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Abstract

Embodied systems experience the world as ‘a symphony of flows’: a combination
of many continuous streams of sensory input entrained to self-motion and
intertwined with the motion of external objects. These streams obey smooth,
time-parameterized symmetries (e.g. translating or expanding optic flow), yet
most neural network sequence models ignore this structure, and instead laboriously
re-learn the same transformations from data. In this work, we introduce ‘Flow
Equivariant World Models’, a framework in which both self-motion and the motion
of external objects are unified as one-parameter Lie group ‘flows’ thereby enabling
group equivariance with respect to these ubiquitous transformations. On a 2D
partially observed world modeling benchmark, Flow Equivariant World Models
learn with an order of magnitude fewer training iterations and consequently
outperform a comparable state-of-the-art diffusion-based world-modeling
architecture – particularly when there are predictable world dynamics outside the
agent’s current field of view. The flow equivariant update rule also remains stable
over hundreds of future rolled-out timesteps, generating a latent map robust to
internal and external motion. Project page: Link.

1 Introduction

The sensory experience of embodied agents can be understood as a composition of transformations
originating from both internal and external sources. As an agent navigates in the world, its experience
transforms in a highly structured manner with respect to its own actions: as it turns to the right, its
visual input inversely flows left. Simultaneously, the natural dynamics of external objects combine
with this self-motion to yield a complex entangled flow of stimuli. This flow is challenging to model
accurately even when fully observed; when combined with the inherently limited field of view of
embodied agents, the task becomes nearly insurmountable, even for today’s state-of-the-art world
models.

In this work, we study this task of partially observed dynamical world modeling (visualized in Figure
1), combined with the inherent self-motion of embodied agents, and investigate if we might be able to
account for both external and internal sources of visual variation in a geometrically structured manner.
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Figure 1: Partially observable dynamic world modeling. Grayed out areas are not visible to the agent
at time t. The agent moves its view each timestep via action at.

Specifically, we find that both internal and external motion can be understood as mathematical
‘flows’, enabling both sources of variation to be handled exactly as time-parameterized symmetries
through the framework of ‘flow equivariance’ [Keller, 2025]. We demonstrate that we can construct
flow equivariant world models that handle self-generated motion in a precisely structured manner,
while simultaneously capturing the motion of external objects, even outside the agent’s field of view.
We show that this yields substantially improved world modeling performance and generalization
to significantly longer sequences than those seen during training, highlighting the benefits of precise
spatial and dynamical structure in world models.

2 Flow Equivariant World Models

A neural network ϕ is said to be equivariant if its output, ϕ(f), changes in a structured, predictable
manner when the input f is transformed by an element g of the group G, i.e. ϕ(g ·f) = g ·ϕ(f). This
constraint, often imposed analytically through weight-tying [Cohen and Welling, 2016, Ravanbakhsh
et al., 2017], induces a type of representational structure which enables both improved data efficiency
and generalization [Worrall et al., 2017, Batzner et al., 2022]. Recently, Keller [2025] introduced the
concept of flow equivariance, extending existing ‘static’ group equivariance to time-parameterized
sequence transformations (‘flows’), such as visual motion. These flows are generated by vector fields
ν (elements of a Lie algebra g of G), and written as ψt(ν) ∈ G. A sequence-to-sequence model Φ,
mapping from (f0, . . . , fT ) 7→ (y0, . . . , yT ) is then said to be flow equivariant if, when the input
sequence undergoes a flow, the output sequence transforms according to a proper flow representation,
i.e. Φ

(
ψ0(ν)· f0, . . . , ψT (ν)· fT

)
=

(
ψ0(ν)· y0, . . . , ψT (ν)· yT

)
, To achieve this, Keller [2025]

demonstrated that it is sufficient to perform computation in the co-moving reference frame of the
input. In other words, for a simple Recurrent Neural Network (RNN), the hidden state must flow
in unison with the input, i.e. ht+∆t = σ (ψ∆t(ν) · ht + ft). To achieve equivariance with respect
to a set of multiple flows (ν ∈ V ), Flow Equivariant RNNs possess multiple hidden state ‘velocity
channels’, each flowing according to their own vector fields ν (denoted as ht(ν)), illustrated as
stacked rows in Fig. 2 a).

