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Abstract001

A dense retriever learns text embeddings to002
fetch relevant documents from a database in003
response to queries. However, real-world doc-004
ument streams constantly evolve, often diverg-005
ing from the retriever’s original training dis-006
tribution. Indexing these documents without007
preemptive measures (e.g., updating or retrain-008
ing) can lead to retrieval failures for future test009
queries. Hence, it is crucial to detect when to010
update dense retrievers before those test queries011
arrive, ensuring the retrieval system’s mainte-012
nance. To address this challenge, we introduce013
a novel task of predicting whether a given cor-014
pus is out-of-domain (OOD) for a dense re-015
triever before indexing. This task enables us016
to assess whether using the current retriever on017
the given corpus creates vulnerabilities for fu-018
ture test queries. We propose GradNormIR, a019
novel unsupervised method that leverages gra-020
dient norms to detect OOD documents within a021
given corpus. Experiments on the BEIR bench-022
mark demonstrate that our method facilitates023
timely retriever updates in evolving corpora,024
providing valuable guidance for building an025
efficient and robust retrieval system.026

1 Introduction027

With the exponential growth of digital content,028

information retrieval (IR) systems have become029

crucial for providing users with relevant infor-030

mation from vast repositories (Bajaj et al., 2016;031

Kwiatkowski et al., 2019). Unlike traditional sparse032

retrieval methods (Robertson et al., 2009; Ramos033

et al., 2003) that rely on lexical overlap, dense034

retrievers (Karpukhin et al., 2020; Izacard et al.,035

2022) leverage semantic representations to cap-036

ture query intent and match conceptually similar037

documents, transcending the limitations of exact038

word matching. Hence, dense retrievers have ac-039

quired much attention in scenarios requiring high-040

precision semantic matching, such as question-041

answering and personalized search. During train-042
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Figure 1: Motivation. In evolving corpora, indexing a
document corpus that dense retrievers cannot generalize
leads to performance degradation. Thus, detecting an
OOD corpus without available queries before indexing
becomes crucial for maintaining retrieval effectiveness.
We propose GradNormIR, an unsupervised method that
leverages gradient norms to predict such OOD corpus.

ing, dense retrievers are optimized to maximize the 043

embedding similarity between queries and relevant 044

passages while minimizing the similarity for irrel- 045

evant ones (Karpukhin et al., 2020; Izacard et al., 046

2022). During indexing, document embeddings are 047

precomputed and stored in a retrieval index. At 048

inference, given a test query, the retriever fetches 049

relevant documents based on similarity scores. 050

In the real world, document corpora evolve 051

rapidly due to technological advancements, soci- 052

etal changes, and emerging trends. This evolution 053

presents a significant challenge for dense retrievers, 054

which often struggle to generalize to unseen docu- 055

ments in zero-shot settings (Chen et al., 2023). This 056

challenge becomes even more critical in retrieval 057
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augmented generation (RAG) systems (Lewis et al.,058

