
Fast Machine Unlearning via Robust Training

Youssef Allouah 1 2 Joshua Kazdan 1 Rachid Guerraoui 2 Sanmi Koyejo 1

Abstract

Machine unlearning, the process of selectively re-
moving knowledge from trained models, emerges
as a crucial mechanism for maintaining model
relevance and privacy. However, the effective-
ness of unlearning hinges on the quality of train-
ing, a challenge exacerbated by sensitivity to out-
lier data. We introduce the first robust training
approach to unlearning tailored to address this
challenge by minimizing the training loss on the
worst-case retain set to ensure a sturdy initial-
ization for subsequent unlearning. Our method
comes with theoretical guarantees for losses satis-
fying the Polyak-Łojasiewicz inequality, whereas
most prior machine unlearning guarantees apply
only to convex losses. Through empirical evalua-
tions, we demonstrate the seamless integration of
our approach with various unlearning techniques,
resulting in accelerated processes and enhanced
overall performance.

1. Introduction
The ability to selectively remove or “forget” portions of
the training data from a deep learning model is a timely
and intriguing scientific challenge with profound practical
implications. As deep neural networks find widespread
deployment across diverse domains like computer vision,
natural language processing, speech recognition, and health-
care, there is a growing need to provide individuals with
granular control over their personal data. Stringent data pro-
tection regulations, such as the European Union’s General
Data Protection Regulation (Voigt and Von dem Bussche,
2017), enshrine the “right to be forgotten,” mandating that
individuals can request the erasure of their data from sys-
tems that process it. Machine unlearning, the process of
systematically removing the influence of specific training
examples from a model, has emerged as a promising solu-

1Stanford University 2EPFL. Correspondence to: Youssef
Allouah <youssef.allouah@epfl.ch>, Sanmi Koyejo
<sanmi@cs.stanford.eduw>.

Work presented at TF2M workshop at ICML 2024, Vienna, Austria.
PMLR 235, 2024. Copyright 2024 by the author(s).

tion to address this regulatory necessity while preserving
the integrity and performance of the system. This research
direction has garnered significant attention recently (Cao
and Yang, 2015; Guo et al., 2020; Bourtoule et al., 2021;
Nguyen et al., 2022), driven by the imperative to develop
algorithms that can efficiently and effectively “unlearn” tar-
geted subsets of the training data.

Existing machine unlearning approaches include heuristic
algorithms such as fine-tuning on the retain data, i.e., the
data that is not to be unlearned, via gradient descent along
with maximizing the loss on the forget data, i.e., the data
to be unlearned, via gradient ascent (Graves et al., 2021).
There are also more sophisticated techniques that fine-tune
only some layers of the model to provoke catastrophic for-
getting (Goel et al., 2022). However, these approaches often
overlook the training procedure prior to unlearning. Yet,
the sensitivity of the training phase to the forget data is
central to unlearning. In this direction, there are several
techniques with provable unlearning guarantees for con-
vex tasks, reusing noise injection and privacy account tools
from differential privacy (Guo et al., 2020; Neel et al., 2021).
These guarantees essentially make it hard for a hypothetical
adversary to infer the presence of the forget data from the un-
learned model, as in membership inference attacks (Shokri
et al., 2017). Orthogonal to such a privacy guarantee, it is
always desirable to obtain good performance on the retain
data upon training, and sometimes bad performance on the
forget data, e.g., in when the forget data is chosen because
it is outdated or corrupt. In this work focus on the impor-
tant scenarios where the forget data consists of outlier or
corrupt samples, and naively training on all the data makes
unlearning hard.

Contributions. Our work proposes the first robust training
approach for machine unlearning. We show that our training
algorithm TRIMGRAD, a simple variant of gradient descent,
guarantees a good initialization for subsequent unlearning
for non-convex tasks. In particular, we prove that the fine-
tuning strategy for unlearning after TRIMGRAD guarantees
fast and good performance on the retain data, for non-convex
loss functions satisfying the Polyak-Łojasiewicz inequality.
Moreover, we provide experiments on vision tasks with neu-
ral networks showing that robust training is compatible with
several unlearning approaches, and is particularly useful for
unlearning outliers or corrupt data.

1

Fast Machine Unlearning via Robust Training

2. Problem Statement
Consider a training set S made of n examples z1, . . . , zn
from a data space Z , and a loss function ℓ : Rd × Z → R.
During the training phase, we are first interested in solving
the empirical risk minimization problem

min
θ∈Rd

L(θ;S) := 1

|S|
∑
z∈S

ℓ(θ; z). (1)

We denote by A the training procedure on the full set
S aimed at solving (1), and by A(S) ∈ Rd the model
obtained. Moreover, given the trained model A(S), we are
interested in the scenario where a portion of the training
set Sf ⊂ S of size f := |Sf |, called the forget set, is to be
removed. That is, we wish to learn only from the samples
of the retain set defined as Sr := S \ Sf . Ideally, we can
retrain using Sr only, but we can approximate this on the
retain data under computational constraints as follows.

Definition 1 ((ε, T)-approximate retraining). Let A be a
training procedure taking the dataset S as input. An it-
erative unlearning procedure U , taking as inputs Sf and
A(S), achieves ε-approximate retraining if, in T iterations,
it outputs a parameter θ̂T := U(Sf ,A(S)) such that

L(θ̂T ;Sr)− min
θ∈Rd

L(θ;Sr) ≤ ε. (2)

The definition above requires the unlearning procedure to
perform similarly to training from scratch on the retain
set, i.e., disregarding the trained model. In fact, (ε, T)-
approximate retraining can be achieved by training from
scratch using gradient descent (GD) on the retain set, with
T = O(log L0

ε) iterations for strongly convex tasks (Nes-
terov et al., 2018), where L0 is the error due to initialization.
Given that we possess a trained model, we are interested in
efficient approximate retraining solutions, i.e., with a much
smaller number of iterations than training from scratch, as-
suming the computational cost per iteration is alike.

