
Mitigating Instability in High Residual Adaptive Sampling for PINNs via Langevin Dynamics

Minseok Jeong^{*†}, Giup Seo^{*}, Euiseok Hwang[†]

Electrical Engineering and Computer Science

Gwangju Institute of Science and Technology (GIST)

dsa950115@kaist.ac.kr, guseo1120@gm.gist.ac.kr, euiseokh@gist.ac.kr

Abstract

Recently, physics-informed neural networks (PINNs) have gained attention in the scientific community for their potential to solve partial differential equations (PDEs). However, they face challenges related to resource efficiency and slow convergence. Adaptive sampling methods, which prioritize collocation points with high residuals, improve both efficiency and accuracy. However, these methods often neglect points with medium or low residuals, which can affect stability as the complexity of the model increases. In this paper, we investigate this limitation and show that high residual-based approaches require stricter learning rate bounds to ensure stability. To address this, we propose a Langevin dynamics-based Adaptive Sampling (LAS) framework that is robust to various learning rates and model complexities. Our experiments demonstrate that the proposed method outperforms existing approaches in terms of relative L^2 error, and stability across a range of environments, including high-dimensional PDEs where Monte Carlo integration-based methods typically suffer from instability. The implementation code is publicly available at <https://github.com/neurips2025-las/LAS-implementation>.

1 Introduction

Partial differential equations (PDEs) describe a wide range of physical phenomena, including heat transfer [17, 8], fluid flow [37, 18, 33], wave propagation [34, 5], optics, and epidemiology [26, 36]. Accurate and efficient PDE solutions are vital across many industries. With recent advances in deep learning, physics-informed neural networks (PINNs) have emerged as a promising approach for solving PDEs. PINNs train by minimizing errors from initial conditions (IC), boundary conditions (BC), and PDE residuals at collocation points [31, 49, 12, 41, 23]. These error terms are treated as soft constraints, guiding the model to satisfy essential physical requirements.

This collocation-based learning method enhances the capability of PINNs by reducing the need for extensive experimental data collection across spatio-temporal ranges, demonstrating success in various industries as a promising alternative to traditional numerical methods such as the finite difference method and the finite element method [50, 2, 25]. However, collocation-based PINN (hereafter referred to as PINNs) encounter challenges in efficiently setting collocation points within the constraints of a limited sampling budget and in achieving fast convergence to accurate solutions. A key challenge arises from the presence of small regions with abrupt changes, in contrast to larger, smoother regions. This issue is particularly evident in stiff PDEs, which are often characterized by discontinuities, such as sudden transitions or jumps across the spatio-temporal domain.

^{*}Equal contribution.

[†]Work done while at GIST. Now at KAIST, ACSS.

[‡]Corresponding author.

Adaptive sampling in PINNs mainly follows two strategies: residual distribution-based methods, which resample points proportionally to residual magnitudes, and high residual-based methods, which prioritize large-residual points while neglecting low-residual regions. The latter often yields strong empirical results but risks distorting the residual distribution. This raises a key question: *should adaptive sampling focus exclusively on high residuals?* Addressing this question requires a careful analysis of the trade-offs and risks inherent in different sampling schemes.

In this work, we respond by proposing a principled alternative: Langevin dynamics-based adaptive sampling (LAS). Through a series of theoretical and empirical analyses, we demonstrate that LAS consistently achieves reliable relative L^2 errors and stable convergence across diverse PDEs, architectures, and hyperparameters, outperforming existing methods in robustness and scalability.

2 Background and Related Work

Physics-informed neural networks. The basic PINN framework [35] utilizes deep neural networks as function approximators f_θ to estimate the solution u of a non-linear PDE:

$$u_t + \mathcal{N}_x[u] = 0, \quad x \in \mathcal{X} \subset \mathbb{R}^d, \quad t \in [0, T]; \quad (2.1)$$

$$u(x, 0) = h(x), \quad x \in \mathcal{X} \subset \mathbb{R}^d; \quad (2.2)$$

$$u(x, t) = g(x, t), \quad x \in \partial\mathcal{X} \subset \mathbb{R}^d, \quad t \in [0, T], \quad (2.3)$$

where $u(x, t)$ denotes the hidden solution at spatial and temporal coordinates x, t , $\mathcal{N}_x[\cdot]$ is the non-linear differential operator, \mathcal{X} is the spatial domain, $\partial\mathcal{X}$ is the boundary, and T is the time range. The spatio-temporal domain is $\Omega = \mathcal{X} \times [0, T]$, with collocation point $\mathbf{x} = (x, t) \in \Omega$. The PDE residuals $\mathcal{R}_\theta(\mathbf{x})$ and loss function on collocation points $\mathcal{P} = \{\mathbf{x}_n\}_{n=1}^{N_{\text{pde}}} \subset \Omega$ are calculated as:

$$\mathcal{R}_\theta(\mathbf{x}) = \frac{\partial}{\partial t} f_\theta(\mathbf{x}) + \mathcal{N}_x[f_\theta](\mathbf{x}), \quad \mathbf{x} \in \Omega; \quad (2.4)$$

$$\mathcal{L}_{\text{pde}}(\{\mathbf{x}_n\}; \theta) = \mathbb{E}_{\mathbf{x} \sim \mathcal{U}(\Omega)} |\mathcal{R}_\theta(\mathbf{x})|^k \approx \frac{1}{N_{\text{pde}}} \sum_{n=1}^{N_{\text{pde}}} |\mathcal{R}_\theta(\mathbf{x}_n)|^k, \quad (2.5)$$

where $\mathcal{U}(\Omega)$ is the uniform distribution over Ω and N_{pde} represents the number of sample points of PDE loss. Then, in a similar manner, the total loss function \mathcal{L} is defined as:

$$\mathcal{L}(\{\mathbf{x}_n^{\text{total}}\}; \theta) = \lambda_{\text{pde}} \mathcal{L}_{\text{pde}}(\{\mathbf{x}_n\}; \theta) + \lambda_{\text{ic}} \mathcal{L}_{\text{ic}}(\{\mathbf{x}_n^{\text{ic}}\}; \theta) + \lambda_{\text{bc}} \mathcal{L}_{\text{bc}}(\{\mathbf{x}_n^{\text{bc}}\}; \theta).$$

Hyperparameters λ_{pde} , λ_{ic} , and λ_{bc} control the balance between the PDE, IC, and BC loss terms. Then, f_θ is trained to estimate appropriate solution u for PDEs by minimizing the total loss \mathcal{L} .

Adaptive sampling based on residual distribution. Classical PINNs generally adopt uniform collocation sampling. To improve efficiency, a residual-based adaptive sampling strategy was proposed [31], where each point \mathbf{x}_n is drawn with probability $p(\mathbf{x}_n) := \frac{|\mathcal{R}_\theta(\mathbf{x}_n)|^k}{\sum_m |\mathcal{R}_\theta(\mathbf{x}_m)|^k}$. Building on this idea, the residual-based adaptive distribution (RAD) [47] introduces a hyperparameter c : $p(\mathbf{x}) \propto \frac{|\mathcal{R}_\theta(\mathbf{x})|^k}{\mathbb{E}[|\mathcal{R}_\theta(\mathbf{x})|^k]} + c$. Here, k highlights high-residual regions, while c enforces a degree of uniformity. By tuning these parameters, RAD flexibly balances exploration and exploitation depending on the problem structure. More recently, Gaussian mixture distribution-based adaptive sampling (GAS) has been proposed [20], where high-residual validation points serve as the means of a Gaussian mixture model (GMM), and the reciprocals of residual gradients determine the diagonal covariances.

Adaptive sampling focused on high residuals. Alongside residual distribution-based approaches, another major line of work explores sampling methods that do not explicitly approximate the underlying distribution. These methods can often be viewed as special cases of RAD under extreme k, c settings, but we categorize them here based on whether they estimate a sampling distribution.

A representative approach is residual-based adaptive refinement (RAR) [27], which iteratively selects the top- M high-residual points until the mean residual falls below a tolerance. Although effective, RAR continually accumulates points and increases computational cost. To improve efficiency, the R3 method [10] retains high-residual points, uniformly resamples for diversity, and discards low-residual points. Similarly, failure-informed PINNs (FI-PINNs) adaptively sample from regions where

residuals exceed a threshold, using strategies such as self-adaptive importance sampling or subset simulation [14, 13]. Beyond these sampling strategies, recent work has questioned the appropriateness of the L^2 loss for solving Hamilton-Jacobi-Bellman (HJB) equations [43]. In response, adversarial training methods targeting the L^∞ norm have been introduced. As we discuss later, this framework leverages partial gradient information and inherently emphasizes high-residual regions in sampling.

Theoretical analysis of the concentration effect. While many adaptive sampling methods have shown promising results, several theoretical aspects remain unclear. In particular, there is a lack of theoretical analysis regarding the concentration effect. Although numerous studies report success with adaptive sampling, there is limited analysis on the impact of focusing primarily on high residuals.

To bridge this analytical gap, we investigate how learning stability is influenced by the extent to which high residuals are emphasized relative to model complexity. Our analysis reveals that an excessive focus on high residuals may lead to performance degradation in PINN training.

3 Analysis of the Learning Stability

3.1 The Effect of Sampling Concentration

In this work, we define sampling concentration as the spatial aggregation of collocation points within regions characterized by large residual magnitudes. Such strategies have been shown to improve accuracy, efficiency [28, 24], stability [7, 45], and physical consistency [21, 46, 39] in PINN training. In this section, we analyze the effects of sampling concentration theoretically.

Setup. Consider the partial differential equation defined over the domain $\Omega = \mathcal{X} \times [0, T]$. Assume that we have N collocation points forming the sample population $\mathcal{P} = \{\mathbf{x}_n\}_{n=1}^N \subset \Omega$, sampled from a uniform distribution $\mathcal{U}(\Omega)$.

Assumption 3.1. *For analytical simplicity, we assume that the residual error of the PDE at each collocation point \mathbf{x}_n can be expressed as a linear combination of feature-mapped vectors, given an appropriate feature map $\phi : \Omega \rightarrow \mathbb{R}^D$. Specifically, we represent the residual error as follows:*

$$\mathcal{R}_\theta(\mathbf{x}_n) = \frac{\partial}{\partial t} f_\theta(\mathbf{x}_n) + \mathcal{N}_x[f_\theta](\mathbf{x}_n) \quad (3.1)$$

$$= a(\theta)^\top \phi(\mathbf{x}_n; \theta) \quad (3.2)$$

$$= \sum_{d=1}^D a_d(\theta) \phi_d(\mathbf{x}_n; \theta). \quad (3.3)$$

We regard the sampling methodology as a weighting of each sample point depending on the residual $\mathcal{R}_\theta(\mathbf{x}_n)$ and set $k = 2$. Thus, we can represent the loss function $\mathcal{L}(\mathcal{P}; \theta) = \sum_{n=1}^N w_n |\mathcal{R}_\theta(\mathbf{x}_n)|^2$. Assume that we are solving for the solution based on the gradient descent (GD) algorithm. Then,

$$\theta^{l+1} = \theta^l - \eta \nabla_\theta \left(\sum_{n=1}^N w_n^l |\mathcal{R}_{\theta^l}(\mathbf{x}_n)|^2 \right), \quad (3.4)$$

where the weights assigned to each sample point for iteration l are determined as follows:

$$w_n^l \propto \exp \left(\frac{|\mathcal{R}_{\tilde{\theta}^l}(\mathbf{x}_n)|^2}{\beta^2} \right), n \in \{1, \dots, N\}. \quad (3.5)$$

Additionally, w_n^l is normalized to satisfy $\sum_{\mathbf{x} \in \mathcal{P}} w_n^l(\mathbf{x}) = 1$ and the parameter $\beta > 0$ preceding the residual controls the concentration of sampling with respect to the residuals. Note that the parameters $\tilde{\theta}^l = (\tilde{\theta}_1^l, \dots, \tilde{\theta}_D^l)$ used to calculate the importance weights do not participate in the model parameter update process. Furthermore, in contexts where the meaning is clear, we will no longer explicitly indicate that ϕ is parameterized by θ , i.e., denote $\phi(\mathbf{x}; \theta)$ as $\phi(\mathbf{x})$.

For iteration l , we focus on two extreme cases of interest: when β is too large (uniform sampling), most samples receive uniform weights, resulting in uniform sampling. Conversely, when β is close to 0 (high residual sampling), the effect is dominated by the sample with the highest residual. To explore this in more depth, consider the following propositions.

Proposition 3.1 (Steepness of the uniform sampling). *When the sampling concentration parameter β is sufficiently large, the maximum eigenvalue of the Hessian of the loss function can be approximated as $2\lambda_{\max}(\Sigma)$, where $\Sigma = \mathbb{E}_{\mathbf{x} \sim \mathcal{U}(\Omega)}[\phi(\mathbf{x})\phi(\mathbf{x})^\top]$ and $\lambda_{\max}(\Sigma)$ is the maximum eigenvalue of Σ .*

Proposition 3.2 (Steepness of the high residual sampling). *When the sampling concentration parameter β is sufficiently small, the maximum eigenvalue of the Hessian of the loss function can be approximated as $2\|\phi(\mathbf{x}^*)\|^2$, where $\mathbf{x}^* = \arg \max_{\mathbf{x} \in \mathcal{P}} |\mathcal{R}_\theta(\mathbf{x})|^2$ is the maximum residual point.*

Detailed proof can be found in Appendix B.1, B.2. It is well known that to ensure the convergence of GD algorithms, the learning rate η must satisfy the following relationship with the largest eigenvalue λ_{\max} of the Hessian of the loss function: $\eta < \frac{2}{\lambda_{\max}}$ [6]. Therefore, we consequently aim to examine the relationship of the largest eigenvalue in two extreme cases of β . Before presenting the main result, we introduce two additional assumptions that formalize phenomena typically observed in neural network-based models as their complexity increases.

Assumption 3.2. *In high-dimensional feature space, $\|\phi(\mathbf{x})\|$ follows a heavy-tailed distribution. More specifically, $\mathbb{P}(\|\phi(\mathbf{x})\| > \zeta) \sim \frac{g(\zeta)}{\zeta^\alpha}$ for large ζ , where \sim represents asymptotic equivalence, $g(\zeta)$ satisfies $\forall t > 0, \lim_{\zeta \rightarrow \infty} \frac{g(t\zeta)}{g(\zeta)} = 1$ and $\alpha > 0$ indicates the thickness of the tail.*

This assumption is substantiated by both empirical evidence and theoretical insights. The heavy-tailed nature of feature vectors has been documented in several studies [29, 30, 3], and theoretically, in high-dimensional settings with complex dependencies, classical assumptions of Gaussianity often break down, and heavy-tailed models provide a more accurate fit to the observed distributional behavior [4, 16, 40]. Next, we impose an assumption concerning the representative characteristics encoded in the norms of feature vectors.

Assumption 3.3. *As the model complexity D increases, the feature vector with the maximal norm becomes increasingly representative, which results in the following: $\max_{\mathbf{x} \in \mathcal{P}} \|\phi(\mathbf{x})\| \approx \|\phi(\mathbf{x}^*)\|$ where $\mathbf{x}^* = \arg \max_{\mathbf{x} \in \mathcal{P}} |\mathcal{R}_\theta(\mathbf{x})|^2$ is the maximum residual point.*

This assumption can be seen as a concentration of measure phenomenon in high-dimensional spaces [11, 42, 32, 15]. We note that Assumptions 3.2 and 3.3 do not generally hold in isotropic settings. However, they become statistically valid under (i) the low-temperature limit $\beta \rightarrow 0$, and (ii) the high-dimensional regime $D \gg 1$ with heavy-tailed feature norms. Specifically, writing $\mathcal{R}_\theta(\mathbf{x}) = a(\theta)^\top \phi(\mathbf{x})$, we have $|\mathcal{R}_\theta(\mathbf{x})|^2 = \phi(\mathbf{x})^\top Q \phi(\mathbf{x})$ where $Q = a(\theta)a(\theta)^\top$ is rank-one. In this context, we reason as follows to determine under what conditions $\phi(\mathbf{x})^\top Q \phi(\mathbf{x}) \approx \phi(\mathbf{x})^\top \phi(\mathbf{x})$ holds.

In the limit $\beta \rightarrow 0$, the samples concentrate on regions with large $\mathcal{R}_\theta(\mathbf{x})$, thereby biasing $\phi(\mathbf{x})$ toward alignment with $a(\theta)$ and large norm. Moreover, for $D \gg 1$, feature vectors are nearly orthogonal, so large $|\mathcal{R}_\theta(\mathbf{x})|^2$ occurs only when $\phi(\mathbf{x})$ is both high-norm and well-aligned. Consequently, $\arg \max_{\mathbf{x}} |\mathcal{R}_\theta(\mathbf{x})|^2 \approx \arg \max_{\mathbf{x}} \|\phi(\mathbf{x})\|^2$ holds with high probability in this structured regime.

To support the validity of Assumptions 3.1 through 3.3, we provide a consolidated empirical verification in Appendix A, demonstrating their general applicability across a broad range of settings. Finally, under the scaling assumption that the number of samples N grows linearly with model size D as $N = cD$, we derive our main theoretical result as follows.

Theorem 3.1. *Given the heavy-tailed nature of $\|\phi(\mathbf{x})\|$ and sufficiently large model complexity D , we have $2\|\phi(\mathbf{x}^*)\|^2 \gg 2\lambda_{\max}(\Sigma)$. This inequality establishes a tighter upper bound on the learning rate for ensuring the convergence of the GD algorithm under the high residual sampling method.*

The detailed proof can be found in the Appendix B.3. This indicates that the stability of the algorithm can vary significantly depending on the sampling strategy and model complexity. Specifically, in these two extreme cases ($\beta \ll 1$ and $\beta \gg 1$), uniform sampling may struggle to find an appropriate solution due to the difficulty of the stiff PDE problems, while high residual sampling may fail due to instability in the learning process.

3.2 Characteristics of Adaptive Sampling Algorithms

Building upon the previous discussion, we now briefly review how existing adaptive sampling methods operate. In particular, we focus on how the trajectory of the sample population \mathcal{P} evolves under these algorithms.

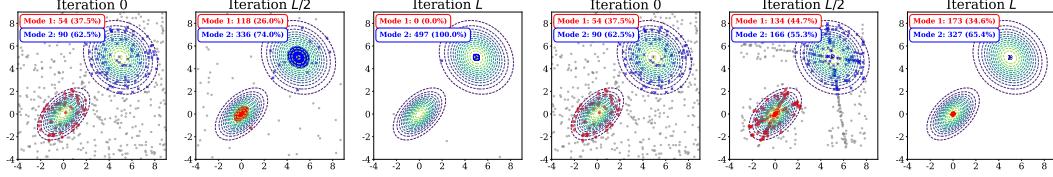


Figure 1: Schematic sampling diagram of the benchmark adaptive sampling methods: (a) R3 (first three figures), (b) L^∞ (last three figures) where $|\mathcal{R}_\theta(\mathbf{x})|^k = 0.3 \times \mathcal{N}(\mathbf{x}; \mathbf{0}, [[1, 0.5], [0.5, 1]]) + 0.7 \times \mathcal{N}(\mathbf{x}; \mathbf{5}, [[2, -0.3], [-0.3, 2]])$.

- **RAD** [47]: The modeling of residual distribution is relatively straightforward and relies on Monte Carlo integration (MCI) over the expectation $p(\mathbf{x}) \propto \frac{|\mathcal{R}_\theta(\mathbf{x})|^k}{\mathbb{E}|\mathcal{R}_\theta(\mathbf{x})|^k} + c$. In general, a larger value of k corresponds to a high residual regime with smaller β , whereas a larger value of c indicates a tendency toward uniform sampling regime with higher β .
- **R3** [10]: R3 employs a strategy that consistently maintains high residuals, resulting in an excessive skew in the distribution of collocation points as iterations progress. Moreover, this approach may fail to effectively handle multi-modal landscapes in the long-term, which, as demonstrated in our previous theoretical analysis, results in a scenario where the sampling concentration parameter β becomes extremely small.
- **L^∞** [43]: During the adversarial training, to estimate the inner maximal value $\sup_{\mathbf{x} \in \Omega} |\mathcal{R}_\theta(\mathbf{x})|^k$, L^∞ iteratively utilizes *gradient information* $\text{sign} \nabla_{\mathbf{x}} |\mathcal{R}_\theta(\mathbf{x})|^k$, allowing for some degree of access to local modes. However, there is no guarantee that the relative proportions between modes of different heights are preserved.

To facilitate an intuitive understanding of time evolving sampling methods (R3, L^∞), we have illustrated the working mechanisms in a schematic diagram shown in Figure 1. For a detailed visualization of the sampling trajectories, we refer the reader to Appendix D.

4 Proposed Approach: Langevin Adaptive Sampling (LAS)

Similar to other residual distribution-based methodologies, our primary objective is to estimate the residual-based sampling distribution. However, unlike previous methods that directly model the distribution using residuals, we employ Langevin dynamics to model the target distribution. An intuitive visualization of our LAS framework is depicted in Figure 2.

