumption 3.1. For analytical simplicity, we assume that the residual error of the PDE at each
collocation point xn can be expressed as a linear combination of feature-mapped vectors, given an
appropriate feature map ϕ : Ω→ RD. Specifically, we represent the residual error as follows:

Rθ(xn) =
∂

∂t
fθ(xn) +Nx[fθ](xn) (3.1)

= a(θ)⊤ϕ(xn; θ) (3.2)

=

D∑
d=1

ad(θ)ϕd(xn; θ). (3.3)

We regard the sampling methodology as a weighting of each sample point depending on the residual
Rθ(xn) and set k = 2. Thus, we can represent the loss function L(P; θ) = ∑N

n=1 wn|Rθ(xn)|2.
Assume that we are solving for the solution based on the gradient descent (GD) algorithm. Then,

θl+1 = θl − η∇θ

(
N∑

n=1

wl
n|Rθl(xn)|2

)
, (3.4)

where the weights assigned to each sample point for iteration l are determined as follows:

wl
n ∝ exp

( |Rθ̃l(xn)|2
β2

)
, n ∈ {1, ..., N}. (3.5)

Additionally, wl
n is normalized to satisfy

∑
x∈P wl

n(x) = 1 and the parameter β > 0 preceding the
residual controls the concentration of sampling with respect to the residuals. Note that the parameters
θ̃l = (θ̃l1, . . . , θ̃

l
D) used to calculate the importance weights do not participate in the model parameter

update process. Furthermore, in contexts where the meaning is clear, we will no longer explicitly
indicate that ϕ is parameterized by θ, i.e., denote ϕ(x; θ) as ϕ(x).

For iteration l, we focus on two extreme cases of interest: when β is too large (uniform sampling),
most samples receive uniform weights, resulting in uniform sampling. Conversely, when β is close
to 0 (high residual sampling), the effect is dominated by the sample with the highest residual. To
explore this in more depth, consider the following propositions.
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Proposition 3.1 (Steepness of the uniform sampling). When the sampling concentration parameter β
is sufficiently large, the maximum eigenvalue of the Hessian of the loss function can be approximated
as 2λmax(Σ), where Σ = Ex∼U(Ω)[ϕ(x)ϕ(x)

⊤] and λmax(Σ) is the maximum eigenvalue of Σ.

Proposition 3.2 (Steepness of the high residual sampling). When the sampling concentration pa-
rameter β is sufficiently small, the maximum eigenvalue of the Hessian of the loss function can be
approximated as 2∥ϕ(x∗)∥2, where x∗ = argmaxx∈P |Rθ(x)|2 is the maximum residual point.

Detailed proof can be found in Appendix B.1, B.2. It is well known that to ensure the convergence of
GD algorithms, the learning rate η must satisfy the following relationship with the largest eigenvalue
λmax of the Hessian of the loss function: η < 2

λmax
[6]. Therefore, we consequently aim to examine

the relationship of the largest eigenvalue in two extreme cases of β. Before presenting the main result,
we introduce two additional assumptions that formalize phenomena typically observed in neural
network-based models as their complexity increases.

Assumption 3.2. In high-dimensional feature space, ||ϕ(x)|| follows a heavy-tailed distribution.
More specifically, P(∥ϕ(x)∥ > ζ) ∼ g(ζ)

ζα for large ζ, where ∼ represents asymptotic equivalence,

g(ζ) satisfies ∀t > 0, limζ→∞
g(tζ)
g(ζ) = 1 and α > 0 indicates the thickness of the tail.

This assumption is substantiated by both empirical evidence and theoretical insights. The heavy-tailed
nature of feature vectors has been documented in several studies [29, 30, 3], and theoretically, in
high-dimensional settings with complex dependencies, classical assumptions of Gaussianity often
break down, and heavy-tailed models provide a more accurate fit to the observed distributional
behavior [4, 16, 40]. Next, we impose an assumption concerning the representative characteristics
encoded in the norms of feature vectors.

Assumption 3.3. As the model complexity D increases, the feature vector with the maximal norm
becomes increasingly representative, which results in the following: maxx∈P ∥ϕ(x)∥ ≈ ∥ϕ(x∗)∥
where x∗ = argmaxx∈P |Rθ(x)|2 is the maximum residual point.

This assumption can be seen as a concentration of measure phenomenon in high-dimensional spaces
[11, 42, 32, 15]. We note that Assumptions 3.2 and 3.3 do not generally hold in isotropic settings.
However, they become statistically valid under (i) the low-temperature limit β → 0, and (ii) the
high-dimensional regime D ≫ 1 with heavy-tailed feature norms. Specifically, writing Rθ(x) =
a(θ)⊤ϕ(x), we have |Rθ(x)|2 = ϕ(x)⊤Qϕ(x) where Q = a(θ)a(θ)⊤ is rank-one. In this context,
we reason as follows to determine under what conditions ϕ(x)⊤Qϕ(x) ≈ ϕ(x)⊤ϕ(x) holds.

In the limit β → 0, the samples concentrate on regions with largeRθ(x), thereby biasing ϕ(x) toward
alignment with a(θ) and large norm. Moreover, for D ≫ 1, feature vectors are nearly orthogonal,
so large |Rθ(x)|2 occurs only when ϕ(x) is both high-norm and well-aligned. Consequently,
argmaxx |Rθ(x)|2 ≈ argmaxx ∥ϕ(x)∥2 holds with high probability in this structured regime.

To support the validity of Assumptions 3.1 through 3.3, we provide a consolidated empirical veri-
fication in Appendix A, demonstrating their general applicability across a broad range of settings.
Finally, under the scaling assumption that the number of samples N grows linearly with model size
D as N = cD, we derive our main theoretical result as follows.

Theorem 3.1. Given the heavy-tailed nature of ||ϕ(x)|| and sufficiently large model complexity D,
we have 2∥ϕ(x∗)∥2 ≫ 2λmax(Σ). This inequality establishes a tighter upper bound on the learning
rate for ensuring the convergence of the GD algorithm under the high residual sampling method.

The detailed proof can be found in the Appendix B.3. This indicates that the stability of the algorithm
can vary significantly depending on the sampling strategy and model complexity. Specifically, in
these two extreme cases (β ≪ 1 and β ≫ 1), uniform sampling may struggle to find an appropriate
solution due to the difficulty of the stiff PDE problems, while high residual sampling may fail due to
instability in the learning process.

3.2 Characteristics of Adaptive Sampling Algorithms

Building upon the previous discussion, we now briefly review how existing adaptive sampling
methods operate. In particular, we focus on how the trajectory of the sample population P evolves
under these algorithms.
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Figure 1: Schematic sampling diagram of the benchmark adaptive sampling methods: (a) R3 (first
three figures), (b) L∞ (last three figures) where |Rθ(x)|k = 0.3 × N

(
x;0,

[
[1, 0.5], [0.5, 1]

])
+

0.7×N
(
x;5,

[
[2,−0.3], [−0.3, 2]

])
.

• RAD [47]: The modeling of residual distribution is relatively straightforward and relies on
Monte Carlo integration (MCI) over the expectation p(x) ∝ |Rθ(x)|k

E|Rθ(x)|k + c. In general, a
larger value of k corresponds to a high residual regime with smaller β, whereas a larger
value of c indicates a tendency toward uniform sampling regime with higher β.

• R3 [10]: R3 employs a strategy that consistently maintains high residuals, resulting in an
excessive skew in the distribution of collocation points as iterations progress. Moreover, this
approach may fail to effectively handle multi-modal landscapes in the long-term, which, as
demonstrated in our previous theoretical analysis, results in a scenario where the sampling
concentration parameter β becomes extremely small.

• L∞ [43]: During the adversarial training, to estimate the inner maximal value
supx∈Ω |Rθ(x)|k, L∞ iteratively utilizes gradient information sign∇x|Rθ(x)|k, allow-
ing for some degree of access to local modes. However, there is no guarantee that the
relative proportions between modes of different heights are preserved.

To facilitate an intuitive understanding of time evolving sampling methods (R3, L∞), we have
illustrated the working mechanisms in a schematic diagram shown in Figure 1. For a detailed
visualization of the sampling trajectories, we refer the reader to Appendix D.

4 Proposed Approach: Langevin Adaptive Sampling (LAS)

Similar to other residual distribution-based methodologies, our primary objective is to estimate the
residual-based sampling distribution. However, unlike previous methods that directly model the
distribution using residuals, we employ Langevin dynamics to model the target distribution. An
intuitive visualization of our LAS framework is depicted in Figure 2.

∇𝜃 ℛ∙ 𝐱new
2

∇x ℛ𝜃new ∙
2

𝜃old
𝜃new𝐱old

∝ ∇𝐱 ℛ𝜃new 𝐱old
2

𝐱new
𝐳 ∼ 𝒩(𝟎, 𝐈)

Langevin Dynamics in 

PDE Domain Ω
Gradient Descent in 

Parameter Space Θ

∝ −∇𝜃 ℛ𝜃old 𝐱new
2

Figure 2: Bidirectional update: (Left) In the PDE domain, our LAS framework uses Langevin
dynamics to adaptively update collocation points based on PDE residuals while keeping the PINN
model fθ fixed. (Right) In parameter space, the PINN model fθ minimizes PDE residuals with the
updated collocation points.
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Algorithm 1 Single LAS Sampling Iteration for Physics-Informed Neural Networks

1: Input: initial population P = P0 with Npde collocation points.
2: Output: updated population P = P lL .
3: for l = 0 to lL − 1 do
4: for xl

n ∈ P l do
5: Calculate the residual gradient: ∇x|Rθ(x

l
n)|2 = ∇x

∣∣ ∂
∂tfθ(x

l
n) +Nx[fθ(x

l
n)]
∣∣2.

6: Sample white Gaussian noise: zln ∼ N (zln;0, I).
7: Follow the Langevin dynamics: xl+1

n ← xl
n + τ

2∇x|Rθ(x
l
n)|2 + β

√
τzln.

8: end for
9: Update collocation population: P l+1 ← {xl+1

n }
Npde

n=1 .
10: end for

4.1 Langevin Dynamics and Stationary Distriburion

The dynamics of the collocation points P l ⊂ Ω at the l-th iteration in LAS are given as follows:

xl+1
n = xl

n +
τ

2
∇x|Rθ(x

l
n)|2 + β

√
τzln, (4.1)

where τ > 0 is the Langevin step size, zln ∼ N (zln;0, I) represents the white Gaussian noise, and β
is the sampling concentration coefficient. Additionally, the residual exponent k is set to 2. Unlike
other methods that estimate the sampling distribution based on residuals at every iteration, LAS
dynamically updates the data points without requiring the estimation of the sampling distribution. If
the Langevin dynamics are allowed to run for a sufficient number of iterations lL with a sufficiently
small step size τ , we can theoretically derive the following result regarding the collocation points.
Theorem 4.1 (Stationary distribution). For fixed fθ and concentration parameter β > 0, sample
population P l asymptotically follows liml→∞ pl(x) = p∞(x) ∝ exp

(
|Rθ(x)|2

β2

)
.

Although the proof is well known [9], to complete the formulation of the distribution under con-
sideration, we include the full derivation in Appendix C.1. The detailed operational procedure is
summarized in Algorithm 1.

Unlike R3 and RAD, which use MCI to resample collocation points independently at each step, LAS
refines the sampling iteratively by reusing the current population. Similar to L∞, it exploits gradient
information. However, instead of relying solely on raw gradients, LAS injects noise into the signal—a
design choice whose implications are outlined below.
Theorem 4.2 (LAS favors flat residual surfaces). Given a fixed residual landscapeRθ and an initial
set of randomly sampled collocation points P0, the LAS framework progressively refines the sampling
towards flatter local maxima while avoiding less stable and sharp regions.

An intuition-based explanation is provided in Appendix C.2 as a substitute for a formal proof. This
phenomenon reflects a desirable property of Langevin dynamics, which inherently favors flatter
regions of the residual landscape. As a result, when two local maxima exhibit similar residual values,
the collocation points are more likely to concentrate near the flatter one. Consequently, models
trained around such flat residual regions tend to exhibit more stable learning behavior.

4.2 Key Strengths (and Advantages) of the Proposed LAS Framework

Robustness in high-dimensional PDEs. In high-dimensional PDE settings, the MCI-based ex-
pectation E|Rθ(x)|k ≈ 1

N

∑N
n=1 |Rθ(xn)|k becomes unstable due to the curse of dimensionality,

which demands exponentially more samples for accurate estimation. In contrast, LAS leverages local
gradient information, maintaining stability even under high-dimensional conditions.