2020), where the retriever’s failure directly affects059

downstream tasks (Petroni et al.; Li et al., 2023a).060

As shown in an example of Fig. 1, consider a sce-061

nario where a corpus about Google’s new quantum062

computing chip, Willow, is introduced. For a query063

like "Tell me how the Willow works.", the dense064

retriever may mistakenly retrieve the documents065

about the song Willow by Taylor Swift. This occurs066

because the retriever previously trained on the song067

Willow, may not have adapted to the new context068

of quantum computing. Therefore, it is critical to069

anticipate when a retriever is likely to fail on a070

new corpus. This allows us to proactively deter-071

mine when to update the retriever before queries are072

made, ensuring robustness in dynamically evolving073

document streams.074

This challenge is closely related to the out-of-075

domain (OOD) generalization problem. Several076

approaches in IR aim to enhance a retriever’s test077

performance on unseen queries or documents that078

significantly differ from the training data (Izacard079

et al., 2022; Wang et al., 2021; Chen et al., 2022;080

Yu et al., 2022; Wang et al., 2021; Kasela et al.,081

2024; Besta et al., 2024; Chen et al., 2023). One082

approach is to leverage a mixture-of-experts frame-083

work, where a gating mechanism determines which084

expert retriever to utilize for a given test query085

(Kasela et al., 2024; Lee et al., 2024). However,086

these methods rely on predefined expert retrievers087

that are trained offline with prior domain knowl-088

edge and specific domain boundaries. As a result,089

they may struggle to adapt to dynamically evolv-090

ing corpora due to the difficulty in determining the091

right time to introduce new experts for emerging092

content. Another approach is to continually learn093

the generative retriever model in evolving corpora094

(Chen et al., 2023). However, continuously updat-095

ing the retriever for every new corpus is computa-096

tionally expensive and may lead to overfitting on097

well-generalized documents, potentially reducing098

overall generalization ability.099

To address this challenge, we propose a novel100

practical task of predicting out-of-domain docu-101

ments and corpus before indexing for a given dense102

retriever. This task is critical for maintaining re-103

trieval systems effectively, as the OOD corpus can104

indicate when retriever updates are needed. By105

identifying the OOD corpus before indexing, we106

can take preventive measures to enhance the re-107

trieval performance at inference time. For instance,108

we can select the most suitable retriever or timely109

update the retriever in use for the OOD corpus. To 110

achieve this, we introduce GradNormIR, an unsu- 111

pervised approach for detecting OOD documents 112

within a corpus without requiring queries. In im- 113

age classification tasks, Huang et al. (2021); Xie 114

et al. (2024) have demonstrated that gradient norms 115

can effectively detect OOD images and estimate 116

test-time accuracy without labeled data. Inspired 117

by this insight, we leverage the gradient norm of 118

the contrastive loss as an unsupervised estimator 119

of a retriever’s generalizability on a given corpus. 120

Moreover, we employ novel sampling strategies 121

to assign positive and negative instances for con- 122

trastive loss. 123

We evaluate our method on the BEIR benchmark 124

(Thakur et al., 2021), comprising multiple diverse 125

datasets across multiple domains. First, we demon- 126

strate that GradNormIR effectively detects OOD 127

documents that are likely to cause retrieval failures. 128

Next, we show that GradNormIR can select the 129

most suitable retriever using only the document cor- 130

pus, without queries. Finally, we simulate evolving 131

document corpora using the BEIR by introducing 132

datasets sequentially, and demonstrate how Grad- 133

NormIR enables efficient retriever updates while 134

maintaining performance. Our experiments val- 135

idate both the importance of OOD detection for 136

retrieval systems and GradNormIR’s effectiveness 137

in adapting to evolving corpora. 138

In summary, our contributions are as follows: 139

1. We introduce a novel task of predicting OOD 140

corpus before indexing, enabling efficient and 141

effective retriever updates in evolving corpora. 142

2. We propose GradNormIR, an unsupervised 143

method leveraging gradient norms and novel 144

sampling strategies to detect OOD documents 145

and predict OOD corpus without gold queries. 146

3. Our experiments with three practical use cases 147

on the BEIR benchmark demonstrate both the 148

necessity of the proposed task for a robust 149

retrieval system and the effectiveness of Grad- 150

NormIR. 151

2 Related Work 152

Information Retrieval. Recent advancements in 153

text embeddings have significantly transformed the 154

field of IR, particularly with the rise of dense re- 155

trievers. The success of these models has primarily 156

been driven by the availability of large training 157

datasets such as NQ (Kwiatkowski et al., 2019), 158

2



MS-MARCO (Bajaj et al., 2016), HotpotQA (Yang159

et al., 2018), and NLI (Gao et al., 2021). A no-160

table example is DPR (Karpukhin et al., 2020),161

which employs a dual-encoder mechanism for162

open-domain question-answering, where questions163

and passages are independently embedded.164

In addition, unsupervised methods have also165

gained prominence for improving the generaliza-166

tion of dense retrievers. Contriever (Izacard et al.,167

2022) enlarges a pre-training dataset using unsuper-168

vised data augmentation for contrastive learning.169

Similarly, E5 (Wang et al., 2022) leverages weak170

supervision to create a large-scale dataset (CCPairs)171

using a consistency-based filter. Recently, hybrid172

approaches like BGE-M3 (Chen et al., 2024) com-173

bine dense, sparse, and multi-vector retrieval strate-174

gies through self-knowledge distillation.175

OOD Robustness. In IR, OOD robustness refers176

to a model’s ability to maintain performance when177

exposed to documents that deviate from the distri-178

bution of its training data. One of the most widely179

used benchmarks is the BEIR (Thakur et al., 2021),180

consisting of diverse retrieval tasks across multiple181

domains. Using BEIR, Chen et al. (2022) demon-182

strate that dense retrievers perform poorly on OOD183

datasets compared to traditional lexical retrievers184

like BM25. In response, they propose a hybrid185

model that integrates both types of models, show-186

ing robust performance in zero-shot retrieval. Sim-187

ilarly, Yu et al. (2022) report that distribution shifts188

cause a noticeable decline in zero-shot accuracy in189

dense retrievers.190

Several strategies have been studied to improve191

OOD performance on unseen documents. Data192

augmentation using contrastive learning has shown193

promising results (Wang et al., 2021; Izacard et al.,194

2022). Some methods modify architectures to en-195

hance generalizability; mixture-of-experts frame-196

works (Kasela et al., 2024; Lee et al., 2024) and197

multi-head RAG models (Besta et al., 2024) adapt198

retrieval strategies according to domains. Also,199

Khramtsova et al. (2023) investigate how to se-200

lect the most suitable in zero-shot search, and201

Khramtsova et al. (2024) suggests to rank dense re-202

trievers using LLM-generated pseudo queries. On203

the other hand, some current works propose con-204

tinual learning methods to handle dynamic corpora205

without forgetting previously learned information.206

For example, memory-based methods (Cai et al.,207

2023) maintain backward compatibility with ex-208

isting document embeddings, while incremental209

indexing (Chen et al., 2023) updates document in-210

dices of generative retrievers to handle both new 211

and previously indexed documents. 212

However, few have explored which documents 213

are OOD from the perspective of the dense re- 214

triever models. Layer-wise score aggregation (Dar- 215

rin et al., 2024) combines anomaly scores from 216

each encoder layer to get a more accurate anomaly 217

score, enhancing overall robustness. However, this 218

model centers on text classification, whereas our 219

work focuses on evaluating the generalizability of 220

different dense retriever models. 221

3 Problem Statement 222

3.1 OOD Robustness in IR 223

The OOD robustness refers to a model’s ability 224

to perform effectively when confronted with data 225

that deviates from the training distribution. In IR, 226

for a dense retriever fθ trained on Dtrain drawn 227

from the original distribution G, it can be defined 228

as follows: 229

|RM (fθ;Dtest,K)−RM (fθ; D̃test,K)| ≤ δ 230

where Dtrain,Dtest ∼ G, D̃test ∼ G̃. (1) 231

RM (fθ;D,K) denotes a ranking metric for the 232

top-K results by fθ, and δ is an acceptable error 233

threshold. Note that a test dataset Dtest is drawn 234

from original G and a new test dataset D̃test is from 235

a new distribution G̃. If the retriever fθ satisfies 236

Eq.(1), it is considered δ-robust against OOD data 237

for metric M (Liu et al., 2024). 238

The OOD robustness in IR is typically catego- 239

rized into two aspects: robustness to unseen queries 240

and unseen documents. In this work, we focus on 241

the robustness to unseen documents, since our key 242

challenge is how to deal with evolving corpora for 243

dense retrievers. 244

3.2 The OOD Document and Corpus 245

We aim to predict whether a given corpus C is an 246

OOD corpus. The likelihood of C being OOD for a 247

given retriever fθ can be represented by the propor- 248

tion of OOD documents in C as follows: 249

r(C) = C̃
|C|

,with C̃ = {d ∈ C|d if M(d; fθ, C)}. 250

M(d; fθ, C) is an algorithm that returns 1 if d is 251

detected as an OOD document. The given corpus C 252

can be classified as an OOD corpus if r > γ, where 253

γ is a threshold. 254

The definition of an OOD document d is as fol- 255

lows. If (q, d) is a correct query-document pair 256
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with d in a new corpus C and the retriever fails to257