In addition to approximate retraining (Definition 1), which
is a performance-centric unlearning objective, several other
objectives could be desirable depending on the machine
unlearning application. For example, when privacy is a
concern, one can additionally require a differential privacy
guarantee on the forget data (Guo et al., 2020; Neel et al.,
2021; Gupta et al., 2021), and make it hard for an adversary
to infer whether the forget data was used in training. Besides,
in order to remove toxic data or biases, it is desirable to
target bad performance on the forget data (Kurmanji et al.,
2024). Nevertheless, it always remains that we at least want
to efficiently achieve good performance on the retain data,
which is the purpose of Definition 1.

Sensitivity to outliers. A natural solution to fast approx-
imate retraining is to fine-tune on the retain data via GD,

initialized at the model obtained by training on the full
dataset with GD. However, the main obstacle to this method
is that the model obtained from training may be too sub-
optimal on the retain data, especially if the forget data are
outliers compared to the full dataset. We formalize this
observation below for the quadratic loss.

Proposition 1. Consider the data space Z = Rd and
the quadratic loss ℓ(θ; z) = ∥θ − z∥2 ,∀θ, z ∈ Rd.
Let θ⋆(S) := argminθ∈Rd L(θ;S) and θ⋆(Sr) :=
argminθ∈Rd L(θ;Sr) denote the minima of the training
loss on the datasets S and Sr respectively. Moreover,
let zSr and zSf

denote the averages 1
|Sr|

∑
z∈Sr

z and
1

|Sf |
∑

z∈Sf
z respectively. We have

L(θ⋆(S);Sr)− L(θ⋆(Sr);Sr) =

(
f

n

)2 ∥∥zSf
− zSr

∥∥2 .
The observation above shows that, after naive training on
the dataset S, the initial suboptimality on the retain data
grows with the distance between the average forget data and
retain data. If the forget and retain data are significantly dif-
ferent, the trained model may perform poorly on the retain
data. That is, the training may have been too sensitive to the
forget data. For illustration, we numerically validate this
theoretical observation on a least-squares regression task
in Figure 5 of the appendix. We use randomly generated
synthetic data and track the convergence speed of the loss
on the retain set, during unlearning via fine-tuning, after
varying the label of a single outlier sample. The initializa-
tion can be worse than random, in which case training from
scratch is faster for approximate retraining.

3. Robust Training with TRIMGRAD

In our approach, prior to unlearning, our goal is to train on
the full data without being too sensitive to the forget data.
As a consequence, we can expect efficiency improvements
during the unlearning phase over naive training. Of course,
the difficulty is that we do not know the forget data in ad-
vance. Moreover, the latter could consist of outliers, which
we know from Proposition 1 makes the task harder. To this
end, assuming we know the number (or good upper bound)
of forget points f , we propose solving a robust optimization
problem instead of (1) for training, as follows:

min
θ∈Rd

max
Sf⊂S
|Sf |=f

L(θ;S \ Sf) =
1

|S \ Sf |
∑

z∈S\Sf

ℓ(θ; z).

(3)

Clearly, by obtaining ε0-approximate global minimizer of
(3), we directly satisfy (ε0, 0)-approximate retraining. Even-
tually, a subsequent unlearning phase with T iterations,
where we know the forget set, allows to achieve (ε, T)-
approximate retraining with ε ≤ ε0.

2

Fast Machine Unlearning via Robust Training

Algorithm 1 TRIMGRAD: TRIMMED GRADIENT DE-
SCENT
Input: Initial model θ0, size of forget set f := |Sf |, learn-
ing rate γ, and number of steps T .
for t = 0 . . . T − 1 do

Compute the trimmed mean gradient: rt =
TMf (∇ℓ(θt; z1), . . . ,∇ℓ(θt; zn))
Update the model: θt+1 = θt − γrt

end

To solve the robust optimization problem in (3), we use a
variant of robust gradient descent based on the coordinate-
wise trimmed mean of the gradient batch, which we first
recall below. Let g1, . . . ,gn ∈ Rd, we denote by [gi]k, the
k-th coordinate of gi, i ∈ [n]. We denote the i-th small-
est k-th coordinate of g1, . . . ,gn by [g]k:i, i.e., [g]k:1 ≤
. . . ≤ [g]k:n. Then, the coordinate-wise trimmed mean,
parametrized by f < n

2 and denoted by TMf (g1, . . . ,gn),
is a vector in Rd whose k-th coordinate is

[TMf (g1, . . . ,gn)]k :=
1

n− 2f

n−f∑
i=f+1

[g]k:i. (4)

TRIMGRAD is an iterative algorithm where at each step, a
descent update is made in a robust direction given by the
trimmed mean of the gradients, as summarized in Algo-
rithm 1. That is, we update the model as θt+1 = θt − γrt,
where rt = TMf (∇ℓ(θt; z1), . . . ,∇ℓ(θt; zn)). This pro-
cedure is inspired by robust distributed optimization meth-
ods (Yin et al., 2018; Allouah et al., 2023), where gradients
come from potentially misbehaving workers. TRIMGRAD
can be followed by an unlearning phase, like fine-tuning on
the retain data. Intuitively, the gradients due to outliers in
the forget data would be excluded if they are too different
compared to the rest. This reduces sensitivity to the forget
data at each iteration, without knowing this data. Finally,
we observe that TRIMGRAD requires that we unlearn no
more than half of the training set at once, which can be
expected to hold in practice, and that it is possible to adapt
TRIMGRAD for sequential removals (see Appendix D).