Enhanced stability through noise injection. Stochastic gradient descent (SGD) is known to prefer
flatter minima, which are associated with better generalization [22, 19, 48]. Similarly, LAS injects
noise into the gradient signal, resulting in significantly improved training stability compared to
methods that rely solely on raw gradients [43]. It is reasonable to expect that sampling schemes
biased toward flatter regions inherently promote more stable training dynamics.
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Figure 3: With fixed learning rate η = 0.002 and 4 hidden layers, (a) The maximal eigenvalue of the
Hessian (steepness) for the loss function, (b) the relative L2 error curve.

5 Experiments

This section presents an experimental evaluation of high-residual sampling under varying model
complexities and learning rates, with the number of collocation points fixed. We compare the
performance of our proposed LAS method against other adaptive sampling approaches, including
RAD, R3, and L∞, each evaluated under the default settings provided in their original papers, random
sampling with resampling (Random-R), which essentially corresponds to uniform sampling.

Experimental setup. As the default settings, unless otherwise specified, the models utilized a
multilayer perceptron (MLP) with 128 nodes per layer and 4 hidden layers, employing a hyperbolic
tangent activation function in each hidden layer. The Adam optimizer was utilized with the learning
rate of η = 0.001 and a decay factor of 0.9 applied every 5, 000 iterations. Training was conducted
with 200, 000 iterations, and the number of collocation points was set to Npde = 1, 000. For the LAS
configuration, the residual exponent k = 2, the Langevin step size τ = 0.002 for 1-2D PDEs and
τ = 0.01 for 4-8D PDEs, and the concentration parameter β = 0.2. This hyperparameter setting
represents the empirically obtained optimum, with further discussion presented in the following
subsection 5.5.

5.1 Ablation Studies

First and foremost, we sought to verify how the analytical results regarding stability and model
complexity, presented in Section 3, operate and apply to the functioning of each algorithm. In this
context, we performed the following key ablation studies based on the Allen-Cahn equation using 5
different random seeds.

Steepness of the loss landscape. In our stability analysis, we hypothesized that sampling algorithms
targeting extremely high residuals—such as R3 and L∞—would induce sharper loss landscapes. To
test this, we tracked the maximum eigenvalue of the Hessian of the loss throughout training, as shown
in Figure 3-(a). The results support our hypothesis, indicating that high-residual-focused sampling
leads to increased steepness in the loss surface. The proposed LAS method, like L∞, leverages
gradient information but achieves more stable training by reducing residual surface steepness, similar
to Random-R. This stability likely stems from the injected noise term. Overall, LAS outperforms
Random-R and other baselines in relative L2 error while maintaining the lowest steepness.

Different number of hidden layers. We employed MLP architectures with hidden layers ranging
from 4 to 10 across all sampling methods, maintaining a learning rate of 0.001 and utilizing a step
scheduler. As illustrated in Figure 4-(a), it can be observed that as the number of layers increases, the
overall performance improves; however, for most sampling strategies at 10 layers, except for LAS,
the performance diverges. In particular, for R3, it is evident that it fails to converge more prominently
compared to other algorithms. These results indicate that the sensitivity to model complexity varies
depending on the sampling method. In particular, high residual methods are more susceptible to
increasing model complexity. For more clarity, regarding the loss curves during the training of PINNs
based on model complexity, analyses are presented in Appendix E, not only from the perspective of
depth but also from the perspective of width expansion.

7



4 6 8 10
Number of hidden layers

0.5
1
2
5

10
20
50

100

Re
la

tiv
e 

L2
 e

rro
r [

%
] (

Lo
g 

sc
al

e)

(a)

0.001 0.002 0.003 0.004
Learning rate

0.5
1
2
5

10
20
50

100

Re
la

tiv
e 

L2
 e

rro
r [

%
] (

Lo
g 

sc
al

e)

(b)

0.00005 0.0001 0.0005 0.00075
Learning rate

0.5
1
2
5

10
20
50

100

Re
la

tiv
e 

L2
 e

rro
r [

%
] (

Lo
g 

sc
al

e)

(c)

0.0022 0.0024 0.0026 0.0028
Learning rate

0.5
1
2
5

10
20
50

100

Re
la

tiv
e 

L2
 e

rro
r [

%
] (

Lo
g 

sc
al

e)

(d)

LAS (Ours) R3 (Daw et al., 2023) RAD (Wu et al., 2023) L  (Wang et al., 2022) Random-R

Figure 4: Relative L2 error (Log scale) for the Allen-Cahn equation: (a) varying layers with η = 0.001
(with scheduler), (b)-(d) fixed 4 layers with different learning rates (no scheduler). Each boxplot is
based on 5 random seeds.

Varying learning rate η without decaying. We evaluated MLPs with four hidden layers across
learning rates ranging from 0.001 to 0.004 without applying decay. As shown in Figure 4 -(b), the
benchmark algorithms demonstrated performance degradation at η = 0.002 compared to η = 0.001,
whereas LAS showed improvement. At η = 0.003, all methods exhibited reduced performance;
however, LAS was able to partially mitigate this degradation. At η = 0.004, none of the methods
produced correct solutions. In particular, we visualized the performance for very low learning rates
in Figure 4-(c) and highlighted the range between η = 0.002 and 0.003, where all algorithms begin
to exhibit instability in Figure 4-(d). From this, we observe that learning does not proceed properly at
very low learning rates, and for layer 4, most algorithms become unstable at a learning rate as low as
approximately 0.0022.

5.2 Experiments on Representative 1-Dimensional PDEs

The proposed LAS framework is further evaluated on representative 1-dimensional PDEs derived
from various benchmark problems tackled by several established algorithms, including RAD, R3,
L∞, Random-R. In these evaluations, we also employ the default experimental settings as outlined
earlier. The specific configurations for the PDE parameters and the hyperparameters of the baseline
algorithms are detailed in Appendix F.

Experimental results. We evaluated each sampling method on five benchmark PDEs—Burgers’,
Convection, Allen-Cahn, Korteweg-De Vries, Schrödinger—using five random seeds. As summarized
in the 1D case of Table 1, Random-R tended to outperform other adaptive sampling strategies in
high-complexity model settings. Meanwhile, LAS consistently achieved either the best or second-best
relative L2 errors across all cases. In particular, LAS outperformed all methods on the Allen-Cahn
and Schrödinger equations, while remaining competitive on the others.
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Table 1: Relative L2 error (mean± std) across PDEs for increasing model complexity. Bold indicates
best, underline second-best.

Sampling method LAS (Ours) Random-R RAD R3 L∞

Number of layers 8 10 8 10 8 10 8 10 8 10

1D

Burgers’ 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.00 0.17 ± 0.02 0.27 ± 0.14 0.01 ± 0.00 0.02 ± 0.00 0.03 ± 0.01 0.06 ± 0.06

Allen-Cahn 0.77 ± 0.20 0.62 ± 0.27 2.54 ± 2.30 11.49 ± 19.93 0.99 ± 0.29 1.36 ± 0.19 0.97 ± 0.23 34.47 ± 17.64 0.76 ± 0.07 10.95 ± 19.16

KdV 2.68 ± 1.74 1.99 ± 0.50 1.64 ± 0.63 2.89 ± 1.80 7.44 ± 1.83 7.97 ± 1.45 3.92 ± 2.93 7.02 ± 8.77 5.70 ± 1.45 4.44 ± 1.45

Schrödinger 0.08 ± 0.01 0.09 ± 0.01 0.09 ± 0.00 0.11 ± 0.01 1.68 ± 0.15 2.89 ± 0.69 0.11 ± 0.01 0.15 ± 0.02 0.22 ± 0.06 0.19 ± 0.03

Convection 0.34 ± 0.12 0.27 ± 0.03 0.30 ± 0.05 0.41 ± 0.10 0.25 ± 0.02 0.28 ± 0.09 0.39 ± 0.24 0.27 ± 0.05 73.87 ± 5.07 54.17 ± 27.33

2D
Burgers’ 0.05 ± 0.00 0.05 ± 0.00 0.06 ± 0.01 0.06 ± 0.00 0.05 ± 0.00 0.06 ± 0.00 0.07 ± 0.01 0.06 ± 0.02 0.06 ± 0.00 0.05 ± 0.01

Heat 0.26 ± 0.00 0.22 ± 0.03 0.18 ± 0.01 0.20 ± 0.04 1.44 ± 0.17 1.54 ± 0.15 8.97 ± 1.95 6.66 ± 4.20 14.29 ± 1.01 13.07 ± 6.21

4D DF-Heat 1.72 ± 0.23 2.14 ± 0.18 7.73 ± 1.85 75.91 ± 41.68 5.72 ± 0.42 78.20 ± 37.10 2.15 ± 0.25 80.23 ± 34.24 2.46 ± 0.67 53.78 ± 46.31

6D DF-Heat 3.49 ± 0.20 31.16 ± 39.74 5.53 ± 0.81 100.00 ± 0.00 6.39 ± 1.14 100.00 ± 0.00 4.98 ± 0.18 100.00 ± 0.00 4.39 ± 0.61 100.00 ± 0.00

8D DF-Heat 6.92 ± 0.31 34.68 ± 38.21 17.63 ± 1.78 100.00 ± 0.00 67.50 ± 39.83 100.00 ± 0.00 65.03 ± 43.11 100.00 ± 0.00 13.21 ± 4.46 100.00 ± 0.00

5.3 Experiments on High Dimensional PDEs

Beyond the one-dimensional setting, we applied the existing approaches and the proposed algorithm
to higher-dimensional PDE problems. Benchmark problems include 2D Burgers’, 2D heat [1], and
dimension flexible heat (DF-heat) 4 to 8D equations [49]. These PDEs have analytics solutions, so the
performance of all the sampling methods could be fairly observed and evaluated in high dimensional
PDE cases. Especially, we modified the DF-heat PDE to pose a more challenging problem setting
by increasing frequency. The details for PDEs are also described in Appendix F. We first report the
performance of all sampling methods under the default settings from the original papers (Table 1).

Experimental results. In the 2D Burgers’ and heat equations, Table 1 shows that Random-R and
LAS exhibited competitive performance. RAD, R3, and L∞, on the other hand, experienced notable
performance degradation, primarily because the 2D PDEs represent smooth cases rather than high-
frequency or stiff regimes. For the 4D, 6D and 8D cases, LAS significantly outperformed all other
adaptive sampling strategies. In the 4D, Random-R and L∞ produced plausible solutions, but their
performance remained inferior to that of LAS. Meanwhile, MCI-based methods such as RAD and R3
suffered from instability. Notably, for the 6D and 8D cases, all the other sampling approaches failed
to find appropriate solutions. Although convergence was observed under different balance terms, the
resulting performance was inferior and highly sensitive, as discussed in the following subsection.

5.4 Further Discussion on Loss Balancing, Model Hyperparameters, and Applicability

To ensure fair comparison, we conducted an extensive search for the optimal loss balance terms
(λic, λbc, λpde) and hyperparameter configurations of the baseline methods, as detailed in Appendix G.
Additional experiments demonstrate that RAD and R3 outperform Random-R when equipped with
the optimal loss balance terms and hyperparameter settings identified in Appendix G. However, both
RAD and R3 exhibit sensitivity to the problem dimensionality and the choice of loss weighting. In
contrast, LAS consistently attains either the best or second-best relative L2 error across all evaluated
scenarios, including smooth, stiff, low-dimensional, and high-dimensional cases. In terms of practical
application, we further evaluate robustness across different model architectures (Appendix H), a
factor that may be of particular relevance to practitioners.

5.5 LAS Hyperparameter Tuning and Computational Complexity

The practical applicability of LAS depends on the number of Langevin iterations lL, which directly
affects computational complexity. We therefore compare its cost with existing sampling methods in
Appendix I, and the results are summarized in Figure 5. The computational time and memory usage
are in the order: Random-R, R3, RAD, LAS, and L∞. Gradient-based methods such as LAS and L∞

generally incur higher costs; in particular, L∞ is much slower because it requires many iterations (20
by default) with re-initialization each epoch, whereas LAS needs only lL = 1 without re-initialization.
Thus, increasing the number of iterations should be considered with caution.

Detailed tuning results in Appendix J show that LAS with lL = 1 and without re-initialization
achieves competitive performance, indicating that LAS can be applied in practice with computational
cost comparable to Random-R, R3, and RAD.
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Figure 5: Comparison of computational time (seconds per 1,000 epochs) for each method across
varying problem dimensions on an RTX 4090. Empty bars denote out-of-memory failures. Subplots:
(a) 1D, (b) 4D, (c) 6D, and (d) 8D.

6 Conclusion and Future Research Directions

This paper investigates the stability of training physics-informed neural networks (PINNs) under
adaptive sampling strategies, particularly as model complexity increases. Theoretical analysis shows
that methods focusing excessively on high residuals may undermine stability, especially in deeper
networks or with larger learning rates. To address this, we introduce Langevin dynamics-based Adap-
tive Sampling (LAS), which updates collocation points using residual-weighted Langevin dynamics.
Empirical results demonstrate that LAS ensures stable convergence even in high-dimensional PDEs,
where conventional methods often fail.