Self-Motion Equivariance In this work, we leverage the fact that motion is relative (i.e. self-motion
is equivalent to the motion of the input) to additionally achieve equivariance to self-motion in a
unified manner – with the core difference being that self-motion is accompanied by a known action
(at) between the intervening observations. This additional information (knowledge of at) allows us to
build a world model which operates in the co-moving reference frame of the agent, thereby achieving
self-motion equivariance, without any additional ‘velocity channels’ – we call this model FloWM.

Specifically, given the action at, we transform the hidden state of the network to flow according
to the corresponding induced visual flow. In this work, we assert the action is an element of the
Lie algebra, i.e. at ∈ g (otherwise a mapping can be performed). The visual flow induced by the
action in the agent’s reference frame, the ‘Action Flow’ (ψ1(−at)), then combines with the ‘Internal
Flows’ (ψ1(ν)) of the ‘velocity channels’, resulting in the following Self-Motion Flow Equivariant
Recurrence Relation:

ht+1(ν) = σ
(
ψ1(ν − at) · W ⋆ ht(ν) + pad(U ⋆ ft)

)
, (1)
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Figure 2: a) FloWM Recurrence relation. Velocity channels are plotted as rows, with the ‘read-in’ and
‘read-out’ portion of the hidden state highlighted in blue. b) Rollout MSE shows length generalization
of FloWM. c) Training curves show efficient learning of FloWM.

where W ⋆ ht, and U ⋆ ft denote convolutions over the hidden state and input spatial dimensions
(or group dimensions for groups beyond translation). We see that this unified framework effectively
‘factors out’ both self-motion and the motion of external objects from agents’ observations in a
group-theoretic manner, thereby supporting a broader set of actions than prior work [Parisotto and
Salakhutdinov, 2017]. To model partial observability, we simply write-in-to (denoted ‘pad(·)’), and
read-out-from, a fixed window_size < world_size portion of the hidden state (blue dashed square
in Fig. 2(a)), letting the rest of the hidden state flow around the agent’s field of view according to
ψ1(ν − at). In particular, the hidden state is windowed at each timestep, pixel-wise max-pooled
over ‘velocity channels’ and passed through a decoder gθ to predict the next observation, explicitly:
f̂t+1 = gθ

(
maxν window(ht+1)

)
We provide more model details in Appendix D, and in A we review related models that have similarly
structured representations with respect to self-motion, but may be seen as special cases of this
framework without input-flow equivariance.

3 Experiments

To test our architecture on partially observable dynamic world modeling, we propose a simple MNIST
World dataset. The world is a 2D black canvas with multiple MNIST digits moving with random
constant velocities. The agent is provided a view of the world, smaller than the world size, yielding
partial observability. At each discrete timestep, the world evolves according to the velocity of each
object, and the agent takes a random action (relative (x, y) offset) to move its viewpoint. Given 50
observation frames, the task is to predict the dynamics played out for 20 future frames, integrating
future self-motion (given) and world dynamics. To test length generalization, each validation video
has 50 observation frames and 150 prediction frames. We include ablations on data subsets with
different combinations of partial observability, object dynamics, and self-motion in Appendix B.

On the MNIST World dataset, we train and evaluate our proposed Flow Equivariant World Model
(FloWM), which includes velocity channels (VC) and self-motion equivariance (SME). We also
include ablations FloWM (no VC), FloWM (no VC, no SME), and a state of the art diffusion forcing
transformer video world model, termed here DFoT. We note here that FloWM (no VC, no SME) is
just a simple convolutional RNN. More training and model details are available in Appendices D and
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Table 1: MSE for rollouts of 20 and 150 frames. We see the FloWM without velocity channels is able
to model the sequences well for the training length (20), but generalizes far beyond to 150 frames
with full flow equivariance.

Model 20 150
All-Black Baseline 0.16410 0.16410
FloWM (Ours) 0.00058 0.00294

(no VC) 0.00410 0.03380
(no VC, no SME) 0.12242 0.13072

DFoT 0.14874 0.21281

Figure 3: Prediction rollouts over time for FloWM and baselines. Timesteps 0 to 49 are given as
observations. Note that FloWM does not diverge even at timestep 199.

E. At each timestep, we calculate the MSE of the predicted frame for each model, reported in Figure
2(b) and Table 1. Example rollouts and full world view visualizations are available in Figure 3.