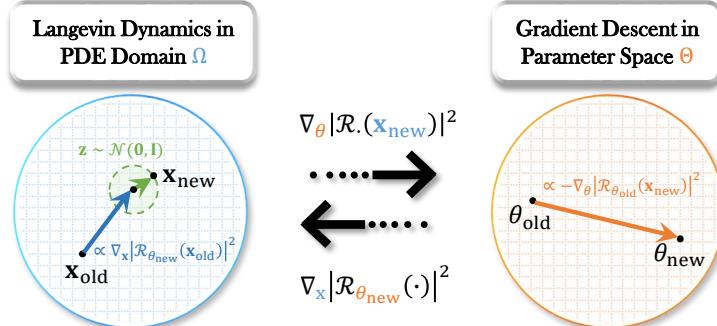


Figure 2: Bidirectional update: (Left) In the PDE domain, our LAS framework uses Langevin dynamics to adaptively update collocation points based on PDE residuals while keeping the PINN model f_θ fixed. (Right) In parameter space, the PINN model f_θ minimizes PDE residuals with the updated collocation points.

Algorithm 1 Single LAS Sampling Iteration for Physics-Informed Neural Networks

```

1: Input: initial population  $\mathcal{P} = \mathcal{P}^0$  with  $N_{\text{pde}}$  collocation points.
2: Output: updated population  $\mathcal{P} = \mathcal{P}^{l_L}$ .
3: for  $l = 0$  to  $l_L - 1$  do
4:   for  $\mathbf{x}_n^l \in \mathcal{P}^l$  do
5:     Calculate the residual gradient:  $\nabla_{\mathbf{x}} |\mathcal{R}_{\theta}(\mathbf{x}_n^l)|^2 = \nabla_{\mathbf{x}} \left| \frac{\partial}{\partial t} f_{\theta}(\mathbf{x}_n^l) + \mathcal{N}_x[f_{\theta}(\mathbf{x}_n^l)] \right|^2$ .
6:     Sample white Gaussian noise:  $\mathbf{z}_n^l \sim \mathcal{N}(\mathbf{z}_n^l; \mathbf{0}, \mathbf{I})$ .
7:     Follow the Langevin dynamics:  $\mathbf{x}_n^{l+1} \leftarrow \mathbf{x}_n^l + \frac{\tau}{2} \nabla_{\mathbf{x}} |\mathcal{R}_{\theta}(\mathbf{x}_n^l)|^2 + \beta \sqrt{\tau} \mathbf{z}_n^l$ .
8:   end for
9:   Update collocation population:  $\mathcal{P}^{l+1} \leftarrow \{\mathbf{x}_n^{l+1}\}_{n=1}^{N_{\text{pde}}}$ .
10: end for

```

4.1 Langevin Dynamics and Stationary Distribution

The dynamics of the collocation points $\mathcal{P}^l \subset \Omega$ at the l -th iteration in LAS are given as follows:

$$\mathbf{x}_n^{l+1} = \mathbf{x}_n^l + \frac{\tau}{2} \nabla_{\mathbf{x}} |\mathcal{R}_{\theta}(\mathbf{x}_n^l)|^2 + \beta \sqrt{\tau} \mathbf{z}_n^l, \quad (4.1)$$

where $\tau > 0$ is the Langevin step size, $\mathbf{z}_n^l \sim \mathcal{N}(\mathbf{z}_n^l; \mathbf{0}, \mathbf{I})$ represents the white Gaussian noise, and β is the sampling concentration coefficient. Additionally, the residual exponent k is set to 2. Unlike other methods that estimate the sampling distribution based on residuals at every iteration, LAS dynamically updates the data points without requiring the estimation of the sampling distribution. If the Langevin dynamics are allowed to run for a *sufficient number of iterations* l_L with a *sufficiently small step size* τ , we can theoretically derive the following result regarding the collocation points.

Theorem 4.1 (Stationary distribution). *For fixed f_{θ} and concentration parameter $\beta > 0$, sample population \mathcal{P}^l asymptotically follows $\lim_{l \rightarrow \infty} p_l(\mathbf{x}) = p_{\infty}(\mathbf{x}) \propto \exp\left(\frac{|\mathcal{R}_{\theta}(\mathbf{x})|^2}{\beta^2}\right)$.*

Although the proof is well known [9], to complete the formulation of the distribution under consideration, we include the full derivation in Appendix C.1. The detailed operational procedure is summarized in Algorithm 1.

Unlike R3 and RAD, which use MCI to resample collocation points independently at each step, LAS refines the sampling iteratively by reusing the current population. Similar to L^{∞} , it exploits gradient information. However, instead of relying solely on raw gradients, LAS injects noise into the signal—a design choice whose implications are outlined below.

Theorem 4.2 (LAS favors flat residual surfaces). *Given a fixed residual landscape \mathcal{R}_{θ} and an initial set of randomly sampled collocation points \mathcal{P}^0 , the LAS framework progressively refines the sampling towards flatter local maxima while avoiding less stable and sharp regions.*

An intuition-based explanation is provided in Appendix C.2 as a substitute for a formal proof. This phenomenon reflects a desirable property of Langevin dynamics, which inherently favors flatter regions of the residual landscape. As a result, when two local maxima exhibit similar residual values, the collocation points are more likely to concentrate near the flatter one. Consequently, models trained around such flat residual regions tend to exhibit more stable learning behavior.

4.2 Key Strengths (and Advantages) of the Proposed LAS Framework

Robustness in high-dimensional PDEs. In high-dimensional PDE settings, the MCI-based expectation $\mathbb{E}|\mathcal{R}_{\theta}(\mathbf{x})|^k \approx \frac{1}{N} \sum_{n=1}^N |\mathcal{R}_{\theta}(\mathbf{x}_n)|^k$ becomes unstable due to the curse of dimensionality, which demands exponentially more samples for accurate estimation. In contrast, LAS leverages local gradient information, maintaining stability even under high-dimensional conditions.

Enhanced stability through noise injection. Stochastic gradient descent (SGD) is known to prefer flatter minima, which are associated with better generalization [22, 19, 48]. Similarly, LAS injects noise into the gradient signal, resulting in significantly improved training stability compared to methods that rely solely on raw gradients [43]. It is reasonable to expect that sampling schemes biased toward flatter regions inherently promote more stable training dynamics.

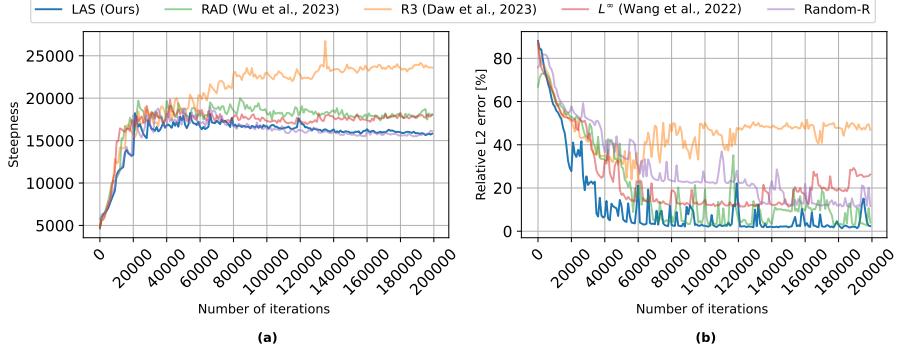


Figure 3: With fixed learning rate $\eta = 0.002$ and 4 hidden layers, (a) The maximal eigenvalue of the Hessian (steepness) for the loss function, (b) the relative L^2 error curve.

5 Experiments

This section presents an experimental evaluation of high-residual sampling under varying model complexities and learning rates, with the number of collocation points fixed. We compare the performance of our proposed LAS method against other adaptive sampling approaches, including RAD, R3, and L^∞ , each evaluated under the default settings provided in their original papers, random sampling with resampling (Random-R), which essentially corresponds to uniform sampling.

Experimental setup. As the default settings, unless otherwise specified, the models utilized a multilayer perceptron (MLP) with 128 nodes per layer and 4 hidden layers, employing a hyperbolic tangent activation function in each hidden layer. The Adam optimizer was utilized with the learning rate of $\eta = 0.001$ and a decay factor of 0.9 applied every 5,000 iterations. Training was conducted with 200,000 iterations, and the number of collocation points was set to $N_{\text{pde}} = 1,000$. For the LAS configuration, the residual exponent $k = 2$, the Langevin step size $\tau = 0.002$ for 1-2D PDEs and $\tau = 0.01$ for 4-8D PDEs, and the concentration parameter $\beta = 0.2$. This hyperparameter setting represents the empirically obtained optimum, with further discussion presented in the following subsection 5.5.

5.1 Ablation Studies

First and foremost, we sought to verify how the analytical results regarding stability and model complexity, presented in Section 3, operate and apply to the functioning of each algorithm. In this context, we performed the following key ablation studies based on the Allen-Cahn equation using 5 different random seeds.

Steepness of the loss landscape. In our stability analysis, we hypothesized that sampling algorithms targeting extremely high residuals—such as R3 and L^∞ —would induce sharper loss landscapes. To test this, we tracked the maximum eigenvalue of the Hessian of the loss throughout training, as shown in Figure 3-(a). The results support our hypothesis, indicating that high-residual-focused sampling leads to increased steepness in the loss surface. The proposed LAS method, like L^∞ , leverages gradient information but achieves more stable training by reducing residual surface steepness, similar to Random-R. This stability likely stems from the injected noise term. Overall, LAS outperforms Random-R and other baselines in relative L^2 error while maintaining the lowest steepness.

Different number of hidden layers. We employed MLP architectures with hidden layers ranging from 4 to 10 across all sampling methods, maintaining a learning rate of 0.001 and utilizing a step scheduler. As illustrated in Figure 4-(a), it can be observed that as the number of layers increases, the overall performance improves; however, for most sampling strategies at 10 layers, except for LAS, the performance diverges. In particular, for R3, it is evident that it fails to converge more prominently compared to other algorithms. These results indicate that the sensitivity to model complexity varies depending on the sampling method. In particular, high residual methods are more susceptible to increasing model complexity. For more clarity, regarding the loss curves during the training of PINNs based on model complexity, analyses are presented in Appendix E, not only from the perspective of depth but also from the perspective of width expansion.

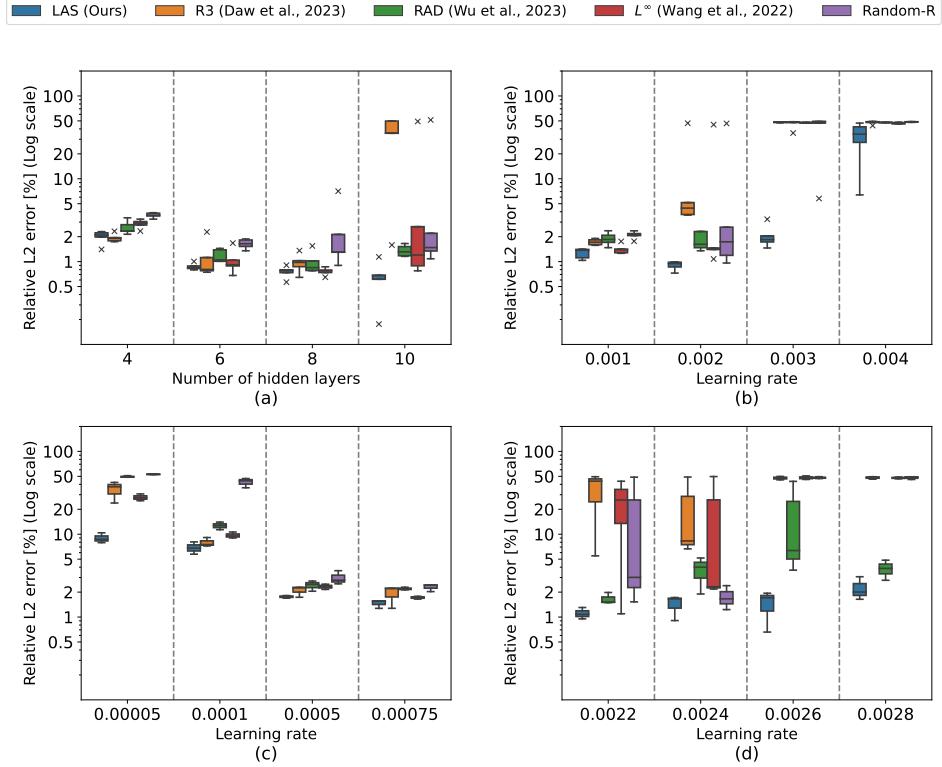


Figure 4: Relative L^2 error (Log scale) for the Allen-Cahn equation: (a) varying layers with $\eta = 0.001$ (with scheduler), (b)-(d) fixed 4 layers with different learning rates (no scheduler). Each boxplot is based on 5 random seeds.

Varying learning rate η without decaying. We evaluated MLPs with four hidden layers across learning rates ranging from 0.001 to 0.004 without applying decay. As shown in Figure 4 -(b), the benchmark algorithms demonstrated performance degradation at $\eta = 0.002$ compared to $\eta = 0.001$, whereas LAS showed improvement. At $\eta = 0.003$, all methods exhibited reduced performance; however, LAS was able to partially mitigate this degradation. At $\eta = 0.004$, none of the methods produced correct solutions. In particular, we visualized the performance for very low learning rates in Figure 4-(c) and highlighted the range between $\eta = 0.002$ and 0.003 , where all algorithms begin to exhibit instability in Figure 4-(d). From this, we observe that learning does not proceed properly at very low learning rates, and for layer 4, most algorithms become unstable at a learning rate as low as approximately 0.0022.

5.2 Experiments on Representative 1-Dimensional PDEs

The proposed LAS framework is further evaluated on representative 1-dimensional PDEs derived from various benchmark problems tackled by several established algorithms, including RAD, R3, L^∞ , Random-R. In these evaluations, we also employ the default experimental settings as outlined earlier. The specific configurations for the PDE parameters and the hyperparameters of the baseline algorithms are detailed in Appendix F.

Experimental results. We evaluated each sampling method on five benchmark PDEs—Burgers’, Convection, Allen-Cahn, Korteweg-De Vries, Schrödinger—using five random seeds. As summarized in the 1D case of Table 1, Random-R tended to outperform other adaptive sampling strategies in high-complexity model settings. Meanwhile, LAS consistently achieved either the best or second-best relative L^2 errors across all cases. In particular, LAS outperformed all methods on the Allen-Cahn and Schrödinger equations, while remaining competitive on the others.

Table 1: Relative L^2 error (mean \pm std) across PDEs for increasing model complexity. **Bold** indicates best, underline second-best.

Sampling method		LAS (Ours)		Random-R		RAD		R3		L^∞	
		8	10	8	10	8	10	8	10	8	10
ID	Burgers'	0.01 \pm 0.00	0.01 \pm 0.00	0.01 \pm 0.00	0.02 \pm 0.00	0.17 \pm 0.02	0.27 \pm 0.14	0.01 \pm 0.00	0.02 \pm 0.00	0.03 \pm 0.01	0.06 \pm 0.06
	Allen-Cahn	0.77 \pm 0.20	0.62 \pm 0.27	2.54 \pm 2.30	11.49 \pm 19.93	0.99 \pm 0.29	1.36 \pm 0.19	0.97 \pm 0.23	34.47 \pm 17.64	0.76 \pm 0.07	10.95 \pm 19.16
	KdV	2.68 \pm 1.74	<u>1.99 \pm 0.50</u>	1.64 \pm 0.63	2.89 \pm 1.80	7.44 \pm 1.83	7.97 \pm 1.45	3.92 \pm 2.93	7.02 \pm 8.77	5.70 \pm 1.45	4.44 \pm 1.45
	Schrödinger	0.08 \pm 0.01	0.09 \pm 0.01	<u>0.09 \pm 0.00</u>	0.11 \pm 0.01	1.68 \pm 0.15	2.89 \pm 0.69	0.11 \pm 0.01	0.15 \pm 0.02	0.22 \pm 0.06	0.19 \pm 0.03
2D	Convection	0.34 \pm 0.12	<u>0.27 \pm 0.03</u>	0.30 \pm 0.05	0.41 \pm 0.10	0.25 \pm 0.02	0.28 \pm 0.09	0.39 \pm 0.24	0.27 \pm 0.05	73.87 \pm 5.07	54.17 \pm 27.33
	Burgers'	0.05 \pm 0.00	0.05 \pm 0.00	0.06 \pm 0.01	0.06 \pm 0.00	0.05 \pm 0.00	0.06 \pm 0.00	0.07 \pm 0.01	0.06 \pm 0.02	0.06 \pm 0.00	0.05 \pm 0.01
4D	Heat	0.26 \pm 0.00	<u>0.22 \pm 0.03</u>	0.18 \pm 0.01	0.20 \pm 0.04	1.44 \pm 0.17	1.54 \pm 0.15	8.97 \pm 1.95	6.66 \pm 4.20	14.29 \pm 1.01	13.07 \pm 6.21
	DF-Heat	1.72 \pm 0.23	<u>2.14 \pm 0.18</u>	7.73 \pm 1.85	75.91 \pm 41.68	5.72 \pm 0.42	78.20 \pm 37.10	2.15 \pm 0.25	80.23 \pm 34.24	2.46 \pm 0.67	53.78 \pm 46.31
6D	DF-Heat	3.49 \pm 0.20	31.16 \pm 39.74	5.53 \pm 0.81	100.00 \pm 0.00	6.39 \pm 1.14	100.00 \pm 0.00	4.98 \pm 0.18	100.00 \pm 0.00	4.39 \pm 0.61	100.00 \pm 0.00
	8D	DF-Heat	6.92 \pm 0.31	34.68 \pm 38.21	17.63 \pm 1.78	100.00 \pm 0.00	67.50 \pm 39.83	100.00 \pm 0.00	65.03 \pm 43.11	100.00 \pm 0.00	13.21 \pm 4.46

5.3 Experiments on High Dimensional PDEs

Beyond the one-dimensional setting, we applied the existing approaches and the proposed algorithm to higher-dimensional PDE problems. Benchmark problems include 2D Burgers', 2D heat [1], and dimension flexible heat (DF-heat) 4 to 8D equations [49]. These PDEs have analytics solutions, so the performance of all the sampling methods could be fairly observed and evaluated in high dimensional PDE cases. Especially, we modified the DF-heat PDE to pose a more challenging problem setting by increasing frequency. The details for PDEs are also described in Appendix F. We first report the performance of all sampling methods under the default settings from the original papers (Table 1).

Experimental results. In the 2D Burgers' and heat equations, Table 1 shows that Random-R and LAS exhibited competitive performance. RAD, R3, and L^∞ , on the other hand, experienced notable performance degradation, primarily because the 2D PDEs represent smooth cases rather than high-frequency or stiff regimes. For the 4D, 6D and 8D cases, LAS significantly outperformed all other adaptive sampling strategies. In the 4D, Random-R and L^∞ produced plausible solutions, but their performance remained inferior to that of LAS. Meanwhile, MCI-based methods such as RAD and R3 suffered from instability. Notably, for the 6D and 8D cases, all the other sampling approaches failed to find appropriate solutions. Although convergence was observed under different balance terms, the resulting performance was inferior and highly sensitive, as discussed in the following subsection.

5.4 Further Discussion on Loss Balancing, Model Hyperparameters, and Applicability

To ensure fair comparison, we conducted an extensive search for the optimal loss balance terms (λ_{ic} , λ_{bc} , λ_{pde}) and hyperparameter configurations of the baseline methods, as detailed in Appendix G. Additional experiments demonstrate that RAD and R3 outperform Random-R when equipped with the optimal loss balance terms and hyperparameter settings identified in Appendix G. However, both RAD and R3 exhibit sensitivity to the problem dimensionality and the choice of loss weighting. In contrast, LAS consistently attains either the best or second-best relative L^2 error across all evaluated scenarios, including smooth, stiff, low-dimensional, and high-dimensional cases. In terms of practical application, we further evaluate robustness across different model architectures (Appendix H), a factor that may be of particular relevance to practitioners.

5.5 LAS Hyperparameter Tuning and Computational Complexity

The practical applicability of LAS depends on the number of Langevin iterations l_L , which directly affects computational complexity. We therefore compare its cost with existing sampling methods in Appendix I, and the results are summarized in Figure 5. The computational time and memory usage are in the order: Random-R, R3, RAD, LAS, and L^∞ . Gradient-based methods such as LAS and L^∞ generally incur higher costs; in particular, L^∞ is much slower because it requires many iterations (20 by default) with re-initialization each epoch, whereas LAS needs only $l_L = 1$ without re-initialization. Thus, increasing the number of iterations should be considered with caution.

Detailed tuning results in Appendix J show that LAS with $l_L = 1$ and without re-initialization achieves competitive performance, indicating that LAS can be applied in practice with computational cost comparable to Random-R, R3, and RAD.