Our Langevin-based sampling scheme builds on a theoretically grounded MCMC formulation that is
both simple and effective. While the current approach shows strong performance, future work could
explore more efficient variants for high-dimensional problems and develop principled strategies for
hyperparameter selection.

Acknowledgments

This research was supported in part by the National Research Foundation of Korea(NRF) grant
funded by the Korea government(MSIT)(RS-2024-00349582) and in part by the National Research
Foundation (NRF) Grants, Basic Research Laboratory, under Grant RS-2023-00218908.

10



References
[1] Chandrajit Bajaj, Luke McLennan, Timothy Andeen, and Avik Roy. Recipes for when physics

fails: recovering robust learning of physics informed neural networks. Machine learning:
science and technology, 4(1):015013, 2023.

[2] Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven
discretizations for partial differential equations. Proceedings of the National Academy of
Sciences, 116(31):15344–15349, 2019.

[3] Melih Barsbey, Milad Sefidgaran, Murat A Erdogdu, Gael Richard, and Umut Simsekli. Heavy
tails in sgd and compressibility of overparametrized neural networks. Advances in neural
information processing systems, 34:29364–29378, 2021.

[4] Jan Beirlant, Yuri Goegebeur, Johan Segers, and Jozef L Teugels. Statistics of extremes: theory
and applications. John Wiley & Sons, 2006.

[5] Umair bin Waheed, Ehsan Haghighat, Tariq Alkhalifah, Chao Song, and Qi Hao. Pin-
neik: Eikonal solution using physics-informed neural networks. Computers & Geosciences,
155:104833, 2021.

[6] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

[7] Shenglin Cai, Zhenyu Wang, Florian Fuest, Younjung Jeon, Clark Gray, and George Em Karni-
adakis. BC-PINN: an adaptive physics informed neural network based on biased multiobjective
coevolutionary algorithm. Neural Computing and Applications, 33(4):12901–12918, 2021.

[8] Shengze Cai, Zhicheng Wang, Sifan Wang, Paris Perdikaris, and George Em Karniadakis.
Physics-informed neural networks for heat transfer problems. Journal of Heat Transfer,
143(6):060801, 2021.

[9] Tzuu-Shuh Chiang, Chii-Ruey Hwang, and Shuenn Jyi Sheu. Diffusion for global optimization
in Rn. SIAM Journal on Control and Optimization, 25(3):737–753, 1987.

[10] Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Mitigating propaga-
tion failures in physics-informed neural networks using retain-resample-release (r3) sampling.
International Conference on Machine Learning, 202, 2023.

[11] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of
randomized algorithms. Cambridge University Press, 2009.

[12] Wenhan Gao and Chunmei Wang. Active learning based sampling for high-dimensional
nonlinear partial differential equations. Journal of Computational Physics, 475:111848, 2023.

[13] Zhiwei Gao, Tao Tang, Liang Yan, and Tao Zhou. Failure-informed adaptive sampling for
pinns, part ii: combining with re-sampling and subset simulation. Communications on Applied
Mathematics and Computation, 6(3):1720–1741, 2024.

[14] Zhiwei Gao, Liang Yan, and Tao Zhou. Failure-informed adaptive sampling for pinns. SIAM
Journal on Scientific Computing, 45(4):A1971–A1994, 2023.

[15] Shivam Gupta, Jasper CH Lee, and Eric Price. High-dimensional location estimation via norm
concentration for subgamma vectors. In International Conference on Machine Learning, pages
12132–12164. PMLR, 2023.

[16] Laurens Haan and Ana Ferreira. Extreme value theory: an introduction, volume 3. Springer,
2006.

[17] Ehsan Haghighat, Maziar Raissi, Adrian Moure, Hector Gomez, and Ruben Juanes. A physics-
informed deep learning framework for inversion and surrogate modeling in solid mechanics.
Computer Methods in Applied Mechanics and Engineering, 379:113741, 2021.

11



[18] Ameya D Jagtap, Zhiping Mao, Nikolaus Adams, and George Em Karniadakis. Physics-
informed neural networks for inverse problems in supersonic flows. Journal of Computational
Physics, 466:111402, 2022.

[19] Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua
Bengio, and Amos Storkey. Finding flatter minima with sgd. In Proceedings of the 6th
International Conference on Learning Representations (ICLR) Workshop, 2018.

[20] Yuling Jiao, Di Li, Xiliang Lu, Jerry Zhijian Yang, and Cheng Yuan. A gaussian mixture
distribution-based adaptive sampling method for physics-informed neural networks. Engineering
Applications of Artificial Intelligence, 135:108770, 2024.

[21] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu
Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

[22] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.
In Proceedings of the 5th International Conference on Learning Representations (ICLR), 2017.

[23] Gregory Kang Ruey Lau, Apivich Hemachandra, See-Kiong Ng, and Bryan Kian Hsiang Low.
PINNACLE: PINN adaptive collocation and experimental points selection. In The Twelfth
International Conference on Learning Representations, 2024.

[24] Wensheng Li, Chao Zhang, Chuncheng Wang, Hanting Guan, and Dacheng Tao. Revisiting
pinns: Generative adversarial physics-informed neural networks and point-weighting method.
arXiv preprint arXiv:2205.08754, 2022.

[25] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differen-
tial equations, arxiv. arXiv preprint arXiv:2010.08895, 2020.

[26] Shuning Lin and Yong Chen. A two-stage physics-informed neural network method based on
conserved quantities and applications in localized wave solutions. Journal of Computational
Physics, 457:111053, 2022.

[27] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. DeepXDE: A deep learning
library for solving differential equations. SIAM review, 63(1):208–228, 2021.

[28] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Enhancing pinns for solving
pdes via adaptive collocation point movement and adaptive loss weighting. Nonlinear Dynamics,
105(4):3439–3450, 2021.

[29] Michael Mahoney and Charles Martin. Traditional and heavy tailed self regularization in neural
network models. In International Conference on Machine Learning, pages 4284–4293. PMLR,
2019.

[30] Charles H Martin and Michael W Mahoney. Heavy-tailed universality predicts trends in test
accuracies for very large pre-trained deep neural networks. In Proceedings of the 2020 SIAM
International Conference on Data Mining, pages 505–513. SIAM, 2020.

[31] Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Efficient training
of physics-informed neural networks via importance sampling. Computer-Aided Civil and
Infrastructure Engineering, 36(8):962–977, 2021.

[32] Kimia Nadjahi, Alain Durmus, Pierre E Jacob, Roland Badeau, and Umut Simsekli. Fast
approximation of the sliced-wasserstein distance using concentration of random projections.
Advances in Neural Information Processing Systems, 34:12411–12424, 2021.

[33] Luis Fernando Nazari, Eduardo Camponogara, and Laio Oriel Seman. Physics-informed
neural networks for modeling water flows in a river channel. IEEE Transactions on Artificial
Intelligence, 5(3):1001–1015, 2022.

[34] Chris L Pettit and D Keith Wilson. A physics-informed neural network for sound propagation
in the atmospheric boundary layer. In Proceedings of Meetings on Acoustics, volume 42. AIP
Publishing, 2020.

12



[35] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

[36] Alexander Rodríguez, Jiaming Cui, Naren Ramakrishnan, Bijaya Adhikari, and B Aditya
Prakash. Einns: epidemiologically-informed neural networks. In Proceedings of the AAAI
conference on artificial intelligence, volume 37, pages 14453–14460, 2023.

[37] Rongye Shi, Zhaobin Mo, and Xuan Di. Physics-informed deep learning for traffic state
estimation: A hybrid paradigm informed by second-order traffic models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35, pages 540–547, 2021.

[38] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan,
Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let
networks learn high frequency functions in low dimensional domains. Advances in neural
information processing systems, 33:7537–7547, 2020.

[39] Kejun Tang, Xiaoliang Wan, and Chao Yang. DAS-PINNs: A deep adaptive sampling method
for solving high-dimensional partial differential equations. Journal of Computational Physics,
476:111868, 2023.

[40] Terence Tao. Topics in random matrix theory, volume 132. American Mathematical Soc., 2012.

[41] Maryam Toloubidokhti, Yubo Ye, Ryan Missel, Xiajun Jiang, Nilesh Kumar, Ruby Shrestha,
and Linwei Wang. DATS: Difficulty-aware task sampler for meta-learning physics-informed
neural networks. In The Twelfth International Conference on Learning Representations, 2024.

[42] Roman Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

[43] Chuwei Wang, Shanda Li, Di He, and Liwei Wang. Is L2 physics informed loss always suitable
for training physics informed neural network? Advances in Neural Information Processing
Systems, 35:8278–8290, 2022.

[44] Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An expert’s guide to
training physics-informed neural networks, 2023.

[45] Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of para-
metric partial differential equations with physics-informed deeponets. Science advances,
7(40):eabi8605, 2021.

[46] Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural
tangent kernel perspective. Journal of Computational Physics, 449:110768, 2022.

[47] Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-
adaptive and residual-based adaptive sampling for physics-informed neural networks. Computer
Methods in Applied Mechanics and Engineering, 403:115671, 2023.

[48] Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics:
Stochastic gradient descent exponentially favors flat minima. arXiv preprint arXiv:2002.03495,
2020.

[49] Shaojie Zeng, Zong Zhang, and Qingsong Zou. Adaptive deep neural networks methods for
high-dimensional partial differential equations. Journal of Computational Physics, 463:111232,
2022.

[50] Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-
constrained deep learning for high-dimensional surrogate modeling and uncertainty quantifica-
tion without labeled data. Journal of Computational Physics, 394:56–81, 2019.

13



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract clearly states the main motivation, the proposed Langevin
dynamics-based sampling method, and its theoretical and empirical benefits. These claims
are fully supported and expanded upon in the main body of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
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Justification: The paper acknowledges that Langevin sampling can introduce computational
complexity, especially in high-dimensional settings. To address this, we applied practical
acceleration techniques and verified their effectiveness (Appendix D, I), while also noting in
the conclusion that future work may develop more advanced variants to improve efficiency
and relative L2 performance beyond the foundational Langevin dynamics used here.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theoretical results are stated with explicit assumptions and are accompanied
by complete proofs in the appendix B and C. We also provide empirical validation for key
assumptions through dedicated experiments in appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Answer: [Yes]

Justification: We provide all the information to reproduce the main and appendix results in
Algorithm 1, Experiments, and Appendix G sections.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide all the PDE settings and instructions for implementing the main
results in appendix G section. We also uploaded anonymized zip files including training and
evaluation codes.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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Appendix
A Empirical Validation of Assumptions

By definition, the residualRθ involves transforming the neural network output fθ through an operator
within a certain function space. This implies that the features of the function, resulting from the
neural network output combined with an additional operator, are not explicitly defined. Consequently,
we extract the feature vector of the resulting function through local feature vector estimation based
on the linearization of the residual function. Before delving into the main discussion, we first explain
the logic behind how the feature vector ϕ is inferred.

A.1 Local Approximation of the Feature Vector ϕ

LetRθ(x) =
∂
∂tfθ(x) +Nx[fθ](x) represent [g(fθ)](x). To validate the assumption that a suitable

linearization exists, our goal is to derive a proper linear approximation of [g(fθ)](x) at a specific point
x ∈ Ω = X × [0, T ], given a specific function fθ. In this process, we will utilize a Taylor expansion
for [g(fθ)](x). It is important to note that since g(fθ) represents the behavior in the function space,
understanding how g responds to small perturbations in fθ is crucial. This analysis employs the
Fréchet derivative.

To summarize briefly, g(fθ+∆θ) ≈ g(fθ) +Dg(fθ)(fθ+∆θ − fθ), which implies that the result can
be linearized around a baseline function fθ where Dg(fθ) = lim∆θ→0

||g(fθ+∆θ)−g(f)||
||∆θ|| . Since our

focus is on the linearization of [g(fθ)](x), it is essential to ensure that fθ+∆θ is a function close to
fθ within the function space. To achieve this, small noise perturbations ∆θ are added to the neural
network fθ. In conclusion, to approximate the value at a specific point x, we proceed as follows:

[g(fθ+∆θ)](x) ≈ [g(fθ) +Dg(fθ)(fθ+∆θ − fθ)](x) (A.1)
= [g(fθ)](x) + [Dg(fθ)(fθ+∆θ − fθ)](x) (A.2)

= [g(fθ)](x) + [Dg(fθ)](x)
(
fθ+∆θ(x)− fθ(x)

)
. (A.3)

Here, if fθ is assumed to be a well-trained PINN model and perturbation ∆θ is sufficiently small, we
can readily infer the following for the first term:

[g(fθ)](x) ≈ 0, ∀x ∈ Ω.