Predictions from the FloWM remain consistent with the motion of objects out of its view for 150
timesteps past the observation window, well beyond its training horizon of 20 prediction timesteps,
while FloWM with (no VC, no SME) fails. We find that the FloWM with (no VC) can still somewhat
learn to model unobserved dynamics, especially within its training window, but drifts over time. We
find models combining SME and VC require orders of magnitude less training steps to converge,
shown in Figure 2(c). The DFoT model’s predictions quickly diverge from the ground truth, even
within its training window, generating plausible digit-like artifacts. Through additional results in
Appendix C, we explore how the DFoT model can sometimes handle partial observability, object
dynamics, and self-motion individually, but not in any combination.

4 Conclusion

In this work, we have introduced Flow Equivariant World Models, a new framework unifying both
internally and externally generated motion for more accurate and efficient world modeling in partially
observable settings with dynamic objects out of the agent’s view. Our results on a simple dataset with
these properties demonstrate the limitations with current state-of-the-art diffusion-based video world
models and highlight the importance of unified equivariance with respect to motion for handling such
settings.

Acknowledgements This work has been made possible in part by a gift from the Chan Zuckerberg
Initiative Foundation to establish the Kempner Institute for the Study of Natural and Artificial
Intelligence at Harvard University.
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A Related Work

Generative World Modeling with Memory Generative World Models [Ha and Schmidhuber, 2018,
Brooks et al., 2024] aim to simulate and predict how environments evolve over time in frames. They
have broad applications in reinforcement learning [Hafner et al., 2024, Samsami et al., 2024, Hansen
et al., 2024], autonomous driving [Bar et al., 2025, Yang et al., 2023, Russell et al., 2025, Jia et al.,
2023, Wang et al., 2024], robotics [Yang et al., 2023, Agarwal et al., 2025, Ali et al., 2025, Taniguchi
et al., 2023], and planning [Hao et al., 2023, Cloos et al., 2024], where agents must anticipate future
states in order to reason and act [Gao et al., 2025]. Recent works have moved toward building more
generalizable and large-scale world simulators with interactability and persistence [Ball et al., 2025,
Agarwal et al., 2025, Xiang et al., 2024], with game engines emerging as a promising area of interest
reliant on these aspects [He et al., 2025, Ball et al., 2025, Bruce et al., 2024, Dynamics Lab, 2025, Guo
et al., 2025]. However, a critical limitation remains: most generative world models lack a semblance
of memory. Autoregressive rollouts with transformer models have limited context windows, and
remaining consistent with information outside of the context window requires something beyond
naive self attention. As a result, long rollouts often produce contradictions with earlier context or
previously generated sequences, undermining temporal coherence. Although recent explorations
have introduced memory mechanisms through explicit (with 3D priors) [Zhou et al., 2025, Xiao
et al., 2025, Yu et al., 2025] or implicit (based on neural / learned components) [Po et al., 2025, Gu
et al., 2025, Savov et al., 2025] memory mechanisms, the focus has been on maintaining physical
consistency with a static world. Dynamics are included in some datasets, but are not the main focus;
especially the dynamics of objects outside the current field of view has not yet been studied as the
main focus with the context of image space world modeling, to our knowledge. Prediction of the
world necessarily requires predicting the state evolution of occluded or unseen entities, especially
in real-world settings. Addressing this gap is crucial for advancing toward faithful and embodied
generative world models.

Partially Observable Environments and Tasks Partial observability is a fundamental challenge in
embodied AI and reinforcement learning, and a variety of benchmarks and environments have been
developed to study it. Existing tasks can be broadly categorized along three dimensions. The first
concerns whether the underlying environment is dynamic or static. The second concerns how partial
observability (PO) is introduced: (i) PO within a fixed view, typically through object occlusion or
objects moving in and out of view; (ii) PO outside the current view, which requires changes in the ego
perspective. The third dimension is the task objective: some benchmarks are designed for question
answering under PO, while others target next-state prediction, i.e. world modeling. We posit that the
combination of all three dimensions – dynamic environments, with partial observability outside the
current view, targeting world modeling – is currently understudied and underdeveloped.

A first branch of existing work lies in the fixed-view setting, where PO arises from occlusion in 3D
scenes. Vision benchmarks such as CATER [Girdhar and Ramanan, 2020] and IntPhys [Riochet et al.,
2020] capture such occlusion scenarios, but remain focused on passive observation without involving
an embodied agent or dynamics outside the current field of view.