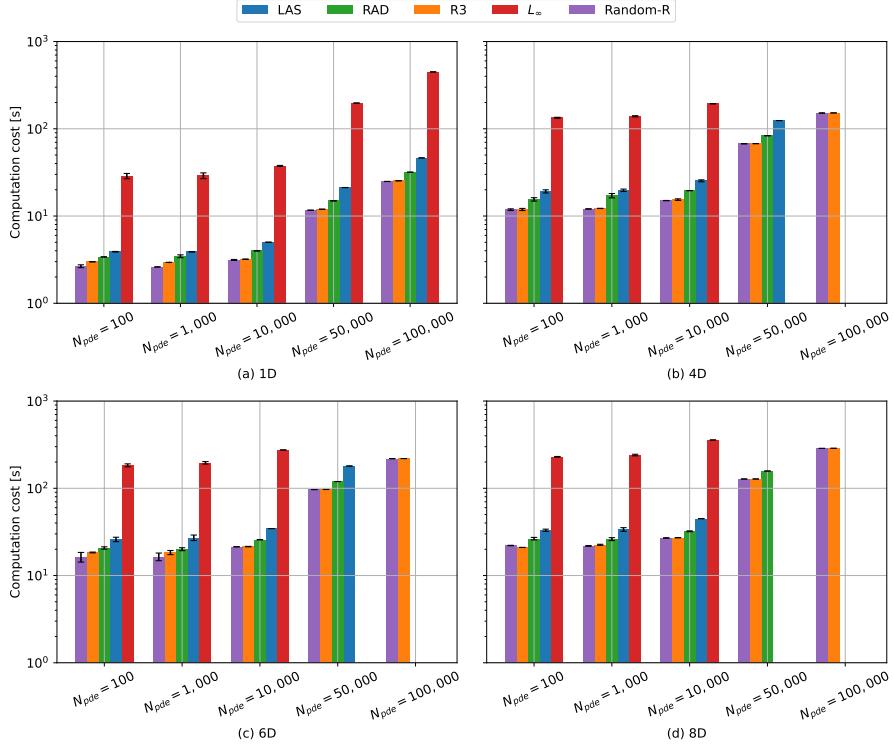


Figure 5: Comparison of computational time (seconds per 1,000 epochs) for each method across varying problem dimensions on an RTX 4090. Empty bars denote out-of-memory failures. Subplots: (a) 1D, (b) 4D, (c) 6D, and (d) 8D.

6 Conclusion and Future Research Directions

This paper investigates the stability of training physics-informed neural networks (PINNs) under adaptive sampling strategies, particularly as model complexity increases. Theoretical analysis shows that methods focusing excessively on high residuals may undermine stability, especially in deeper networks or with larger learning rates. To address this, we introduce Langevin dynamics-based Adaptive Sampling (LAS), which updates collocation points using residual-weighted Langevin dynamics. Empirical results demonstrate that LAS ensures stable convergence even in high-dimensional PDEs, where conventional methods often fail.

Our Langevin-based sampling scheme builds on a theoretically grounded MCMC formulation that is both simple and effective. While the current approach shows strong performance, future work could explore more efficient variants for high-dimensional problems and develop principled strategies for hyperparameter selection.

Acknowledgments

This research was supported in part by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT)(RS-2024-00349582) and in part by the National Research Foundation (NRF) Grants, Basic Research Laboratory, under Grant RS-2023-00218908.

References

- [1] Chandrajit Bajaj, Luke McLennan, Timothy Andeen, and Avik Roy. Recipes for when physics fails: recovering robust learning of physics informed neural networks. *Machine learning: science and technology*, 4(1):015013, 2023.
- [2] Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven discretizations for partial differential equations. *Proceedings of the National Academy of Sciences*, 116(31):15344–15349, 2019.
- [3] Melih Barsbey, Milad Sefidgaran, Murat A Erdogdu, Gael Richard, and Umut Simsekli. Heavy tails in sgd and compressibility of overparametrized neural networks. *Advances in neural information processing systems*, 34:29364–29378, 2021.
- [4] Jan Beirlant, Yuri Goegebeur, Johan Segers, and Jozef L Teugels. *Statistics of extremes: theory and applications*. John Wiley & Sons, 2006.
- [5] Umair bin Waheed, Ehsan Haghhighat, Tariq Alkhalifah, Chao Song, and Qi Hao. Pinneik: Eikonal solution using physics-informed neural networks. *Computers & Geosciences*, 155:104833, 2021.
- [6] Stephen Boyd and Lieven Vandenberghe. *Convex optimization*. Cambridge university press, 2004.
- [7] Shenglin Cai, Zhenyu Wang, Florian Fuest, Younjung Jeon, Clark Gray, and George Em Karniadakis. BC-PINN: an adaptive physics informed neural network based on biased multiobjective coevolutionary algorithm. *Neural Computing and Applications*, 33(4):12901–12918, 2021.
- [8] Shengze Cai, Zhicheng Wang, Sifan Wang, Paris Perdikaris, and George Em Karniadakis. Physics-informed neural networks for heat transfer problems. *Journal of Heat Transfer*, 143(6):060801, 2021.
- [9] Tzuu-Shuh Chiang, Chii-Ruey Hwang, and Shuenn Jyi Sheu. Diffusion for global optimization in \mathbb{R}^n . *SIAM Journal on Control and Optimization*, 25(3):737–753, 1987.
- [10] Arka Daw, Jie Bu, Sifan Wang, Paris Perdikaris, and Anuj Karpatne. Mitigating propagation failures in physics-informed neural networks using retain-resample-release (r3) sampling. *International Conference on Machine Learning*, 202, 2023.
- [11] Devdatt P Dubhashi and Alessandro Panconesi. *Concentration of measure for the analysis of randomized algorithms*. Cambridge University Press, 2009.
- [12] Wenhan Gao and Chunmei Wang. Active learning based sampling for high-dimensional nonlinear partial differential equations. *Journal of Computational Physics*, 475:111848, 2023.
- [13] Zhiwei Gao, Tao Tang, Liang Yan, and Tao Zhou. Failure-informed adaptive sampling for pinns, part ii: combining with re-sampling and subset simulation. *Communications on Applied Mathematics and Computation*, 6(3):1720–1741, 2024.
- [14] Zhiwei Gao, Liang Yan, and Tao Zhou. Failure-informed adaptive sampling for pinns. *SIAM Journal on Scientific Computing*, 45(4):A1971–A1994, 2023.
- [15] Shivam Gupta, Jasper CH Lee, and Eric Price. High-dimensional location estimation via norm concentration for subgamma vectors. In *International Conference on Machine Learning*, pages 12132–12164. PMLR, 2023.
- [16] Laurens Haan and Ana Ferreira. *Extreme value theory: an introduction*, volume 3. Springer, 2006.
- [17] Ehsan Haghhighat, Maziar Raissi, Adrian Moure, Hector Gomez, and Ruben Juanes. A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics. *Computer Methods in Applied Mechanics and Engineering*, 379:113741, 2021.

[18] Ameya D Jagtap, Zhiping Mao, Nikolaus Adams, and George Em Karniadakis. Physics-informed neural networks for inverse problems in supersonic flows. *Journal of Computational Physics*, 466:111402, 2022.

[19] Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and Amos Storkey. Finding flatter minima with sgd. In *Proceedings of the 6th International Conference on Learning Representations (ICLR) Workshop*, 2018.

[20] Yuling Jiao, Di Li, Xiliang Lu, Jerry Zhijian Yang, and Cheng Yuan. A gaussian mixture distribution-based adaptive sampling method for physics-informed neural networks. *Engineering Applications of Artificial Intelligence*, 135:108770, 2024.

[21] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-informed machine learning. *Nature Reviews Physics*, 3(6):422–440, 2021.

[22] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In *Proceedings of the 5th International Conference on Learning Representations (ICLR)*, 2017.

[23] Gregory Kang Ruey Lau, Apivich Hemachandra, See-Kiong Ng, and Bryan Kian Hsiang Low. PINNACLE: PINN adaptive collocation and experimental points selection. In *The Twelfth International Conference on Learning Representations*, 2024.

[24] Wensheng Li, Chao Zhang, Chuncheng Wang, Hanting Guan, and Dacheng Tao. Revisiting pinns: Generative adversarial physics-informed neural networks and point-weighting method. *arXiv preprint arXiv:2205.08754*, 2022.

[25] Zongyi Li, Nikola Kovachki, Kamayr Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations, arxiv. *arXiv preprint arXiv:2010.08895*, 2020.

[26] Shuning Lin and Yong Chen. A two-stage physics-informed neural network method based on conserved quantities and applications in localized wave solutions. *Journal of Computational Physics*, 457:111053, 2022.

[27] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. DeepXDE: A deep learning library for solving differential equations. *SIAM review*, 63(1):208–228, 2021.

[28] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Enhancing pinns for solving pdes via adaptive collocation point movement and adaptive loss weighting. *Nonlinear Dynamics*, 105(4):3439–3450, 2021.

[29] Michael Mahoney and Charles Martin. Traditional and heavy tailed self regularization in neural network models. In *International Conference on Machine Learning*, pages 4284–4293. PMLR, 2019.

[30] Charles H Martin and Michael W Mahoney. Heavy-tailed universality predicts trends in test accuracies for very large pre-trained deep neural networks. In *Proceedings of the 2020 SIAM International Conference on Data Mining*, pages 505–513. SIAM, 2020.

[31] Mohammad Amin Nabian, Rini Jasmine Gladstone, and Hadi Meidani. Efficient training of physics-informed neural networks via importance sampling. *Computer-Aided Civil and Infrastructure Engineering*, 36(8):962–977, 2021.

[32] Kimia Nadjahi, Alain Durmus, Pierre E Jacob, Roland Badeau, and Umut Simsekli. Fast approximation of the sliced-wasserstein distance using concentration of random projections. *Advances in Neural Information Processing Systems*, 34:12411–12424, 2021.

[33] Luis Fernando Nazari, Eduardo Camponogara, and Laio Oriel Seman. Physics-informed neural networks for modeling water flows in a river channel. *IEEE Transactions on Artificial Intelligence*, 5(3):1001–1015, 2022.

[34] Chris L Pettit and D Keith Wilson. A physics-informed neural network for sound propagation in the atmospheric boundary layer. In *Proceedings of Meetings on Acoustics*, volume 42. AIP Publishing, 2020.

[35] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. *Journal of Computational physics*, 378:686–707, 2019.

[36] Alexander Rodríguez, Jiaming Cui, Naren Ramakrishnan, Bijaya Adhikari, and B Aditya Prakash. Einns: epidemiologically-informed neural networks. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pages 14453–14460, 2023.

[37] Rongye Shi, Zhaobin Mo, and Xuan Di. Physics-informed deep learning for traffic state estimation: A hybrid paradigm informed by second-order traffic models. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pages 540–547, 2021.

[38] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn high frequency functions in low dimensional domains. *Advances in neural information processing systems*, 33:7537–7547, 2020.

[39] Kejun Tang, Xiaoliang Wan, and Chao Yang. DAS-PINNs: A deep adaptive sampling method for solving high-dimensional partial differential equations. *Journal of Computational Physics*, 476:111868, 2023.

[40] Terence Tao. *Topics in random matrix theory*, volume 132. American Mathematical Soc., 2012.

[41] Maryam Toloubidokhti, Yubo Ye, Ryan Missel, Xiajun Jiang, Nilesh Kumar, Ruby Shrestha, and Linwei Wang. DATS: Difficulty-aware task sampler for meta-learning physics-informed neural networks. In *The Twelfth International Conference on Learning Representations*, 2024.

[42] Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*, volume 47. Cambridge university press, 2018.

[43] Chuwei Wang, Shanda Li, Di He, and Liwei Wang. Is L^2 physics informed loss always suitable for training physics informed neural network? *Advances in Neural Information Processing Systems*, 35:8278–8290, 2022.

[44] Sifan Wang, Shyam Sankaran, Hanwen Wang, and Paris Perdikaris. An expert’s guide to training physics-informed neural networks, 2023.

[45] Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial differential equations with physics-informed deeponets. *Science advances*, 7(40):eabi8605, 2021.

[46] Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent kernel perspective. *Journal of Computational Physics*, 449:110768, 2022.

[47] Chenxi Wu, Min Zhu, Qinyang Tan, Yadhu Kartha, and Lu Lu. A comprehensive study of non-adaptive and residual-based adaptive sampling for physics-informed neural networks. *Computer Methods in Applied Mechanics and Engineering*, 403:115671, 2023.

[48] Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics: Stochastic gradient descent exponentially favors flat minima. *arXiv preprint arXiv:2002.03495*, 2020.

[49] Shaojie Zeng, Zong Zhang, and Qingsong Zou. Adaptive deep neural networks methods for high-dimensional partial differential equations. *Journal of Computational Physics*, 463:111232, 2022.

[50] Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. *Journal of Computational Physics*, 394:56–81, 2019.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer **[Yes]** , **[No]** , or **[NA]** .
- **[NA]** means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "**[Yes]**" is generally preferable to "**[No]**", it is perfectly acceptable to answer "**[No]**" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "**[No]**" or "**[NA]**" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer **[Yes]** to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- **Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist”**,
- **Keep the checklist subsection headings, questions/answers and guidelines below.**
- **Do not modify the questions and only use the provided macros for your answers.**

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope?

Answer: **[Yes]**

Justification: The abstract clearly states the main motivation, the proposed Langevin dynamics-based sampling method, and its theoretical and empirical benefits. These claims are fully supported and expanded upon in the main body of the paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: **[Yes]**

Justification: The paper acknowledges that Langevin sampling can introduce computational complexity, especially in high-dimensional settings. To address this, we applied practical acceleration techniques and verified their effectiveness (Appendix D, I), while also noting in the conclusion that future work may develop more advanced variants to improve efficiency and relative L^2 performance beyond the foundational Langevin dynamics used here.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[Yes\]](#)

Justification: All theoretical results are stated with explicit assumptions and are accompanied by complete proofs in the appendix B and C. We also provide empirical validation for key assumptions through dedicated experiments in appendix A.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: **[Yes]**

Justification: We provide all the information to reproduce the main and appendix results in Algorithm 1, Experiments, and Appendix G sections.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: **[Yes]**

Justification: We provide all the PDE settings and instructions for implementing the main results in appendix G section. We also uploaded anonymized zip files including training and evaluation codes.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.

- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [\[Yes\]](#)

Justification: All experimental settings—including learning rates, optimizers, hyperparameters, and architectural details—are provided prior to the experiments section, with additional PDE-specific configurations summarized in Appendix G.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [\[Yes\]](#)

Justification: We report standard deviations for key results in the main tables and provide box plots based on five random seeds to capture performance variability. For certain ablation studies (e.g., Figure 3), only mean values are presented to improve visual clarity, as the variance was not deemed critical for interpreting the observed trends.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [\[Yes\]](#)

Justification: Appendix I specifies the hardware setup, including GPU model and memory, and reports additional experiments measuring computational efficiency across different settings.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [\[Yes\]](#)

Justification: We do not have any violations to the Code of Ethics

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [\[Yes\]](#)

Justification: The work is foundational and does not involve deployment, but its improved PDE-solving robustness may benefit scientific modeling in physics or engineering domains.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.

- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not involve the release of pretrained models, sensitive datasets, or tools with a high risk of misuse, and thus no safeguards are necessary.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All external assets, including baseline implementations and benchmark datasets, are properly cited with source papers. Their usage complies with the respective open-source licenses such as MIT or CC-BY.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We provide structured templates for the details of implementing our algorithms. All authors consent to provide documentations.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. **Crowdsourcing and research with human subjects**

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any human subjects or crowdsourcing in data collection or evaluation.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. **Institutional review board (IRB) approvals or equivalent for research with human subjects**

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve human subjects, crowdsourcing, or any study that requires IRB approval.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. **Declaration of LLM usage**

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: An LLM was only used for writing and editing support; it was not involved in any part of the method development or scientific contributions.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

Appendix

A Empirical Validation of Assumptions

By definition, the residual \mathcal{R}_θ involves transforming the neural network output f_θ through an operator within a certain function space. This implies that the features of the function, resulting from the neural network output combined with an additional operator, are not explicitly defined. Consequently, we extract the feature vector of the resulting function through local feature vector estimation based on the linearization of the residual function. Before delving into the main discussion, we first explain the logic behind how the feature vector ϕ is inferred.

A.1 Local Approximation of the Feature Vector ϕ

Let $\mathcal{R}_\theta(\mathbf{x}) = \frac{\partial}{\partial t} f_\theta(\mathbf{x}) + \mathcal{N}_x[f_\theta](\mathbf{x})$ represent $[g(f_\theta)](\mathbf{x})$. To validate the assumption that a suitable linearization exists, our goal is to derive a proper linear approximation of $[g(f_\theta)](\mathbf{x})$ at a specific point $\mathbf{x} \in \Omega = \mathcal{X} \times [0, T]$, given a specific function f_θ . In this process, we will utilize a Taylor expansion for $[g(f_\theta)](\mathbf{x})$. It is important to note that since $g(f_\theta)$ represents the behavior in the function space, understanding how g responds to small perturbations in f_θ is crucial. This analysis employs the Fréchet derivative.

To summarize briefly, $g(f_{\theta+\Delta\theta}) \approx g(f_\theta) + D_g(f_\theta)(f_{\theta+\Delta\theta} - f_\theta)$, which implies that the result can be linearized around a baseline function f_θ where $D_g(f_\theta) = \lim_{\Delta\theta \rightarrow 0} \frac{\|g(f_{\theta+\Delta\theta}) - g(f_\theta)\|}{\|\Delta\theta\|}$. Since our focus is on the linearization of $[g(f_\theta)](\mathbf{x})$, it is essential to ensure that $f_{\theta+\Delta\theta}$ is a function close to f_θ within the function space. To achieve this, small noise perturbations $\Delta\theta$ are added to the neural network f_θ . In conclusion, to approximate the value at a specific point \mathbf{x} , we proceed as follows:

$$[g(f_{\theta+\Delta\theta})](\mathbf{x}) \approx [g(f_\theta) + D_g(f_\theta)(f_{\theta+\Delta\theta} - f_\theta)](\mathbf{x}) \quad (\text{A.1})$$

$$= [g(f_\theta)](\mathbf{x}) + [D_g(f_\theta)(f_{\theta+\Delta\theta} - f_\theta)](\mathbf{x}) \quad (\text{A.2})$$

$$= [g(f_\theta)](\mathbf{x}) + [D_g(f_\theta)](\mathbf{x})(f_{\theta+\Delta\theta}(\mathbf{x}) - f_\theta(\mathbf{x})). \quad (\text{A.3})$$

Here, if f_θ is assumed to be a well-trained PINN model and perturbation $\Delta\theta$ is sufficiently small, we can readily infer the following for the first term:

$$[g(f_\theta)](\mathbf{x}) \approx 0, \quad \forall \mathbf{x} \in \Omega.$$

Consequently, the linear approximation of the function $[g(f_{\theta+\Delta\theta})](\mathbf{x})$ can be expressed using the Fréchet derivative. The aspect that conflicts with our assumption is that, in this context, the Fréchet derivative can act as a function dependent on \mathbf{x} . Therefore, we refer to this as a local approximation.

Approximation of Fréchet derivative. According to the problem formulation of PINN, g is an operator that takes the function f as input and generates new values through partial derivatives such as $\partial_t f$, $\partial_x f$, $\partial_{tt} f$, $\partial_{tx} f$, and their combinations. Thus, we can assume $g(f) = G(f, \partial_t f, \partial_x f, \partial_{tt} f, \partial_{tx} f, \dots)$. Here, G is a multivariate function that combines the derivative terms. Next, considering a scenario where a slight perturbation $\Delta\theta$ is applied to f_θ , the Fréchet derivative can be approximated as follows:

$$D_g(f_{\theta+\Delta\theta})(f_{\theta+\Delta\theta} - f_\theta) \quad (\text{A.4})$$

$$\approx g(f_{\theta+\Delta\theta}) - g(f_\theta) \quad (\text{A.5})$$

$$= G(f_\theta + \Delta f_\theta, \partial_t f_\theta + \Delta \partial_t f_\theta, \partial_x f_\theta + \Delta \partial_x f_\theta, \dots) - G(f_\theta, \partial_t f_\theta, \partial_x f_\theta, \dots) \quad (\text{A.6})$$

$$\approx \frac{\partial G}{\partial \{f_\theta\}} \Delta f_\theta + \frac{\partial G}{\partial \{\partial_t f_\theta\}} \Delta \partial_t f_\theta + \frac{\partial G}{\partial \{\partial_x f_\theta\}} \Delta \partial_x f_\theta + \dots \quad (\text{A.7})$$

$$= \sum_k \frac{\partial G}{\partial \{\partial_k f_\theta\}} \Delta \partial_k f_\theta, \quad k \in \{\emptyset, t, x, tt, tx, \dots\} \quad (\text{A.8})$$

$$=: a(\theta)^\top \phi, \quad (\text{A.9})$$

where $a(\theta) = (\frac{\partial G}{\partial \{f_\theta\}}, \frac{\partial G}{\partial \{\partial_t f_\theta\}}, \frac{\partial G}{\partial \{\partial_x f_\theta\}}, \dots)$ and $\phi = (\Delta f_\theta, \Delta \partial_t f_\theta, \Delta \partial_x f_\theta, \dots)$.