4. Theoretical Analysis
In this section, we theoretically show that robust training,
by solving (3) with TRIMGRAD, produces a good model
for subsequent unlearning. Specifically, we show that this
model achieves performance on par with training from
scratch in a much smaller number of iterations. Hence-
forth, we simply denote L instead of L(· ;Sr) when it is
clear from the context, unless specified otherwise.

Standard assumptions. As is standard in optimization
theory, we assume that the loss function is differentiable
and L-smooth (Nesterov et al., 2018). Moreover, we as-

sume that it satisfies the µ-Polyak-Łojasiewicz (PL) inequal-
ity (Karimi et al., 2016), which relaxes strong convexity
without requiring convexity. We defer the formal assump-
tions to Appendix A.1 due to space limitations.

Finally, we make the following standard assumption on the
heterogeneity across the retain data, which can be found
in previous works in distributed optimization (Karimireddy
et al., 2020; Koloskova et al., 2020; Allouah et al., 2024).

Assumption 1. We assume that there exist ζ⋆ ≥ 0, P ≥ 1,
such that for all θ ∈ Rd

1
|Sr|

∑
z∈Sr

∥∇ℓ(θ; z)∥2 ≤ ζ2⋆ + P ∥∇L(θ)∥2 . (5)

Above, the parameter ζ⋆ can be interpreted as a measure of
interpolation, i.e., how well we can fit the data (Vaswani
et al., 2019). We first analyze the performance of TRIM-
GRAD, without unlearning, in Theorem 1 below.

Theorem 1. Let assumptions 1-3 hold, and assume that
f = O

(
n
P

)
and f < n

2 . Then, T iterations of TRIMGRAD
(Algorithm 1) on the full training set S , without unlearning,
satisfy (ε, 0)-approximate retraining, with

ε ≲
f

n
ζ2⋆ + L0 exp

(
− µ

2L
T
)
, (6)

where ≲ denotes inequality up to absolute constants and
L0 := L(θ0)− L⋆.

Intuitively, the result above shows that robust training pro-
duces a model that already performs well on the retain data,
so that no unlearning procedure is needed (1) if ζ⋆ is small,
i.e., we are close to the interpolation regime on the retain
data, and (2) if f

n is small, i.e., there are few samples to be
unlearned in total. Beyond these cases, we show that we
can achieve fast approximate retraining, for any precision ε,
by fine-tuning on the retain set after using TRIMGRAD.

Theorem 2. Let assumptions 1-3 hold, and assume that
f = O

(
n
P

)
and f < n

2 . Then, for any ε > 0, TRIMGRAD
(Algorithm 1) on the full training set S, followed by fine-
tuning with T iterations of GD on the retain set Sr, satisfy
(ε, T)-approximate retraining, with

T ≲
L

µ
log

(
f

n

ζ2⋆
µ

1

ε

)
, (7)

where ≲ denotes inequality up to absolute constants.

Recall that, under the PL assumption, retraining from
scratch can achieve (ε, T)-approximate retraining in
O
(
log L0

ε

)
, where L0 is the error due to initialization. The

result above shows that we can achieve fast approximate
retraining if f

nζ
2
⋆ ≪ L0, i.e., the fraction of the forget data

is compared to the error due to initialization, or that we
are close to the interpolation regime (Vaswani et al., 2019).

3

Fast Machine Unlearning via Robust Training

Figure 1. (Left) Accuracy on the forget set during training; showing, as expected, that TrimGrad has lower accuracy on the forget set
during training. (Center) Accuracy on the forget set during unleanring; showing that TrimGrad speeds up unlearning. (Right) Accuracy on
the test set (right) during unlearning; showing that TrimGrad recovers quickly on the retained set. Methods used for unlearning include
gradient ascent on the forget set, fine-tuning on the retain set, and NegGrad+ (Kurmanji et al., 2024). Results for TRIMGRAD are shown
with solid lines and results for naive training (SGD) are shown with dotted lines.

Finally, we remark that such a guarantee may not hold for
fine-tuning after naive training, as it is independent of the
forget data. Indeed, we have shown in Proposition 1 that the
model obtained via naive training can behave poorly on the
retain data if the forget data are outliers on average.

5. Empirical Evaluation
To investigate the effectiveness of robust training for un-
learning, we focus on scenarios where the forget set is an
outlier compared to the rest of the data on classification
tasks. We do so via a simple experiment; we randomly
mislabel a fraction of the dataset and compare training algo-
rithms based on how fast we can get a low accuracy on the
corrupt data, while keeping a high accuracy on the (clean)
test data. In addition to validating the theory in showing
fast good performance on the retain data, we also show that
TRIMGRAD enables a low forget accuracy on the forget data,
unlike naive training which fits all data indiscriminately.

Experimental setup. We consider MNIST (LeCun and
Cortes, 2005) and CIFAR-10 (Krizhevsky et al., 2014) with
fully-connected and convolutional neural networks. All
randomness and hyperparameters are fixed across methods.
For TRIMGRAD, we apply trimmed mean to micro-batch
stochastic gradients for efficiency. Full experimental results
and details are in Appendix C.

Effective unlearning. In Figure 1, robust training enables
rapidly bringing the forget accuracy down to near-baseline
levels, much faster than after naive training. Indeed, the
same figure shows how the forget accuracy, during training,
of TRIMGRAD converges to half of that of naive training.
Also, this is the case while the performance on the (clean)
test data is on par with the baseline, as shown in Figure 3.
It is worth noting that the retain set performance of TRIM-
GRAD is on par with retraining from scratch, in much lesser
iterations (Figure 4), while naive training already fits the
retain data, but also the forget data as a downside.