A second branch tests out-of-view partial observability, frequently utilizing simulators to control
the state of the world. Early work introducing partially observable markov decision processes in
environments like partially observable pacman require a rough understanding of the state of the world
that may include dynamics [Hausknecht and Stone, 2017], but the task is entangled with decision
making on a limited domain. 3D platforms such as DMLab [Beattie et al., 2016], VizDoom [Kempka
et al., 2016], and MiniWorld/MiniGrid [Chevalier-Boisvert et al., 2023], probe exploration or combat
with compact observations. For example, Pasukonis et al. [2022] introduces a memory maze using
DMLab to evaluate the static memory of RL agents. Among these simulators, DMLab is largely
static, while VizDoom and MiniGrid can introduce dynamics out-of-view.

Newer benchmarks approach dynamic PO but for the most part, they are primarily focused on
QA rather than explicit next-state forecasting. Dynamic House [Kurenkov et al., 2023] includes
evolving scenes and asks for future relations (e.g., whether an object moved rooms when hidden),
effectively casting dynamics as link prediction. Hazard Challenge [Zhou et al., 2024] evaluates
decision-making under evolving disasters (e.g. fire, flood). WorldPredictions [Chen et al., 2025]
studies world modeling in a partially observable semi-MDP, but emphasizes action selection and
procedural planning. Similarly, first-person embodied QA datasets over long videos [Ye et al., 2025,
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Das et al., 2018, Kim and Ammanabrolu, 2025] combine partial observability with dynamics but
are retrospective: they query past observations rather than test predictive reasoning about where
previously dynamic objects might be now.

Although many relevant tasks and environments exist, to our knowledge, there are still no direct
evaluations designed to test world models on their ability to understand, encode, and predict dynamics
under partial observability. Nevertheless, these existing environments provide valuable building
blocks for constructing benchmarks that assess whether generative world models can move beyond
static memory to capture the evolving dynamics of objects out of view.

Equivariant World Models Equivariant models respect the symmetry of their data, ensuring that
structured transformations in the input induce predictable changes in the model’s internal state. This
inductive bias has indeed been found to be valuable in prior work on world modeling. Specifically,
although not explicitly framed as equivariant, one of the most related world modeling architectures
to our proposed self-motion equivariance is the Neural Map [Parisotto and Salakhutdinov, 2017].
This work introduced a spatially organized 2D memory that stores observations at estimated agent
coordinates. The storage location of these observations is shifted precisely according to the agent’s
actions, yielding an effectively equivariant ‘allocentric’ latent map. In Section 5 of the paper, the
authors describe an egocentric version of their model which can in fact be seen as a special case of our
FloWM, specifically equivalent to the ablation without velocity channels. The authors demonstrate
that their allocentric map enables long-term recall and generalization in navigation tasks. In a similar
vein, EgoMap [Beeching et al., 2020] built on this by leveraging inverse perspective transformations
to map from observations in 3D environments to a top-down egocentric map. This work also explicitly
transforms the latent map in an action-conditioned manner, although the transformation is learned
with a Spatial Transformer Network, making it only approximately equivariant. Our work can be
seen to formalize these early models in the framework of group theory, allowing us to extend the
action space beyond just spatial translation to any Lie group and any world space. For example, our
framework can theoretically support full 3-dimensional ‘neural maps’ without problem, following the
framework of flow equivariance. Finally, there are a few other works that discuss equivariant world
modeling, but are less precisely related to our own. Specifically, [van der Pol et al., 2021] was one of
the first works to build equivariant policy and value networks for reinforcement learning, but not with
respect to motion, instead with respect to the symmetries of the environment (such as static rotations or
translations). More recent work [Park et al., 2022, Ghaemi et al., 2025] proposes to approach the goal
of building equivariant world models in a more approximate manner by conditioning or encouraging
equivariance through training losses, rather than our approach which builds it in explicitly. Overall,
we find all of these approaches to be complementary to our own and are excited for their combined
potential.

B Dataset Details

Here, we describe dataset generation and parameter settings for our ablations on self-motion, dynam-
ics, and partial observability in the MNIST world setting. The subsets are succinctly described in
Table 2, and the generation parameters in Table 3. A subset is described as partially observable if
the world size is larger than the window size. We also scale the number of digits by the size of the
world. Each dataset example has a video of shape [num_frames, channels, height, width],
where channels is 1; and an accompanying actions list of shape [num_frames, 2], for the x and
y translation of the agent view at each timestep. Each dataset subset contains 180,000 videos in
the training set, and 8,000 videos in the validation set. The dynamic_fo_no_sm subset just has
dynamics and is fully observable; the dynamic_fo subset has dynamics and is fully observable, but
also has self-motion; the static_po subset is partially observable, and the agent has self-motion,
but the digits do not move; and finally, the dynamic_po subset includes partial observability, agent
movement, and dynamics. In the main text, we report all results on just the dynamic_po subset. For
all subsets with dynamics, each digit is given an integer velocity for x and y in the digit velocity range
(e.g., -2 to 2). For each dataset with self-motion, at each step during the observation and prediction
phase, a random integer is chosen in x and y to be the agent’s view translation, bounded by the
self-motion range (e.g., -10 to 10). For each dataset, objects that move across the boundary reappear
on the other side as a circular pad. Results on each of these data subsets for FloWM and baseline
models are described in Appendix C.
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Table 2: MNIST world data subsets demonstrating scaling difficulty in self-motion, dynamics, and
partial observability.