Mathematical details. Here, we provide a systematic summary of the considerations underlying the validity of the employed estimation method.

1. **Reliability of the Fréchet derivative $D_g[f]$:** The existence of the Fréchet derivative requires the following sufficient conditions:

- G must be differentiable.
- f must be sufficiently differentiable with respect to x and t .

Both conditions are naturally satisfied in the context of our problem. This ensures that we can extract a vector that locally approximates the actual feature vector ϕ for each point $\mathbf{x} \in \Omega$, thereby facilitating a robust estimation process.

2. **Condition for the constancy of $D_g[f]$:** It is important to note that G is generally a function of $(f, \partial_t f, \partial_x f, \dots)$, and thus implicitly depends on \mathbf{x} . However, when the variables are not entangled with each other, the partial derivatives can exhibit constant behavior. For instance:

- In our case, $\frac{\partial G}{\partial \{\partial_t f\}}$ is always 1.
- Partial derivatives in the x -direction such as $\frac{\partial G}{\partial \{\partial_x f\}}$, $\frac{\partial G}{\partial \{\partial_{xx} f\}}$ depend on \mathcal{N}_x .

If the output of the differential operator \mathcal{N}_x entangles the partial derivatives in the x -direction (i.e., $\mathcal{N}_x[f]$ is non-linear), the assumption that a acts as a constant may weaken.

We assume that $a(\theta)$ is constant or locally linear, enabling a unified linearized form of the residual. This simplification ensures consistency across Assumption 3.1 and Propositions 3.1–3.2, and underpins our curvature analysis. We will revise the manuscript to explicitly include this structural assumption in Assumption 3.1 and ensure that its implications are consistently reflected in all related propositions.

To provide further intuition, we illustrate this within the context of two representative PDEs.

For the **convection equation**,

$$g(f) = \partial_t f + \mu \partial_x f \quad \Rightarrow \quad a(\theta) = (0, 1, \mu, 0, 0, \dots) \text{ is constant.}$$

For the **Burgers' equation**,

$$g(f) = \partial_t f + f \partial_x f - \frac{0.01}{\pi} \partial_{xx} f \quad \Rightarrow \quad a(\theta) = \left(\partial_x f_\theta, 1, f_\theta, 0, 0, 0, -\frac{0.01}{\pi}, \dots \right)$$

is θ -dependent.

Under the assumption that the neural network f_θ is sufficiently expressive and smooth with respect to θ , we can locally linearize $a(\theta)$ around a fixed θ .

When $a(\theta)$ is affine, its Jacobian

$$\mathbf{J}_\theta(a(\theta)) = \left(\frac{\partial a_i}{\partial \theta_j} \right) =: \mathbf{J}_a$$

is constant and its Hessian

$$\mathbf{H}_\theta(a(\theta)) = 0,$$

where the derivatives are defined elementwise.

A.2 Heavy-Tailed Behavior of the Norm of Feature Vectors

Initially, we visualized the histogram of the norms of the extracted feature vectors across all feasible grid points in Figure 6, i.e., the histogram of $\{\|\phi(\mathbf{x})\| : \mathbf{x} \in \Omega = \mathcal{X} \times [0, T]\}$ for models with 4, 6, 8, and 10 layers, respectively.

From the provided histograms, it is evident that for each PDE, the distribution increasingly exhibits heavy-tail behavior as the layer depth grows. This tendency is particularly emphasized in the following two aspects:

1. **Heavy-tail characteristics resembling Pareto distribution:** As the layer depth increases, the distribution's tail becomes thicker, consistent with the heavy-tail properties of the Pareto distribution. In a Pareto distribution, the tail probability follows the form $\mathbb{P}(X > x) \propto x^{-\alpha}$, decaying slowly and exhibiting a high frequency of extreme values. This is reflected in the histograms, where deeper layers show data concentrated in certain regions while displaying more frequent extreme values.

2. Increased concentration and frequency of extreme values: As the number of layers increases, the data become densely concentrated within specific ranges (represented on the y -axis as frequency), while significantly more frequent occurrences of large values (depicted on the x -axis as extreme values) are observed. This behavior suggests a progressive shift towards heavy-tail distributions.

In addition to the previously obtained histograms, we also calculated two statistical estimates—Pareto tail index and Hill estimator—based on the samples to provide a more quantitative representation.

Pareto tail index. The Pareto tail index, denoted by α , quantifies the heaviness of the tail of a distribution. For a random variable X with a heavy-tailed distribution, the tail probability follows a power-law:

$$\mathbb{P}(X > x) \sim x^{-\alpha}, \quad \text{as } x \rightarrow \infty,$$

where $\alpha > 0$ represents the tail index. Therefore, a smaller value of α corresponds to a thicker tail, indicating a slower decay of the tail probability and a higher likelihood of extreme events. Conversely, a larger value of α corresponds to a thinner tail, where the tail probability decays more rapidly and extreme events are less likely.

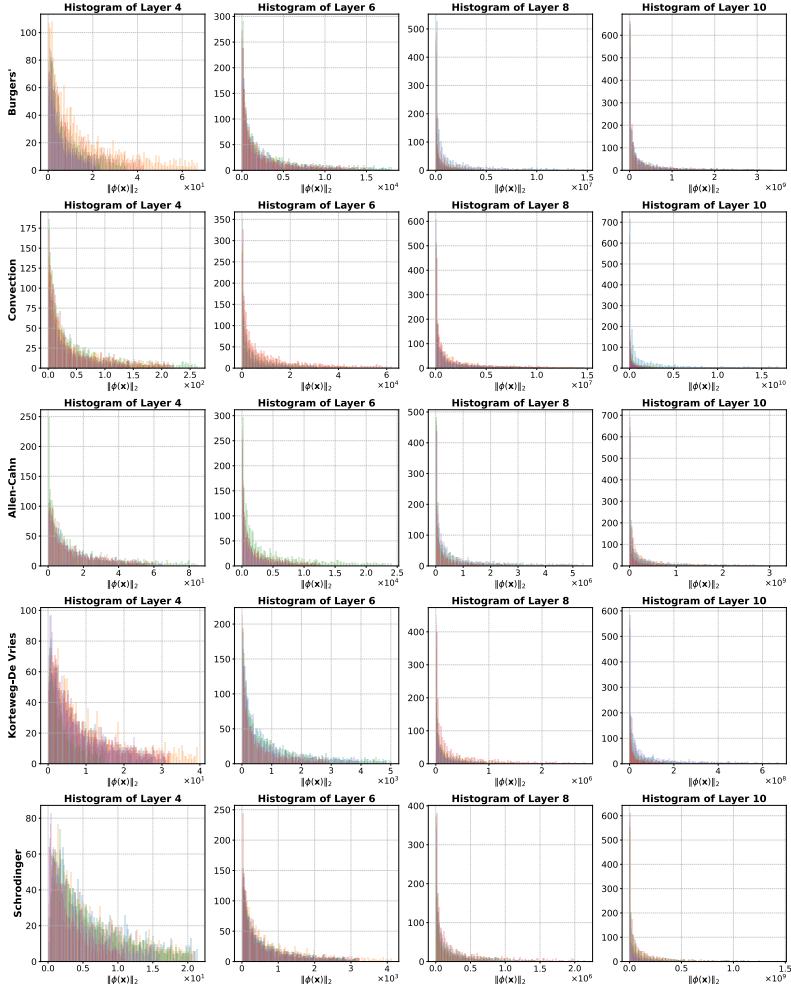


Figure 6: Each plot represents a (PDE, layer) pair, where the row corresponds to the type of PDE being solved (e.g., Burgers', Convection, Allen-Cahn, etc.), and the column indicates the model size by the number of hidden layers in the PINN (e.g., layer 4, 6, 8, 10). The histograms show the distributions of the feature vector norms $\|\phi(x)\|$ for each pair.

Hill estimator. The Hill estimator is specifically designed to estimate the inverse of the tail index, $\xi = \frac{1}{\alpha}$. Given a sample of n independent and identically distributed observations $\{X_1, X_2, \dots, X_n\}$, sorted in descending order as $X_{(1)} \geq X_{(2)} \geq \dots \geq X_{(n)}$, the Hill estimator is defined as:

$$\hat{\xi}_k = \frac{1}{k} \sum_{i=1}^k \log \frac{X_{(i)}}{X_{(k+1)}},$$

where k is the number of upper order statistics used for the estimation.

Figure 7 shows box plots of estimates across random seeds for various PDEs. The Pareto tail index decreases with depth, indicating heavier tails and a higher likelihood of extreme events. Across all PDEs, the index drops consistently from layer 4 to 10 and remains well below the heavy-tail threshold of 2. Even with fewer layers and 1,000 collocation points, feature norms display clear heavy-tailed behavior. The Hill estimator, as the inverse measure, increases with depth and exceeds the 0.5 threshold, further confirming the trend.

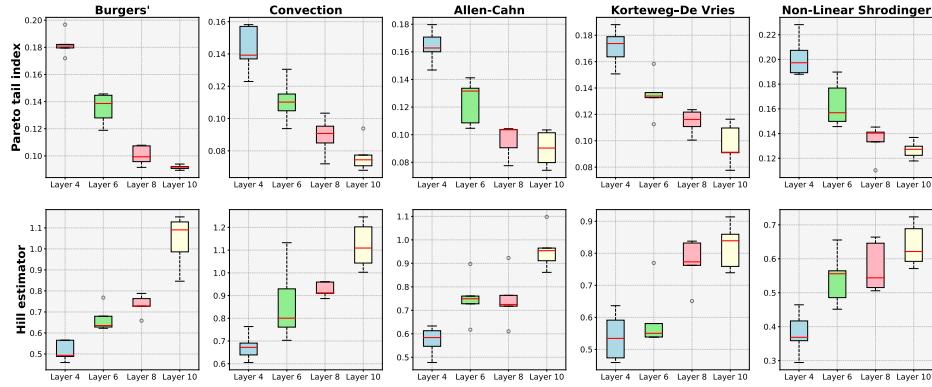


Figure 7: Two statistical estimates of the norms of the feature vectors.

A.3 Emerging Disparities with Increasing Model Complexity

In the previous subsection, we conducted an empirical analysis of the distributional characteristics of feature vector norms. In this subsection, we aim to validate the hypothesis of the norm's emerging disparities with increasing model complexity (Assumption 3.1.3). For clarity, this relation can be expressed mathematically as $(\max_{\mathbf{x} \in \mathcal{P}} \|\phi(\mathbf{x})\|)^2 - \lambda_{\max}(\Sigma) \gg (\max_{\mathbf{x} \in \mathcal{P}} \|\phi(\mathbf{x})\|)^2 - \|\phi(\mathbf{x}^*)\|^2$, where $\mathbf{x}^* = \arg \max_{\mathbf{x} \in \Omega} |\mathcal{R}_\theta(\mathbf{x})|^2$. Here, due to the dominant scale of $\max \|\phi(\mathbf{x})\|$, we transformed the values into a logarithmic scale to investigate the relationship between λ_{\max} and $\|\phi(\mathbf{x}^*)\|$.

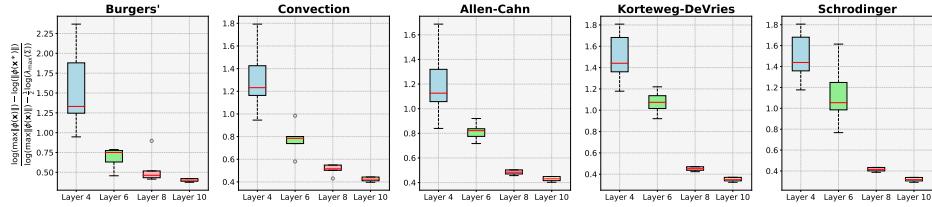


Figure 8: Disparity comparison of $\lambda_{\max}(\Sigma)$ and $\phi(\mathbf{x}^*)$ with respect to $\max \|\phi(\mathbf{x})\|$.

The Figure 8 illustrates the behavior of a logarithmic metric for various PDEs as the layer count increases. The x-axis represents the number of layers, shown as 4, 6, 8, and 10, while the y-axis represents a log-based value, denoted as $\frac{\log(\max \|\phi(\mathbf{x})\|) - \log \|\phi(\mathbf{x}^*)\|}{\log(\max \|\phi(\mathbf{x})\|) - \frac{1}{2} \log \lambda_{\max}(\Sigma)}$, which captures a ratio involving maximum values and scaled terms. Across all PDEs, the y-axis value decreases monotonically as the number of layers increases. This consistent decline in the log-metric across all PDEs suggests that as the layer count grows, the denominator in the ratio scales disproportionately compared to the numerator. This behavior indicates that the underlying system dynamics or representation becomes increasingly dominated by the factors represented in the denominator.

B Learning Rate Upper Bound Varying β

For the sake of simplicity, we will consider the situation at iteration l . Hence, in the forthcoming proof, we will omit the upper index related to iteration. i.e., denote w_n^l as w_n . Under the assumption that the neural network f_θ is sufficiently expressive and smooth with respect to θ , we can locally linearize $a(\theta)$ around a fixed θ .

By the Assumption 3.1, when $a(\theta)$ is affine, its Jacobian $\mathbf{J}_\theta(a(\theta)) = \left(\frac{\partial a_i}{\partial \theta_j} \right) =: \mathbf{J}_a$ is constant and its Hessian $\mathbf{H}_\theta(a(\theta)) = 0$, where the derivatives are defined elementwise.

We consider the weighted loss

$$\mathcal{L}(\theta) = \sum_{n=1}^N w_n |a^\top \phi_n|^2, \quad a := a(\theta), \phi_n := \phi(\mathbf{x}_n). \quad (\text{B.1})$$

Then the Hessian is

$$\mathbf{H}_\theta \mathcal{L} = 2 \sum_{n=1}^N w_n \left[(\mathbf{J}_a^\top \phi_n) (\mathbf{J}_a^\top \phi_n)^\top + (a^\top \phi_n) \sum_{i=1}^D \phi_{n,i} H_\theta(a_i) \right]. \quad (\text{B.2})$$

If $a = a(\theta)$ is linear, the second term vanishes, and we obtain

$$\mathbf{H}_\theta \mathcal{L} = 2 \mathbf{J}_a^\top \left(\sum_{n=1}^N w_n \phi_n \phi_n^\top \right) \mathbf{J}_a. \quad (\text{B.3})$$

B.1 Proof of Proposition 3.1

Proof. When the sampling concentration coefficient β is sufficiently large, the weights w_n are approximately uniform ($w_n \approx \frac{1}{N}$). Thus, the Hessian matrix \mathbf{H}_θ of the loss function with respect to θ can be approximated by:

$$\mathbf{H}_\theta(\mathcal{L}) = \mathbf{H}_\theta \left(\sum_{n=1}^N w_n |\mathcal{R}_\theta(\mathbf{x}_n)|^2 \right) \approx \mathbf{H}_\theta \left(\frac{1}{N} \sum_{n=1}^N |\mathcal{R}_\theta(\mathbf{x}_n)|^2 \right). \quad (\text{B.4})$$

Since $\mathcal{R}_\theta(\mathbf{x}_n) = a^\top \phi_n$ and $\mathbf{H}_\theta(|a^\top \phi_n|^2) = 2 \mathbf{J}_a^\top \left(\sum_{n=1}^N w_n \phi_n \phi_n^\top \right) \mathbf{J}_a$, the Hessian of \mathcal{L} satisfies:

$$\mathbf{H}_\theta(\mathcal{L}) \approx \frac{1}{N} \sum_{n=1}^N \mathbf{H}_\theta(|a^\top \phi_n|^2) = \frac{2}{N} \sum_{n=1}^N \mathbf{J}_a^\top \phi_n \phi_n^\top \mathbf{J}_a. \quad (\text{B.5})$$

This matrix approximates the product of the Jacobian and the sample covariance matrix of the feature vector $\phi(\mathbf{x})$. Therefore, for sufficiently large N , the maximum eigenvalue of the Hessian can be approximated as $2\lambda_{\max}(\Sigma)$. \square

B.2 Proof of Proposition 3.2

Proof. When the sampling concentration coefficient β is sufficiently small, for the sample \mathbf{x}^* with the largest residual (i.e., $\mathbf{x}^* = \arg \max_{\mathbf{x} \in \mathcal{P}} |\mathcal{R}_\theta(\mathbf{x})|^2$), we can consider all other weights to be zero except for \mathbf{x}^* . Therefore, the Hessian matrix of the loss function can be expressed as follows:

$$\mathbf{H}_\theta(\mathcal{L}) = \mathbf{H}_\theta \left(\sum_{n=1}^N w_n |\mathcal{R}_\theta(\mathbf{x}_n)|^2 \right) \approx \mathbf{H}_\theta(|\mathcal{R}_\theta(\mathbf{x}^*)|^2). \quad (\text{B.6})$$

The Hessian of the loss function can be expressed as $2 \mathbf{J}_a^\top \phi(\mathbf{x}^*) \phi(\mathbf{x}^*)^\top \mathbf{J}_a$. Therefore, in a similar manner, if we aim to compute λ_{\max} here, we may consider the eigenvalue equation $Av = \lambda v$. Assuming \mathbf{J}_a is independent of the dimension D , let $A = 2\phi(\mathbf{x})\phi(\mathbf{x})^\top$ and $v = \phi(\mathbf{x})$. It follows that $\phi(\mathbf{x})$ is an eigenvector of A , with the corresponding eigenvalue given by $2|\phi(\mathbf{x}^*)|^2$. Since A is a rank-1 matrix, this eigenvalue is uniquely determined. \square

B.3 Proof of Theorem 3.1

Proof. Assume that the feature norm $\|\phi(\mathbf{x})\|$ follows a heavy-tailed distribution with tail index $\alpha > 2$, and that the number of samples N satisfies $N \asymp D$.

Step 1 (Low-temperature regime). When the loss is dominated by one or a few extreme samples, the empirical Hessian satisfies

$$\mathbf{H}_\theta \mathcal{L} \approx 2w_{\max} \mathbf{J}_a^\top \phi_{\max} \phi_{\max}^\top \mathbf{J}_a, \quad \phi_{\max} = \max_{1 \leq n \leq N} \|\phi(\mathbf{x}_n)\|. \quad (\text{B.7})$$

By extreme value theory, the maximum feature norm scales as

$$\phi_{\max} \asymp N^{1/\alpha} \asymp D^{1/\alpha}, \quad (\text{B.8})$$

hence

$$\phi_{\max}^2 \asymp D^{2/\alpha}. \quad (\text{B.9})$$

Step 2 (Uniform sampling regime). In contrast, under uniform sampling without dominance by extremes, we have

$$\mathbf{H}_\theta \mathcal{L} \approx 2 \mathbf{J}_a^\top \Sigma \mathbf{J}_a, \quad \Sigma = \mathbb{E}[\phi(\mathbf{x})\phi(\mathbf{x})^\top], \quad (\text{B.10})$$

where Σ is the population covariance matrix of features.

Step 3 (Scaling of covariance eigenvalues). For $\alpha > 2$, Σ is finite, and in a normalized isotropic setting $\lambda_{\max}(\Sigma) = O(1)$. Considering instead the sample covariance

$$\Phi_N = \frac{1}{N} \sum_{n=1}^N \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^\top, \quad (\text{B.11})$$

results from random matrix theory for $2 < \alpha < 4$ imply

$$\lambda_{\max}(\Phi_N) \asymp \frac{\phi_{\max}^2}{N} \asymp N^{2/\alpha-1} \asymp D^{2/\alpha-1}. \quad (\text{B.12})$$

Step 4 (Comparison). With $N \asymp D$, we obtain

$$\phi_{\max}^2 \asymp D^{2/\alpha} \quad \text{and} \quad \lambda_{\max}(\Phi_N) \asymp D^{2/\alpha-1}. \quad (\text{B.13})$$

Therefore,

$$\frac{\phi_{\max}^2}{\lambda_{\max}(\Phi_N)} \asymp D \rightarrow \infty \quad \text{as} \quad D \rightarrow \infty, \quad (\text{B.14})$$

which shows that $\phi_{\max}^2 \gg \lambda_{\max}(\Phi_N)$ for large D . \square

Finally, combining this fact with Assumption 3.3.1, which states $\|\phi(\mathbf{x}^*)\| \approx \phi_{\max}$, where $\mathbf{x}^* = \arg \max_{\mathbf{x} \in \mathcal{P}} |\mathcal{R}_\theta(\mathbf{x})|^2$, we can conclude the proof.

C Stationary distribution and Stability of Langevin Dynamics

C.1 Proof of Theorem 4.1

Proof. Starting from the discretized Langevin dynamics:

$$\mathbf{x}^{l+1} = \mathbf{x}^l + \frac{\tau}{2} \nabla_{\mathbf{x}} |\mathcal{R}_\theta(\mathbf{x}^l)|^2 + \beta \sqrt{\tau} \mathbf{z}^l, \quad z^l \sim \mathcal{N}(\mathbf{z}^l; \mathbf{0}, \mathbf{I}). \quad (\text{C.1})$$

We consider the continuous-time Langevin dynamics as the step size $\tau \rightarrow 0$.

$$d\mathbf{x}_s = \frac{1}{2} \nabla_{\mathbf{x}} |\mathcal{R}_\theta(\mathbf{x}_s)|^2 ds + \beta dB_s, \quad (\text{C.2})$$

where B_s denotes standard Brownian motion in \mathbb{R}^d and $\beta > 0$ is the diffusion coefficient. We assume the drift $\nabla_{\mathbf{x}} |\mathcal{R}_\theta(\mathbf{x})|^2$ is locally Lipschitz and satisfies a linear growth condition, ensuring the well-posedness of (C.2).