fetch d for the query q, then d is an OOD docu-258

ment: {d ∈ C|d /∈ fθ(q, C)}. That is, the retriever259

does not generalize with d. The algorithm M aims260

to find such documents as many as possible for a261

novel corpus. Our proposed M in Section 4 is un-262

supervised in that gold pairs (q, d) are not required263

for the algorithm but used only for evaluation pur-264

pose.265

4 Approach266

We first discuss how prior work utilizes the gradi-267

ent norm in image classification. We then propose268

GradNormIR, an unsupervised approach for detect-269

ing OOD documents in a corpus to decide whether270

the corpus is OOD without gold queries.271

4.1 Preliminary of Gradient Norm272

Previous studies have leveraged the gradient norm273

in predicting model performance in image classi-274

fication. GradNorm (Huang et al., 2021) uses the275

gradient norm to estimate uncertainty for OOD im-276

ages. They assume that if the model performs well,277

it exhibits high confidence in its predictions, caus-278

ing the softmax output to deviate significantly from279

a uniform distribution. To quantify this, it com-280

putes the KL divergence between the softmax out-281

put and a uniform distribution, and then calculates282

the resulting gradient norm. They identify a small283

gradient norm as indicative of OOD. GDScore (Xie284

et al., 2024) is an unsupervised test-time accuracy285

estimation method to predict a classifier’s accuracy286

without gold labels. GDScore pseudo-labels the287

class of a given input to compute the cross-entropy288

loss and then uses the gradient vector norm of the289

last layer as an accuracy estimator.290

Unlike previous studies, our method utilizes the291

gradient norm to predict OOD corpus in IR. To292

accomplish this, we introduce novel positive and293

negative sampling strategies for computing the gra-294

dient norm of the contrastive loss.295

4.2 GradNormIR296

We use the gradient norm to detect OOD docu-297

ments in a corpus. To get the gradient norm, we298

need to calculate the loss. Dense retrievers are299

usually trained with InfoNCE loss, defined as300

LInfoNCE = − log
es(q,d

+)/τ

es(q,d+)/τ +
∑N

i=1 e
s(q,d−i )/τ

,301

where s(q, d) = cos (fθ(q), fθ(d)) is the cosine302

similarity between query q and document d. fθ(·)303

is the last hidden layer’s output, and τ is a temper- 304

ature parameter. 305

When a new corpus C is given, user queries are 306

not yet available, making it challenging to com- 307

pute the gradients. Therefore, we consider each 308

document d as a query and assign pseudo-labels of 309

positives and negatives to other documents C \ {d} 310

that are relevant or irrelevant with d, respectively. 311

Instead of using external trained models for such 312

labeling, we obtain pseudo-labels directly from the 313

retriever’s own internal similarity scores. 314

Query Representation with Dropout. As dis- 315

cussed, every d is regarded as a document query. 316

To better reflect the retriever’s generalizability in 317

the gradient norm, we introduce perturbations to 318

the representation of d. Following Jeong et al. 319

(2022), we apply stochastic dropout to randomly 320

mask some parts of d’s representation fθ(d). If 321

fθ(d) generalizes well to d, masking some tokens 322

in its embedding has little impact on selecting its 323

positive and negative samples. Otherwise, it can 324

lead to big shifts in the embedding space, poten- 325

tially selecting wrong positive and hard negative 326

samples and causing a large gradient norm. 327

Specifically, we first encode the document query 328

with the last hidden state h = fθ(d). We then 329

randomly mask the hidden state; the mask m is 330

sampled from a Bernoulli distribution: 331

h′ = h⊙m, where m ∼ Bernoulli(p), 332

where ⊙ denotes element-wise multiplication. Fi- 333

nally, we obtain the perturbed document query d′ 334

by applying pooling on h′. 335

Positive and Negative Pool. Before obtaining 336

positive and negative samples w.r.t d, we first split 337

the documents C \ {d} into two pools using the 338

k-nearest neighbors (k-NN). For a given document 339

d, we retrieve the top k related documents from 340

C using the perturbed query d′, resulting in a set 341

D+(d), which is considered a positive pool. The 342

set of all the other documents, C \D+(d), is treated 343

as negative pool D−(d). We set k to be a relatively 344

high value (e.g., 100) to increase the likelihood that 345

relevant documents are in the positive pool. 346

Sampling Strategies. For more precise positive 347

samples for loss computation, we take the top-p 348

documents {d+1 , . . . , d+p } from the positive pool 349

D+(d), where p ≪ k. For negative sampling, 350

previous work (Zhan et al., 2021) has shown that 351

using hard negative samples can improve perfor- 352

mance, as they share similar content but are not 353

4



[0.1, 0.4, 0.2, .. , 0.7]

[0.1, 0.0 , 0.2, .. , 0.0]

Document Query
Dropout

Positive Sampling Hard Negative Sampling

𝑑!"

𝑑!#$

𝑑 =
𝑑!"

𝑑′ =
Index Index

Figure 2: Dropout for the document query representa-
tion along with positive and hard negative sampling.

directly relevant to the given query. Thus, we adopt354

a hard negative sampling strategy rather than ran-355

dom negatives. For each positive d+i , we find top-n356

nearest documents {d−i1, . . . , d
−
in} from the nega-357

tive pool D−(d). These documents are considered358

hard negatives since they are similar to the posi-359

tives of d+i but still irrelevant to d since they are360

from D−(d). If fθ is well-generalizable on d, fθ361

is likely to differentiate positive samples with hard362

negative samples, leading to a small gradient norm363

(i.e., little need for retriever update); otherwise, it364

may produce a large gradient norm.365

Gradient Norm. Finally, we compute the gradi-366

ent of d using the derivative of the loss with respect367

to the parameters θ of the retriever encoder:368

∇Lθ = −∇θ log
es(d,d

+
i )/τ

es(d,d
+
i )/τ +

∑n
j=1 e

s(d,d−ij)/τ
,369

where d+i is one of the positive sample and d−ij ∈370

D−(d+i ) are its corresponding hard negative sam-371

ples. This gradient measures the retriever’s sensi-372

tivity to the parameter changes when applied to the373

positive sample d+i . Finally, the average gradient374

norm across all positive samples {d+i }
p
i=1 is375

GradNormIR =
1

p

p∑
i=1

∥∇θL∥2, (2)376

where ∥·∥2 denotes the L2-norm. This average377

gradient norm serves as a measure of the retriever’s378

generalizability on d ∈ C. A higher value indicates379

a greater sensitivity and potentially less stability380

when adapting to d. Please refer to Appendix B for381

detailed proof.382

Predicting OOD Documents. Our algorithm383

predicts d as an OOD document if its gradient norm384

is sufficiently large. The threshold can be decided385

based on the gradient norms of in-domain docu-386

ments, with the median chosen for its robustness387

to outliers. Since gradient norms vary across doc-388

uments, the median provides a stable threshold,389

minimizing the impact of extreme values. If the390

gradient norm is larger than the median value, we391

detect d as an OOD document.392

5 Experiments 393

We conduct three sets of experiments to evaluate 394

our approach. First, we show that our GradNormIR 395

effectively identifies OOD documents in a given 396

corpus. Next, we make sure that GradNormIR’s 397

OOD detection is useful in selecting the most suit- 398

able retriever, even without any queries. Finally, 399

in evolving corpora, we demonstrate that Grad- 400

NormIR enables efficient continuous retriever up- 401

dates by selectively retraining it only on the pre- 402

dicted OOD corpus. We also present an ablation 403

study for several hyperparameters in Appendix F. 404

5.1 Experimental Setup 405

Dense Retrievers. We evaluate several state-of-the- 406

art dense retriever models, including BGE (Xiao 407

et al., 2023), Contriever (Izacard et al., 2022), E5 408

(Wang et al., 2024), and GTE (Li et al., 2023b). 409

Dataset. The BEIR benchmark (Thakur et al., 410

2021) provides a diverse collection of datasets 411

for evaluating retriever models across multiple do- 412

mains. From the 19 available datasets, we ex- 413

clude those used for fine-tuning the tested retriev- 414

ers models (e.g., MSMARCO, Natural Questions, 415

FEVER, HotpotQA, CQADupStack), as well as 416

those that are no longer accessible (e.g., TREC- 417

News, Robust04, Signal-1M, BioASQ), following 418

Khramtsova et al. (2023). This leaves us with 10 419

datasets for evaluation. Each dataset consists of 420

a document corpus and query-document pairs. In 421

our experiment, we define the corpus C as the set 422

of documents with at least one annotated relevant 423

query, ensuring a quantitative evaluation. 424

Baselines. We compare our method with three 425

baselines: (i) Layerwise (Izacard et al., 2022): un- 426

supervised textual OOD detection via layerwise 427

anomaly scores (e.g., negative cosine similarity), 428

(ii) IPQ (Chen et al., 2023): incremental produc- 429

tion quantization with clustering, and (iii) Gen- 430

Query (Khramtsova et al., 2023): zero-shot rank- 431

ing using pseudo-questions generated by large lan- 432

guage models. 433

Hyperparameters. To calculate the gradient 434

norm for each document d, we set the dropout rate 435

to 0.02 and the number of positives (p) to 8. We use 436

four negative samples (n) to reduce the computa- 437

tional cost. For OOD detection, we use the average 438

gradient norm of 3,000 in-domain Natural Ques- 439

tions (NQ) documents (Kwiatkowski et al., 2019) 440

as the reference threshold, since all test retrievers 441

are already trained on NQ. Documents with gradi- 442
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Retriever Documents ArguAna C-FEVER DBPedia FiQA NFCorpus Quora Scidocs SciFact COVID Touché Avg (↓)