Data Subset Self-Motion Dynamics Partially Observable
dynamic_fo_no_sm No Yes No
dynamic_fo Yes Yes No
static_po Yes No Yes
dynamic_po Yes Yes Yes

Table 3: Generation parameters for dataset subsets.

Data Subset World
Size

Window
Size # Digits Self-motion

Range
Digit Velocity

Range, x and y
dynamic_fo_no_sm 32 32 3 0 -2 to +2
dynamic_fo 32 32 3 10 -2 to +2
static_po 50 32 5 10 0
dynamic_po 50 32 5 10 -2 to +2

C Additional Results

Here we report additional results on the MNIST World subsets described in Appendix B. We evaluate
the FloWM, DFoT, and FloWM ablations described in Appendix D.

The error (MSE) between the predicted future observations (rollout) and the ground truth is plotted
for each baseline in Figure 4 as a function of forward prediction timestep (x-axis). The average MSE
over the first 20 timesteps (the training length) and over the full 150 timesteps (length generalization)
is summarized in Table 4. Due to being constructed with a different number of digits, MSE between
the data subsets are not necessarily directly comparable. We provide the All-Black Baseline (model
that only predicts 0 for future observations) as a form of normalization for comparison.

All models are able to do reasonably well on the simplest fully observable dataset with no self-motion;
note here the DFoT is doing latent diffusion, so there is a small amount of MSE error from the
decoding step, around 0.02, see Appendix E.4 for more details. This setup aligns with the typical
setting of world modeling, where the information that the model needs is expected to be in the
attention window. The other dataset splits do not follow this assumption, and the results align with
expectations about the model’s capabilities. The DFoT does relatively better on the static static_po
compared to the dynamic_po dataset, due to not having to model dynamics, but the model’s outputs
still diverge from the ground truth quickly.

For a dataset where the velocity channels are redundant, i.e. static_po, the FloWM (no VC) does
slightly better than FloWM. Further note that the FloWM (no VC) is able to have low error on most
of the tasks, though with a much higher value than FloWM as errors accumulate due to not having the
velocity channels to encode flow equivariantly. Taken together, the ablations suggest that self-motion
equivariance is key to solving the problem, and that input flow equivariance via velocity channels
helps with exactness and convergence time, with the tradeoff of a larger hidden state activation size.
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Figure 4: Rollout Error (MSE) vs. Forward Prediction Steps for all data subsets. The dynamic subset
is replicated from the main text for ease of comparison.

Table 4: Validation MSE. Columns show mean MSE over the first 20 frames (matches training
distribution) vs. 150 frames (length generalization). Models that ‘solve’ the task are in bold (MSE
≤ 0.05).

Model dynamic_fo_no_sm dynamic_fo static_po dynamic_po
20 150 20 150 20 150 20 150

All-Black Baseline 0.2372 0.2372 0.2363 0.2363 0.1636 0.1636 0.1641 0.1641
FloWM (Ours) 0.00013 0.00117 0.00035 0.00249 0.00013 0.00509 0.00058 0.00294

(no VC) 0.00028 0.01460 0.00075 0.26493 0.00002 0.00004 0.00410 0.03380
(no SME) 0.00007 0.00179 0.15534 0.16063 0.12035 0.12947 0.12250 0.12909
(no SME, no VC) 0.00032 0.03198 0.15537 0.18079 0.12037 0.14079 0.12242 0.13072

(action concat) 0.00021 0.02070 0.13402 0.15452 0.09449 0.11827 0.11161 0.13438
DFoT 0.02321 0.04285 0.22805 0.29419 0.10658 0.22723 0.14874 0.21281
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D FloWM Experiment Details

In this work, we introduce the Flow Equivariant World Model (FloWM). The model is built as
a simple sequence-to-sequence RNN with small CNN encoders/decoders to model MNIST digit
features.