Step 1: Fokker–Planck equation. Let $p_s(\mathbf{x})$ denote the probability density of \mathbf{x}_s . The Fokker–Planck equation corresponding to (C.2) is

$$\frac{\partial p_s(\mathbf{x})}{\partial s} = -\nabla_{\mathbf{x}} \cdot \left(\frac{1}{2} \nabla_{\mathbf{x}} |\mathcal{R}_\theta(\mathbf{x})|^2 p_s(\mathbf{x}) \right) + \frac{\beta^2}{2} \Delta_{\mathbf{x}} p_s(\mathbf{x}), \quad (\text{C.3})$$

where $\Delta_{\mathbf{x}}$ denotes the Laplacian.

Step 2: Stationary equation. At stationarity, $\partial_s p_s \equiv 0$, so (C.3) becomes

$$0 = -\nabla_{\mathbf{x}} \cdot \left(\frac{1}{2} \nabla_{\mathbf{x}} |\mathcal{R}_\theta(\mathbf{x})|^2 p_\infty(\mathbf{x}) \right) + \frac{\beta^2}{2} \Delta_{\mathbf{x}} p_\infty(\mathbf{x}), \quad (\text{C.4})$$

where p_∞ is the stationary density.

Step 3: Candidate Gibbs-type solution. We claim that

$$p_\infty(\mathbf{x}) = \frac{1}{Z} \exp \left(\frac{|\mathcal{R}_\theta(\mathbf{x})|^2}{\beta^2} \right), \quad (\text{C.5})$$

where Z is the normalizing constant, solves (C.4).

Step 4: Verification. Differentiating (C.5):

$$\nabla_{\mathbf{x}} p_\infty(\mathbf{x}) = \frac{1}{\beta^2} \nabla_{\mathbf{x}} |\mathcal{R}_\theta(\mathbf{x})|^2 p_\infty(\mathbf{x}), \quad (\text{C.6})$$

$$\Delta_{\mathbf{x}} p_\infty(\mathbf{x}) = \left(\frac{1}{\beta^2} \Delta_{\mathbf{x}} |\mathcal{R}_\theta(\mathbf{x})|^2 + \frac{1}{\beta^4} \|\nabla_{\mathbf{x}} |\mathcal{R}_\theta(\mathbf{x})|^2\|^2 \right) p_\infty(\mathbf{x}). \quad (\text{C.7})$$

Substituting (C.6) and (C.7) into (C.4) gives

$$\begin{aligned} & -\frac{1}{2} [\Delta_{\mathbf{x}} |\mathcal{R}_\theta|^2 p_\infty + \nabla_{\mathbf{x}} |\mathcal{R}_\theta|^2 \cdot \nabla_{\mathbf{x}} p_\infty] + \frac{\beta^2}{2} \left[\frac{1}{\beta^2} \Delta_{\mathbf{x}} |\mathcal{R}_\theta|^2 + \frac{1}{\beta^4} \|\nabla_{\mathbf{x}} |\mathcal{R}_\theta|^2\|^2 \right] p_\infty \\ & = -\frac{1}{2} \left[\Delta_{\mathbf{x}} |\mathcal{R}_\theta|^2 + \frac{1}{\beta^2} \|\nabla_{\mathbf{x}} |\mathcal{R}_\theta|^2\|^2 \right] p_\infty + \frac{1}{2} \left[\Delta_{\mathbf{x}} |\mathcal{R}_\theta|^2 + \frac{1}{\beta^2} \|\nabla_{\mathbf{x}} |\mathcal{R}_\theta|^2\|^2 \right] p_\infty \\ & = 0. \end{aligned}$$

Thus p_∞ satisfies (C.4) exactly.

Step 5: Conclusion. By uniqueness of the stationary solution under the given assumptions, the stationary density of (C.2) is given by (C.5). \square

C.2 Proof of Theorem 4.2

Proof. Rather than presenting a formal proof, we illustrate the underlying intuition using a simple toy example.

Preference for flat high-residual regions under Langevin dynamics. For a fixed neural network parameter θ , we denote the residual as $\mathcal{R}_\theta(\mathbf{x}) := \mathcal{R}(\mathbf{x})$ and $\mathbf{x} \in \mathbb{R}$ for notational simplicity.

We analyze the residual function:

$$\mathcal{R}(\mathbf{x}) = -a(\mathbf{x}^2 - \theta^2)^2 - \epsilon \exp\left(-\frac{(\mathbf{x} - \theta)^2}{2\sigma^2}\right), \quad (\text{C.8})$$

which has two local maxima: a broader maximum at $\mathbf{x}_{\text{flat}} = -\theta$ and a narrower, sharper maximum at $\mathbf{x}_{\text{sharp}} = \theta$ due to the additional Gaussian term.

We consider Langevin sampling governed by the stationary distribution:

$$\pi(\mathbf{x}) \propto \exp(\rho \mathcal{R}(\mathbf{x})), \quad (\text{C.9})$$

where $\rho > 0$ is the inverse temperature. This distribution favors regions with higher residual values.

To compare the probability of sampling near each local maximum, we approximate the local probability mass by Laplace's method. Around each maximum \mathbf{x}^* , we expand the residual as:

$$\mathcal{R}(\mathbf{x}) \approx \mathcal{R}(\mathbf{x}^*) + \frac{1}{2}\mathcal{R}''(\mathbf{x}^*)(\mathbf{x} - \mathbf{x}^*)^2, \quad (\text{C.10})$$

where $\mathcal{R}''(\mathbf{x}^*) < 0$ and the local curvature is defined as $\mathbf{H} = -\mathcal{R}''(\mathbf{x}^*) > 0$.

The probability mass near a local maximum \mathbf{x}^* is approximated by:

$$\int_{\text{near } \mathbf{x}^*} \exp(\rho \mathcal{R}(\mathbf{x})) d\mathbf{x} \approx \exp(\rho \mathcal{R}(\mathbf{x}^*)) \cdot \sqrt{\frac{2\pi}{\rho \mathbf{H}}}. \quad (\text{C.11})$$

Let:

$$\mathbf{H}_{\text{flat}} = -\mathcal{R}''(\mathbf{x}_{\text{flat}}) = 8a\theta^2, \quad (\text{C.12})$$

$$\mathbf{H}_{\text{sharp}} = -\mathcal{R}''(\mathbf{x}_{\text{sharp}}) = 8a\theta^2 + \frac{\epsilon}{\sigma^2}, \quad (\text{C.13})$$

so that $\mathbf{H}_{\text{flat}} \ll \mathbf{H}_{\text{sharp}}$ for small σ .

Assuming the residual values at both peaks are equal, i.e., $\mathcal{R}(\mathbf{x}_{\text{flat}}) = \mathcal{R}(\mathbf{x}_{\text{sharp}})$, the ratio of local probability masses becomes:

$$\frac{\mathbb{P}(\text{near } \mathbf{x}_{\text{flat}})}{\mathbb{P}(\text{near } \mathbf{x}_{\text{sharp}})} \approx \sqrt{\frac{\mathbf{H}_{\text{sharp}}}{\mathbf{H}_{\text{flat}}}}. \quad (\text{C.14})$$

After normalization, the respective probabilities are:

$$\mathbb{P}(\text{near } \mathbf{x}_{\text{flat}}) = \frac{1/\sqrt{\mathbf{H}_{\text{flat}}}}{1/\sqrt{\mathbf{H}_{\text{flat}}} + 1/\sqrt{\mathbf{H}_{\text{sharp}}}} = \frac{\sqrt{\mathbf{H}_{\text{sharp}}}}{\sqrt{\mathbf{H}_{\text{flat}}} + \sqrt{\mathbf{H}_{\text{sharp}}}}, \quad (\text{C.15})$$

$$\mathbb{P}(\text{near } \mathbf{x}_{\text{sharp}}) = \frac{\sqrt{\mathbf{H}_{\text{flat}}}}{\sqrt{\mathbf{H}_{\text{flat}}} + \sqrt{\mathbf{H}_{\text{sharp}}}}. \quad (\text{C.16})$$

This analysis shows that, despite equal peak heights, Langevin dynamics assign higher probability to the broader maximum at \mathbf{x}_{flat} due to its lower curvature and larger effective volume in the residual landscape.

For example, with parameters $a = 1$, $\theta = 2$, $\epsilon = 10$, and $\sigma = 0.1$, the curvature values are $\mathbf{H}_{\text{flat}} = 32$ and $\mathbf{H}_{\text{sharp}} = 1032$, yielding a probability ratio of approximately 5.68. After normalization, we obtain:

$$\mathbb{P}(\text{near } \mathbf{x}_{\text{flat}}) \approx 0.85, \quad \mathbb{P}(\text{near } \mathbf{x}_{\text{sharp}}) \approx 0.15.$$

This quantitatively confirms that Langevin dynamics significantly prefer broader residual peaks under equal height conditions.

Gradient sensitivity induced by sharp residual regions. Residual peaks with high curvature, such as those near $\mathbf{x}_{\text{sharp}}$, induce steep gradients with respect to the model parameters due to the amplified sensitivity of \mathcal{R} to perturbations in \mathbf{x} . Formally, the chain rule

$$\frac{d}{d\theta} \mathcal{R}_\theta(\mathbf{x}) = \frac{\partial \mathcal{R}}{\partial \mathbf{x}} \cdot \frac{d\mathbf{x}}{d\theta}$$

indicates that when $\partial \mathcal{R} / \partial \mathbf{x}$ is large—as in highly localized peaks—even small variations in \mathbf{x} can result in unstable updates in θ .

Moreover, a concentration of samples around sharp residual peaks effectively sharpens the empirical loss landscape, making the optimization process highly sensitive to initialization and learning rate. In contrast, broader regions such as those around \mathbf{x}_{flat} yield smoother gradients and reduced curvature in the loss surface, enhancing the robustness of training against both gradient noise and model perturbations.

This observation highlights that the inherent sampling bias of Langevin dynamics toward flatter high-residual regions contributes not only to generalization but also to numerical stability during optimization.

□

D Sample Trajectories of LAS and Benchmark Algorithms

We visualized the collocation point trajectories during the training under various adaptive sampling algorithms. The experimental settings follow the default configurations specified in the main text, with 4 layers and the number of Langevin iterations set to $l_L = 1$. The background, shown as a heatmap using the plasma colormap, represents the solution errors, where dark purple indicates low values and bright yellow indicates high values. White points represent the collocation points aligned with solution errors to intuitively show how each algorithm works.

D.1 Random-R Sample Trajectory

The figure below represents the sample trajectory of Random-R, where different collocation points are uniformly sampled at each iteration.

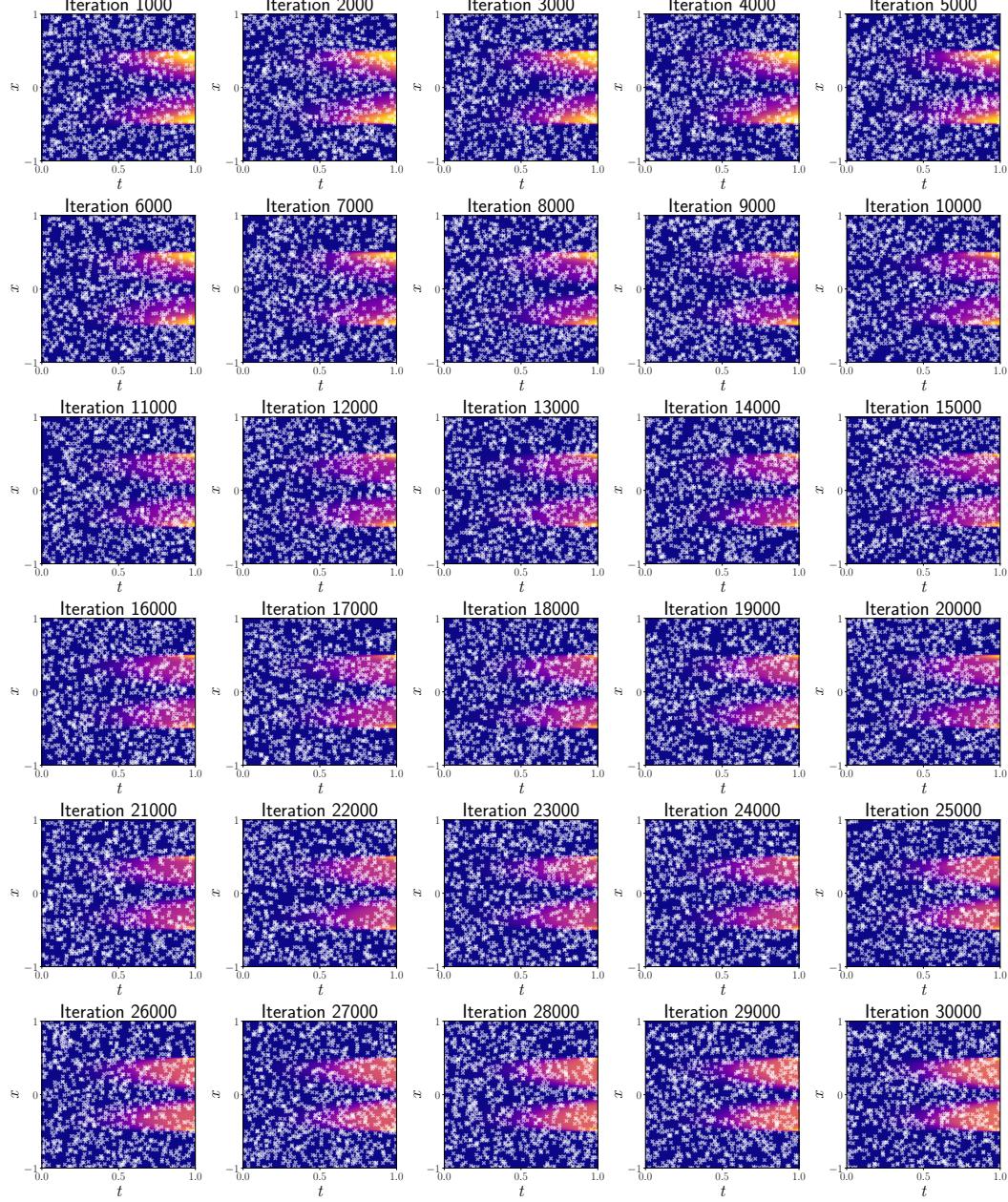


Figure 9: Random-R sample trajectory.

D.2 RAD Sample Trajectory

This figure presents the RAD sample trajectory over multiple iterations, demonstrating a relatively stable pattern of sample distribution. To ensure a fair comparison, we fixed the number of collocation points for the denser set to be N_{pde} . As iterations progress, the sample points concentrate around regions of high errors, with some diversity maintained throughout. However, despite the overall stability, the RAD sampling method exhibits a distribution that is not significantly different from the Random-R approach. The clustering becomes more pronounced in certain areas, but the overall spread and distribution of samples remain similar, suggesting that RAD does not offer a distinct advantage over random-R in terms of improving sampling diversity.

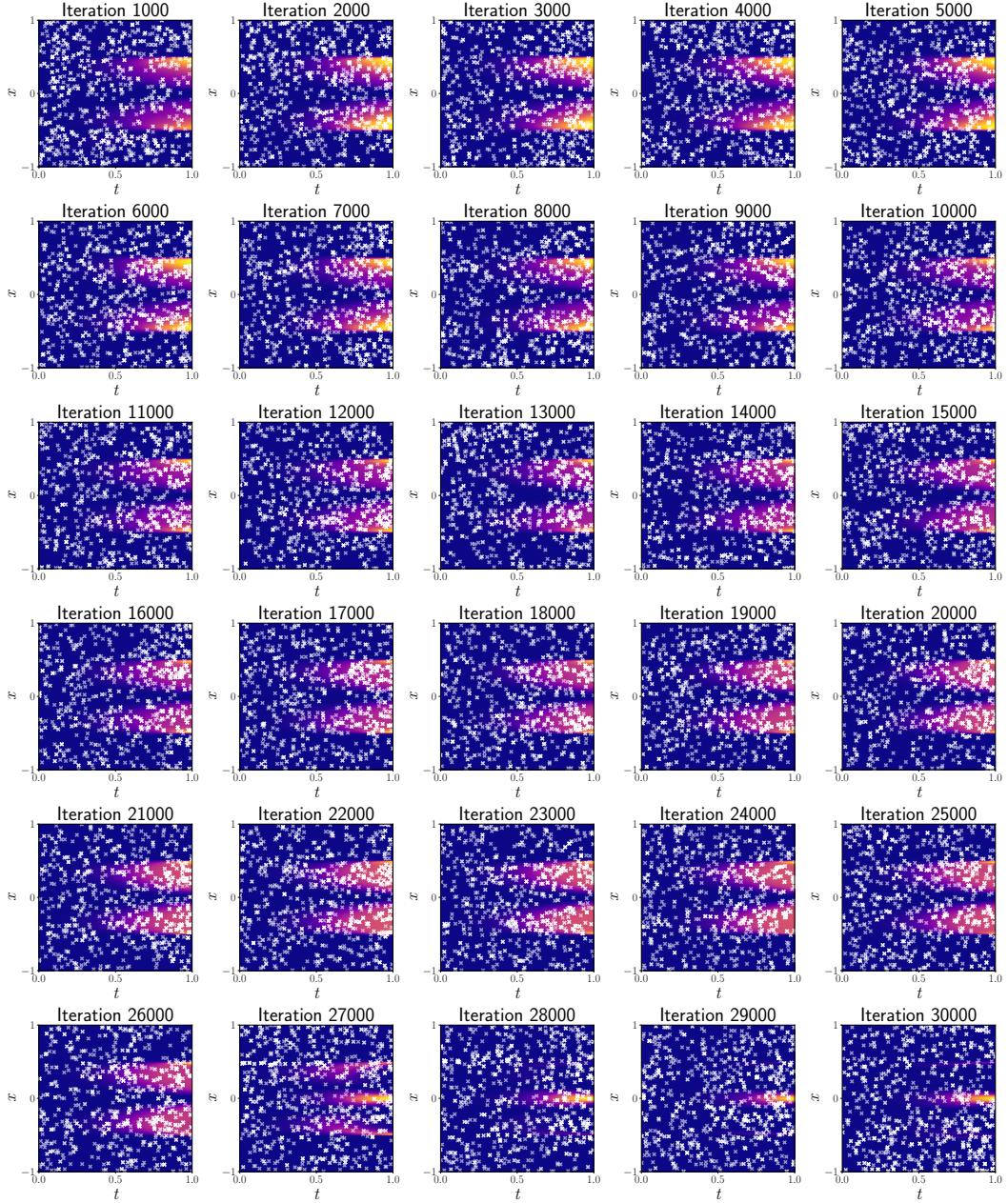


Figure 10: RAD sample trajectory.

D.3 R3 Sample Trajectory

This figure illustrates the evolution of sample trajectories in the R3 algorithm, showing a clear concentration of samples in regions with high errors as the process progresses. While early iterations exhibit some scattering, the sample points increasingly cluster around specific areas of the solution errors, leading to a lack of diversity in later stages. Furthermore, this imbalance indicates instability in the sampling strategy, as it fails to maintain a continuous, balanced shift in the sample population across the entire domain. The discontinuous change in the sample population may result in instability from the perspective of the learning process.