Efficiency of training and unlearning. In terms of effi-
ciency, robust training is quite promising. Indeed, the num-
ber of unlearning iterations to reach under 20% accuracy on
the forget data, i.e., ten points above a random classifier, in
about 40, 000 iterations, which is at least 2 times faster than
with naive training. Moreover, although the accuracy on
the test set (during training) of TRIMGRAD is a few points
lower than naive training, the training accuracy converges
faster per Figure 4. This is because naive training needs
more iterations to perfectly fit the entire training data, but
including the forget data. We also observe from Figure 3
that retraining from scratch is substantially slow in achiev-
ing good test performance compared to the other methods,
as usual in machine unlearning.

6. Conclusion
As companies increasingly face lawsuits for training on
copyrighted data, the ability to remove copyrighted and
harmful materials from models’ knowledge bases will be-
come more and more important. We have introduced TRIM-
GRAD, a novel training algorithm that serves as a primer for
subsequent unlearning. By training with TRIMGRAD, one
obtains theoretical guarantees of efficient unlearning under
mild assumptions. We have provided empirical evidence
that applying several unlearning techniques after training
with TRIMGRAD yields better rates of unlearning relative
than usual training. Future work could apply TRIMGRAD
to larger models and more complicated tasks such as image
and text generation. This would come with an exploration
of how more complicated unlearning methods for language
and vision models fare when applied to models pretrained
with TRIMGRAD.

References
Allouah, Y., Farhadkhani, S., Guerraoui, R., Gupta, N.,

Pinot, R., and Stephan, J. (2023). Fixing by mixing: A

4

Fast Machine Unlearning via Robust Training

recipe for optimal Byzantine ML under heterogeneity. In
International Conference on Artificial Intelligence and
Statistics, pages 1232–1300. PMLR.

Allouah, Y., Guerraoui, R., Gupta, N., Pinot, R., and Rizk, G.
(2024). Robust distributed learning: Tight error bounds
and breakdown point under data heterogeneity. Advances
in Neural Information Processing Systems, 36.

Bourtoule, L., Chandrasekaran, V., Choquette-Choo, C. A.,
Jia, H., Travers, A., Zhang, B., Lie, D., and Papernot, N.
(2021). Machine unlearning. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 141–159. IEEE.

Cao, Y. and Yang, J. (2015). Towards making systems forget
with machine unlearning. In 2015 IEEE symposium on
security and privacy, pages 463–480. IEEE.

Goel, S., Prabhu, A., Sanyal, A., Lim, S.-N., Torr, P., and
Kumaraguru, P. (2022). Towards adversarial evalua-
tions for inexact machine unlearning. arXiv preprint
arXiv:2201.06640.

Graves, L., Nagisetty, V., and Ganesh, V. (2021). Am-
nesiac machine learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages
11516–11524.

Guo, C., Goldstein, T., Hannun, A., and Van Der Maaten,
L. (2020). Certified data removal from machine learn-
ing models. In International Conference on Machine
Learning, pages 3832–3842. PMLR.

Gupta, V., Jung, C., Neel, S., Roth, A., Sharifi-Malvajerdi,
S., and Waites, C. (2021). Adaptive machine unlearn-
ing. Advances in Neural Information Processing Systems,
34:16319–16330.

Karimi, H., Nutini, J., and Schmidt, M. (2016). Linear con-
vergence of gradient and proximal-gradient methods un-
der the polyak-łojasiewicz condition. In Machine Learn-
ing and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2016, Riva del Garda, Italy,
September 19-23, 2016, Proceedings, Part I 16, pages
795–811. Springer.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S.,
and Suresh, A. T. (2020). Scaffold: Stochastic controlled
averaging for federated learning. In International Confer-
ence on Machine Learning, pages 5132–5143. PMLR.

Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and
Stich, S. (2020). A unified theory of decentralized SGD
with changing topology and local updates. In Interna-
tional Conference on Machine Learning, pages 5381–
5393. PMLR.

Krizhevsky, A., Nair, V., and Hinton, G. (2014). The cifar-
10 dataset. online: http://www. cs. toronto. edu/kriz/cifar.
html, 55(5).

Kurmanji, M., Triantafillou, P., Hayes, J., and Triantafil-
lou, E. (2024). Towards unbounded machine unlearning.
Advances in Neural Information Processing Systems, 36.

LeCun, Y. and Cortes, C. (2005). The mnist database of
handwritten digits.

Neel, S., Roth, A., and Sharifi-Malvajerdi, S. (2021).
Descent-to-delete: Gradient-based methods for machine
unlearning. In Algorithmic Learning Theory, pages 931–
962. PMLR.

Nesterov, Y. et al. (2018). Lectures on convex optimization,
volume 137. Springer.

Nguyen, T. T., Huynh, T. T., Nguyen, P. L., Liew, A. W.-
C., Yin, H., and Nguyen, Q. V. H. (2022). A survey of
machine unlearning. arXiv preprint arXiv:2209.02299.

Sai Abhishek, A. V. (2022). Resnet18 model with sequen-
tial layer for computing accuracy on image classification
dataset. 10:2320–2882.

Shokri, R., Stronati, M., Song, C., and Shmatikov, V. (2017).
Membership inference attacks against machine learning
models. In 2017 IEEE symposium on security and privacy
(SP), pages 3–18. IEEE.

Vaswani, S., Bach, F., and Schmidt, M. (2019). Fast and
faster convergence of SGD for over-parameterized mod-
els and an accelerated perceptron. In The 22nd interna-
tional conference on artificial intelligence and statistics,
pages 1195–1204. PMLR.