BGE

All 99.68 79.96 59.67 80.25 21.39 99.68 72.33 99.76 16.53 98.45 73.48

OOD w/ Layerwise 99.01 86.14 45.48 79.73 22.35 99.78 61.95 100.0 15.34 93.33 70.31
OOD w/ IPQ 100.0 74.65 55.02 81.75 19.11 100.0 82.24 99.72 15.60 100.0 72.81
OOD w/ GenQuery 100.0 86.87 75.48 79.70 21.42 98.96 62.13 100.0 15.97 97.40 73.79
OOD w/ Ours 99.01 61.14 31.49 79.16 18.36 99.71 56.97 100.0 15.22 89.19 65.03

Contriever

All 96.79 72.40 56.76 59.83 18.66 98.83 55.26 98.25 9.14 96.14 66.06

OOD w/ Layerwise 93.83 68.67 49.14 56.61 17.85 99.10 51.75 98.36 8.26 95.34 63.89
OOD w/ IPQ 93.83 69.11 48.37 57.72 18.11 99.17 51.39 98.70 8.25 94.04 63.87
OOD w/ GenQuery 90.12 72.23 65.87 54.99 18.53 97.28 51.17 98.65 7.45 93.33 64.96
OOD w/ Ours 91.36 63.92 40.63 56.12 17.11 98.75 50.64 97.78 8.09 90.17 61.46

E5

All 99.68 76.42 55.56 74.85 18.03 99.67 61.49 98.49 15.81 97.75 70.00

OOD w/ Layerwise 100.0 75.46 47.01 74.38 19.04 99.65 55.53 98.43 15.96 97.81 68.33
OOD w/ IPQ 98.91 75.96 49.54 74.61 18.01 99.83 58.57 98.45 15.68 97.24 68.68
OOD w/ GenQuery 98.91 80.15 69.33 74.41 18.54 99.51 58.05 98.53 15.79 98.03 71.13
OOD w/ Ours 99.45 69.19 29.74 74.47 17.02 99.68 55.50 98.56 15.85 96.43 65.59

GTE

All 99.68 80.37 60.85 75.76 22.48 99.57 72.66 99.52 17.53 99.25 73.55

OOD w/ Layerwise 100.0 82.81 56.66 76.17 21.48 99.87 66.14 99.47 14.98 99.82 71.74
OOD w/ IPQ 100.0 84.59 66.26 75.27 19.82 99.83 68.45 99.50 14.81 99.82 72.84
OOD w/ GenQuery 100.0 84.20 76.80 70.58 21.33 98.71 65.95 99.73 16.16 99.63 73.31
OOD w/ Ours 93.75 70.83 51.24 71.02 19.22 99.60 65.22 100.0 16.56 98.72 68.62

Table 1: Comparison of OOD document detection across different retriever models on the BEIR benchmark. A
lower Document Retrieval Rate value, defined in Eq.(3), indicates more accurate OOD detection.

ent norms exceeding this average are classified as443

OOD. We set the OOD corpus prediction threshold444

(γ) to 0.5. We experimentally set this value based445

on the retriever’s performance. We conduct an ex-446

tensive ablation study as described in Appendix F,447

exhibiting the robustness of our approach.448

5.2 Detection of OOD Documents449

This task aims to detect OOD documents from a450

new document corpus C. Our method selects OOD451

documents where GradNormIR exceeds the thresh-452

old as described in Section 5.1. For other baselines,453

we rank the documents in descending order by their454

OOD scores as described below, and then select455

the same number of top-ranked documents as Grad-456

NormIR for fairness. Finally, we compare these457

detected OOD documents using their retrieval rate458

using query-document pairs in the dataset.459

Evaluation Metric. To evaluate the OOD docu-460

ment detection, we use the document retrieval rate461

(DRR). As described in Section 3.2, the effective-462

ness of an approach can be measured using how463

poorly detected OOD documents are retrieved to464

relevant queries. For each dataset, we organize465

annotations as {di, Qdi}Ni=1, where Qdi represents466

the set of relevant queries for each document di.467

DRR is then calculated as468

DRR =

∑
di∈C

∑
qdi∈Qdi

1{di ∈ D+(qdi)}∑
di∈C |Qdi |

,

(3)469

where 1 is an indicator function that returns 1 if470

di appears in the top-k retrieval results D+(qdi)471

(with k = 100), and 0 otherwise. Lower DRR472

values indicate that the OOD documents are more 473

successfully identified. 474

Baselines. For each baseline, we first compute 475

the OOD score of each document d as follows: (i) 476

Layerwise: we compute the negative cosine sim- 477

ilarity between latent vectors of d and in-domain 478

documents across all layers and aggregate them to 479

produce a final OOD score for d. (ii) IPQ creates 480

quantization codebooks from C to get centroids. 481

We quantize all representations to generate cen- 482

troids and use the average Euclidean distance be- 483

tween the quantized representation and the cen- 484

troids as the OOD score of d. (iii) GenQuery: we 485

generate a pseudo-question q̂ for d using Llama3.1- 486

8B. We then use the rank of d in the retrieval results 487

of q̂ as the OOD score. 488

5.2.1 Results 489

Table 1 presents the results of OOD document 490

detection across 10 datasets of the BEIR bench- 491

mark. Our GradNormIR consistently outperforms 492

the baselines, achieving the lowest average DRR on 493

all tested retrievers. Notably, GradNormIR shows 494

significant drops on DBPedia-Entity and Scidocs 495

(e.g., reductions of 28.18 and 15.36 for BGE). 496

In the baselines, the detected OOD documents 497

often show unexpectedly higher retrieval rates 498

than the average DRR of all documents, indicat- 499

ing wrong detection. For instance, GenQuery in 500

DBPedia-Entity shows significant increases across 501

all retrievers, although it achieves the best perfor- 502

mance on Quora for Contriever, E5, and GTE. Also, 503

in Climate-FEVER, GenQuery increases for BGE, 504

E5, and GTE. This may be because these docu- 505
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Method ArguAna C-FEVER DBPedia FiQA NFCorpus Quora Scidocs SciFact COVID Touché