Consequently, the linear approximation of the function [g(fθ+∆θ)](x) can be expressed using the
Fréchet derivative. The aspect that conflicts with our assumption is that, in this context, the Fréchet
derivative can act as a function dependent on x. Therefore, we refer to this as a local approximation.

Approximation of Fréchet derivative. According to the problem formulation of PINN, g is
an operator that takes the function f as input and generates new values through partial deriva-
tives such as ∂tf, ∂xf, ∂ttf, ∂txf , and their combinations. Thus, we can assume g(f) =
G(f, ∂tf, ∂xf, ∂ttf, ∂txf, · · · ). Here, G is a multivariate function that combines the derivative
terms. Next, considering a scenario where a slight perturbation ∆θ is applied to fθ, the Fréchet
derivative can be approximated as follows:

Dg(fθ+∆θ) (fθ+∆θ − fθ) (A.4)
≈ g(fθ+∆θ)− g(fθ) (A.5)
= G (fθ +∆fθ, ∂tfθ +∆∂tfθ, ∂xfθ +∆∂xfθ, · · · )−G(fθ, ∂tfθ, ∂xfθ, · · · ) (A.6)

≈ ∂G

∂{fθ}
∆fθ +

∂G

∂{∂tfθ}
∆∂tfθ +

∂G

∂{∂xfθ}
∆∂xfθ + · · · (A.7)

=
∑
k

∂G

∂{∂kfθ}
∆∂kfθ, k ∈ {∅, t, x, tt, tx, · · · } (A.8)

=: a(θ)⊤ϕ, (A.9)

where a(θ) =
(

∂G
∂{fθ} ,

∂G
∂{∂tfθ} ,

∂G
∂{∂xfθ} , · · ·

)
and ϕ = (∆fθ,∆∂tfθ,∆∂xfθ, · · · ).

Mathematical details. Here, we provide a systematic summary of the considerations underlying the
validity of the employed estimation method.
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1. Reliability of the Fréchet derivative Dg[f ]: The existence of the Fréchet derivative requires
the following sufficient conditions:

• G must be differentiable.
• f must be sufficiently differentiable with respect to x and t.

Both conditions are naturally satisfied in the context of our problem. This ensures that we
can extract a vector that locally approximates the actual feature vector ϕ for each point
x ∈ Ω, thereby facilitating a robust estimation process.

2. Condition for the constancy of Dg[f ]: It is important to note that G is generally a function
of (f, ∂tf, ∂xf, · · · ), and thus implicitly depends on x. However, when the variables are not
entangled with each other, the partial derivatives can exhibit constant behavior. For instance:

• In our case, ∂G
∂{∂tf} is always 1.

• Partial derivatives in the x-direction such as ∂G
∂{∂xf} ,

∂G
∂{∂xxf} depend on Nx.

If the output of the differential operatorNx entangles the partial derivatives in the x-direction
(i.e, Nx[f ] is non-linear), the assumption that a acts as a constant may weaken.

We assume that a(θ) is constant or locally linear, enabling a unified linearized form of the residual.
This simplification ensures consistency across Assumption 3.1 and Propositions 3.1–3.2, and un-
derpins our curvature analysis. We will revise the manuscript to explicitly include this structural
assumption in Assumption 3.1 and ensure that its implications are consistently reflected in all related
propositions.

To provide further intuition, we illustrate this within the context of two representative PDEs.

For the convection equation,

g(f) = ∂tf + µ∂xf ⇒ a(θ) = (0, 1, µ, 0, 0, . . . ) is constant.

For the Burgers’ equation,

g(f) = ∂tf + f ∂xf −
0.01

π
∂xxf ⇒ a(θ) =

(
∂xfθ, 1, fθ, 0, 0, 0, −

0.01

π
, . . .

)
is θ-dependent.

Under the assumption that the neural network fθ is sufficiently expressive and smooth with respect to
θ, we can locally linearize a(θ) around a fixed θ.

When a(θ) is affine, its Jacobian

Jθ(a(θ)) =

(
∂ai
∂θj

)
=: Ja

is constant and its Hessian
Hθ(a(θ)) = 0,

where the derivatives are defined elementwise.

A.2 Heavy-Tailed Behavior of the Norm of Feature Vectors

Initially, we visualized the histogram of the norms of the extracted feature vectors across all feasible
grid points in Figure 6, i.e., the histogram of {∥ϕ(x)∥ : x ∈ Ω = X × [0, T ]} for models with 4, 6, 8,
and 10 layers, respectively.

From the provided histograms, it is evident that for each PDE, the distribution increasingly exhibits
heavy-tail behavior as the layer depth grows. This tendency is particularly emphasized in the following
two aspects:

1. Heavy-tail characteristics resembling Pareto distribution: As the layer depth increases,
the distribution’s tail becomes thicker, consistent with the heavy-tail properties of the Pareto
distribution. In a Pareto distribution, the tail probability follows the form P(X > x) ∝ x−α,
decaying slowly and exhibiting a high frequency of extreme values. This is reflected in the
histograms, where deeper layers show data concentrated in certain regions while displaying
more frequent extreme values.
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2. Increased concentration and frequency of extreme values: As the number of layers
increases, the data become densely concentrated within specific ranges (represented on the
y-axis as frequency), while significantly more frequent occurrences of large values (depicted
on the x-axis as extreme values) are observed. This behavior suggests a progressive shift
towards heavy-tail distributions.

In addition to the previously obtained histograms, we also calculated two statistical estimates—Pareto
tail index and Hill estimator—based on the samples to provide a more quantitative representation.

Pareto tail index. The Pareto tail index, denoted by α, quantifies the heaviness of the tail of a
distribution. For a random variable X with a heavy-tailed distribution, the tail probability follows a
power-law:

P(X > x) ∼ x−α, as x→∞,

where α > 0 represents the tail index. Therefore, a smaller value of α corresponds to a thicker tail,
indicating a slower decay of the tail probability and a higher likelihood of extreme events. Conversely,
a larger value of α corresponds to a thinner tail, where the tail probability decays more rapidly and
extreme events are less likely.
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Figure 6: Each plot represents a (PDE, layer) pair, where the row corresponds to the type of PDE
being solved (e.g., Burgers’, Convection, Allen-Cahn, etc.), and the column indicates the model
size by the number of hidden layers in the PINN (e.g., layer 4, 6, 8, 10). The histograms show the
distributions of the feature vector norms ∥ϕ(x)∥ for each pair.
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Hill estimator. The Hill estimator is specifically designed to estimate the inverse of the tail index,
ξ = 1

α . Given a sample of n independent and identically distributed observations {X1, X2, . . . , Xn},
sorted in descending order as X(1) ≥ X(2) ≥ · · · ≥ X(n), the Hill estimator is defined as:

ξ̂k =
1

k

k∑
i=1

log
X(i)

X(k+1)
,

where k is the number of upper order statistics used for the estimation.

Figure 7 shows box plots of estimates across random seeds for various PDEs. The Pareto tail index
decreases with depth, indicating heavier tails and a higher likelihood of extreme events. Across
all PDEs, the index drops consistently from layer 4 to 10 and remains well below the heavy-tail
threshold of 2. Even with fewer layers and 1,000 collocation points, feature norms display clear
heavy-tailed behavior. The Hill estimator, as the inverse measure, increases with depth and exceeds
the 0.5 threshold, further confirming the trend.
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Figure 7: Two statistical estimates of the norms of the feature vectors.

A.3 Emerging Disparities with Increasing Model Complexity

In the previous subsection, we conducted an empirical analysis of the distributional characteristics of
feature vector norms. In this subsection, we aim to validate the hypothesis of the norm’s emerging
disparities with increasing model complexity (Assumption 3.1.3). For clarity, this relation can be
expressed mathematically as (maxx∈P ∥ϕ(x)∥)2 − λmax(Σ) ≫ (maxx∈P ∥ϕ(x)∥)2 − ∥ϕ(x∗)∥2,
where x∗ = argmaxx∈Ω |Rθ(x)|2. Here, due to the dominant scale of max ∥ϕ(x)∥, we transformed
the values into a logarithmic scale to investigate the relationship between λmax and ∥ϕ(x∗)∥.
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Figure 8: Disparity comparison of λmax(Σ) and ϕ(x∗) with respect to max ∥ϕ(x)∥.

The Figure 8 illustrates the behavior of a logarithmic metric for various PDEs as the layer count
increases. The x-axis represents the number of layers, shown as 4, 6, 8, and 10, while the y-axis
represents a log-based value, denoted as log(max ∥ϕ(x)∥)−log ∥ϕ(x∗)∥

log(max ∥ϕ(x)∥)− 1
2 log λmax(Σ)

, which captures a ratio involving
maximum values and scaled terms. Across all PDEs, the y-axis value decreases monotonically as
the number of layers increases. This consistent decline in the log-metric across all PDEs suggests
that as the layer count grows, the denominator in the ratio scales disproportionately compared to the
numerator. This behavior indicates that the underlying system dynamics or representation becomes
increasingly dominated by the factors represented in the denominator.
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B Learning Rate Upper Bound Varying β

For the sake of simplicity, we will consider the situation at iteration l. Hence, in the forthcoming
proof, we will omit the upper index related to iteration. i.e., denote wl

n as wn. Under the assumption
that the neural network fθ is sufficiently expressive and smooth with respect to θ, we can locally
linearize a(θ) around a fixed θ.

By the Assumption 3.1, when a(θ) is affine, its Jacobian Jθ(a(θ)) =
(

∂ai

∂θj

)
=: Ja is constant and

its Hessian Hθ(a(θ)) = 0, where the derivatives are defined elementwise.

We consider the weighted loss

L(θ) =
N∑

n=1

wn

∣∣a⊤ϕn

∣∣2 , a := a(θ), ϕn := ϕ(xn). (B.1)

Then the Hessian is

HθL = 2

N∑
n=1

wn

[(
J⊤
a ϕn

) (
J⊤
a ϕn

)⊤
+
(
a⊤ϕn

) D∑
i=1

ϕn,i Hθ(ai)

]
. (B.2)

If a = a(θ) is linear, the second term vanishes, and we obtain

HθL = 2J⊤
a

(
N∑

n=1

wn ϕnϕ
⊤
n

)
Ja. (B.3)

B.1 Proof of Proposition 3.1

Proof. When the sampling concentration coefficient β is sufficiently large, the weights wn are
approximately uniform (wn ≈ 1

N ). Thus, the Hessian matrix Hθ of the loss function with respect to
θ can be approximated by:

Hθ(L) = Hθ

(
N∑

n=1

wn|Rθ(xn)|2
)
≈ Hθ

(
1

N

N∑
n=1

|Rθ(xn)|2
)
. (B.4)

Since Rθ(xn) = a⊤ϕn and Hθ

(
|a⊤ϕn)|2

)
= 2J⊤

a

(∑N
n=1 wn ϕnϕ

⊤
n

)
Ja, the Hessian of L satis-

fies:

Hθ(L) ≈
1

N

N∑
n=1

Hθ

(
|a⊤ϕn|2

)
=

2

N

N∑
n=1

J⊤
a ϕnϕ

⊤
n Ja. (B.5)

This matrix approximates the product of the Jacobian and the sample covariance matrix of the feature
vector ϕ(x). Therefore, for sufficiently large N , the maximum eigenvalue of the Hessian can be
approximated as 2λmax(Σ).

B.2 Proof of Proposition 3.2

Proof. When the sampling concentration coefficient β is sufficiently small, for the sample x∗ with
the largest residual (i.e., x∗ = argmaxx∈P |Rθ(x)|2), we can consider all other weights to be zero
except for x∗. Therefore, the Hessian matrix of the loss function can be expressed as follows:

Hθ(L) = Hθ

(
N∑

n=1

wn|Rθ(xn)|2
)
≈ Hθ

(
|Rθ(x

∗)|2
)
. (B.6)

The Hessian of the loss function can be expressed as 2J⊤
a ϕ(x

∗)ϕ(x∗)⊤Ja. Therefore, in a similar
manner, if we aim to compute λmax here, we may consider the eigenvalue equation Av = λv.
Assuming Ja is independent of the dimension D, let A = 2ϕ(x)ϕ(x)⊤ and v = ϕ(x). It follows
that ϕ(x) is an eigenvector of A, with the corresponding eigenvalue given by 2|ϕ(x∗)|2. Since A is a
rank-1 matrix, this eigenvalue is uniquely determined.
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B.3 Proof of Theorem 3.1

Proof. Assume that the feature norm ∥ϕ(x)∥ follows a heavy-tailed distribution with tail index α > 2,
and that the number of samples N satisfies N ≍ D.