For completeness, we repeat the FloWM recurrence relation below:

ht+1(ν) = σ
(
ψ1(ν − at) · W ⋆ ht(ν) + pad(U ⋆ ft)

)
. (2)

D.1 Recurrence

The hidden state ht ∈ R|V |×Chid×Hworld×Wworld has |V | velocity channels (indexed by the elements
ν ∈ V ), and Chid = 64 hidden state channels. The spatial dimensions of the hidden state are set
to match the world size for each dataset. For the partially observed world, this means Hworld =
Wworld = 50 (where the window size is set to 32 × 32), while for the fully observed world,
Hworld =Wworld = 32. The hidden state is initialized to all zeros for the first timestep, i.e. h0 = 0.

The hidden state is processed between timesteps by a convolutional kernel W . This kernel has the
potential to span between velocity channels, and therefore model acceleration or more complex
dynamics than static velocities. In this work, since our dataset has no such dynamics (we only have
constant object velocities), we safely ignore the inter-velocity convolution terms, and simply set W
to be a 3× 3 convolutional kernel, with 64 input and output channels, circular padding, and no bias.
We refer the interested reader to Keller [2025] for details on the form of the full flow-equivariant
convolution that could be equally used in this model. The hidden state is finally passed through a
non-linearity σ to complete the update to the next timestep. In this work, we use a ReLU.

D.2 Velocity Channels

In this work, we add velocity channels up to ±2 in both the X and Y dimensions of the image.
Explicitly, V = {(−2,−2), (−2,−1), . . . (0, 0) . . . (2, 2)}. Thus in total, |V | = 25 for the FloWM.
Each channel is flowed by its corresponding velocity field (defined by ψ(ν)) at each step. This is
denoted by ψ1(ν) · ht(ν).
The actions of the agent then induce an additional flow of the visual stimulus, as depicted in Figure 2.
In order to be equivariant with respect to this flow in addition to the flows in V , we simply additionally
flow each hidden state by the corresponding inverse of the action flow ψ(−at). In total this gives the
combined flow for each flow channel ψ1(ν − at). In practice, this is implemented by performing a
roll operation on the hidden state by exactly (ν − at) pixels.

D.3 Encoder

The ‘encoder’ is simply a single convolutional layer, with 3× 3 kernel U , 1 input channel, and 64
output channels. The convolution uses circular padding, and no bias. The observation at timestep t
(ft), is thus processed by the encoder (U ⋆ ft) yielding the processed observation of the agent. Given
this observation is only a partial observation of the full world, we must pad this observation to match
the world size, and the size of the hidden state. We denote this operation as ‘pad’ in the recurrence
relation, and simply pad the boundary of the output of the encoder with 0 to match the world-size
(size of the hidden state).

D.4 Decoder

We learn the parameters of the FloWM by training it to predict future observations from its hidden state
and the corresponding sequence of future actions. To compute this prediction, we take a consistent
window_size crop from the center of the hidden state, corresponding to the same location where the
encoder ‘writes-in’. We denote this crop window(ht+1). To then enable the model to predict each
pixel’s velocity independently, we perform a pixel-wise max-pool over the V dimension (‘velocity
channels’) before passing the result to a decoder gθ. Specifically: f̂t+1 = gθ

(
max

ν
(window(ht+1))

)
.

The decoder gθ is a simple 2 layer convolutional neural network with 3× 3 convolutional kernels, 64
hidden channels, and a ReLU non-linearity between the layers.
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D.5 Ablation: No Velocity Channels

To construct the ablated version of the FloWM with no velocity channels, we simply set V = {(0, 0)}.
Since the original FloWM model simply max-pools over velocity channels, the decoder already
only takes a single velocity channel as input, so no other portions of the model need to change. We
note that this model is identical to a simple convolutional recurrent neural network with self-motion
equivariance. Explicitly:

ht+1 = σ
(
ψ1(−at) · W ⋆ ht + pad(U ⋆ ft)

)
. (3)

D.6 Ablation: No Self-Motion Equivariance

To construct the ablated version of the FloWM with no self-motion equivariance, we simply remove
the term −at from the flow of the recurrence relation. Explicitly:

ht+1(ν) = σ
(
ψ1(ν) · W ⋆ ht(ν) + pad(U ⋆ ft)

)
. (4)

We note that this is equivalent to the original FERNN model with the addition of the partial-
observability modifications (padding the input and windowing the hidden state for readout).