Layerwise 99.36 79.14 85.45 77.25 28.88 99.97 59.06 98.39 18.53 97.16
IPQ 99.00 79.14 85.45 77.25 28.88 99.97 59.06 98.39 18.53 97.16
GenQuery 99.00 79.14 85.45 77.25 28.88 99.97 59.06 98.15 18.53 97.16
Ours 99.36 82.55 89.73 78.51 35.73 99.97 69.63 99.73 21.52 98.40

Oracle 99.43 82.92 89.73 83.25 35.73 99.97 69.98 99.73 21.52 99.23

Table 2: Results of zero-shot retriever selection in terms of Recall@100 scores of the retriever selected by each
OOD method. The oracle is the upper bound, indicating the performance of the actual best retriever per dataset.

ments are also out-of-domain to the LLM. Typi-506

cally, IPQ and Layerwise baselines show the low-507

est DRRs in some cases, but their performance508

fluctuates up and down, indicating low robustness.509

Overall, GradNormIR consistently shows lower510

document retrieval rates for detected OOD docu-511

ments, demonstrating that it accurately identifies512

OOD documents across datasets. We further evalu-513

ate the OOD documents ratio, r(C) in Section 3.2514

in the following experiments.515

5.3 Best Retriever Selection516

This task predicts the most suitable dense retriever517

from a set of retrievers given a corpus C, i.e., it se-518

lects the retriever with the highest generalizability519

for the given C using the OOD detection method.520

This task shows that our approach is helpful for se-521

lecting not only when the retrievers are updated but522

also which one is the best in the stream of corpora.523

Setup. We select one of four retrievers (as de-524

scribed in Section 5.1), choosing the one that has525

the lowest OOD document ratio, r(C). Specifi-526

cally, given a test dataset including C and query-527

document pairs, we calculate r(C) for each re-528

triever. Next, we select the retriever with the lowest529

r(C). Then, we evaluate the selected retriever on530

the query-document pairs. For each dataset, we531

report the Recall@100 performance of the retriever532

selected by each baseline.533

Baselines. To calculate r(C), we first compute534

the OOD score of the in-domain NQ documents535

for each baseline in the same way as in Section 5.2.536

Then, we calculate the ratio of documents with an537

OOD score greater than the median. In this way,538

we can compute r(C) of each baseline.539

5.3.1 Results540

Table 2 presents the Recall@100 performance of541

the selected retriever by each baseline. The ora-542

cle row shows the performance of the actual opti-543

mal retriever on each dataset. The retriever chosen544

by GradNormIR consistently achieves the high-545

est performance across datasets. Although our546

method does not always choose the top-performing547

retriever (e.g., BGE for ArguAna and GTE for 548

FiQA), it accurately identifies the second-best re- 549

triever (GTE for ArguAna and BGE for FiQA) 550

at least. These results show that GradNormIR is 551

highly effective in selecting the most appropriate re- 552

triever based solely on the given document corpus, 553

even before any queries are introduced. 554

5.4 Continual Updates 555

The goal of this task is to update the retriever only 556

when an OOD corpus is given, balancing perfor- 557

mance stability and computational cost in evolving 558

corpora. 559

Setup. We simulate the sequential streaming 560

of a corpus using datasets of the BEIR coming in 561

alphabetical order. For instance, in session S1, the 562

Arguana corpus is given, in session S2, the Climate- 563

FEVER corpus is given, and so on. We continually 564

update Contriever using RecAdam optimizer (Chen 565

et al., 2020), widely employed to mitigate the lan- 566

guage model’s catastrophic forgetting. In session 567

St, we update the current retriever with a given cor- 568

pus. We then build a retrieval index using corpus 569

from S1 to St. Finally, we evaluate the retriever 570

with queries from S1 to St. For training details, 571

please refer to Appendix A. 572

Baselines. We test three types of baselines: (i) 573

Zero-shot: the retriever remains fixed with no fur- 574

ther updates. (ii) Selective: the retriever is updated 575

only when a newly given corpus is determined as 576

an OOD corpus. (iii) Naïve: the retriever is up- 577

dated whenever a new corpus is given, common 578

in continual learning. For selective retraining, in 579

each session St, we decide whether to update the re- 580

triever and use the most recently updated retriever 581

to build an index using corpus from S1 to St. We 582

evaluate different update strategies from the four 583

baselines. In GradNormIR, we update the retriever 584

when a corpus is OOD, in total N times (N = 6). 585

For the other retraining methods, the retriever un- 586

dergoes the same N updates with the corpora of 587

the highest OOD ratios for fairness. 588

Metrics. We compute the average Recall@100 589
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Figure 3: Average of Recall@100 across S1 to St with
respect to the upper bound for each dataset using a
single-trained retriever. Although the trend decreases
due to the expanding document corpus over sessions,
performance remains robust with continual updates.

in each session St, computed as the mean Re-590

call@100 of the datasets from S1 to St. We report591

the relative performance with respect to an upper592

bound per dataset, since each dataset has differ-593

ent levels of difficulty. The upper bound of each594

dataset is the Recall@100 value of the retriever595

fine-tuned only with the dataset.596

5.4.1 Results597

Figure 3 illustrates the retrieval results of different598

continual update strategies over the sessions. Over-599

all, performance degrades as the sessions progress.600

This occurs because as the number of documents601

increases, the corpus expands, making it more dif-602

ficult to retrieve the correct documents. Thus, the603

performance of the Zero-shot baseline quite drops604

to around 80. However, with continual updates, the605

other baselines maintain stable performance around606

90, preventing catastrophic forgetting.607

Initially, GradNormIR exhibits lower perfor-608

mance in S1 and S2, since the retriever is not up-609

dated. Nonetheless, it does not show significant610

degradation afterward, maintaining the retriever’s611

accuracy by retraining in later sessions. Starting612

from session S6, GradNormIR achieves the highest613

average performance among all baselines. Notably,614

in S6, GradNormIR outperforms even the Naïve615

baseline, which retrains the retriever in every ses-616

sion. This demonstrates that unconditional retrain-617

ing leads to task performance degradation when618

not necessary. The performance gap persists until619

the final session, demonstrating the efficiency and620

effectiveness of GradNormIR’s selective retraining.621

Conversely, all other selective baselines exhibit622

lower performance than Naïve baseline. For in-623

Hard Neg Dropout DRR (↓)

BGE Cont E5 GTE

✓ 67.68 64.19 67.45 68.07
✓ 65.79 62.41 65.58 70.75
✓ ✓ 65.03 61.46 65.59 68.62

Table 3: Ablation study on the impact of dropout for
document queries and the use of hard negatives.