Step 1 (Low-temperature regime). When the loss is dominated by one or a few extreme samples,
the empirical Hessian satisfies

HθL ≈ 2wmax J
⊤
a ϕmaxϕ

⊤
max Ja, ϕmax = max

1≤n≤N
∥ϕ(xn)∥. (B.7)

By extreme value theory, the maximum feature norm scales as

ϕmax ≍ N1/α ≍ D1/α, (B.8)

hence
ϕ2
max ≍ D2/α. (B.9)

Step 2 (Uniform sampling regime). In contrast, under uniform sampling without dominance by
extremes, we have

HθL ≈ 2J⊤
a ΣJa, Σ = E[ϕ(x)ϕ(x)⊤], (B.10)

where Σ is the population covariance matrix of features.

Step 3 (Scaling of covariance eigenvalues). For α > 2, Σ is finite, and in a normalized isotropic
setting λmax(Σ) = O(1). Considering instead the sample covariance

ΦN =
1

N

N∑
n=1

ϕ(xn)ϕ(xn)
⊤, (B.11)

results from random matrix theory for 2 < α < 4 imply

λmax(ΦN ) ≍ ϕ2
max

N
≍ N2/α−1 ≍ D2/α−1. (B.12)

Step 4 (Comparison). With N ≍ D, we obtain

ϕ2
max ≍ D2/α and λmax(ΦN ) ≍ D2/α−1. (B.13)

Therefore,
ϕ2
max

λmax(ΦN )
≍ D →∞ as D →∞, (B.14)

which shows that ϕ2
max ≫ λmax(ΦN ) for large D.

Finally, combining this fact with Assumption 3.3.1, which states ∥ϕ(x∗)∥ ≈ ϕmax, where x∗ =
argmaxx∈P |Rθ(x)|2, we can conclude the proof.
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C Stationary distribution and Stability of Langevin Dynamics

C.1 Proof of Theorem 4.1

Proof. Starting from the discretized Langevin dynamics:

xl+1 = xl +
τ

2
∇x|Rθ(x

l)|2 + β
√
τzl, zl ∼ N (zl;0, I). (C.1)

We consider the continuous-time Langevin dynamics as the step size τ → 0.

dxs =
1

2
∇x|Rθ(xs)|2 ds + β dBs, (C.2)

where Bs denotes standard Brownian motion in Rd and β > 0 is the diffusion coefficient. We
assume the drift∇x|Rθ(x)|2 is locally Lipschitz and satisfies a linear growth condition, ensuring the
well-posedness of (C.2).

Step 1: Fokker–Planck equation. Let ps(x) denote the probability density of xs. The Fokker–
Planck equation corresponding to (C.2) is

∂ps(x)

∂s
= −∇x ·

(
1

2
∇x|Rθ(x)|2 ps(x)

)
+

β2

2
∆xps(x), (C.3)

where ∆x denotes the Laplacian.

Step 2: Stationary equation. At stationarity, ∂sps ≡ 0, so (C.3) becomes

0 = −∇x ·
(
1

2
∇x|Rθ(x)|2 p∞(x)

)
+

β2

2
∆xp∞(x), (C.4)

where p∞ is the stationary density.

Step 3: Candidate Gibbs-type solution. We claim that

p∞(x) =
1

Z
exp

( |Rθ(x)|2
β2

)
, (C.5)

where Z is the normalizing constant, solves (C.4).

Step 4: Verification. Differentiating (C.5):

∇xp∞(x) =
1

β2
∇x|Rθ(x)|2 p∞(x), (C.6)

∆xp∞(x) =

(
1

β2
∆x|Rθ(x)|2 +

1

β4

∥∥∇x|Rθ(x)|2
∥∥2) p∞(x). (C.7)

Substituting (C.6) and (C.7) into (C.4) gives

− 1

2

[
∆x|Rθ|2 p∞ +∇x|Rθ|2 · ∇xp∞

]
+

β2

2

[
1

β2
∆x|Rθ|2 +

1

β4

∥∥∇x|Rθ|2
∥∥2] p∞

= −1

2

[
∆x|Rθ|2 +

1

β2

∥∥∇x|Rθ|2
∥∥2] p∞ +

1

2

[
∆x|Rθ|2 +

1

β2

∥∥∇x|Rθ|2
∥∥2] p∞

= 0.

Thus p∞ satisfies (C.4) exactly.

Step 5: Conclusion. By uniqueness of the stationary solution under the given assumptions, the
stationary density of (C.2) is given by (C.5).
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C.2 Proof of Theorem 4.2

Proof. Rather than presenting a formal proof, we illustrate the underlying intuition using a simple
toy example.

Preference for flat high-residual regions under Langevin dynamics. For a fixed neural network
parameter θ, we denote the residual asRθ(x) := R(x) and x ∈ R for notational simplicity.

We analyze the residual function:

R(x) = −a(x2 − θ2)2 − ϵ exp

(
− (x− θ)2

2σ2

)
, (C.8)

which has two local maxima: a broader maximum at xflat = −θ and a narrower, sharper maximum
at xsharp = θ due to the additional Gaussian term.

We consider Langevin sampling governed by the stationary distribution:

π(x) ∝ exp (ρR(x)) , (C.9)

where ρ > 0 is the inverse temperature. This distribution favors regions with higher residual values.

To compare the probability of sampling near each local maximum, we approximate the local proba-
bility mass by Laplace’s method. Around each maximum x∗, we expand the residual as:

R(x) ≈ R(x∗) +
1

2
R′′(x∗)(x− x∗)2, (C.10)

whereR′′(x∗) < 0 and the local curvature is defined as H = −R′′(x∗) > 0.

The probability mass near a local maximum x∗ is approximated by:∫
near x∗

exp(ρR(x)) dx ≈ exp(ρR(x∗)) ·
√

2π

ρH
. (C.11)

Let:

Hflat = −R′′(xflat) = 8aθ2, (C.12)

Hsharp = −R′′(xsharp) = 8aθ2 +
ϵ

σ2
, (C.13)

so that Hflat ≪ Hsharp for small σ.

Assuming the residual values at both peaks are equal, i.e.,R(xflat) = R(xsharp), the ratio of local
probability masses becomes:

P(near xflat)

P(near xsharp)
≈
√

Hsharp

Hflat
. (C.14)

After normalization, the respective probabilities are:

P(near xflat) =
1/
√
Hflat

1/
√
Hflat + 1/

√
Hsharp

=

√
Hsharp√

Hflat +
√
Hsharp

, (C.15)

P(near xsharp) =

√
Hflat√

Hflat +
√
Hsharp

. (C.16)

This analysis shows that, despite equal peak heights, Langevin dynamics assign higher probability to
the broader maximum at xflat due to its lower curvature and larger effective volume in the residual
landscape.

For example, with parameters a = 1, θ = 2, ϵ = 10, and σ = 0.1, the curvature values are Hflat = 32
and Hsharp = 1032, yielding a probability ratio of approximately 5.68. After normalization, we
obtain:

P(near xflat) ≈ 0.85, P(near xsharp) ≈ 0.15.

This quantitatively confirms that Langevin dynamics significantly prefer broader residual peaks under
equal height conditions.
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Gradient sensitivity induced by sharp residual regions. Residual peaks with high curvature, such
as those near xsharp, induce steep gradients with respect to the model parameters due to the amplified
sensitivity ofR to perturbations in x. Formally, the chain rule

d

dθ
Rθ(x) =

∂R
∂x
· dx
dθ

indicates that when ∂R/∂x is large—as in highly localized peaks—even small variations in x can
result in unstable updates in θ.

Moreover, a concentration of samples around sharp residual peaks effectively sharpens the empirical
loss landscape, making the optimization process highly sensitive to initialization and learning rate. In
contrast, broader regions such as those around xflat yield smoother gradients and reduced curvature
in the loss surface, enhancing the robustness of training against both gradient noise and model
perturbations.

This observation highlights that the inherent sampling bias of Langevin dynamics toward flatter
high-residual regions contributes not only to generalization but also to numerical stability during
optimization.
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D Sample Trajectories of LAS and Benchmark Algorithms

We visualized the collocation point trajectories during the training under various adaptive sampling
algorithms. The experimental settings follow the default configurations specified in the main text,
with 4 layers and the number of Langevin iterations set to lL = 1. The background, shown as a
heatmap using the plasma colormap, represents the solution errors, where dark purple indicates low
values and bright yellow indicates high values. White points represent the collocation points aligned
with solution errors to intuitively show how each algorithm works.

D.1 Random-R Sample Trajectory

The figure below represents the sample trajectory of Random-R, where different collocation points
are uniformly sampled at each iteration.
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Figure 9: Random-R sample trajectory.
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D.2 RAD Sample Trajectory

This figure presents the RAD sample trajectory over multiple iterations, demonstrating a relatively
stable pattern of sample distribution. To ensure a fair comparison, we fixed the number of collocation
points for the denser set to be Npde. As iterations progress, the sample points concentrate around
regions of high errors, with some diversity maintained throughout. However, despite the overall
stability, the RAD sampling method exhibits a distribution that is not significantly different from
the Random-R approach. The clustering becomes more pronounced in certain areas, but the overall
spread and distribution of samples remain similar, suggesting that RAD does not offer a distinct
advantage over random-R in terms of improving sampling diversity.
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Figure 10: RAD sample trajectory.
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D.3 R3 Sample Trajectory

This figure illustrates the evolution of sample trajectories in the R3 algorithm, showing a clear
concentration of samples in regions with high errors as the process progresses. While early iterations
exhibit some scattering, the sample points increasingly cluster around specific areas of the solution
errors, leading to a lack of diversity in later stages. Furthermore, this imbalance indicates instability
in the sampling strategy, as it fails to maintain a continuous, balanced shift in the sample population
across the entire domain. The discontinuous change in the sample population may result in instability
from the perspective of the learning process.
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Figure 11: R3 sample trajectory.
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D.4 L∞ Sample Trajectory

This figure illustrates the evolution of sample trajectories in the L∞ algorithm. As the number of
iterations increases, the samples become overly concentrated in regions with high errors, leading to
a lack of diversity across the domain, particularly in areas with lower errors. This imbalance goes
against the goal of maintaining a well-distributed sample set proportional to the solution errors. While
some adaptation occurs, the excessive focus on extreme errors (small β case) results in a skewed
distribution, highlighting the need for more balanced and diverse sampling to improve the algorithm’s
performance.
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Figure 12: L∞ sample trajectory.
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D.5 LAS Sample Trajectory

This figure depicts the sample trajectory of the proposed LAS algorithm. As iterations progress, the
sample points are proportionally distributed according to the solution errors, maintaining diversity
across the domain. Unlike other methods, proposed LAS algorithm avoids over-concentration in
regions of high errors, instead ensuring that sample points are scattered in a balanced manner.
Additionally, the distribution adapts in line with the error peaks, with an appropriate portion of
samples allocated based on the peak heights. This indicates that the LAS algorithm successfully
addresses the key objectives of both proportionality and diversity in sample distribution, improving
stability and overall performance.

0.0 0.5 1.0

t

−1

0

1

x

Iteration 1000

0.0 0.5 1.0

t

−1

0

1

x
Iteration 2000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 3000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 4000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 5000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 6000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 7000

0.0 0.5 1.0

t

−1

0

1

x
Iteration 8000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 9000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 10000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 11000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 12000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 13000

0.0 0.5 1.0

t

−1

0

1

x
Iteration 14000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 15000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 16000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 17000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 18000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 19000

0.0 0.5 1.0

t

−1

0

1

x
Iteration 20000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 21000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 22000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 23000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 24000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 25000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 26000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 27000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 28000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 29000

0.0 0.5 1.0

t

−1

0

1

x

Iteration 30000

Figure 13: LAS sample trajectory.
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E Relationship Between Learning Rate and Model Complexity

E.1 Learning Curve Variation with Increasing Depth

Here, we aim to visualize and interpret the learning curves for the Allen-Cahn equation observed
during the training process of the models, as reported in Table 1, with detailed experimental settings
provided in Section 5, varying only the depth of the neural networks.
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Figure 14: From top to bottom in the figure, the learning curves correspond to layers 4, 6, 8, and 10
for the Allen-Cahn equation.

Our primary observation is that most algorithms exhibit a slow learning progression until the learning
rate reaches a specific value (which, of course, varies depending on the algorithm). This phenomenon
appears to correlate with the degree of high residual concentration in the residual landscape of each
algorithm. Specifically, the relative L2 error in the learning curve requires more iterations to drop
below a certain threshold (denoted as 50 in the figure) as the number of layers increases.

From an algorithmic perspective, most methods achieve the 50-threshold of the relative L2 error
crossing before iteration 40,000 with a 4 layer network. However, as the number of layers increases,
particularly with 8 and 10 layers, the threshold-crossing iterations are significantly delayed. This
delay is especially pronounced in algorithms such as R3 and L∞, which are highly focused on regions
of extreme high residuals. This observation suggests that these algorithms are more affected by the
increased complexity and residual concentration in deeper networks.