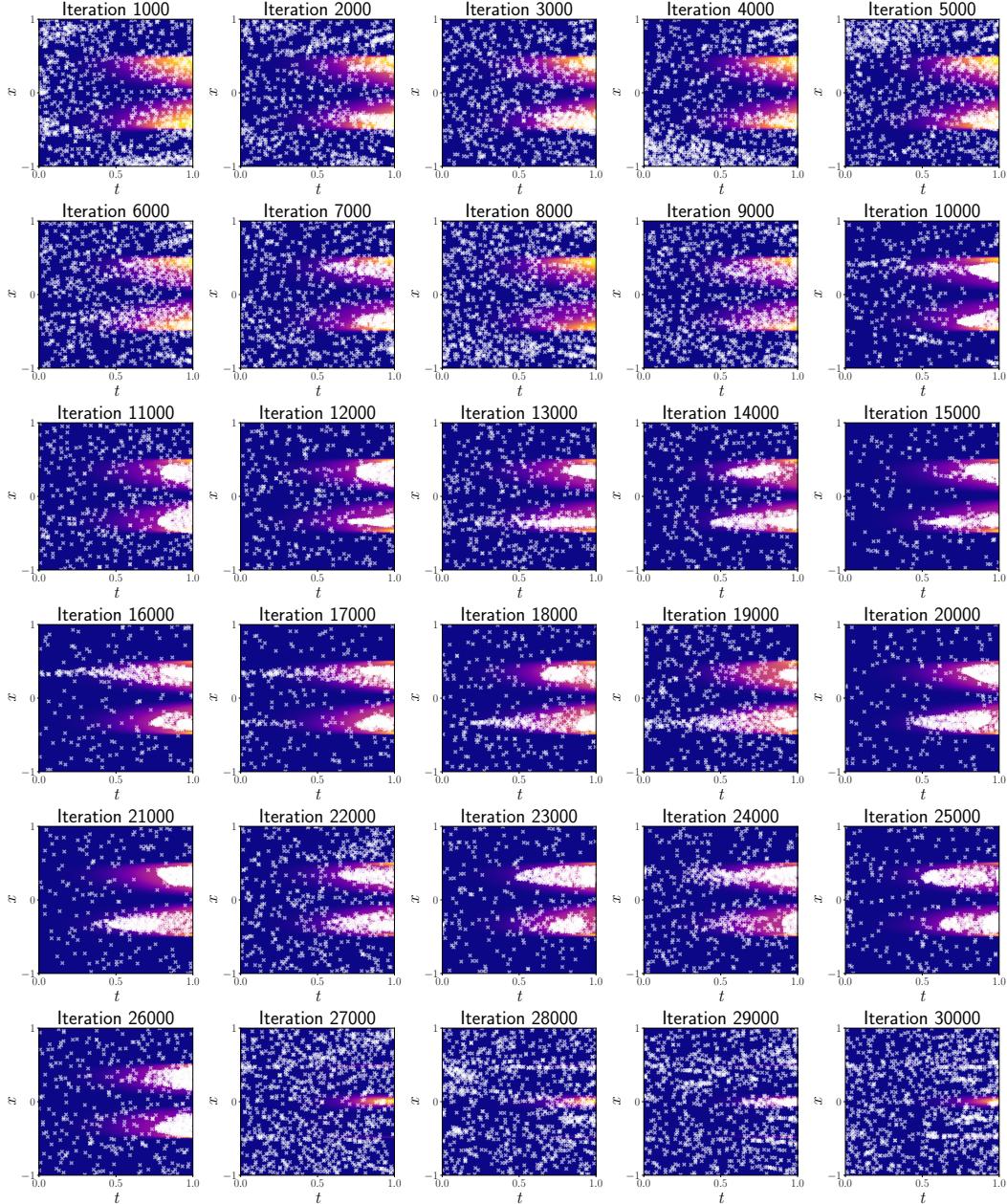


Figure 11: R3 sample trajectory.

D.4 L^∞ Sample Trajectory

This figure illustrates the evolution of sample trajectories in the L^∞ algorithm. As the number of iterations increases, the samples become overly concentrated in regions with high errors, leading to a lack of diversity across the domain, particularly in areas with lower errors. This imbalance goes against the goal of maintaining a well-distributed sample set proportional to the solution errors. While some adaptation occurs, the excessive focus on extreme errors (small β case) results in a skewed distribution, highlighting the need for more balanced and diverse sampling to improve the algorithm's performance.

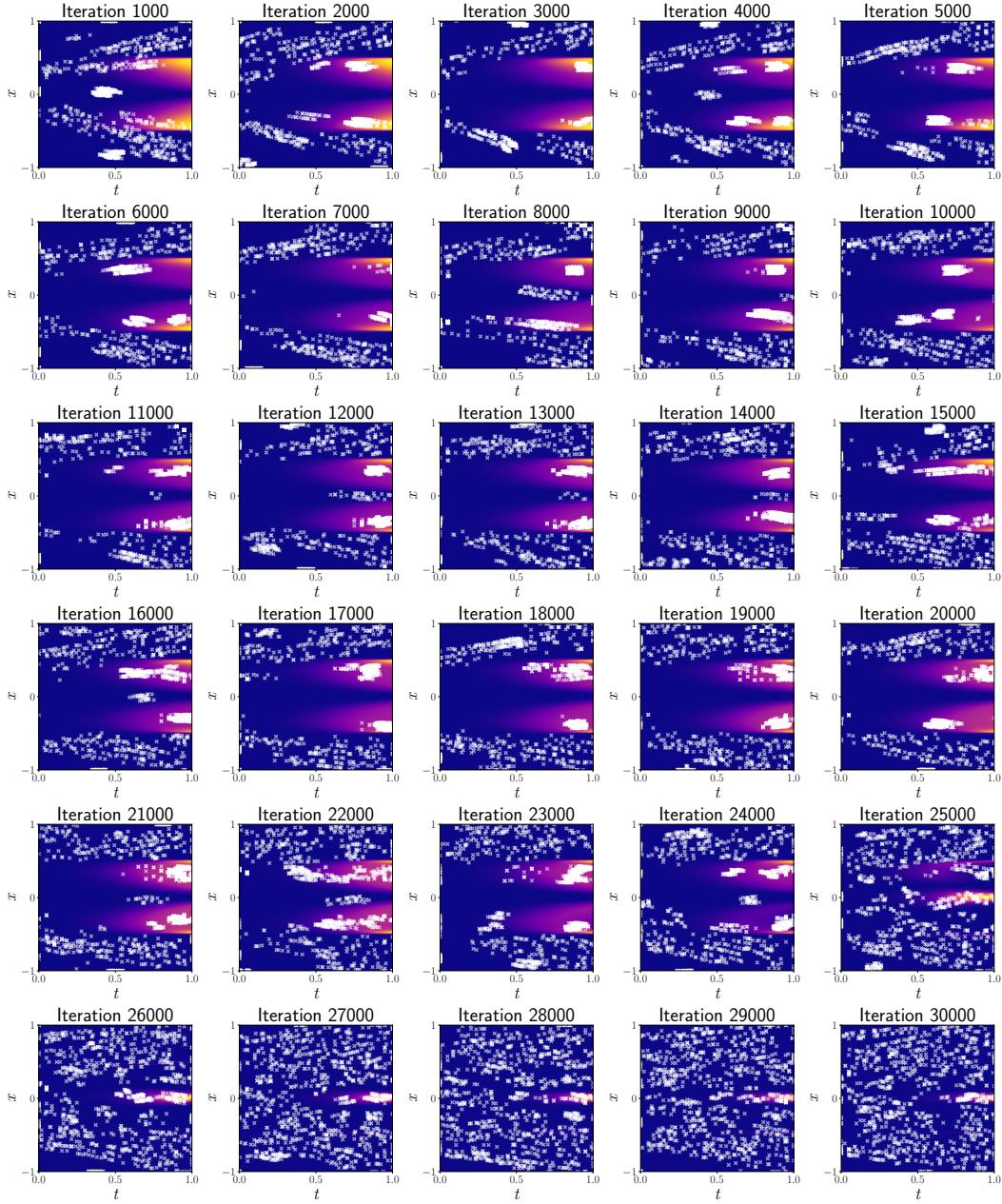


Figure 12: L^∞ sample trajectory.

D.5 LAS Sample Trajectory

This figure depicts the sample trajectory of the proposed LAS algorithm. As iterations progress, the sample points are proportionally distributed according to the solution errors, maintaining diversity across the domain. Unlike other methods, proposed LAS algorithm avoids over-concentration in regions of high errors, instead ensuring that sample points are scattered in a balanced manner. Additionally, the distribution adapts in line with the error peaks, with an appropriate portion of samples allocated based on the peak heights. This indicates that the LAS algorithm successfully addresses the key objectives of both proportionality and diversity in sample distribution, improving stability and overall performance.

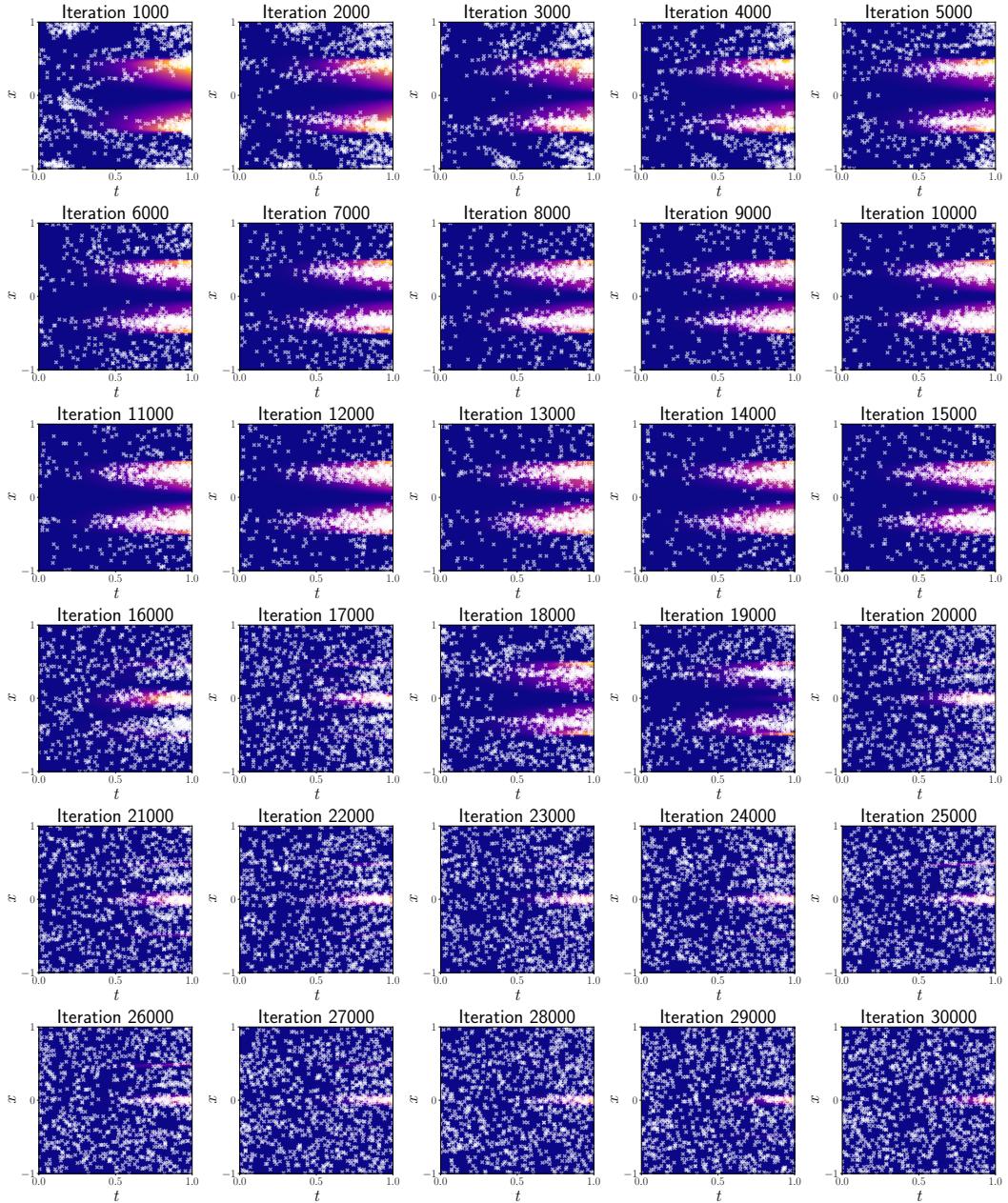


Figure 13: LAS sample trajectory.

E Relationship Between Learning Rate and Model Complexity

E.1 Learning Curve Variation with Increasing Depth

Here, we aim to visualize and interpret the learning curves for the Allen-Cahn equation observed during the training process of the models, as reported in Table 1, with detailed experimental settings provided in Section 5, varying only the depth of the neural networks.

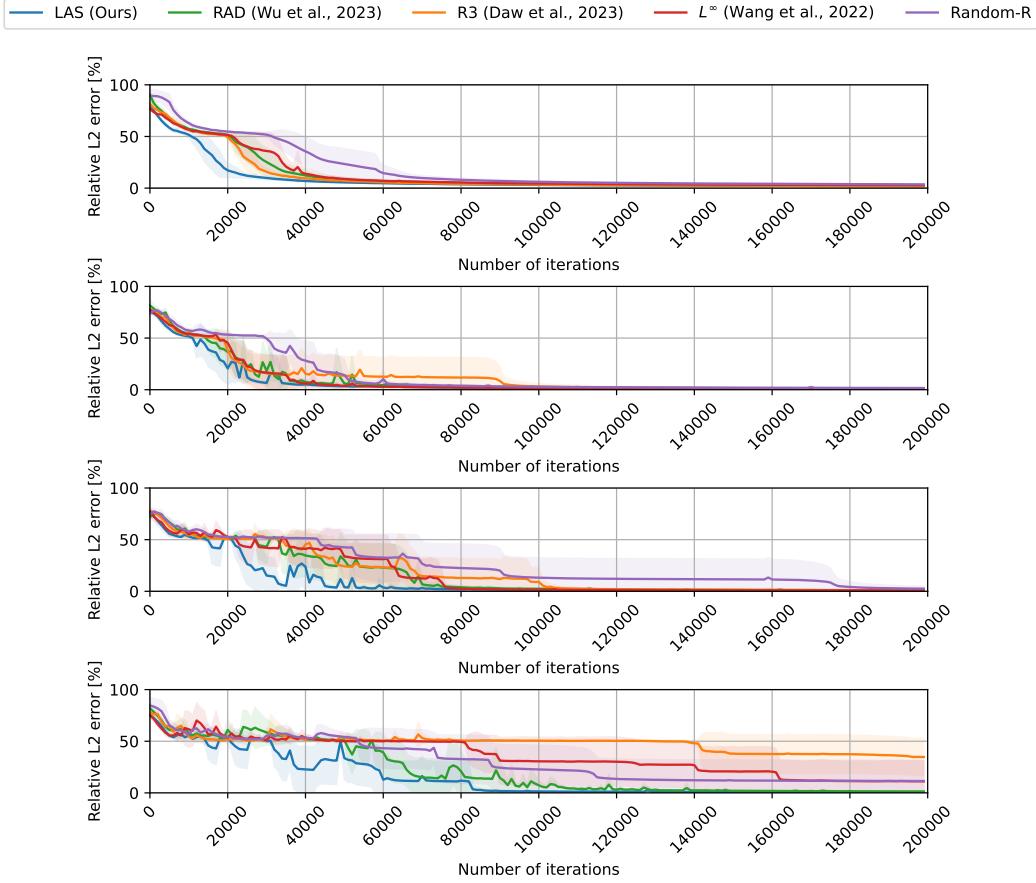


Figure 14: From top to bottom in the figure, the learning curves correspond to layers 4, 6, 8, and 10 for the Allen-Cahn equation.

Our primary observation is that most algorithms exhibit a slow learning progression until the learning rate reaches a specific value (which, of course, varies depending on the algorithm). This phenomenon appears to correlate with the degree of high residual concentration in the residual landscape of each algorithm. Specifically, the relative L^2 error in the learning curve requires more iterations to drop below a certain threshold (denoted as 50 in the figure) as the number of layers increases.

From an algorithmic perspective, most methods achieve the 50-threshold of the relative L^2 error crossing before iteration 40,000 with a 4 layer network. However, as the number of layers increases, particularly with 8 and 10 layers, the threshold-crossing iterations are significantly delayed. This delay is especially pronounced in algorithms such as R3 and L^∞ , which are highly focused on regions of extreme high residuals. This observation suggests that these algorithms are more affected by the increased complexity and residual concentration in deeper networks.

To verify whether this phenomenon depends on overall model complexity, in the following subsection, we also conducted experiments focusing on increasing the width rather than the depth of the model.

E.2 Learning Curve Variation with Increasing Width

Simple calculations show that a neural network with 8 hidden layers and 128 nodes per layer has the same number of parameters as a neural network with 4 hidden layers and a width of 203. However, comparisons based solely on parameter count are inadequate, as depth introduces issues such as gradient vanishing.

Therefore, instead of viewing width solely from the perspective of parameter count, we conducted experiments by progressively doubling the width. The results showed that, similar to depth, increasing width also led to a gradual breakdown in learning stability. Consistent with the rankings observed in depth experiments, among adaptive sampling techniques, LAS reached the relative L^2 error threshold of 50 the fastest. Interestingly, Random-R demonstrated robustness in this setting, particularly with wide neural networks.

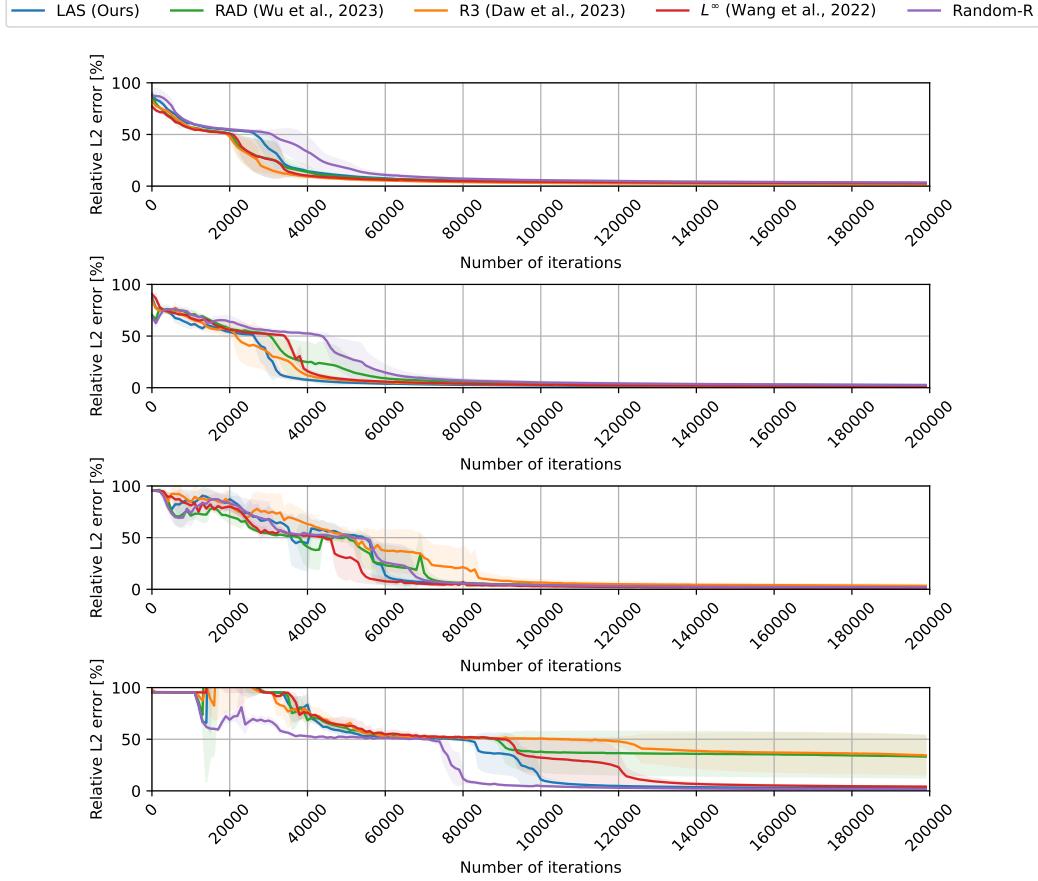


Figure 15: From top to bottom in the figure, the learning curves correspond to 128, 256, 512, and 1024 nodes per hidden layer, each with 4 layers, for the Allen-Cahn equation.

Through the experimental analyses described above, we argue that the proposed LAS demonstrates superior performance in terms of learning stability, particularly for models with high complexity.