D.7 Ablation: No Velocity Channels + No Self-Motion Equivariance

To ablate both velocity channels and self-motion equivariance, we reach a simple convolutional RNN:

ht+1 = σ
(
W ⋆ ht + pad(U ⋆ ft)

)
. (5)

D.8 Ablation: Conv-RNN + Action Concat

In the appendix, we additionally include a version of the model with no velocity channels, no self-
motion equivariance, but with action conditioning for both the input and hidden state. Specifically,
we concatenate the current action to the hidden state vector and the input image as two additional
channels (corresponding to the x and y components of the action translation vector), and change the
number of input channels for both convolutions correspondingly. Explicitly:

ht+1 = σ
(
W ⋆ concat(ht, at) + pad(U ⋆ concat(ft, at))

)
. (6)

Empirically, we find that this additional conditioning marginally improves the model performance;
however, the model is still clearly unable to learn the precise equivariance that the FloWM has
built-in.

D.9 Training Details

To train the FloWM, as well as the ablated versions, we provide the model with 50 observation frames
as input, and train the model to predict the next 20 observations conditioned on the corresponding
action sequence. Specifically, we minimize the mean squared error (MSE) between the output of the
model and the ground truth sequence, averaged over the 20 frames (from frame 50 to 70):

LMSE =
1

20

70∑
t=50

||ft − f̂t||22. (7)

The models are trained with the Adam optimizer with a learning rate of 1e− 4, a batch size of 32,
and gradient clipping by norm with a value of 1.0. They are each trained for 50 epochs, or until
converged. Some models, such as the FloWM with self-motion equivariance but no velocity channels,
took longer than 50 epochs to converge, and thus training was extended to 100 epochs. All FloWM
models (and ablations) have roughly 75K trainable parameters.

E Video Diffusion Transformer Baseline Details

E.1 Video Diffusion Transformers

Diffusion Transformer based video generation models are the most prominent so-called world models
today [Peebles and Xie, 2023, Brooks et al., 2024]. Training follows a similar formula with diffusion
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image generation pipelines, requiring attention over the temporal dimension to retain temporal
consistency. For video data, diffusion models are typically trained within the latent space of a
variational autoencoder (VAE) [Rombach et al., 2022, Gupta et al., 2023], where raw video frames
are first compressed into compact latent representation.

The ability for these video diffusion models to generate impressively realistic videos has led to
an increased interest for their use as world models, and there is a growing focus in ensuring the
spatiotemporal consistency of these models as world simulators. Due to the size complexity of the
input token space, to generate long videos, researchers have turned to autoregressive sampling and
sliding window attention; though ubiquitously used, we speculate that the drawbacks of this method
for inference, where there is no hidden state passed between generation rounds after the window
shifts, is a major reason that DiT baselines fails on the simple task presented in this work.

E.2 Diffusion Forcing Transformer Baseline

Due to its claims of long term consistency and flexible inference abilities, for our baseline we chose a
History-guided Diffusion Forcing training scheme, using latent diffusion with a CogVideoX-style
transformer backbone, which we will call here DFoT [Song et al., 2025, Chen et al., 2024, Yang
et al., 2025, Rombach et al., 2022]. Models for state of the art video world modeling today have
similar training formulas and architectures for the backbone [Xiang et al., 2024, Ball et al., 2025,
Decart et al., 2024, Agarwal et al., 2025]. We first trained a spatial downsampling VAE on frames
of the MNIST-world data subsets, then pass input video frames through the VAE to form a latent
representation before it reaches the diffusion model.

Following the standard diffusion forcing training scheme, each frame during training is corrupted
with independent gaussian noise, and the training target is to predict some form of the ground truth
from these noisy frames. Song et al. [2025] showed that using this training schedule allows for
the history image frames to be prepended to the noisy frames as context in the same self attention
window, with zero (or some minimal) noise level, called History Guidance.