To verify whether this phenomenon depends on overall model complexity, in the following subsection,
we also conducted experiments focusing on increasing the width rather than the depth of the model.
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E.2 Learning Curve Variation with Increasing Width

Simple calculations show that a neural network with 8 hidden layers and 128 nodes per layer has the
same number of parameters as a neural network with 4 hidden layers and a width of 203. However,
comparisons based solely on parameter count are inadequate, as depth introduces issues such as
gradient vanishing.

Therefore, instead of viewing width solely from the perspective of parameter count, we conducted
experiments by progressively doubling the width. The results showed that, similar to depth, increasing
width also led to a gradual breakdown in learning stability. Consistent with the rankings observed in
depth experiments, among adaptive sampling techniques, LAS reached the relative L2 error threshold
of 50 the fastest. Interestingly, Random-R demonstrated robustness in this setting, particularly with
wide neural networks.
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Figure 15: From top to bottom in the figure, the learning curves correspond to 128, 256, 512, and
1024 nodes per hidden layer, each with 4 layers, for the Allen-Cahn equation.

Through the experimental analyses described above, we argue that the proposed LAS demonstrates
superior performance in terms of learning stability, particularly for models with high complexity.
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F Supplementary Details on Experimental Setup

F.1 Details of Partial Differential Equations

Burgers’: We set (λic, λbc, λpde) = (100, 1, 1) to solve the equation

∂u

∂t
+ u

∂u

∂x
− 0.01

π

∂2u

∂x2
= 0, x ∈ [−1, 1], t ∈ [0, 1]; (F.1)

u(−1, t) = u(1, t) = 0; (F.2)
u(x, 0) = − sinπx. (F.3)

Convection: We set (λic, λbc, λpde) = (100, 100, 1) to solve the equation

∂u

∂t
+ 50

∂u

∂x
= 0, x ∈ [0, 2π], t ∈ [0, 1]; (F.4)

u(0, t) = u(2π, t); (F.5)
u(x, 0) = sinx. (F.6)

Allen-Cahn: We set (λic, λbc, λpde) = (100, 1, 1) to solve the equation

∂u

∂t
− 0.0001

∂2u

∂x2
− 5(u− u3) = 0, x ∈ [−1, 1], t ∈ [0, 1]; (F.7)

u(−1, t) = u(1, t); (F.8)
ux(−1, t) = ux(1, t); (F.9)

u(x, 0) = x2 cosπx. (F.10)

Korteweg-De Vries: We set (λic, λpde, λbc) = (100, 1, 1) to solve the equation

∂u

∂t
+ u

∂u

∂x
+ 0.0025

∂3u

∂x3
= 0, x ∈ [−1, 1], t ∈ [0, 1]; (F.11)

u(−1, t) = u(1, t); (F.12)
u(x, 0) = cosπx. (F.13)

Schrödinger: We set (λic, λbc, λpde) = (100, 1, 1) to solve the equation

i
∂h

∂t
+ 0.5

∂2h

∂x2
+ |h|2h = 0, x ∈ [−5, 5], t ∈

[
0,

π

2

]
; (F.14)

h(−5, t) = h(5, t); (F.15)
hx(−5, t) = hx(5, t); (F.16)
h(x, 0) = 2sech(x). (F.17)

Heat 2D: We set (λic, λbc, λpde) = (1, 1, 1) to solve the equation:

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
, (x, y, t) ∈ Ω× [0, T ], (F.18)

u(x, y, 0) = h(x, y), (x, y) ∈ Ω, (F.19)
u(x, y, t) = g(x, y, t), (x, y, t) ∈ ∂Ω× [0, T ], (F.20)
h(x, y) = 3 sin(πx) sin(πy) + sin(3πx) sin(πy), (F.21)

g(x, y, t) = 3 sin(πx) sin(πy)e−2π2t + sin(3πx) sin(πy)e−10π2t, (F.22)

u(x, y, t) = 3 sin(πx) sin(πy)e−2π2t + sin(3πx) sin(πy)e−10π2t, (F.23)

Ω = [0, 1]2, T = 1. (F.24)
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Burgers’ 2D: We set (λic, λbc, λpde) = (1, 1, 1) to solve the equation:

∂tu+ u∂xu+ v∂yu =
0.05

π
(∂xxu+ ∂yyu), (x, y, t) ∈ Ω× [0, T ], (F.25)

∂tv + u∂xv + v∂yv =
0.05

π
(∂xxv + ∂yyv), (x, y, t) ∈ Ω× [0, T ], (F.26)

u(x, y, 0) = h1(x, y), (x, y) ∈ Ω, (F.27)
v(x, y, 0) = h2(x, y), (x, y) ∈ Ω, (F.28)

h1(x, y) = 0.75− 0.25

1 + exp
( π

0.05 · 32(−4x+ 4y)
) , (F.29)

h2(x, y) = 0.75 +
0.25

1 + exp
( π

0.05 · 32(−4x+ 4y)
) , (F.30)

u(x, y, t) = g1(x, y, t), (x, y, t) ∈ ∂Ω× [0, T ], (F.31)
u(x, y, t) = g2(x, y, t), (x, y, t) ∈ ∂Ω× [0, T ], (F.32)

g1(x, y, t) = 0.75− 0.25

1 + exp
( π

0.05 · 32(−4x+ 4y − t)
) , (F.33)

g2(x, y, t) = 0.75 +
0.25

1 + exp
( π

0.05 · 32(−4x+ 4y − t)
) , (F.34)

u(x, y, t) = 0.75− 0.25

1 + exp
( π

0.05 · 32(−4x+ 4y − t)
) , (F.35)

v(x, y, t) = 0.75 +
0.25

1 + exp
( π

0.05 · 32(−4x+ 4y − t)
) , (F.36)

Ω = (0, 1)2, T = 1. (F.37)

Dimension-flexible Heat: We set (λic, λbc, λpde) = (1, 1, 1) to solve the equation:

∂u

∂t
−∆u = f(x, t), (x, t) ∈ Ω× [0, T ], (F.38)

u(x, t) = g(x, t), (x, t) ∈ ∂Ω× [0, T ], (F.39)
u(x, 0) = h(x), x ∈ Ω, (F.40)

f(x, t) = (
ω2

d
− 1) cos(

ω

d

d∑
i=1

xi)exp(−t), (F.41)

g(x, t) = cos(
ω

d

d∑
i=1

xi)exp(−t), (F.42)

h(x) = cos(
ω

d

d∑
i=1

xi), (F.43)

u(x, t) = cos(
ω

d

d∑
i=1

xi)exp(−t), (F.44)

Ω = (−1, 1)d, T = 1, (F.45)
where (ω = 20, d = 4), (ω = 30, d = 6), and (ω = 40, d = 8). (F.46)
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F.2 Implementation Details of Baseline Algorithms

For all PDEs, we conducted experiments by fixing the algorithms’ hyperparameters to the values
specified in the original baseline code. Specifically, for R3, we set number of MaxIter = 1, for
Annealed R-FIPINN, we set ϵr = 0.05, ϵp = 0.01, a = 0.5, b = 1, p = 0.1, for GAS-T, we set
NG = 20, Na = 20, λ = 1, for RAD, we set c = k = 1, and for L∞, we fixed the number of
gradient steps at 20 and step size 0.05.

Equation Solution Number of Nic Number of Nbc Number of Npde Evaluation Point
1D Burgers’ Approximated 100 100 1,000 Nx = 256, Nt = 100
1D Allen-Cahn Approximated 100 100 1,000 Nx = 512, Nt = 200
1D KdV Approximated 100 100 1,000 Nx = 200, Nt = 100
1D Schrödinger Approximated 100 100 1,000 Nx = 256, Nt = 200
1D Convection Analytic 100 100 1,000 Nx = 512, Nt = 200
2D Burgers’ Analytic 100 100 1,000 Nx = 100, Nt = 20
2D Heat Analytic 100 100 1,000 Nx = 100, Nt = 20
4D DF-heat Analytic 100 100 1,000 Nx = 20, Nt = 20
6D DF-heat Analytic 250 250 1,000 Nx = 8, Nt = 8
8D DF-heat Analytic 450 450 1,000 Nx = 5, Nt = 5

Table 2: Summary of PDE solutions and points
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G Sensitivity of Adaptive Sampling Methods

G.1 Different Loss Balance Terms (λic, λbc, λpde)

Sampling methods LAS (ours) Random-R RAD R3 L∞ Annealed R-FIPINN GAS-T
Number of layers 8 8 8 8 8 8 8

1D Allen-Cahn

100,1,1 0.77± 0.20 2.54± 2.30 0.99± 0.29 0.97± 0.23 0.76± 0.07 - -
200,1,1 0.89± 0.03 1.69± 0.38 1.15± 0.18 10.62± 19.56 0.77± 0.05 - -
10,1,1 1.02± 0.20 1.07± 0.48 1.25± 0.27 75.81± 32.72 86.77± 7.53 - -
10,1,5 1.55± 0.80 2.06± 0.40 2.79± 0.24 65.51± 18.70 98.77± 0.79 - -
1,1,1 13.20± 22.52 3.21± 1.19 14.65± 18.34 64.32± 7.30 90.81± 12.27 - -

4D DF-heat

100,1,1 1.72± 0.23 9.73± 0.44 6.64± 2.72 9.53± 5.27 2.92± 1.95 8.87± 0.65 3.80± 1.70
200,1,1 1.82± 0.42 8.87± 1.67 5.72± 0.42 6.50± 1.19 4.06± 1.87 9.25± 0.70 3.74± 2.43
10,1,1 1.79± 0.20 7.98± 37.59 24.98± 37.59 16.08± 3.25 2.46± 0.67 6.75± 1.97 7.60± 3.30
10,1,5 2.85± 0.34 25.18± 37.84 72.53± 32.73 15.57± 9.22 42.71± 46.79 29.86± 36.25 14.47± 8.07
1,1,1 1.86± 0.20 7.73± 1.85 12.31± 1.24 13.56± 5.24 10.95± 14.41 26.36± 36.89 16.59± 11.01

6D DF-heat

100,1,1 3.49± 0.20 6.14± 0.42 13.84± 2.08 29.91± 35.23 4.46± 0.42 5.75± 1.05 100.00± 0.00
200,1,1 4.18± 0.58 5.21± 0.82 10.63± 0.93 30.51± 34.90 4.39± 0.61 5.80± 0.72 37.20± 36.19
10,1,1 4.79± 0.33 5.53± 0.81 31.81± 34.30 49.47± 41.28 26.37± 37.05 5.49± 0.34 100.00± 0.00
10,1,5 7.33± 1.37 70.30± 36.59 100.00± 0.00 69.37± 37.51 90.21± 19.57 100.00± 0.00 100.00± 0.00
1,1,1 5.20± 0.92 53.18± 46.82 100.00± 0.00 61.37± 39.22 100.00± 0.00 62.57± 45.83 100.00± 0.00

8D DF-heat

100,1,1 7.72± 0.59 52.41± 39.33 84.71± 30.56 100.00± 0.00 100.00± 0.00 49.22± 41.61 100.00± 0.00
200,1,1 6.92± 0.31 17.63± 1.78 83.59± 32.80 100.00± 0.00 13.21± 4.46 15.01± 2.69 100.00± 0.00
10,1,1 7.97± 0.30 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
10,1,5 11.17± 0.65 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00
1,1,1 9.08± 0.50 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00 100.00± 0.00

Table 3: Relative L2 error [%] performance comparison of different balance terms across varying
PDEs when Npde = 1000. Bold indicates best, underline second-best.

Sampling methods LAS (ours) Random-R RAD R3 L∞

Number of layers 8 8 8 8 8

1D Allen-Cahn
ic/bc/pde (100/1/1) (1/1/1) (100/1/1) (100/1/1) (100/1/1)

Rel L2 error [%] 0.77 ± 0.20 1.07 ± 0.48 0.99 ± 0.29 0.97 ± 0.23 0.76 ± 0.07

4D DF-heat
ic/bc/pde (100/1/1) (1/1/1) (200/1/1) (200/1/1) (10/1/1)

Rel L2 error [%] 1.72 ± 0.23 7.73 ± 1.85 5.72 ± 0.42 6.50 ± 1.19 2.46 ± 0.67

6D DF-heat
ic/bc/pde (100/1/1) (200/1/1) (200/1/1) (100/1/1) (200/1/1)

Rel L2 error [%] 3.49 ± 0.20 5.21 ± 0.82 10.63 ± 0.93 29.91 ± 35.23 4.39 ± 0.61

8D DF-heat
ic/bc/pde (200/1/1) (200/1/1) (200/1/1) (200/1/1) (200/1/1)

Rel L2 error [%] 6.92 ± 0.31 17.63 ± 1.78 83.59 ± 32.80 100.00 ± 0.00 13.21 ± 4.46

Table 4: Relative L2 error [%] comparison across different PDEs, reported under the best balancing
setting. Bold indicates best, underline second-best. Npde = 1000.