Voigt, P. and Von dem Bussche, A. (2017). The EU gen-
eral data protection regulation (GDPR). A Practical
Guide, 1st Ed., Cham: Springer International Publishing,
10(3152676):10–5555.

Yin, D., Chen, Y., Kannan, R., and Bartlett, P. (2018).
Byzantine-robust distributed learning: Towards optimal
statistical rates. In Dy, J. and Krause, A., editors, Pro-
ceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 5650–5659. PMLR.

5

Fast Machine Unlearning via Robust Training

A. Assumptions and Proofs
A.1. Assumptions

Assumption 2 (L-smoothness). A function L : Rd → R is L-smooth if, for all θ,θ′ ∈ Rd, we have

L(θ′)− L(θ)− ⟨∇L(θ),θ′ − θ⟩ ≤ L

2
∥θ′ − θ∥2 .

The above is equivalent to, for all θ,θ′ ∈ Rd, having ∥∇L(θ′)−∇L(θ)∥ ≤ L ∥θ′ − θ∥ (see, e.g., (Nesterov et al., 2018)).
Moreover, some of our results will be derived assuming the Polyak-Łojasiewicz (PL) inequality (Karimi et al., 2016) shown
below, which relaxes strong convexity without requiring convexity.

Assumption 3 (µ-Polyak-Łojasiewicz (PL)). A function L : Rd → R is µ-PL if, for all θ ∈ Rd, we have

2µ (L(θ)− L⋆) ≤ ∥∇L(θ)∥2 ,

where L∗ := infθ∈Rd L(θ).

Note that a function satisfies L-smoothness and µ-PL inequality simultaneously only if µ ≤ L.

A.2. Proofs

Proposition 1. Consider the data space Z = Rd and the quadratic loss ℓ(θ; z) = ∥θ − z∥2 ,∀θ, z ∈ Rd. Let θ⋆(S) :=
argminθ∈Rd L(θ;S) and θ⋆(Sr) := argminθ∈Rd L(θ;Sr) denote the minima of the training loss on the datasets S and
Sr respectively. Moreover, let zSr

and zSf
denote the averages 1

|Sr|
∑

z∈Sr
z and 1

|Sf |
∑

z∈Sf
z respectively. We have

L(θ⋆(S);Sr)− L(θ⋆(Sr);Sr) =

(
f

n

)2 ∥∥zSf
− zSr

∥∥2 .

Proof. Consider the data space Z = Rd and the quadratic loss ℓ(θ; z) = ∥θ − z∥2 ,∀θ, z ∈ Rd. Let zS , zSr
and zSf

denote the averages 1
|S|
∑

z∈S z, 1
|Sr|

∑
z∈Sr

z and 1
|Sr|

∑
z∈Sf

z respectively.

First, observe that

θ⋆(S) = argmin
θ∈Rd

{
L(θ;S) = 1

|S|
∑
z∈S

∥θ − z∥2
}

= zS ,

and similarly θ⋆(Sr) = argminθ∈Rd L(θ;Sr) = zSr
.

On the one hand, using bias-variance decomposition and recalling that Sr = S \ Sf , we have

L(θ⋆(S);Sr) = L(zS ;Sr) =
1

|Sr|
∑
z∈Sr

∥zS − z∥2 =
1

|Sr|

∑
z∈S

∥zS − z∥2 −
∑
z∈Sf

∥zS − z∥2

=
1

|Sr|

∑
z∈S

∥zS − z∥2 −

∑
z∈Sf

∥∥zSf
− z
∥∥2 + |Sf |

∥∥zSf
− zS

∥∥2
=

1

|Sr|

∑
z∈S

∥zS − z∥2 −
∑
z∈Sf

∥∥zSf
− z
∥∥2− |Sf |

|Sr|
∥∥zSf

− zS
∥∥2 .

6

Fast Machine Unlearning via Robust Training

On the other hand, we similarly have

L(θ⋆(Sr);Sr) = L(zSr
;Sr) =

1

|Sr|
∑
z∈Sr

∥zSr
− z∥2 =

1

|Sr|

∑
z∈S

∥zSr
− z∥2 −

∑
z∈Sf

∥zSr
− z∥2

=

1

|Sr|

(∑
z∈S

∥zS − z∥2 + |S| ∥zSr
− zS∥2

)
−

∑
z∈Sf

∥∥zSf
− z
∥∥2 + |Sf |

∥∥zSf
− zSr

∥∥2
=

1

|Sr|

∑
z∈S

∥zS − z∥2 −
∑
z∈Sf

∥∥zSf
− z
∥∥2+

|S| ∥zSr
− zS∥2 − |Sf |

∥∥zSr
− zSf

∥∥2
|Sr|

.

By combining the above two equations, we obtain

L(θ⋆(S);Sr)− L(θ⋆(Sr);Sr) =
|Sf |

∥∥zSr
− zSf

∥∥2 − |S| ∥zSr
− zS∥2 − |Sf |

∥∥zSf
− zS

∥∥2
|Sr|

.