F Supplementary Details on Experimental Setup

F.1 Details of Partial Differential Equations

Burgers': We set $(\lambda_{\text{ic}}, \lambda_{\text{bc}}, \lambda_{\text{pde}}) = (100, 1, 1)$ to solve the equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - \frac{0.01}{\pi} \frac{\partial^2 u}{\partial x^2} = 0, \quad x \in [-1, 1], \quad t \in [0, 1]; \quad (\text{F.1})$$

$$u(-1, t) = u(1, t) = 0; \quad (\text{F.2})$$

$$u(x, 0) = -\sin \pi x. \quad (\text{F.3})$$

Convection: We set $(\lambda_{\text{ic}}, \lambda_{\text{bc}}, \lambda_{\text{pde}}) = (100, 100, 1)$ to solve the equation

$$\frac{\partial u}{\partial t} + 50 \frac{\partial u}{\partial x} = 0, \quad x \in [0, 2\pi], \quad t \in [0, 1]; \quad (\text{F.4})$$

$$u(0, t) = u(2\pi, t); \quad (\text{F.5})$$

$$u(x, 0) = \sin x. \quad (\text{F.6})$$

Allen-Cahn: We set $(\lambda_{\text{ic}}, \lambda_{\text{bc}}, \lambda_{\text{pde}}) = (100, 1, 1)$ to solve the equation

$$\frac{\partial u}{\partial t} - 0.0001 \frac{\partial^2 u}{\partial x^2} - 5(u - u^3) = 0, \quad x \in [-1, 1], \quad t \in [0, 1]; \quad (\text{F.7})$$

$$u(-1, t) = u(1, t); \quad (\text{F.8})$$

$$u_x(-1, t) = u_x(1, t); \quad (\text{F.9})$$

$$u(x, 0) = x^2 \cos \pi x. \quad (\text{F.10})$$

Korteweg-De Vries: We set $(\lambda_{\text{ic}}, \lambda_{\text{pde}}, \lambda_{\text{bc}}) = (100, 1, 1)$ to solve the equation

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + 0.0025 \frac{\partial^3 u}{\partial x^3} = 0, \quad x \in [-1, 1], \quad t \in [0, 1]; \quad (\text{F.11})$$

$$u(-1, t) = u(1, t); \quad (\text{F.12})$$

$$u(x, 0) = \cos \pi x. \quad (\text{F.13})$$

Schrödinger: We set $(\lambda_{\text{ic}}, \lambda_{\text{bc}}, \lambda_{\text{pde}}) = (100, 1, 1)$ to solve the equation

$$i \frac{\partial h}{\partial t} + 0.5 \frac{\partial^2 h}{\partial x^2} + |h|^2 h = 0, \quad x \in [-5, 5], \quad t \in \left[0, \frac{\pi}{2}\right]; \quad (\text{F.14})$$

$$h(-5, t) = h(5, t); \quad (\text{F.15})$$

$$h_x(-5, t) = h_x(5, t); \quad (\text{F.16})$$

$$h(x, 0) = 2 \operatorname{sech}(x). \quad (\text{F.17})$$

Heat 2D: We set $(\lambda_{\text{ic}}, \lambda_{\text{bc}}, \lambda_{\text{pde}}) = (1, 1, 1)$ to solve the equation:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}, \quad (x, y, t) \in \Omega \times [0, T], \quad (\text{F.18})$$

$$u(x, y, 0) = h(x, y), \quad (x, y) \in \Omega, \quad (\text{F.19})$$

$$u(x, y, t) = g(x, y, t), \quad (x, y, t) \in \partial\Omega \times [0, T], \quad (\text{F.20})$$

$$h(x, y) = 3 \sin(\pi x) \sin(\pi y) + \sin(3\pi x) \sin(\pi y), \quad (\text{F.21})$$

$$g(x, y, t) = 3 \sin(\pi x) \sin(\pi y) e^{-2\pi^2 t} + \sin(3\pi x) \sin(\pi y) e^{-10\pi^2 t}, \quad (\text{F.22})$$

$$u(x, y, t) = 3 \sin(\pi x) \sin(\pi y) e^{-2\pi^2 t} + \sin(3\pi x) \sin(\pi y) e^{-10\pi^2 t}, \quad (\text{F.23})$$

$$\Omega = [0, 1]^2, \quad T = 1. \quad (\text{F.24})$$

Burgers' 2D: We set $(\lambda_{\text{ic}}, \lambda_{\text{bc}}, \lambda_{\text{pde}}) = (1, 1, 1)$ to solve the equation:

$$\partial_t u + u \partial_x u + v \partial_y u = \frac{0.05}{\pi} (\partial_{xx} u + \partial_{yy} u), \quad (x, y, t) \in \Omega \times [0, T], \quad (\text{F.25})$$

$$\partial_t v + u \partial_x v + v \partial_y v = \frac{0.05}{\pi} (\partial_{xx} v + \partial_{yy} v), \quad (x, y, t) \in \Omega \times [0, T], \quad (\text{F.26})$$

$$u(x, y, 0) = h_1(x, y), \quad (x, y) \in \Omega, \quad (\text{F.27})$$

$$v(x, y, 0) = h_2(x, y), \quad (x, y) \in \Omega, \quad (\text{F.28})$$

$$h_1(x, y) = 0.75 - \frac{0.25}{1 + \exp\left(\frac{\pi}{0.05 \cdot 32}(-4x + 4y)\right)}, \quad (\text{F.29})$$

$$h_2(x, y) = 0.75 + \frac{0.25}{1 + \exp\left(\frac{\pi}{0.05 \cdot 32}(-4x + 4y)\right)}, \quad (\text{F.30})$$

$$u(x, y, t) = g_1(x, y, t), \quad (x, y, t) \in \partial\Omega \times [0, T], \quad (\text{F.31})$$

$$u(x, y, t) = g_2(x, y, t), \quad (x, y, t) \in \partial\Omega \times [0, T], \quad (\text{F.32})$$

$$g_1(x, y, t) = 0.75 - \frac{0.25}{1 + \exp\left(\frac{\pi}{0.05 \cdot 32}(-4x + 4y - t)\right)}, \quad (\text{F.33})$$

$$g_2(x, y, t) = 0.75 + \frac{0.25}{1 + \exp\left(\frac{\pi}{0.05 \cdot 32}(-4x + 4y - t)\right)}, \quad (\text{F.34})$$

$$u(x, y, t) = 0.75 - \frac{0.25}{1 + \exp\left(\frac{\pi}{0.05 \cdot 32}(-4x + 4y - t)\right)}, \quad (\text{F.35})$$

$$v(x, y, t) = 0.75 + \frac{0.25}{1 + \exp\left(\frac{\pi}{0.05 \cdot 32}(-4x + 4y - t)\right)}, \quad (\text{F.36})$$

$$\Omega = (0, 1)^2, \quad T = 1. \quad (\text{F.37})$$

Dimension-flexible Heat: We set $(\lambda_{\text{ic}}, \lambda_{\text{bc}}, \lambda_{\text{pde}}) = (1, 1, 1)$ to solve the equation:

$$\frac{\partial u}{\partial t} - \Delta u = f(x, t), \quad (x, t) \in \Omega \times [0, T], \quad (\text{F.38})$$

$$u(x, t) = g(x, t), \quad (x, t) \in \partial\Omega \times [0, T], \quad (\text{F.39})$$

$$u(x, 0) = h(x), \quad x \in \Omega, \quad (\text{F.40})$$

$$f(x, t) = \left(\frac{\omega^2}{d} - 1\right) \cos\left(\frac{\omega}{d} \sum_{i=1}^d x_i\right) \exp(-t), \quad (\text{F.41})$$

$$g(x, t) = \cos\left(\frac{\omega}{d} \sum_{i=1}^d x_i\right) \exp(-t), \quad (\text{F.42})$$

$$h(x) = \cos\left(\frac{\omega}{d} \sum_{i=1}^d x_i\right), \quad (\text{F.43})$$

$$u(x, t) = \cos\left(\frac{\omega}{d} \sum_{i=1}^d x_i\right) \exp(-t), \quad (\text{F.44})$$

$$\Omega = (-1, 1)^d, \quad T = 1, \quad (\text{F.45})$$

$$\text{where } (\omega = 20, d = 4), \quad (\omega = 30, d = 6), \text{ and } (\omega = 40, d = 8). \quad (\text{F.46})$$

F.2 Implementation Details of Baseline Algorithms

For all PDEs, we conducted experiments by fixing the algorithms' hyperparameters to the values specified in the original baseline code. Specifically, for R3, we set number of MaxIter = 1, for Annealed R-FIPINN, we set $\epsilon_r = 0.05, \epsilon_p = 0.01, a = 0.5, b = 1, p = 0.1$, for GAS-T, we set $N_G = 20, N_a = 20, \lambda = 1$, for RAD, we set $c = k = 1$, and for L^∞ , we fixed the number of gradient steps at 20 and step size 0.05.

Equation	Solution	Number of N_{ic}	Number of N_{bc}	Number of N_{pde}	Evaluation Point
1D Burgers'	Approximated	100	100	1,000	$N_x = 256, N_t = 100$
1D Allen-Cahn	Approximated	100	100	1,000	$N_x = 512, N_t = 200$
1D KdV	Approximated	100	100	1,000	$N_x = 200, N_t = 100$
1D Schrödinger	Approximated	100	100	1,000	$N_x = 256, N_t = 200$
1D Convection	Analytic	100	100	1,000	$N_x = 512, N_t = 200$
2D Burgers'	Analytic	100	100	1,000	$N_x = 100, N_t = 20$
2D Heat	Analytic	100	100	1,000	$N_x = 100, N_t = 20$
4D DF-heat	Analytic	100	100	1,000	$N_x = 20, N_t = 20$
6D DF-heat	Analytic	250	250	1,000	$N_x = 8, N_t = 8$
8D DF-heat	Analytic	450	450	1,000	$N_x = 5, N_t = 5$

Table 2: Summary of PDE solutions and points

G Sensitivity of Adaptive Sampling Methods

G.1 Different Loss Balance Terms (λ_{ic} , λ_{bc} , λ_{pde})

Sampling methods		LAS (ours)	Random-R	RAD	R3	L^∞	Annealed R-FIPINN	GAS-T
Number of layers		8	8	8	8	8	8	8
1D Allen-Cahn	100,1,1	<u>0.77</u> \pm 0.20	2.54 \pm 2.30	0.99 \pm 0.29	0.97 \pm 0.23	0.76 \pm 0.07	-	-
	200,1,1	<u>0.89</u> \pm 0.03	1.69 \pm 0.38	1.15 \pm 0.18	10.62 \pm 19.56	0.77 \pm 0.05	-	-
	10,1,1	1.02 \pm 0.20	<u>1.07</u> \pm 0.48	1.25 \pm 0.27	75.81 \pm 32.72	86.77 \pm 7.53	-	-
	10,1,5	1.55 \pm 0.80	<u>2.06</u> \pm 0.40	2.79 \pm 0.24	65.51 \pm 18.70	98.77 \pm 0.79	-	-
4D DF-heat	1,1,1	13.20 \pm 22.52	3.21 \pm <u>1.19</u>	14.65 \pm 18.34	64.32 \pm 7.30	90.81 \pm 12.27	-	-
	100,1,1	1.72 \pm 0.23	9.73 \pm 0.44	6.64 \pm 2.72	9.53 \pm 5.27	<u>2.92</u> \pm 1.95	8.87 \pm 0.65	3.80 \pm 1.70
	200,1,1	1.82 \pm 0.42	8.87 \pm 1.67	5.72 \pm 0.42	6.50 \pm 1.19	<u>4.06</u> \pm 1.87	9.25 \pm 0.70	3.74 \pm 2.43
	10,1,1	1.79 \pm 0.20	7.98 \pm 37.59	24.98 \pm 37.59	16.08 \pm 3.25	<u>2.46</u> \pm 0.67	6.75 \pm 1.97	7.60 \pm 3.30
	10,1,5	2.85 \pm 0.34	25.18 \pm 37.84	72.53 \pm 32.73	15.57 \pm 9.22	42.71 \pm 46.79	29.86 \pm 36.25	14.47 \pm 8.07
6D DF-heat	1,1,1	<u>1.86</u> \pm 0.20	7.73 \pm 1.85	12.31 \pm 1.24	13.56 \pm 5.24	10.95 \pm 14.41	26.36 \pm 36.89	16.59 \pm 11.01
	100,1,1	3.49 \pm 0.20	6.14 \pm 0.42	13.84 \pm 2.08	29.91 \pm 35.23	4.46 \pm 0.42	5.75 \pm 1.05	100.00 \pm 0.00
	200,1,1	4.18 \pm 0.58	5.21 \pm 0.82	10.63 \pm 0.93	30.51 \pm 34.90	4.39 \pm 0.61	5.80 \pm 0.72	37.20 \pm 36.19
	10,1,1	4.79 \pm 0.33	5.53 \pm 0.81	31.81 \pm 34.30	49.47 \pm 41.28	26.37 \pm 37.05	5.49 \pm 0.34	100.00 \pm 0.00
	10,1,5	7.33 \pm 1.37	70.30 \pm 36.59	100.00 \pm 0.00	69.37 \pm 37.51	90.21 \pm 19.57	100.00 \pm 0.00	100.00 \pm 0.00
8D DF-heat	1,1,1	5.20 \pm 0.92	53.18 \pm 46.82	100.00 \pm 0.00	61.37 \pm 39.22	100.00 \pm 0.00	62.57 \pm 45.83	100.00 \pm 0.00
	100,1,1	7.72 \pm 0.59	52.41 \pm 39.33	84.71 \pm 30.56	100.00 \pm 0.00	100.00 \pm 0.00	49.22 \pm 41.61	100.00 \pm 0.00
	200,1,1	6.92 \pm 0.31	<u>17.63</u> \pm 1.78	83.59 \pm 32.80	100.00 \pm 0.00	<u>13.21</u> \pm 4.46	15.01 \pm 2.69	100.00 \pm 0.00
	10,1,1	7.97 \pm 0.30	100.00 \pm 0.00	100.00 \pm 0.00	100.00 \pm 0.00	100.00 \pm 0.00	100.00 \pm 0.00	100.00 \pm 0.00
	10,1,5	11.17 \pm 0.65	100.00 \pm 0.00	100.00 \pm 0.00	100.00 \pm 0.00	100.00 \pm 0.00	100.00 \pm 0.00	100.00 \pm 0.00
8D DF-heat	1,1,1	9.08 \pm 0.50	100.00 \pm 0.00	100.00 \pm 0.00	100.00 \pm 0.00	100.00 \pm 0.00	100.00 \pm 0.00	100.00 \pm 0.00

Table 3: Relative L^2 error [%] performance comparison of different balance terms across varying PDEs when $N_{\text{pde}} = 1000$. **Bold** indicates best, underline second-best.

Sampling methods		LAS (ours)	Random-R	RAD	R3	L^∞
Number of layers		8	8	8	8	8
1D Allen-Cahn	ic/bc/pde	(100/1/1)	(1/1/1)	(100/1/1)	(100/1/1)	(100/1/1)
	Rel L2 error [%]	<u>0.77</u> \pm 0.20	1.07 \pm 0.48	0.99 \pm 0.29	0.97 \pm 0.23	0.76 \pm 0.07
4D DF-heat	ic/bc/pde	(100/1/1)	(1/1/1)	(200/1/1)	(200/1/1)	(10/1/1)
	Rel L2 error [%]	1.72 \pm 0.23	7.73 \pm 1.85	5.72 \pm 0.42	6.50 \pm 1.19	<u>2.46</u> \pm 0.67
6D DF-heat	ic/bc/pde	(100/1/1)	(200/1/1)	(200/1/1)	(100/1/1)	(200/1/1)
	Rel L2 error [%]	3.49 \pm 0.20	5.21 \pm 0.82	10.63 \pm 0.93	29.91 \pm 35.23	<u>4.39</u> \pm 0.61
8D DF-heat	ic/bc/pde	(200/1/1)	(200/1/1)	(200/1/1)	(200/1/1)	(200/1/1)
	Rel L2 error [%]	6.92 \pm 0.31	<u>17.63</u> \pm 1.78	83.59 \pm 32.80	100.00 \pm 0.00	<u>13.21</u> \pm 4.46

Table 4: Relative L^2 error [%] comparison across different PDEs, reported under the best balancing setting. **Bold** indicates best, underline second-best. $N_{\text{pde}} = 1000$.

G.2 Different Loss Balance Terms with Smaller Number of Layers

Sampling methods		LAS (ours)	Random-R	RAD	R3	L^∞
Number of layers		1	1	1	1	1
4D DF-heat	100,1,1	12.46 \pm 3.86	28.39 \pm 5.90	44.14 \pm 8.39	<u>18.17</u> \pm 2.38	22.53 \pm 1.30
	200,1,1	13.18 \pm 2.56	23.35 \pm 1.62	44.55 \pm 4.93	<u>24.56</u> \pm 3.20	22.96 \pm 2.17
	10,1,1	34.88 \pm 3.38	26.43 \pm 3.97	63.67 \pm 2.02	38.20 \pm 5.71	48.23 \pm 23.94
	10,1,5	59.14 \pm 9.39	70.91 \pm 24.78	100.00 \pm 0.00	<u>68.34</u> \pm 6.02	100.00 \pm 0.0
	1,1,1	82.51 \pm 12.48	50.33 \pm 6.90	100.00 \pm 0.00	<u>96.76</u> \pm 4.72	96.17 \pm 5.31
Number of layers		5	5	5	5	5
4D DF-heat	100,1,1	<u>1.68</u> \pm 0.44	5.42 \pm 1.59	4.04 \pm 1.25	4.27 \pm 0.63	1.40 \pm 0.33
	200,1,1	<u>1.67</u> \pm 0.33	5.41 \pm 1.00	3.31 \pm 1.36	3.82 \pm 0.59	1.51 \pm 0.13
	10,1,1	1.88 \pm 0.45	6.95 \pm 0.94	4.74 \pm 1.58	5.16 \pm 0.57	<u>2.74</u> \pm 1.68
	10,1,5	3.91 \pm 1.28	8.13 \pm 1.37	11.70 \pm 4.32	7.46 \pm 2.26	<u>4.33</u> \pm 1.93
	1,1,1	2.45 \pm 0.44	6.58 \pm 1.09	9.36 \pm 1.11	5.63 \pm 0.68	<u>3.66</u> \pm 2.16

Table 5: Relative L^2 error [%] performance comparison of different balance terms in a smaller number of layers when $N_{\text{pde}} = 1000$. **Bold** indicates best, underline second-best.

G.3 Different Hyperparameters of MCI Approaches on the Best ic/bc/pde Balance Terms

DF-heat 4D, ic/bc/pde = (200/1/1)						
Hyper-parameters	k=0.5, c=1	k=1, c=1	k=2, c=1	k=3, c=1	k=4, c=1	k=5, c=1
Rel L2 error [%]	6.92 \pm 1.57	5.72 \pm 0.42	10.07 \pm 1.73	11.78 \pm 1.59	12.94 \pm 1.96	12.89 \pm 1.19
DF-heat 6D, ic/bc/pde = (200/1/1)						
Hyper-parameters	k=0.5, c=1	k=1, c=1	k=2, c=1	k=3, c=1	k=4, c=1	k=5, c=1
Rel L2 error [%]	6.39 \pm 1.14	10.63 \pm 0.93	29.52 \pm 8.07	46.47 \pm 27.28	66.73 \pm 27.86	55.58 \pm 31.73
DF-heat 8D, ic/bc/pde = (200/1/1)						
Hyper-parameters	k=0.5, c=1	k=1, c=1	k=2, c=1	k=3, c=1	k=4, c=1	k=5, c=1
Rel L2 error [%]	67.50 \pm 39.83	83.59 \pm 32.80	100.00 \pm 0.00	77.71 \pm 29.27	87.37 \pm 25.24	90.40 \pm 19.17
DF-heat 4D, ic/bc/pde = (200/1/1)						
Hyper-parameters	Max_i=1	Max_i=3	Max_i=5	Max_i=10	Max_i=15	Max_i=20
Rel L2 error [%]	6.50 \pm 1.19	2.15 \pm 0.25	2.20 \pm 0.17	2.24 \pm 0.22	2.49 \pm 0.45	2.37 \pm 0.11
DF-heat 6D, Ic/bc/pde = (100/1/1)						
Hyper-parameters	Max_i=1	Max_i=3	Max_i=5	Max_i=10	Max_i=15	Max_i=20
Rel L2 error [%]	29.91 \pm 35.23	4.98 \pm 0.18	5.31 \pm 0.86	5.91 \pm 0.41	6.75 \pm 1.02	20.55 \pm 28.04
DF-heat 8D, Ic/bc/pde = (200/1/1)						
Hyper-parameters	Max_i=1	Max_i=3	Max_i=5	Max_i=10	Max_i=15	Max_i=20
Rel L2 error [%]	100.00 \pm 0.00	100.00 \pm 0.00	100.00 \pm 0.00	65.76 \pm 42.41	65.03 \pm 43.11	82.97 \pm 34.35

Table 6: Effect of hyper-parameters on relative L^2 error [%] across MCI approaches when the best ic/bc/pde balance terms of DF-heat equations and $N_{\text{pde}} = 1000$ are considered.

G.4 Different Number of Collocation Points

Sampling methods	LAS	Random-R	RAD	R3	L^∞
$N_{\text{pde}} = 100$	49.26 \pm 30.18	100.00 \pm 0.00	100.00 \pm 0.00	100.00 \pm 0.00	<u>88.08 \pm 23.83</u>
$N_{\text{pde}} = 500$	8.62 \pm 0.42	66.77 \pm 40.75	93.37 \pm 13.24	100.00 \pm 0.00	<u>49.85 \pm 40.94</u>
$N_{\text{pde}} = 1,000$	6.92 \pm 0.31	17.63 \pm 1.78	83.59 \pm 32.80	100.00 \pm 0.00	<u>13.21 \pm 4.46</u>
$N_{\text{pde}} = 4,000$	5.94 \pm 0.13	15.26 \pm 3.26	19.49 \pm 4.17	70.37 \pm 37.49	<u>7.61 \pm 1.61</u>
$N_{\text{pde}} = 10,000$	5.90 \pm 0.39	20.09 \pm 0.84	16.03 \pm 1.94	35.45 \pm 32.83	<u>6.66 \pm 1.38</u>
$N_{\text{pde}} = 20,000$	5.27 \pm 0.53	17.77 \pm 3.18	11.96 \pm 1.43	35.78 \pm 32.21	<u>6.64 \pm 1.59</u>

Table 7: Effect of N_{pde} on relative L^2 error [%] across different sampling methods when ic/bc/pde balance term of DF-heat 8D equation is (200/1/1). **Bold** indicates best, underline second-best.