G.2 Different Loss Balance Terms with Smaller Number of Layers

Sampling methods LAS (ours) Random-R RAD R3 L∞

Number of layers 1 1 1 1 1

4D DF-heat

100,1,1 12.46± 3.86 28.39± 5.90 44.14± 8.39 18.17± 2.38 22.53± 1.30
200,1,1 13.18± 2.56 23.35± 1.62 44.55± 4.93 24.56± 3.20 22.96± 2.17
10,1,1 34.88± 3.38 26.43± 3.97 63.67± 2.02 38.20± 5.71 48.23± 23.94
10,1,5 59.14± 9.39 70.91± 24.78 100.00± 0.00 68.34± 6.02 100.00± 0.0
1,1,1 82.51± 12.48 50.33± 6.90 100.00± 0.00 96.76± 4.72 96.17± 5.31

Number of layers 5 5 5 5 5

4D DF-heat

100,1,1 1.68± 0.44 5.42± 1.59 4.04± 1.25 4.27± 0.63 1.40± 0.33
200,1,1 1.67± 0.33 5.41± 1.00 3.31± 1.36 3.82± 0.59 1.51± 0.13
10,1,1 1.88± 0.45 6.95± 0.94 4.74± 1.58 5.16± 0.57 2.74± 1.68
10,1,5 3.91± 1.28 8.13± 1.37 11.70± 4.32 7.46± 2.26 4.33± 1.93
1,1,1 2.45± 0.44 6.58± 1.09 9.36± 1.11 5.63± 0.68 3.66± 2.16

Table 5: Relative L2 error [%] performance comparison of different balance terms in a smaller
number of layers when Npde = 1000. Bold indicates best, underline second-best.
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G.3 Different Hyperparameters of MCI Approaches on the Best ic/bc/pde Balance Terms

DF-heat 4D, ic/bc/pde = (200/1/1)

RAD

Hyper-parameters k=0.5, c=1 k=1, c=1 k=2, c=1 k=3, c=1 k=4, c=1 k=5, c=1

Rel L2 error [%] 6.92 ± 1.57 5.72 ± 0.42 10.07 ± 1.73 11.78 ± 1.59 12.94 ± 1.96 12.89 ± 1.19

DF-heat 6D, ic/bc/pde = (200/1/1)

Hyper-parameters k=0.5, c=1 k=1, c=1 k=2, c=1 k=3, c=1 k=4, c=1 k=5, c=1

Rel L2 error [%] 6.39 ± 1.14 10.63 ± 0.93 29.52 ± 8.07 46.47 ± 27.28 66.73 ± 27.86 55.58 ± 31.73

DF-heat 8D, ic/bc/pde = (200/1/1)

Hyper-parameters k=0.5, c=1 k=1, c=1 k=2, c=1 k=3, c=1 k=4, c=1 k=5, c=1

Rel L2 error [%] 67.50 ± 39.83 83.59 ± 32.80 100.00 ± 0.00 77.71 ± 29.27 87.37 ± 25.24 90.40 ± 19.17

DF-heat 4D, ic/bc/pde = (200/1/1)

R3

Hyper-parameters Max_i=1 Max_i=3 Max_i=5 Max_i=10 Max_i=15 Max_i=20

Rel L2 error [%] 6.50 ± 1.19 2.15 ± 0.25 2.20 ± 0.17 2.24 ± 0.22 2.49 ± 0.45 2.37 ± 0.11

DF-heat 6D, Ic/bc/pde = (100/1/1)

Hyper-parameters Max_i=1 Max_i=3 Max_i=5 Max_i=10 Max_i=15 Max_i=20

Rel L2 error [%] 29.91 ± 35.23 4.98 ± 0.18 5.31 ± 0.86 5.91 ± 0.41 6.75 ± 1.02 20.55 ± 28.04

DF-heat 8D, Ic/bc/pde = (200/1/1)

Hyper-parameters Max_i=1 Max_i=3 Max_i=5 Max_i=10 Max_i=15 Max_i=20

Rel L2 error [%] 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 65.76 ± 42.41 65.03 ± 43.11 82.97 ± 34.35

Table 6: Effect of hyper-parameters on relative L2 error [%] across MCI approaches when the best
ic/bc/pde balance terms of DF-heat equations and Npde = 1000 are considered.

G.4 Different Number of Collocation Points

Sampling methods LAS Random-R RAD R3 L∞

Npde = 100 49.26 ± 30.18 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 88.08 ± 23.83
Npde = 500 8.62 ± 0.42 66.77 ± 40.75 93.37 ± 13.24 100.00 ± 0.00 49.85 ± 40.94
Npde = 1, 000 6.92 ± 0.31 17.63 ± 1.78 83.59 ± 32.80 100.00 ± 0.00 13.21 ± 4.46
Npde = 4, 000 5.94 ± 0.13 15.26 ± 3.26 19.49 ± 4.17 70.37 ± 37.49 7.61 ± 1.61
Npde = 10, 000 5.90 ± 0.39 20.09 ± 0.84 16.03 ± 1.94 35.45 ± 32.83 6.66 ± 1.38
Npde = 20, 000 5.27 ± 0.53 17.77 ± 3.18 11.96 ± 1.43 35.78 ± 32.21 6.64 ± 1.59

Table 7: Effect of Npde on relative L2 error [%] across different sampling methods when ic/bc/pde
balance term of DF-heat 8D equation is (200/1/1). Bold indicates best, underline second-best.
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H Compatibility Issues with Different Neural Network Architectures

We aimed to experimentally evaluate the compatibility of the proposed adaptive sampling technique
with architectures beyond MLPs, including self-attention and modified-MLPs [44]. Detailed de-
scriptions of each architecture are provided in Table 8. Furthermore, to address the spectral bias
issue commonly found in MLPs, we performed additional experiments incorporating random Fourier
blocks (FB), as detailed in [38]. The FB hyperparameters were set with a Fourier feature scale of 2
and a Fourier block dimension of 64.

Table 8: Parameter configuration for different architectures

Parameter MLP Self-attention Modified MLP

Activation Tanh Tanh Tanh
Embedding dimension 128 128 128
Number of layers 4 4 4
Multi-head number N/A 4 N/A
Fully connected dimension N/A 256 N/A
Attention dropout N/A 0.1 N/A
Additional encoders U , V N/A N/A Yes

The results are summarized in Table 9. All algorithms were evaluated using the default settings
provided in the benchmark algorithm papers, and the same applies to our approach, as detailed in
the experimental settings described in the main text. Analyzing the results, we observe that the
proposed LAS demonstrates high compatibility in terms of relative L2 error. Even in the less favorable
architectures, such as MLP and self-attention, LAS achieved the second-best performance. Notably,
in scenarios incorporating FB, the proposed LAS consistently exhibited superior compatibility across
all cases.

Table 9: Relative L2 error comparison for different architectures across sampling methods. Bold
indicates best, underline second-best.

Architecture LAS RAD R3 L∞ Random-R

MLP 2.15 ± 0.12 2.65 ± 0.47 1.84 ± 0.08 2.76 ± 0.26 3.56 ± 0.20
MLP + FB 0.56 ± 0.14 0.69 ± 0.05 0.61 ± 0.04 0.81 ± 0.18 0.94 ± 0.06
Modified MLP 0.43 ± 0.10 0.51 ± 0.05 0.66 ± 0.07 0.55 ± 0.08 0.56 ± 0.07
Modified MLP + FB 0.11 ± 0.04 0.22 ± 0.09 0.24 ± 0.03 0.34 ± 0.01 0.21 ± 0.04
Self-attention 2.13 ± 0.13 2.30 ± 0.13 2.25 ± 0.06 1.98 ± 0.03 2.91 ± 0.69
Self-attention + FB 1.29 ± 0.09 1.53 ± 0.03 1.52 ± 0.15 1.33 ± 0.12 1.35 ± 0.12
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I Experimental Comparison of the Computational Complexities

A key limitation of the MCMC-based sampling approach lies in its high computational complexity,
primarily due to the large number of iterations required to achieve convergence of the sampling distri-
bution. To demonstrate the practical feasibility of this method, we present supporting experimental
results.

To evaluate computational complexities, we measured the computational costs for training deep
neural networks using each algorithm. Specifically, to validate the scalability of the algorithms,
we conducted experiments to analyze their computational requirements in terms of the number of
collocation points Npde and the dimensionality of the PDE.

Based on our observations, the runtime of the sampling algorithms was independent of the specific
PDE. Thus, we utilized equations that allowed for a straightforward extension from 1D to 8D in
dimensionality. More specifically, we experimented with different sizes of collocation points (100,
1,000, 10,000, 50,000, and 100,000) for both 1D, 2D Burgers’ equations, and 4D to 8D DF-heat
equations.

As part of the detailed experimental process, we calculated the elapsed time over 1,000 epochs. The
measurement was repeated 10 times using 10 different random seeds, and the mean and standard
deviation were computed. For additional clarity, the elapsed time was measured excluding auxiliary
operations such as saving the model or storing data, focusing solely on the computations required to
run the algorithms.

Hardware specification. NVIDIA RTX 4090 GPU with 24GB of memory.

Changes with NPDE. As NPDE increases, the computational cost grows for all methods. However,
the growth rate varies significantly between methods. Gradient-based algorithms such as LAS and
L∞ show a particularly sharp increase in computational cost as NPDE grows. This is due to the
iteration-intensive nature of their sampling processes. For example, with NPDE = 50, 000 in 2D, the
computational cost of LAS (lL = 10) reaches 63.98 seconds, whereas simpler methods like Fixed or
Random-R remain below 35 seconds. For NPDE = 100, 000, LAS and L∞ run out of memory in the
2D case, highlighting their scalability limitations for very large PDE sample sizes.

Changes with dimensionality. Extending from 1D to 8D consistently increases the computational
cost for all methods. While simple methods like Fixed or Random-R exhibit a relatively modest
increase in cost when transitioning from 1D to 8D, gradient-based methods such as LAS and L∞ show
disproportionately higher computational times. For example, in the 2D case with NPDE = 1, 000,
LAS (lL = 10) takes 45.74 seconds, compared to only 16.97 seconds in 1D. At NPDE = 10, 000,
LAS (lL = 10) takes 59.32 seconds in 2D versus 20.43 seconds in 1D.

However, despite the overall computational expense of LAS for higher lL values, the case of lL = 1
demonstrates significantly lower computational costs, making it relatively practical and scalable.
For example, at NPDE = 50, 000, LAS (lL = 1) takes 63.98 seconds in 2D, which is manageable
compared to the prohibitive 324.49 seconds for lL = 10. Similarly, for smaller NPDE, such as 1,000,
LAS (lL = 1) shows competitive runtimes (e.g., 26.62 seconds in 2D). An additional advantage of
using lL = 1 is that it avoids the out of memory issues observed for higher values of lL, even in
large-scale scenarios such as NPDE = 100, 000 in 2D. Furthermore, the relative L2 error reported in
our paper uses lL = 1 as the baseline, demonstrating its effectiveness in balancing computational
efficiency with accuracy. Thus, LAS (lL = 1) remains a promising candidate for solving PDEs
efficiently at scale.

Finally, while gradient-based methods like LAS exhibit high computational costs due to the overhead
of gradient computation, future work optimizing the gradient operations could significantly enhance
the scalability and practicality of these methods.
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Table 10: Computational time (in seconds) for each method across varying problem dimensions.
OOM denotes an out-of-memory failure during execution.