Now, observe that zS = 1
|S|
∑

z∈S z = |Sr|
|S| zSr

+
|Sf |
|S| zSf

, so that zS − zSr
=

|Sf |
|S| (zSf

− zSr
) and zS − zSf

=
|Sr|
|S| (zSr − zSf

), because |S| = |Sf |+ |Sr|. Plugging these identities in the equation above then yields

L(θ⋆(S);Sr)− L(θ⋆(Sr);Sr) =
|Sf |

∥∥zSr − zSf

∥∥2 − |Sf |2
|S|

∥∥zSr − zSf

∥∥2 − |Sr|2|Sf |
|S|2

∥∥zSf
− zSr

∥∥2
|Sr|

=

(
|Sf |
|Sr|

− |Sf |2

|Sr| |S|
− |Sr| |Sf |

|S|2

)∥∥zSf
− zSr

∥∥2 .
Recall the notation f = |Sf | and n = |S|, so that |Sr| = n− f and

L(θ⋆(S);Sr)− L(θ⋆(Sr);Sr) =

(
f

n− f
− f2

n(n− f)
− f(n− f)

n2

)∥∥zSf
− zSr

∥∥2 =

(
f

n

)2 ∥∥zSf
− zSr

∥∥2 .
The above concludes the proof.

Lemma 3 (Proposition 2, (Allouah et al., 2023), paraphrased). Let n ∈ N∗ and f < n/2. For any g1, . . . ,gn ∈ Rd and any
I ⊆ [n] of size |I| = n− f , we have

∥TMf (g1, . . . ,gn)− gI∥
2 ≤ 6f

n− 2f

(
1 +

f

n− 2f

)
1

|I|
∑
i∈I

∥gi − gI∥
2
, (8)

where we denote the average gI := 1
|I|
∑

i∈I gi.

Theorem 1. Let assumptions 1-3 hold, and assume that f = O
(
n
P

)
and f < n

2 . Then, T iterations of TRIMGRAD
(Algorithm 1) on the full training set S , without unlearning, satisfy (ε, 0)-approximate retraining, with

ε ≲
f

n
ζ2⋆ + L0 exp

(
− µ

2L
T
)
, (6)

where ≲ denotes inequality up to absolute constants and L0 := L(θ0)− L⋆.

Proof. Let t ∈ {0, . . . , T − 1}. Recall that L is L-smooth by assumption. From Algorithm 1, recall that θt+1 = θt − γrt.
Hence, by the smoothness assumption, we have

L(θt+1)− L(θt) ≤ −γ ⟨∇L(θt), rt⟩+
1

2
γ2L ∥rt∥2 . (9)

7

Fast Machine Unlearning via Robust Training

Moreover, we recall the identity

⟨∇L(θt), rt⟩ =
1

2

(
∥∇L(θt)∥2 + ∥rt∥2 − ∥∇L(θt)− rt∥2

)
.

Substituting the above in (18) we obtain that

L(θt+1)− L(θt) ≤ −γ

2

(
∥∇L(θt)∥2 + ∥rt∥2 − ∥∇L(θt)− rt∥2

)
+

1

2
γ2L ∥rt∥2

= −γ

2
∥∇L(θt)∥2 −

γ

2
(1− γL) ∥rt∥2 +

γ

2
∥∇L(θt)− rt∥2 .

Substituting γ = 1
L in the above we obtain that

L(θt+1)− L(θt) ≤ − 1

2L
∥∇L(θt)∥2 +

1

2L
∥rt −∇L(θt)∥2 . (10)

By applying Lemma 3 to the vectors ∇ℓ(θt; z1), . . . ,∇ℓ(θt; zn) and the indices set I := {i ∈ [n] : zi ∈ Sr}, and denoting
κ := 6f

n−2f

(
1 + f

n−2f

)
, we obtain

∥rt −∇L(θt)∥2 =

∥∥∥∥∥∥TMf (∇ℓ(θt; z1), . . . ,∇ℓ(θt; zn))−
1

|I|
∑
j∈I

∇ℓ(θt; zj)

∥∥∥∥∥∥
2

≤ κ

|I|
∑
i∈I

∥∥∥∥∥∥∇ℓ(θt; zi)−
1

|I|
∑
j∈I

∇ℓ(θt; zj)

∥∥∥∥∥∥
2

=
κ

|I|
∑
i∈I

∥∇ℓ(θt; zi)−∇L(θt)∥2 . (11)

Besides, Assumption 1 implies that we have

1

|I|
∑
i∈I

∥∇ℓ(θt; zi)−∇L(θt)∥2 =
1

|I|
∑
i∈I

∥∇ℓ(θt; zi)∥2 − ∥∇L(θt)∥2 ≤ ζ2⋆ + (P − 1) ∥∇L(θt)∥2 .

Using the above in (11) yields

∥rt −∇L(θt)∥2 ≤ κζ2⋆ + κ(P − 1) ∥∇L(θt)∥2 .

Substituting the above in (10) yields

L(θt+1)− L(θt) ≤ − 1

2L
∥∇L(θt)∥2 +

1

2L

(
κζ2⋆ + κ(P − 1) ∥∇L(θt)∥2

)
. (12)

Multiplying both sides in (12) by 2L and rearranging terms, we get

(1− κ(P − 1)) ∥∇L(θt)∥2 ≤ κζ2⋆ + 2L (L(θt)− L(θt+1)) . (13)

Averaging over all t ∈ {0, . . . , T − 1} and recalling that L⋆ = infθ∈Rd L(θ) yields

(1− κ(P − 1))
1

T

T−1∑
t=0

∥∇L(θt)∥2 ≤ κζ2⋆ +
2L

T

T−1∑
t=0

(L(θt)− L(θt+1)) = κζ2⋆ +
2L

T
(L(θ0)− L(θT))

≤ κζ2⋆ +
2L

T
(L(θ0)− L⋆) .

Finally, since we assume that 1− κ(P − 1) > 0, dividing both sides in the above by 1− κ(P − 1) yields

1

T

T−1∑
t=0

∥∇L(θt)∥2 ≤ κζ2⋆
1− κ(P − 1)

+
2L (L(θ0)− L⋆)

(1− κ(P − 1))T
.