stance, Layerwise displays robust performance in 624

the earlier sessions, but it shows persistent perfor- 625

mance degradation in later sessions since it is not 626

trained on the OOD corpus in S4 and S6. This 627

suggests that selective retraining only with OOD 628

corpus can ensure the maintenance of retriever per- 629

formance in evolving corpora. 630

5.5 Ablation Study 631

We evaluate the impact of the dropout and the use 632

of hard negatives. Table 3 displays the results of the 633

average DRR in OOD document detection. When 634

both dropout and hard negatives are applied, the 635

model achieves the best performance, particularly 636

for the BGE and Contriever. For E5, hard negatives 637

contribute to an increase in DRR, while dropout 638

also proves effective. Conversely, for GTE, hard 639

negatives enhance performance, whereas dropout 640

leads to performance degradation. This suggests 641

that the optimal setting may vary depending on 642

the chosen retriever. Nonetheless, even in these 643

two cases, neither hard negatives nor dropout per- 644

form poorly. Additional ablation experiments are 645

provided in Appendix F. 646

6 Conclusion 647

We introduced the novel task to predict OOD cor- 648

pus for a given dense retriever before indexing, 649

a critical challenge for ensuring its robust per- 650

formance in dynamic, ever-evolving corpora. To 651

achieve this, we proposed GradNormIR as an un- 652

supervised method that leverages gradient norms 653

of the contrastive loss to detect OOD corpus. With 654

novel sampling strategies, including document-to- 655

document retrieval with positive and hard negative 656

sampling, GradNormIR could predict corpus that 657

a retriever is likely to fail before querying begins. 658

We can select the most suitable dense retriever for 659

a given a corpus or update a retriever in a timely 660

manner in evolving corpora. One intriguing future 661

work could focus on online prediction of an OOD 662

document, where individual document arrives con- 663

tinuously rather than as a complete corpus. 664
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Limitations665

While this work underscores the importance of pre-666

dicting OOD documents and corpus, there may667

be some potential limitations. As we focus on668

identifying these documents, performance may669

still degrade due to unseen queries at inference670

time. Expanding the framework to handle such671

queries could enhance its robustness in real-world672

scenarios. Additionally, the method’s reliance673

on document-to-document retrieval may introduce674

challenges when handling extremely large corpus,675

where efficient scaling could become a concern. In676

this case, it may be necessary to divide the corpus677

into smaller, more manageable chunks for process-678

ing.679

Ethics Statement680

This research does not raise any ethical concerns,681

as it primarily focuses on the technical develop-682

ment of information retrieval models and their eval-683

uation. The methods proposed are intended for684

improving document retrieval performance in non-685

sensitive, general-purpose datasets, without han-686

dling personal, confidential, or otherwise ethically687

sensitive data.688
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A Experiment Details873

Models. In experiments, we use four dense retriev-874

ers: BGE-large-en-v1.5, unsupervised Contriever,875

multilingual E5 large, and GTE-base. In hugging876

face, the model names are BAAI/bge-large-en-v1.5,877

facebook/contriever, intfloat/multilingual-e5-large,878

and thenlper/gte-base, respectively.879

GradNormIR. For contrastive loss temperature880

τ , we use 0.05 for all baselines but 0.01 for e5. The881

probability distribution is skewed for E5, as noted882

in hugging face; setting the temperature to 0.05883

does not make the model compute contrastive loss884

effectively.885

For positive and negative sampling, we sample886

8 positive samples (p) and four negatives (n) for887

each positive. As sampling 4 negatives per positive888

is traditional, we follow previous work.889

For the dropout, we use 0.02, which means 2890

percent of tokens are masked to zero. For the other891

experimental setups, we follow the default values892

of BAAI Flagembeddings1.893

We conduct ablation studies on the impact of894

the number of positive samples and dropout rate in895

Section F.2.896

GenQuery. We use Llama3.1 8B with Q4_0897

quantization to generate pseudo queries with the898

temperature set to 0.5 and the max_new_tokens899

set to 256. Also, the prompt template is shown in900

Figure 4.901

IPQ. For production quantization, we set the902

number of quantization groups as 8, which means903

the last hidden state after pooling (e.g., 1024 di-904

mensions) is divided into 8 groups (e.g., 128 di-905

mensions for each group), and each is clustered906

using KMeans. We set the number of clusters as907

16, which means each 128-dimensional vector be-908

comes an integer between 0 and 15.909

Continual Updates. For the training dataset,910

we use generated queries from the Hugging Face911

BEIR repository to retrain the retriever, as orig-912

inal test queries in the BEIR are used in the913

evaluation. Using these queries, we perform su-914

pervised fine-tuning. We set epoch to 4, gradi-915

ent_accumulation_steps to 256, batch_size to 4,916

learning_rate to 1e-04, lr_scheduler to "Constant",917

with multi-GPU (4 GPUs) parallelization.918

Resources. To run GradNormIR, we use one919

NVIDIA TITAN RTX 24GB GPU for about 6920

hours per dataset on average. Running the Gen-921

Query baseline on the same GPU takes 16 hours922

1https://github.com/FlagOpen/FlagEmbedding

per dataset. 923

B Theoretical Analysis 924

The gradient norm in our method measures how 925

well the model’s embeddings align with its self- 926

generated pseudo labels. It reflects the model’s 927

confidence and correctness in distinguishing be- 928

tween positive and negative samples based on its 929

own embeddings. In this section, we analyze the 930

method theoretically to further clarify the behavior 931

of the gradient norm and its implications for model 932

generalization. 933

In contrastive learning, the model’s parameters 934

are updated based on the gradients with respect 935

to all embeddings involved in the loss, including 936

the anchor document ED(d), the positive sample 937

ED(d
+), and the negative samples ED(d

−
i ). How- 938

ever, we simplify the analysis by primarily focusing 939

on the gradient with respect to ED(d), as the gra- 940

dients of other embeddings are small enough to be 941

negligible. We define the probability of a document 942

d′ (either d+ or d−i ) as 943

pd′ =
es(d,d

′)/τ

es(d,d+)/τ +
∑

i e
s(d,d−i )/τ

. (4) 944

Then, the gradient norm of the loss with respect to 945

ED(d) is 946

∥∇L∥ =
1

τ

∥∥∥∥∥(1− pd+)ED(d+)−
∑
i

pd−
i
ED(d−i )

∥∥∥∥∥ .
(5) 947

To examine this further, assume there is only one 948

negative sample, reducing the gradient norm to 949

∥∇L∥ =
1

τ
(1− pd+)

∥∥ED(d
+)− ED(d

−)
∥∥ .

(6) 950

The likelihood pd+ can be expressed as: 951

pd+ =
1

1 + e−∆si/τ
, (7) 952

where ∆si = s(d, d+) − s(d, d−) measures the 953

similarity difference between the anchor document 954

and its positive and negative counterparts. 955

In cases where an OOD or non-generalizable 956

document query is given, the similarity s(d, d+) 957

tends to be low, making pd+ small and thereby in- 958

creasing the gradient norm in Eq. (6). Similarly, 959

when ∆si is small, the model struggles to differ- 960

entiate between the positive and negative samples, 961

causing the gradient norm to rise. This pushes the 962

11



Generate one Q&A pair based on a given context, where the context is understood 
but NOT DIRECTLY VISIBLE to the person answering the question. The question 
should cover the main focus of the full context.
Assume the person answering the question has common sense and is aware of the 
details and key points in the sentence(s), but the sentence(s) itself is not 
quoted or referenced directly.