Dimension Method N = 100 N = 1,000 N = 10,000 N = 50,000 N = 100,000

1D

Fixed 2.58 ± 0.03 2.54 ± 0.03 3.07 ± 0.05 11.63 ± 0.56 24.93 ± 0.02
Random-R 2.66 ± 0.10 2.61 ± 0.01 3.14 ± 0.04 11.66 ± 0.05 24.91 ± 0.04
R3 2.99 ± 0.01 2.94 ± 0.00 3.20 ± 0.02 11.97 ± 0.04 25.34 ± 0.05
RAD 3.40 ± 0.00 3.46 ± 0.13 3.99 ± 0.00 14.92 ± 0.03 31.81 ± 0.09
LAS (lL = 1) 3.90 ± 0.03 3.89 ± 0.03 5.01 ± 0.01 21.19 ± 0.06 46.36 ± 0.05
LAS (lL = 5) 11.59 ± 0.03 9.70 ± 0.02 11.90 ± 0.16 56.86 ± 0.06 130.95 ± 0.08
LAS (lL = 10) 15.55 ± 0.05 16.97 ± 0.37 20.43 ± 0.10 102.52 ± 0.17 236.95 ± 0.11
L∞ 28.77 ± 1.99 29.03 ± 2.20 37.54 ± 0.48 197.24 ± 0.17 448.95 ± 0.27

2D

Fixed 6.07 ± 0.15 6.45 ± 0.14 7.83 ± 0.03 34.83 ± 0.04 80.17 ± 0.05
Random-R 6.22 ± 0.21 6.54 ± 0.16 7.85 ± 0.03 34.87 ± 0.04 80.26 ± 0.04
R3 6.15 ± 0.19 6.57 ± 0.22 7.97 ± 0.03 35.19 ± 0.03 80.61 ± 0.06
RAD 7.61 ± 0.02 8.00 ± 0.09 10.04 ± 0.01 44.30 ± 0.05 99.67 ± 0.10
LAS (lL = 1) 9.96 ± 0.26 10.42 ± 0.31 13.59 ± 0.03 63.98 ± 0.08 151.33 ± 0.11
LAS (lL = 5) 25.67 ± 0.51 26.62 ± 0.37 33.40 ± 0.14 179.69 ± 0.20 OOM
LAS (lL = 10) 44.68 ± 0.52 45.74 ± 0.92 59.32 ± 0.27 324.49 ± 0.35 OOM
L∞ 82.75 ± 0.88 84.21 ± 1.68 115.29 ± 0.21 612.22 ± 0.53 OOM

4D

Fixed 11.64 ± 0.50 12.01 ± 0.06 15.06 ± 0.13 67.23 ± 0.03 151.58 ± 0.02
Random-R 11.83 ± 0.26 12.06 ± 0.05 15.03 ± 0.06 67.33 ± 0.07 151.60 ± 0.00
R3 11.89 ± 0.34 12.23 ± 0.04 15.43 ± 0.32 67.58 ± 0.03 152.03 ± 0.03
RAD 15.53 ± 0.70 17.13 ± 0.98 19.56 ± 0.05 83.29 ± 0.02 OOM
LAS (lL = 1) 19.17 ± 0.81 19.73 ± 0.63 25.33 ± 0.65 124.24 ± 0.16 OOM
LAS (lL = 5) 42.31 ± 2.41 42.11 ± 0.51 61.20 ± 0.23 OOM OOM
LAS (lL = 10) 68.65 ± 0.70 71.24 ± 2.18 105.93 ± 0.27 OOM OOM
L∞ 133.81 ± 1.75 139.14 ± 2.19 193.54 ± 0.17 OOM OOM

6D

Fixed 17.65 ± 0.64 18.64 ± 0.61 21.10 ± 0.12 96.50 ± 0.08 218.68 ± 0.20
Random-R 16.33 ± 2.07 16.44 ± 1.66 21.36 ± 0.07 96.63 ± 0.03 218.70 ± 0.09
R3 18.38 ± 0.20 18.36 ± 1.01 21.46 ± 0.14 96.85 ± 0.07 219.15 ± 0.01
RAD 20.69 ± 0.65 20.05 ± 0.77 25.75 ± 0.12 119.51 ± 0.11 OOM
LAS (lL = 1) 25.97 ± 1.51 27.13 ± 1.98 34.54 ± 0.03 179.94 ± 0.32 OOM
LAS (lL = 5) 57.66 ± 1.18 61.36 ± 2.76 87.11 ± 0.13 OOM OOM
LAS (lL = 10) 102.97 ± 3.22 103.50 ± 5.22 153.10 ± 0.25 OOM OOM
L∞ 183.39 ± 7.13 195.98 ± 6.34 275.06 ± 0.19 OOM OOM

8D

Fixed 20.19 ± 1.93 21.93 ± 0.38 26.55 ± 0.25 127.65 ± 0.16 286.65 ± 0.16
Random-R 22.08 ± 0.13 21.84 ± 0.20 26.95 ± 0.18 127.68 ± 0.14 286.61 ± 0.01
R3 20.99 ± 0.04 22.51 ± 0.31 27.15 ± 0.09 127.85 ± 0.14 287.26 ± 0.05
RAD 26.48 ± 0.88 26.15 ± 1.01 32.15 ± 0.36 157.70 ± 0.11 OOM
LAS (lL = 1) 33.03 ± 0.99 33.75 ± 1.63 44.89 ± 0.15 OOM OOM
LAS (lL = 5) 74.12 ± 2.46 78.77 ± 1.76 114.37 ± 0.27 OOM OOM
LAS (lL = 10) 128.65 ± 5.59 134.49 ± 4.29 201.64 ± 0.26 OOM OOM
L∞ 229.60 ± 1.97 240.58 ± 5.01 357.80 ± 0.14 OOM OOM
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J Additional Results with Varying LAS Hyperparameters

J.1 Practical Implementation

In general, achieving successful Langevin sampling requires careful selection of hyperparameters
(Langevin step size τ , number of Langevin iterations lL, etc.). While running Langevin dynamics
for many iterations with a small step size might allow sampling to be proportional to the actual
residual landscape, it can significantly slow down the training speed of the PINN model in practical
applications. Thus, we considered the following concepts when setting the hyperparameters, which
are crucial for practical utilization of Langevin dynamics in PINN training.

Adjusting Langevin step size and iteration. To increase the computational efficiency, we adopted
a strategy of increasing the step size τ and reducing the number of Langevin iterations lL. We
anticipated that the temporal variation of the PINN model, fθ, would exhibit smooth behavior when
utilizing adaptive sampling strategies with a large network size. Consequently, even with fewer
Langevin iterations, minimal changes in the loss landscape suggest that the sample trajectory would
resemble that of a fixed landscape.

Normalizing the gradient size. Since LAS leverages gradient information from the residual land-
scape, the step size τ needs to be set even smaller for stiff PDEs, i.e., the step size is dependent on
the PDE. Additionally, empirical observations indicate that the gradient of the residual landscape
exhibits substantial variations at the beginning of training. In contrast, towards the end of training,
the residual landscape is characterized by relatively small gradients. This discrepancy restricts the
movement of sample points, thereby making it challenging to secure reliable quality. To address
these challenges, we normalized the magnitude of all residual gradients at each iteration relative to
the largest residual gradient.

J.2 Variation of β and lL with Fixed τ = 0.002

1. Instability of performance for small β values as the layer increases: As the layer depth
increases, small β values lead to unstable performance. For instance, in layer 4, a small
β = 0.001 results in a relatively stable error value of 1.18 ± 0.23 at lL = 1, whereas in
layer 10, the error rises significantly to 8.20± 15.63. This pattern suggests that small values
of β hinder performance stability in deeper layers.

2. Increased instability with higher lL values: Generally, the performance deteriorates as
lL increases, particularly for small β values. For example, in layer 6 with β = 0.001, the
relative error increases from 0.58 ± 0.08 at lL = 1 to 22.73 ± 22.08 at lL = 20. This
indicates that excessive Langevin iterations could lead to performance instability, especially
when the concentration parameter β is low.

Overall, the impact of τ and lL on both relative L2 error and variance is limited, indicating robustness
of the method across a range of parameters. This robustness simplifies Langevin hyperparameter
tuning, making the approach more practical for real-world applications.

J.3 Variation of τ and lL with Fixed β = 0.2

1. Stability across τ values: The relative L2 error exhibits minor fluctuations across different
values of τ for each layer suggesting a negligible dependency on τ .

2. Limited impact of lL: While increasing lL slightly reduces the variance of L2 error in some
cases, the effect is not consistent across layers showing only marginal improvement.

As a result, the main takeaway is that small values of β are prone to instability as the layer depth
increases and lL becomes large. Conversely, higher β values can ensure stable performance, even
with varying lL values. In shallow layers, however, lower β values can be beneficial, providing a
more precise error at lower lL values.
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Layer and concentration parameter β Langevin iteration lL

Layer β 1 5 10 20

Layer 4

0.001 1.18 ± 0.23 1.63 ± 0.40 1.66 ± 0.20 6.34 ± 2.69
0.05 1.53 ± 0.36 1.41 ± 0.43 1.27 ± 0.21 1.25 ± 0.16
0.1 1.08 ± 0.37 0.93 ± 0.09 1.23 ± 0.23 1.06 ± 0.13
0.3 2.50 ± 0.28 2.30 ± 0.34 2.54 ± 0.35 2.51 ± 0.36
0.4 2.80 ± 0.60 3.14 ± 0.22 3.14 ± 0.49 2.90 ± 0.44

Layer 6

0.001 0.58 ± 0.08 10.89 ± 19.65 10.10 ± 17.80 22.73 ± 22.08
0.05 0.62 ± 0.11 0.64 ± 0.12 0.65 ± 0.12 0.67 ± 0.15
0.1 0.74 ± 0.12 0.58 ± 0.08 0.64 ± 0.07 0.58 ± 0.03
0.3 1.05 ± 0.27 1.15 ± 0.21 1.16 ± 0.11 1.33 ± 0.13
0.4 1.47 ± 0.10 1.49 ± 0.08 1.48 ± 0.22 1.58 ± 0.13

Layer 8

0.001 0.65 ± 0.14 1.25 ± 0.73 10.66 ± 19.50 22.14 ± 24.51
0.05 0.88 ± 0.34 0.46 ± 0.05 0.59 ± 0.10 1.44 ± 0.81
0.1 0.59 ± 0.14 0.58 ± 0.08 0.68 ± 0.35 0.86 ± 0.56
0.3 1.06 ± 0.16 1.15 ± 0.21 1.08 ± 0.24 0.92 ± 0.11
0.4 1.12 ± 0.25 1.09 ± 0.19 1.14 ± 0.17 1.12 ± 0.27

Layer 10

0.001 8.20 ± 15.63 23.14 ± 20.74 40.14 ± 19.78 41.79 ± 20.50
0.05 0.46 ± 0.17 17.33 ± 21.03 17.21 ± 21.02 30.08 ± 24.07
0.1 0.63 ± 0.20 0.73 ± 0.23 0.70 ± 0.22 10.23 ± 18.99
0.3 0.94 ± 0.18 0.98 ± 0.15 0.83 ± 0.25 1.02 ± 0.30
0.4 0.94 ± 0.15 0.96 ± 0.22 0.97 ± 0.37 1.12 ± 0.33

Layer and Langevin step size τ Langevin iteration lL

Layer τ 1 5 10 20

Layer 4

0.0001 1.98 ± 0.35 2.12 ± 0.14 1.66 ± 0.06 1.74 ± 0.19
0.0005 1.81 ± 0.13 1.74 ± 0.40 1.77 ± 0.34 1.74 ± 0.35
0.001 2.35 ± 0.37 1.85 ± 0.25 1.98 ± 0.18 1.68 ± 0.24
0.005 1.96 ± 0.15 2.08 ± 0.18 1.84 ± 0.22 1.71 ± 0.17
0.01 1.93 ± 0.28 1.92 ± 0.09 1.48 ± 0.09 1.79 ± 0.09

Layer 6

0.0001 0.96 ± 0.11 0.89 ± 0.06 0.96 ± 0.11 1.00 ± 0.14
0.0005 0.92 ± 0.13 0.69 ± 0.34 1.14 ± 0.23 1.17 ± 0.25
0.001 0.85 ± 0.07 1.00 ± 0.18 0.70 ± 0.09 0.96 ± 0.03
0.005 0.85 ± 0.07 0.82 ± 0.22 0.97 ± 0.10 0.78 ± 0.37
0.01 0.90 ± 0.04 0.90 ± 0.06 1.03 ± 0.16 0.93 ± 0.06

Layer 8

0.0001 0.62 ± 0.04 0.79 ± 0.11 0.92 ± 0.10 0.82 ± 0.05
0.0005 0.81 ± 0.02 0.85 ± 0.12 0.78 ± 0.07 0.75 ± 0.06
0.001 0.91 ± 0.13 0.82 ± 0.02 0.71 ± 0.04 0.77 ± 0.10
0.005 0.85 ± 0.07 0.83 ± 0.04 0.64 ± 0.06 0.63 ± 0.08
0.01 0.64 ± 0.14 0.77 ± 0.17 0.88 ± 0.13 0.81 ± 0.09

Layer 10

0.0001 0.41 ± 0.18 0.75 ± 0.08 0.82 ± 0.02 0.68 ± 0.12
0.0005 0.82 ± 0.13 0.64 ± 0.04 0.68 ± 0.07 0.82 ± 0.06
0.001 0.91 ± 0.21 0.74 ± 0.19 0.87 ± 0.25 0.59 ± 0.05
0.005 0.64 ± 0.04 0.53 ± 0.32 0.67 ± 0.05 0.64 ± 0.12
0.01 0.56 ± 0.29 0.65 ± 0.13 0.71 ± 0.14 0.61 ± 0.09

Table 11: Relative L2 error for varying β and τ and lL across different layers of the Allen–Cahn
equation.
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