Then, outputting the iterate θτ such that τ ∈ argmint∈{0,...,T−1} ∥∇L(θt)∥ and remarking that κ
1−κ(P−1) ≤ 45 f

n and

1− κ(P − 1) ≥ 1
2 when f

n ≤ min
{

1
3 ,

12
5(P−1)

}
concludes the proof for the non-convex case.

8

Fast Machine Unlearning via Robust Training

PL case. Assume now that L is µ-PL. We reuse (13) as follows

(1− κ(P − 1)) ∥∇L(θt)∥2 ≤ κζ2⋆ + 2L (L(θt)− L(θt+1))

= κζ2⋆ + 2L (L(θt)− L⋆ + L⋆ − L(θt+1)) .

Rearranging terms, we get

2L (L(θt+1)− L⋆) ≤ κζ2⋆ − (1− κ(P − 1)) ∥∇L(θt)∥2 + 2L (L(θt)− L⋆) .

Since L is µ-PL, we obtain

2L (L(θt+1)− L⋆) ≤ κζ2⋆ − 2µ (1− κ(P − 1)) (L(θt)− L⋆) + 2L (L(θt)− L⋆)

= κζ2⋆ + (2L− 2µ (1− κ(P − 1))) (L(θt)− L⋆) .

Dividing both sides by 2L, we get

L(θt+1)− L⋆ ≤ κζ2⋆
2L

+
(
1− µ

L
(1− κ(P − 1))

)
(L(θt)− L⋆) . (14)

Then, applying (16) recursively for time indices in k ∈ {0, . . . , t− 1} yields

L(θt+1)− L⋆ ≤ κζ2⋆
2L

t∑
k=0

(
1− µ

L
(1− κ(P − 1))

)k
+
(
1− µ

L
(1− κ(P − 1))

)t+1

(L(θ0)− L⋆)

≤ κζ2⋆
2L

1

1−
(
1− µ

L (1− κ(P − 1))
) + (1− µ

L
(1− κ(P − 1))

)t+1

(L(θ0)− L⋆)

=
κζ2⋆

2µ (1− κ(P − 1))
+
(
1− µ

L
(1− κ(P − 1))

)t+1

(L(θ0)− L⋆) .

Using the fact that (1 + x)n ≤ enx for all x ∈ R and substituting t = T − 1 yields

L(θT)− L⋆ ≤ κζ2⋆
2µ (1− κ(P − 1))

+ e−
µ
L (1−κ(P−1))T (L(θ0)− L⋆) .

Then, remarking that κ
1−κ(P−1) ≤ 45 f

n and 1− κ(P − 1) ≥ 1
2 when f

n ≤ min
{

1
3 ,

12
5(P−1)

}
yields that

L(θT)− L⋆ ≤ 45

2µ

f

n
ζ2⋆ + e−

µ
2LT (L(θ0)− L⋆) . (15)

The above concludes the proof.

Theorem 2. Let assumptions 1-3 hold, and assume that f = O
(
n
P

)
and f < n

2 . Then, for any ε > 0, TRIMGRAD
(Algorithm 1) on the full training set S, followed by fine-tuning with T iterations of GD on the retain set Sr, satisfy
(ε, T)-approximate retraining, with

T ≲
L

µ
log

(
f

n

ζ2⋆
µ

1

ε

)
, (7)

where ≲ denotes inequality up to absolute constants.

Proof. Assume now that L is µ-PL. Also, for clarity denote by TI the number of iterations of TGD prior to the T fine-tuning
iterations of gradient descent. Following the proof of Theorem 1 up until (13) yields

(1− κ(P − 1)) ∥∇L(θt)∥2 ≤ κζ2⋆ + 2L (L(θt)− L(θt+1))

= κζ2⋆ + 2L (L(θt)− L⋆ + L⋆ − L(θt+1)) .

9

Fast Machine Unlearning via Robust Training

Rearranging terms, we get

2L (L(θt+1)− L⋆) ≤ κζ2⋆ − (1− κ(P − 1)) ∥∇L(θt)∥2 + 2L (L(θt)− L⋆) .

Since L is µ-PL, we obtain

2L (L(θt+1)− L⋆) ≤ κζ2⋆ − 2µ (1− κ(P − 1)) (L(θt)− L⋆) + 2L (L(θt)− L⋆)

= κζ2⋆ + (2L− 2µ (1− κ(P − 1))) (L(θt)− L⋆) .

Dividing both sides by 2L, we get

L(θt+1)− L⋆ ≤ κζ2⋆
2L

+
(
1− µ

L
(1− κ(P − 1))

)
(L(θt)− L⋆) . (16)

Then, applying (16) recursively for time indices in k ∈ {0, . . . , t− 1} yields

L(θt+1)− L⋆ ≤ κζ2⋆
2L

t∑
k=0

(
1− µ

L
(1− κ(P − 1))

)k
+
(
1− µ

L
(1− κ(P − 1))

)t+1

(L(θ0)− L⋆)

≤ κζ2⋆
2L

1

1−
(
1− µ

L (1− κ(P − 1))
) + (1− µ

L
(1− κ(P − 1))

)t+1

(L(θ0)− L⋆)

=
κζ2⋆

2µ (1− κ(P − 1))
+
(
1− µ

L
(1− κ(P − 1))

)t+1

(L(θ0)− L⋆) .

Using the fact that (1 + x)n ≤ enx for all x ∈ R and substituting t = TI − 1 yields

L(θTI
)− L⋆ ≤ κζ2⋆

2µ (1− κ(P − 1))
+ e−

µ
L (1−κ(P−1))TI (L(θ0)− L⋆) .