For DFoT models, unlike FloWM recurrent models, during training we make no distinction between
observation and prediction frames, and train on length 70 sequences in the self-attention window,
where each frame’s tokens receive independent gaussian noise. During inference, we utilize History
Guidance with 70 frames in the attention window to provide image context for consistent generation.
Specifically, the 50 observation frames are given minimal noise, and the 20 prediction frames all
begin at full noise; then the entire set of frames is passed through the model multiple times according
to the scheduler to complete denoising the target frames to get clean frames as outputs. Specifically,
each latent frame in the sequence xt ∈ xτ is assigned an independent noise level kt ∈ [0, 1]. Each
frame (more precisely, each collection of spatial tokens corresponding to a single frame) is noised
according to the following equation:

xkt
t = αkt

x0
t + σkt

ϵt, ϵt ∼ N (0, 1), (8)
where αkt

and σkt
denote the signal and noise scaling factors, respectively, determined by the chosen

variance schedule. The diffusion model ϵθ takes in as input a sequence of noise levels, kτ , and
the sequence of independently noised inputs xkτ

τ . The model is trained to minimize the following
diffusion loss:

Ekτ ,xτ ,ϵτ

[∥∥ϵτ − ϵθ
(
xkτ
τ , kτ

)∥∥2] . (9)

For more information on diffusion models in general, please see Chan [2025].

To run inference for generation of longer videos (as in the length extrapolation experiments), we use
a sliding window approach, matching the number of frames seen during training in the self-attention
window. Specifically, we keep 50 context frames, shift the window ahead by 20 frames after each
chunk is done denoising, and use the newly generated frames as context for the next generation round.

E.3 DFoT Training Details

We train a separate DFoT model for each data subset to separate out its abilities. We embed
actions, which are dimension 2, using a simple MLP embedder, and concatenate it to the video
tokens, following CogVideoX. Our 96M parameter DFoT’s validation loss and validation metrics
converge after 240k steps on 1 NVIDIA L40S 48GB GPU with a batch size of 128. More training
hyperparameters are reported in Table 5.
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Table 5: DFoT configurations. Classifier-free guidance [Ho and Salimans, 2022] for conditions is not
used during inference; though the models have been trained to allow for it, we find their instruction
following ability not to be a limiting factor. Loss weighting uses sigmoid reweighting proposed by
Kingma and Gao [2023] and adopted by Hoogeboom et al. [2024]. History guidance follows the
stablized conditional method (level = 0.02) from Song et al. [2025]; please refer to their code base for
details.

Section Key Value

Training

Effective batch size 128
Learning rate 2e-4 with linear warmup
Warmup steps 2,000
Weight decay 1e-3
Training epochs 175
GPU usage 1×L40S
Optimizer Adam, betas=(0.9, 0.99)
Training strategy Distributed Data Parallel
Precision Bfloat16

Diffusion

Objective v-prediction
Sampling steps 50
Noise schedule cosine
Loss weighting sigmoid

Model

Total parameters 95.3 M
# attention heads 12
Head dimension 64
# layers 10
Time embed dimension 256
Condition embed dimension 768

Inference
History guidance stablized conditional (level = 0.02)
Context frames 50
Sampler DDIM

E.4 VAE Training Details

Following standard practice, we use a VAE to perform latent diffusion; doing diffusion on pixels
instead could offer perceptually different results, but we do not believe it would alter the results of the
model. We train our 8x spatial downsampling VAE on sample frames from a mix of all of the data
subsets, such that all combinations of overlapping MNIST digits are within the training distribution.
Our 20M parameter VAE’s validation loss converges at about 90k steps, using an effective batch
size of 256 across 4 NVIDIA L40S 48GB GPUs with a learning rate of 4e-4. We utilize a Masked
Autoencoder Vision Transformer based VAE [He et al., 2021]. We directly apply the VAE code
from Oasis [Decart et al., 2024], including an additional discriminator loss that helps with visual
quality; please refer to their work for more details. The reconstruction MSE accuracy reaches 0.02,
so any DFoT MSE can be expected to be 0.02 higher than if trained on pixels; we believe this should
not affect convergence behavior of the DFoT models on the downstream task. During diffusion
training, for our VAE with latent dimension 4, and spatial downsampling ratio 8, input videos of
shape [num_frames, channels, height, width] are converted to shape [num_frames, 4,
height // 8, width // 8]. More training hyperparameters are reported in Table 6.
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Table 6: VAE configurations. The input size from the dataset is 32 × 32.

Component Option Value

Training Learning rate 4e-4
Effective batch size 256
Precision Float16 mixed precision
Strategy Distributed Data Parallel
Warmup steps 10,000
Training epochs 172
GPU usage 4×L40S
Optimizer (AE) Adam, betas=(0.5, 0.9)
Optimizer (Disc) Adam, betas=(0.5, 0.9)

Model Total parameters 19.7 M
Encoder dim 384
Encoder depth 4
Encoder heads 12
Decoder dim 384
Decoder depth 7
Decoder heads 12
Patch size 8

Latent Latent dim 4
Temporal downsample 1
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