Sentence(s) : {paragraph}
Use the following instructions for generating a Q&A pairs: 
1) Provide one {question}{answer}
2) DON’T use phrases such as ‘according to the sentence(s)’ in your question.
3) DON’T use phrases in the context verbatim.
4) An answer should be an entity or entities.
5) Ensure the question can be answered without referring back to the document, 
assuming domain knowledge.
6) Ensure the question includes enough context to be understood on its own.
7) The question should be general enough to be answerable by someone familiar 
with the topic, not requiring specific details from the context.
8) If there is not enough information to generate a question, state 'Not enough 
information to generate a question.

Be sure to follow the following format and provide a question and answer pair 
within curly brackets.

The format is as follows: {Question}{Answer}

Figure 4: The prompt template to create pseudo queries using Llama3.1 8B in zero-shot. We prompt it to generate
a question along with a corresponding answer to ensure the question can be answered. We use only generated
question for evaluation.

model to adjust its embeddings to improve gen-963

eralization. This signifies that the gradient norm964

acts as an indicator of the model’s confidence in965

its pseudo labels. A large gradient norm suggests966

uncertainty or misalignment in the model’s repre-967

sentations, indicating OOD or less generalizable968

documents.969

C Feasibility of GradNormIR970

We aim to validate whether GradNormIR can iden-971

tify the documents that are difficult for the the mod-972

els to retrieve. To this end, we inspect if there973

is a consistent relationship between the computed974

gradient norm and the likelihood of a document975

successfully retrieved by its associated queries.976

Evaluation Metric. To evaluate the effective-977

ness, we measure the document-to-query (d2q) as978

the standard metric. In each dataset, annotations979

are provided in the form of {qi, Di}Ni=1, where qi is980

a query and Di is the set of relevant documents. We981

reorganize these annotations as {di, Qi}Ni=1, where982

Qi represents the set of relevant queries for each983

document di. For a document to be considered ef-984

fectively retrievable, it should be retrieved for all985

its relevant queries.986

To quantify this, we define the d2q recall as fol-987

lows:988

recalld2q =

∑
qi∈Qi

I{di ∈ D+(qi)}
|Qi|

, (8)989

where I is an indicator function and D+(qi) rep-990

resents the top-k retrieved documents (with k =991

100). 992

When the retriever model generalizes well for 993

a document di, the d2q recall value will be high. 994

Additionally, if the retriever generalizes effectively 995

on di, the gradient norm associated with di will 996

be low, as the retriever does not need to make sub- 997

stantial updates based on the contrastive loss for di. 998

Therefore, there should be an inverse relationship: 999

higher the d2q recall values correspond to lower 1000

the gradient norms. 1001

Results. Figure 5 illustrates the relationship be- 1002

tween GradNormIR and d2q recall. We divide the 1003

data points into quartiles based on GradNormIR 1004

values, sorted in ascending order and labeled as 1005

Q1, Q2, Q3, and Q4. The x-axis represents these 1006

quartiles, while the y-axis shows the average d2q 1007

recall for each group. 1008

The results reveal a strong inverse correlation 1009

between GradNormIR and retrieval performance. 1010

As GradNormIR values increase from Q1 to Q4, 1011

d2q recall decreases. This indicates that higher 1012

GradNormIR values (Q4) are associated with doc- 1013

uments that are more challenging for the retriever 1014

to retrieve consistently. Conversely, lower Grad- 1015

NormIR values (Q1) correspond to higher recall, 1016

indicating better retrieval performance. When d2q 1017

recall approaches 1, such as Quora and SciFact, 1018

this trend becomes less noticeable. This is likely 1019

because the datasets have been trained on; nearly 1020

all documents are well generalized and easily re- 1021

trievable. 1022
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Figure 5: Feasibility results of GradNormIR for several recent retrievers on the BEIR benchmark. The x-axis
shows quartiles of GradNormIR, sorted in ascending order (Q1 to Q4), while the y-axis represents the d2q
recall@100, averaged across documents within each quartile. The results show that GradNormIR can predict
retrieval performance; lower GradNormIR values (Q1) generally lead to better retrieval outcomes across most
datasets. As GradNormIR increases (Q4), the d2q recall decreases.
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Figure 6: Results of relevance gains via OOD document
filtering.

D Relevance Gains via Filtering1023

To evaluate the impact of OOD documents, we also1024

conduct a document filtering experiment. Specifi-1025

cally, we remove OOD documents from the given1026

corpus C, thereby enhancing retrieval relevance.1027

Setup. For each dataset, we begin with an evalua-1028

tion set {(di, Qi)}Ni=1. If di is detected as an OOD1029

document, we remove it from the evaluation set,1030

meaning we no longer evaluate di as a gold label1031

for its associated queries qi ∈ Qi. We then evaluate1032

the performance on the test queries {Qi}Ni=1. By1033

removing such OOD documents, we aim to exclude1034

irrelevant or misleading texts that could otherwise1035

confuse the retriever, thereby potentially improv-1036

ing retrieval performance. We measure retrieval1037

performance using Recall@100, following Izacard1038

et al. (2022).1039

Figure 6 presents the total sum of gains in Re- 1040

call@100 across 10 datasets of the BEIR after 1041

removing OOD documents. Our method, Grad- 1042

NormIR, demonstrates significant performance im- 1043

provements across all retrievers. Specifically, it 1044

achieves gains of 34.73, 62.24, 51.15, and 12.40 1045

points for BGE, Contriever, E5, and GTE, respec- 1046

tively. Even with GTE, where GradNormIR does 1047

not yield the best results, the overall retrieval en- 1048

hancement remains the highest with our method. 1049

E Relation Between OOD Ratio and 1050

Performance 1051

Figure 7 shows the relationship between OOD doc- 1052

ument ratio r(C) and retriever performance. The 1053

x-axis lists datasets in descending order of perfor- 1054

mance based on Contriever’s (Izacard et al., 2022) 1055

Recall@100. The y-axis represents the Non-OOD 1056

ratio (1 - r(C)). 1057

The graph’s descending trend indicates that 1 - 1058

r(C) is proportional to retriever performance, as 1059

datasets with higher retrieval performance show 1060

greater Non-OOD ratios. GradNormIR clearly 1061

demonstrates this relationship, showing high Non- 1062

OOD ratios for Quora, Arguana, and Touché, and 1063

low ratios for FiQA, Scidocs, NFCorpus, and 1064

COVID. While GenQuery also exhibits a descend- 1065

ing trend, it shows minimal variation from Quora 1066

to NFCorpus, making OOD corpus detection less 1067

effective. 1068

To predict OOD corpora, we set γ to 0.5 based 1069
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Figure 7: Relation Between OOD Ratio and Perfor-
mance