Now, for simplicity, denote θTGD := θTI
. Then, remarking that κ

1−κ(P−1) ≤ 45 f
n and 1 − κ(P − 1) ≥ 1

2 when
f
n ≤ min

{
1
3 ,

12
5(P−1)

}
yields that

L(θTGD)− L⋆ ≤ 45

2µ

f

n
ζ2⋆ + e−

µ
2LTI (L(θ0)− L⋆) . (17)

Recall that L is L-smooth by assumption. We now analyze T iterations of fine-tuning with gradient descent, i.e., the
sequence of iterations given by θ′

t+1 = θ′
t−γ∇L(θ′

t), for t ∈ {0, . . . , T − 1}, with θ′
0 = θTGD. Hence, by the smoothness

assumption, we have

L(θ′
t+1)− L(θ′

t) ≤ −γ ∥∇L(θ′
t)∥

2
+

1

2
γ2L ∥∇L(θ′

t)∥
2
. (18)

Substituting γ = 1
L and using the PL inequality, we get

L(θ′
t+1)− L(θ′

t) ≤ − 1

2L
∥∇L(θ′

t)∥
2 ≤ −µ

L
(L(θ′

t)− L⋆). (19)

Rearranging terms then yields

L(θ′
t+1)− L⋆ ≤ (1− µ

L
)(L(θ′

t)− L⋆).

By recursively applying the above for times indices in {0, . . . , T − 1}, and using the fact that (1 + x)n ≤ enx for all x ∈ R,
we obtain

L(θ′
T)− L⋆ ≤ e−

µ
LT (L(θ′

0)− L⋆) = e−
µ
LT (L(θTGD)− L⋆).

Now, plugging (17) in the above, we obtain

L(θ′
T)− L⋆ ≤ e−

µ
LT

[
45

2µ

f

n
ζ2⋆ + e−

µ
2LTI (L(θ0)− L⋆)

]
=

45e−
µ
LT

2µ

f

n
ζ2⋆ + e−

µ
L (T+

TI

2) (L(θ0)− L⋆) .

Therefore, if T = O(Lµ log (fn
ζ2
⋆

µ
1
ε)) and TI = O(Lµ log (L(θ0)−L⋆

ε)), then the procedure satisfies ε-approximate unlearning.

10

Fast Machine Unlearning via Robust Training

B. Training details

Table 1. Training Parameters & Steps
Batch Size LR Optimizer Learning Steps Unlearning steps Dropout

MNIST 250 3e-4 Adam 100,000 100,000 0.25
CIFAR-10 250 3e-4 Adam 100,000 100,000 0.25

Experiments were performed on two types of architectures, a CNN and a ResNet-18 architecture. The CNN had 4
convolutional layers with max pooling, followed by 3 fully-connected layers. The ResNet-18 architecture is the same as
in (Sai Abhishek, 2022). Training parameters can be found in Table 1. The same unlearning parameters were used for all
three types of unlearning that we tested experimentally.

C. Additional Experiments

Figure 2. Accuracy on the forget set during training (left) and unlearning (right) naive training (Naive), robust training (TRIMGRAD), and
unlearning by retraining from scratch (Scratch), on CIFAR-10 with a convolutional neural network.

Figure 3. Accuracy on the retain set (left) and accuracy on the test set (right) during unlearning after naive training (Naive), robust training
(TRIMGRAD), and unlearning by retraining from scratch (Scratch), on CIFAR-10 with a convolutional neural network.

D. Sequential Removal Requests
We can adapt TRIMGRAD to sequential removal requests by sequentially removing the forget set and repeating the
TRIMGRAD procedure on the retain set, as summarized in Algorithm 2. Each model obtained prior to removal can be used
in parallel for unlearning, e.g., via fine-tuning.

11

Fast Machine Unlearning via Robust Training

Figure 4. Accuracy on the train set (left) and accuracy on the test set (right) during training with naive training (Naive), robust training
(TRIMGRAD), on CIFAR-10 with a convolutional neural network.

Figure 5. Training loss vs. number of iterations during unlearning, after naive training and naive fine-tuning (Fine-tune), compared to
training from scratch (Scratch) with different values of the label of the (outlier) forget data point.

Figure 6. Accuracy on the forget set during training (left) and unlearning (right) naive training (Naive), robust training (TRIMGRAD), and
unlearning by retraining from scratch (Scratch), on MNIST with a fully-connected two-layer neural network.

12

Fast Machine Unlearning via Robust Training

Figure 7. Accuracy on the retain set (left) and accuracy on the test set (right) during unlearning after naive training (Naive), robust training
(TRIMGRAD), and unlearning by retraining from scratch (Scratch), on MNIST with a fully-connected two-layer neural network.

Figure 8. Accuracy on the retain set (left) and accuracy on the test set (right) during training with naive training (Naive), robust training
(TRIMGRAD), on MNIST with a fully-connected two-layer neural network.

Algorithm 2 TRIMGRAD WITH SEQUENTIAL REMOVAL REQUESTS

Input: Initial model θ0, sequence of forget sets S0
f , . . . ,S

K−1
f of sizes f1, . . . , fK , learning rate γ, and number of steps T .

for k = 0 . . .K − 1 do
if k = 0 then

θk
0 = θ0

Sk = S
end
else

θk
0 = θk−1

T

Sk = Sk−1 \ Sk−1
f

end
Update training set: Sk = Sk−1

for t = 0 . . . T − 1 do
Compute the trimmed average gradient: rkt = TMfk

({
∇ℓ(θk

t ; z) : z ∈ Sk
})

Update the model: θk
t+1 = θk

t − γrkt
end

end

13