H Compatibility Issues with Different Neural Network Architectures

We aimed to experimentally evaluate the compatibility of the proposed adaptive sampling technique with architectures beyond MLPs, including self-attention and modified-MLPs [44]. Detailed descriptions of each architecture are provided in Table 8. Furthermore, to address the spectral bias issue commonly found in MLPs, we performed additional experiments incorporating random Fourier blocks (FB), as detailed in [38]. The FB hyperparameters were set with a Fourier feature scale of 2 and a Fourier block dimension of 64.

Table 8: Parameter configuration for different architectures

Parameter	MLP	Self-attention	Modified MLP
Activation	<i>Tanh</i>	<i>Tanh</i>	<i>Tanh</i>
Embedding dimension	128	128	128
Number of layers	4	4	4
Multi-head number	N/A	4	N/A
Fully connected dimension	N/A	256	N/A
Attention dropout	N/A	0.1	N/A
Additional encoders U, V	N/A	N/A	<i>Yes</i>

The results are summarized in Table 9. All algorithms were evaluated using the default settings provided in the benchmark algorithm papers, and the same applies to our approach, as detailed in the experimental settings described in the main text. Analyzing the results, we observe that the proposed LAS demonstrates high compatibility in terms of relative L^2 error. Even in the less favorable architectures, such as MLP and self-attention, LAS achieved the second-best performance. Notably, in scenarios incorporating FB, the proposed LAS consistently exhibited superior compatibility across all cases.

Table 9: Relative L^2 error comparison for different architectures across sampling methods. **Bold** indicates best, underline second-best.

Architecture	LAS	RAD	R3	L^∞	Random-R
MLP	2.15 ± 0.12	2.65 ± 0.47	1.84 ± 0.08	2.76 ± 0.26	3.56 ± 0.20
MLP + FB	0.56 ± 0.14	0.69 ± 0.05	<u>0.61 ± 0.04</u>	0.81 ± 0.18	0.94 ± 0.06
Modified MLP	0.43 ± 0.10	<u>0.51 ± 0.05</u>	0.66 ± 0.07	0.55 ± 0.08	0.56 ± 0.07
Modified MLP + FB	0.11 ± 0.04	0.22 ± 0.09	0.24 ± 0.03	0.34 ± 0.01	<u>0.21 ± 0.04</u>
Self-attention	2.13 ± 0.13	2.30 ± 0.13	2.25 ± 0.06	1.98 ± 0.03	2.91 ± 0.69
Self-attention + FB	1.29 ± 0.09	1.53 ± 0.03	1.52 ± 0.15	<u>1.33 ± 0.12</u>	1.35 ± 0.12

I Experimental Comparison of the Computational Complexities

A key limitation of the MCMC-based sampling approach lies in its high computational complexity, primarily due to the large number of iterations required to achieve convergence of the sampling distribution. To demonstrate the practical feasibility of this method, we present supporting experimental results.

To evaluate computational complexities, we measured the computational costs for training deep neural networks using each algorithm. Specifically, to validate the scalability of the algorithms, we conducted experiments to analyze their computational requirements in terms of the number of collocation points N_{pde} and the dimensionality of the PDE.

Based on our observations, the runtime of the sampling algorithms was independent of the specific PDE. Thus, we utilized equations that allowed for a straightforward extension from 1D to 8D in dimensionality. More specifically, we experimented with different sizes of collocation points (100, 1,000, 10,000, 50,000, and 100,000) for both 1D, 2D Burgers' equations, and 4D to 8D DF-heat equations.

As part of the detailed experimental process, we calculated the elapsed time over 1,000 epochs. The measurement was repeated 10 times using 10 different random seeds, and the mean and standard deviation were computed. For additional clarity, the elapsed time was measured excluding auxiliary operations such as saving the model or storing data, focusing solely on the computations required to run the algorithms.

Hardware specification. NVIDIA RTX 4090 GPU with 24GB of memory.

Changes with N_{PDE} . As N_{PDE} increases, the computational cost grows for all methods. However, the growth rate varies significantly between methods. Gradient-based algorithms such as LAS and L^∞ show a particularly sharp increase in computational cost as N_{PDE} grows. This is due to the iteration-intensive nature of their sampling processes. For example, with $N_{\text{PDE}} = 50,000$ in 2D, the computational cost of LAS ($l_L = 10$) reaches 63.98 seconds, whereas simpler methods like Fixed or Random-R remain below 35 seconds. For $N_{\text{PDE}} = 100,000$, LAS and L^∞ run out of memory in the 2D case, highlighting their scalability limitations for very large PDE sample sizes.

Changes with dimensionality. Extending from 1D to 8D consistently increases the computational cost for all methods. While simple methods like Fixed or Random-R exhibit a relatively modest increase in cost when transitioning from 1D to 8D, gradient-based methods such as LAS and L^∞ show disproportionately higher computational times. For example, in the 2D case with $N_{\text{PDE}} = 1,000$, LAS ($l_L = 10$) takes 45.74 seconds, compared to only 16.97 seconds in 1D. At $N_{\text{PDE}} = 10,000$, LAS ($l_L = 10$) takes 59.32 seconds in 2D versus 20.43 seconds in 1D.

However, despite the overall computational expense of LAS for higher l_L values, the case of $l_L = 1$ demonstrates significantly lower computational costs, making it relatively practical and scalable. For example, at $N_{\text{PDE}} = 50,000$, LAS ($l_L = 1$) takes 63.98 seconds in 2D, which is manageable compared to the prohibitive 324.49 seconds for $l_L = 10$. Similarly, for smaller N_{PDE} , such as 1,000, LAS ($l_L = 1$) shows competitive runtimes (e.g., 26.62 seconds in 2D). An additional advantage of using $l_L = 1$ is that it avoids the out of memory issues observed for higher values of l_L , even in large-scale scenarios such as $N_{\text{PDE}} = 100,000$ in 2D. Furthermore, the relative L_2 error reported in our paper uses $l_L = 1$ as the baseline, demonstrating its effectiveness in balancing computational efficiency with accuracy. Thus, LAS ($l_L = 1$) remains a promising candidate for solving PDEs efficiently at scale.

Finally, while gradient-based methods like LAS exhibit high computational costs due to the overhead of gradient computation, future work optimizing the gradient operations could significantly enhance the scalability and practicality of these methods.

Table 10: Computational time (in seconds) for each method across varying problem dimensions. **OOM** denotes an out-of-memory failure during execution.

Dimension	Method	$N = 100$	$N = 1,000$	$N = 10,000$	$N = 50,000$	$N = 100,000$
1D	Fixed	2.58 ± 0.03	2.54 ± 0.03	3.07 ± 0.05	11.63 ± 0.56	24.93 ± 0.02
	Random-R	2.66 ± 0.10	2.61 ± 0.01	3.14 ± 0.04	11.66 ± 0.05	24.91 ± 0.04
	R3	2.99 ± 0.01	2.94 ± 0.00	3.20 ± 0.02	11.97 ± 0.04	25.34 ± 0.05
	RAD	3.40 ± 0.00	3.46 ± 0.13	3.99 ± 0.00	14.92 ± 0.03	31.81 ± 0.09
	LAS ($l_L = 1$)	3.90 ± 0.03	3.89 ± 0.03	5.01 ± 0.01	21.19 ± 0.06	46.36 ± 0.05
	LAS ($l_L = 5$)	11.59 ± 0.03	9.70 ± 0.02	11.90 ± 0.16	56.86 ± 0.06	130.95 ± 0.08
	LAS ($l_L = 10$)	15.55 ± 0.05	16.97 ± 0.37	20.43 ± 0.10	102.52 ± 0.17	236.95 ± 0.11
	L^∞	28.77 ± 1.99	29.03 ± 2.20	37.54 ± 0.48	197.24 ± 0.17	448.95 ± 0.27
2D	Fixed	6.07 ± 0.15	6.45 ± 0.14	7.83 ± 0.03	34.83 ± 0.04	80.17 ± 0.05
	Random-R	6.22 ± 0.21	6.54 ± 0.16	7.85 ± 0.03	34.87 ± 0.04	80.26 ± 0.04
	R3	6.15 ± 0.19	6.57 ± 0.22	7.97 ± 0.03	35.19 ± 0.03	80.61 ± 0.06
	RAD	7.61 ± 0.02	8.00 ± 0.09	10.04 ± 0.01	44.30 ± 0.05	99.67 ± 0.10
	LAS ($l_L = 1$)	9.96 ± 0.26	10.42 ± 0.31	13.59 ± 0.03	63.98 ± 0.08	151.33 ± 0.11
	LAS ($l_L = 5$)	25.67 ± 0.51	26.62 ± 0.37	33.40 ± 0.14	179.69 ± 0.20	OOM
	LAS ($l_L = 10$)	44.68 ± 0.52	45.74 ± 0.92	59.32 ± 0.27	324.49 ± 0.35	OOM
	L^∞	82.75 ± 0.88	84.21 ± 1.68	115.29 ± 0.21	612.22 ± 0.53	OOM
4D	Fixed	11.64 ± 0.50	12.01 ± 0.06	15.06 ± 0.13	67.23 ± 0.03	151.58 ± 0.02
	Random-R	11.83 ± 0.26	12.06 ± 0.05	15.03 ± 0.06	67.33 ± 0.07	151.60 ± 0.00
	R3	11.89 ± 0.34	12.23 ± 0.04	15.43 ± 0.32	67.58 ± 0.03	152.03 ± 0.03
	RAD	15.53 ± 0.70	17.13 ± 0.98	19.56 ± 0.05	83.29 ± 0.02	OOM
	LAS ($l_L = 1$)	19.17 ± 0.81	19.73 ± 0.63	25.33 ± 0.65	124.24 ± 0.16	OOM
	LAS ($l_L = 5$)	42.31 ± 2.41	42.11 ± 0.51	61.20 ± 0.23	OOM	OOM
	LAS ($l_L = 10$)	68.65 ± 0.70	71.24 ± 2.18	105.93 ± 0.27	OOM	OOM
	L^∞	133.81 ± 1.75	139.14 ± 2.19	193.54 ± 0.17	OOM	OOM
6D	Fixed	17.65 ± 0.64	18.64 ± 0.61	21.10 ± 0.12	96.50 ± 0.08	218.68 ± 0.20
	Random-R	16.33 ± 2.07	16.44 ± 1.66	21.36 ± 0.07	96.63 ± 0.03	218.70 ± 0.09
	R3	18.38 ± 0.20	18.36 ± 1.01	21.46 ± 0.14	96.85 ± 0.07	219.15 ± 0.01
	RAD	20.69 ± 0.65	20.05 ± 0.77	25.75 ± 0.12	119.51 ± 0.11	OOM
	LAS ($l_L = 1$)	25.97 ± 1.51	27.13 ± 1.98	34.54 ± 0.03	179.94 ± 0.32	OOM
	LAS ($l_L = 5$)	57.66 ± 1.18	61.36 ± 2.76	87.11 ± 0.13	OOM	OOM
	LAS ($l_L = 10$)	102.97 ± 3.22	103.50 ± 5.22	153.10 ± 0.25	OOM	OOM
	L^∞	183.39 ± 7.13	195.98 ± 6.34	275.06 ± 0.19	OOM	OOM
8D	Fixed	20.19 ± 1.93	21.93 ± 0.38	26.55 ± 0.25	127.65 ± 0.16	286.65 ± 0.16
	Random-R	22.08 ± 0.13	21.84 ± 0.20	26.95 ± 0.18	127.68 ± 0.14	286.61 ± 0.01
	R3	20.99 ± 0.04	22.51 ± 0.31	27.15 ± 0.09	127.85 ± 0.14	287.26 ± 0.05
	RAD	26.48 ± 0.88	26.15 ± 1.01	32.15 ± 0.36	157.70 ± 0.11	OOM
	LAS ($l_L = 1$)	33.03 ± 0.99	33.75 ± 1.63	44.89 ± 0.15	OOM	OOM
	LAS ($l_L = 5$)	74.12 ± 2.46	78.77 ± 1.76	114.37 ± 0.27	OOM	OOM
	LAS ($l_L = 10$)	128.65 ± 5.59	134.49 ± 4.29	201.64 ± 0.26	OOM	OOM
	L^∞	229.60 ± 1.97	240.58 ± 5.01	357.80 ± 0.14	OOM	OOM

J Additional Results with Varying LAS Hyperparameters

J.1 Practical Implementation

In general, achieving successful Langevin sampling requires careful selection of hyperparameters (Langevin step size τ , number of Langevin iterations l_L , etc.). While running Langevin dynamics for many iterations with a small step size might allow sampling to be proportional to the actual residual landscape, it can significantly slow down the training speed of the PINN model in practical applications. Thus, we considered the following concepts when setting the hyperparameters, which are crucial for practical utilization of Langevin dynamics in PINN training.

Adjusting Langevin step size and iteration. To increase the computational efficiency, we adopted a strategy of increasing the step size τ and reducing the number of Langevin iterations l_L . We anticipated that the temporal variation of the PINN model, f_θ , would exhibit smooth behavior when utilizing adaptive sampling strategies with a large network size. Consequently, even with fewer Langevin iterations, minimal changes in the loss landscape suggest that the sample trajectory would resemble that of a fixed landscape.

Normalizing the gradient size. Since LAS leverages gradient information from the residual landscape, the step size τ needs to be set even smaller for stiff PDEs, i.e., the step size is dependent on the PDE. Additionally, empirical observations indicate that the gradient of the residual landscape exhibits substantial variations at the beginning of training. In contrast, towards the end of training, the residual landscape is characterized by relatively small gradients. This discrepancy restricts the movement of sample points, thereby making it challenging to secure reliable quality. To address these challenges, we normalized the magnitude of all residual gradients at each iteration relative to the largest residual gradient.

J.2 Variation of β and l_L with Fixed $\tau = 0.002$

1. **Instability of performance for small β values as the layer increases:** As the layer depth increases, small β values lead to unstable performance. For instance, in layer 4, a small $\beta = 0.001$ results in a relatively stable error value of 1.18 ± 0.23 at $l_L = 1$, whereas in layer 10, the error rises significantly to 8.20 ± 15.63 . This pattern suggests that small values of β hinder performance stability in deeper layers.
2. **Increased instability with higher l_L values:** Generally, the performance deteriorates as l_L increases, particularly for small β values. For example, in layer 6 with $\beta = 0.001$, the relative error increases from 0.58 ± 0.08 at $l_L = 1$ to 22.73 ± 22.08 at $l_L = 20$. This indicates that excessive Langevin iterations could lead to performance instability, especially when the concentration parameter β is low.

Overall, the impact of τ and l_L on both relative L^2 error and variance is limited, indicating robustness of the method across a range of parameters. This robustness simplifies Langevin hyperparameter tuning, making the approach more practical for real-world applications.

J.3 Variation of τ and l_L with Fixed $\beta = 0.2$

1. **Stability across τ values:** The relative L^2 error exhibits minor fluctuations across different values of τ for each layer suggesting a negligible dependency on τ .
2. **Limited impact of l_L :** While increasing l_L slightly reduces the variance of L^2 error in some cases, the effect is not consistent across layers showing only marginal improvement.

As a result, the main takeaway is that small values of β are prone to instability as the layer depth increases and l_L becomes large. Conversely, higher β values can ensure stable performance, even with varying l_L values. In shallow layers, however, lower β values can be beneficial, providing a more precise error at lower l_L values.

Layer and concentration parameter β		Langevin iteration l_L			
Layer	β	1	5	10	20
Layer 4	0.001	1.18 \pm 0.23	1.63 \pm 0.40	1.66 \pm 0.20	6.34 \pm 2.69
	0.05	1.53 \pm 0.36	1.41 \pm 0.43	1.27 \pm 0.21	1.25 \pm 0.16
	0.1	1.08 \pm 0.37	0.93 \pm 0.09	1.23 \pm 0.23	1.06 \pm 0.13
	0.3	2.50 \pm 0.28	2.30 \pm 0.34	2.54 \pm 0.35	2.51 \pm 0.36
	0.4	2.80 \pm 0.60	3.14 \pm 0.22	3.14 \pm 0.49	2.90 \pm 0.44
Layer 6	0.001	0.58 \pm 0.08	10.89 \pm 19.65	10.10 \pm 17.80	22.73 \pm 22.08
	0.05	0.62 \pm 0.11	0.64 \pm 0.12	0.65 \pm 0.12	0.67 \pm 0.15
	0.1	0.74 \pm 0.12	0.58 \pm 0.08	0.64 \pm 0.07	0.58 \pm 0.03
	0.3	1.05 \pm 0.27	1.15 \pm 0.21	1.16 \pm 0.11	1.33 \pm 0.13
	0.4	1.47 \pm 0.10	1.49 \pm 0.08	1.48 \pm 0.22	1.58 \pm 0.13
Layer 8	0.001	0.65 \pm 0.14	1.25 \pm 0.73	10.66 \pm 19.50	22.14 \pm 24.51
	0.05	0.88 \pm 0.34	0.46 \pm 0.05	0.59 \pm 0.10	1.44 \pm 0.81
	0.1	0.59 \pm 0.14	0.58 \pm 0.08	0.68 \pm 0.35	0.86 \pm 0.56
	0.3	1.06 \pm 0.16	1.15 \pm 0.21	1.08 \pm 0.24	0.92 \pm 0.11
	0.4	1.12 \pm 0.25	1.09 \pm 0.19	1.14 \pm 0.17	1.12 \pm 0.27
Layer 10	0.001	8.20 \pm 15.63	23.14 \pm 20.74	40.14 \pm 19.78	41.79 \pm 20.50
	0.05	0.46 \pm 0.17	17.33 \pm 21.03	17.21 \pm 21.02	30.08 \pm 24.07
	0.1	0.63 \pm 0.20	0.73 \pm 0.23	0.70 \pm 0.22	10.23 \pm 18.99
	0.3	0.94 \pm 0.18	0.98 \pm 0.15	0.83 \pm 0.25	1.02 \pm 0.30
	0.4	0.94 \pm 0.15	0.96 \pm 0.22	0.97 \pm 0.37	1.12 \pm 0.33
Layer and Langevin step size τ		Langevin iteration l_L			
Layer	τ	1	5	10	20
Layer 4	0.0001	1.98 \pm 0.35	2.12 \pm 0.14	1.66 \pm 0.06	1.74 \pm 0.19
	0.0005	1.81 \pm 0.13	1.74 \pm 0.40	1.77 \pm 0.34	1.74 \pm 0.35
	0.001	2.35 \pm 0.37	1.85 \pm 0.25	1.98 \pm 0.18	1.68 \pm 0.24
	0.005	1.96 \pm 0.15	2.08 \pm 0.18	1.84 \pm 0.22	1.71 \pm 0.17
	0.01	1.93 \pm 0.28	1.92 \pm 0.09	1.48 \pm 0.09	1.79 \pm 0.09
Layer 6	0.0001	0.96 \pm 0.11	0.89 \pm 0.06	0.96 \pm 0.11	1.00 \pm 0.14
	0.0005	0.92 \pm 0.13	0.69 \pm 0.34	1.14 \pm 0.23	1.17 \pm 0.25
	0.001	0.85 \pm 0.07	1.00 \pm 0.18	0.70 \pm 0.09	0.96 \pm 0.03
	0.005	0.85 \pm 0.07	0.82 \pm 0.22	0.97 \pm 0.10	0.78 \pm 0.37
	0.01	0.90 \pm 0.04	0.90 \pm 0.06	1.03 \pm 0.16	0.93 \pm 0.06
Layer 8	0.0001	0.62 \pm 0.04	0.79 \pm 0.11	0.92 \pm 0.10	0.82 \pm 0.05
	0.0005	0.81 \pm 0.02	0.85 \pm 0.12	0.78 \pm 0.07	0.75 \pm 0.06
	0.001	0.91 \pm 0.13	0.82 \pm 0.02	0.71 \pm 0.04	0.77 \pm 0.10
	0.005	0.85 \pm 0.07	0.83 \pm 0.04	0.64 \pm 0.06	0.63 \pm 0.08
	0.01	0.64 \pm 0.14	0.77 \pm 0.17	0.88 \pm 0.13	0.81 \pm 0.09
Layer 10	0.0001	0.41 \pm 0.18	0.75 \pm 0.08	0.82 \pm 0.02	0.68 \pm 0.12
	0.0005	0.82 \pm 0.13	0.64 \pm 0.04	0.68 \pm 0.07	0.82 \pm 0.06
	0.001	0.91 \pm 0.21	0.74 \pm 0.19	0.87 \pm 0.25	0.59 \pm 0.05
	0.005	0.64 \pm 0.04	0.53 \pm 0.32	0.67 \pm 0.05	0.64 \pm 0.12
	0.01	0.56 \pm 0.29	0.65 \pm 0.13	0.71 \pm 0.14	0.61 \pm 0.09

Table 11: Relative L^2 error for varying β and τ and l_L across different layers of the Allen–Cahn equation.