on the average performance across all datasets.1070

With this threshold, we identify Scifact, Touch’e,1071

DBPedia, FiQA, Scidocs, NFCorpus, and COVID1072

as OOD corpora.1073

F Ablation Study1074

We conduct additional ablation study of the impact1075

of (i) the number of documents randomly sampled1076

from the in-domain dataset and (ii) the number of1077

positives in Eq. (2) as well as dropout rate.1078

F.1 The Number of In-Domain Documents1079

Table 4 shows the results of DRR in predicting1080

OOD documents, where the number of documents1081

are determined by randomly selected 1,000 NQ1082

documents, while Table 5 shows the results when1083

2,000 NQ documents are used for in-domain docu-1084

ment samples. In both cases, our method show the1085

lowest average DDR results for all models, indi-1086

cating the robustness of GradNormIR in predicting1087

OOD documents. Also, the number of documents1088

detected as OOD are presented in Table 9. The1089

number of OOD documents are lowest in GTE,1090

as it can generalize to the datasets of the BEIR1091

benchmark.1092

F.2 The Number of Positives and Dropout 1093

Rate 1094

The DRR results for the number of positives from 1 1095

to 16 are shown in Table 10. As the number of pos- 1096

itives increases, the DRR generally decreases be- 1097

cause more gradient norm values make the method 1098

more robust. Additionally, when comparing the 1099

cases with and without dropout, the decrease is 1100

significantly higher as the number of positives in- 1101

creases. This is because the lower-ranking positives 1102

are more likely to be affected by dropout. How- 1103

ever, when the dropout rate increases from 0.02 1104

to 0.05, there are some cases where the filtered 1105

documents show higher DRR values, especially 1106

increasing 3.79 in an average of 16 samples for 1107

E5. This may be because excessive dropout can 1108

deteriorate model performance. 1109
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Retriever Documents ArguAna C-FEVER DBPedia FiQA NFCorpus Quora Scidocs SciFact COVID Touché Avg (↓)

BGE

ALL 99.68 79.96 59.67 80.25 21.39 99.68 72.33 99.76 16.53 98.45 73.48

OOD w/ GenQuery 100.0 86.87 75.48 79.7 21.42 98.96 62.13 100.0 15.97 97.4 73.79
OOD w/ Layerwise 99.01 86.14 45.48 79.73 22.35 99.78 61.95 100.0 15.34 93.33 70.31
OOD w/ IPQ 100.0 74.65 55.02 81.75 19.11 100.0 82.24 99.72 15.6 100.0 72.81
OOD w/ Ours 99.08 63.9 32.57 79.34 18.78 99.74 58.3 100.0 15.43 89.87 65.7

Contriever

ALL 96.79 72.40 56.76 59.83 18.66 98.83 55.26 98.25 9.14 96.14 66.06

OOD w/ GenQuery 90.12 72.23 65.87 54.99 18.53 97.28 51.17 98.65 7.45 93.33 64.96
OOD w/ Layerwise 93.83 68.67 49.14 56.61 17.85 99.1 51.75 98.36 8.26 95.34 63.89
OOD w/ IPQ 93.83 69.11 48.37 57.72 18.11 99.17 51.39 98.7 8.25 94.04 63.87
OOD w/ Ours 91.01 64.45 41.38 56.65 17.23 98.75 50.93 97.89 8.27 91.04 61.76

E5

ALL 99.68 76.42 55.56 74.85 18.03 99.67 61.49 98.49 15.81 97.75 70.00

OOD w/ GenQuery 98.91 80.15 69.33 74.41 18.54 99.51 58.05 98.53 15.79 98.03 71.13
OOD w/ Layerwise 100.0 75.46 47.01 74.38 19.04 99.65 55.53 98.43 15.96 97.81 68.33
OOD w/ IPQ 98.91 75.96 49.54 74.61 18.01 99.83 58.57 98.45 15.68 97.24 68.68
OOD w/ Ours 99.48 69.46 30.27 74.53 17.14 99.66 55.79 98.59 15.84 96.2 65.7

GTE

ALL 99.68 80.37 60.85 75.76 22.48 99.57 72.66 99.52 17.53 99.25 73.55

OOD w/ GenQuery 100.0 84.2 76.8 70.58 21.33 98.71 65.95 99.73 16.16 99.63 73.31
OOD w/ Layerwise 100.0 82.81 56.66 76.17 21.48 99.87 66.14 99.47 14.98 99.82 71.74
OOD w/ IPQ 100.0 84.59 66.26 75.27 19.82 99.83 68.45 99.5 14.81 99.82 72.84
OOD w/ Ours 93.75 70.73 51.49 70.97 19.27 99.59 65.25 100.0 16.52 98.72 68.63

Table 4: Comparison of OOD document detection across different retriever models, with the number of documents
selected by 1,000 sampled NQ documents.

Retriever Documents ArguAna C-FEVER DBPedia FiQA NFCorpus Quora Scidocs SciFact COVID Touché Avg (↓)

BGE

ALL 99.68 79.96 59.67 80.25 21.39 99.68 72.33 99.76 16.53 98.45 73.48

OOD w/ GenQuery 100.0 86.87 75.48 79.7 21.42 98.96 62.13 100.0 15.97 97.4 73.79
OOD w/ Layerwise 99.01 86.14 45.48 79.73 22.35 99.78 61.95 100.0 15.34 93.33 70.31
OOD w/ IPQ 100.0 74.65 55.02 81.75 19.11 100.0 82.24 99.72 15.6 100.0 72.81
OOD w/ Ours 99.03 64.18 31.97 79.27 18.42 99.73 57.25 100.0 15.35 89.47 65.47

Contriever

ALL 96.79 72.40 56.76 59.83 18.66 98.83 55.26 98.25 9.14 96.14 66.06

OOD w/ GenQuery 90.12 72.23 65.87 54.99 18.53 97.28 51.17 98.65 7.45 93.33 64.96
OOD w/ Layerwise 93.83 68.67 49.14 56.61 17.85 99.1 51.75 98.36 8.26 95.34 63.89
OOD w/ IPQ 93.83 69.11 48.37 57.72 18.11 99.17 51.39 98.7 8.25 94.04 63.87
OOD w/ Ours 91.76 64.23 40.88 56.37 17.17 98.73 50.58 97.79 8.17 89.88 61.56

E5

ALL 99.68 76.42 55.56 74.85 18.03 99.67 61.49 98.49 15.81 97.75 70.00

OOD w/ GenQuery 98.91 80.15 69.33 74.41 18.54 99.51 58.05 98.53 15.79 98.03 71.13
OOD w/ Layerwise 100.0 75.46 47.01 74.38 19.04 99.65 55.53 98.43 15.96 97.81 68.33
OOD w/ IPQ 98.91 75.96 49.54 74.61 18.01 99.83 58.57 98.45 15.68 97.24 68.68
OOD w/ Ours 99.47 69.1 29.97 74.47 17.09 99.67 55.82 98.56 15.85 96.48 65.65

GTE

ALL 99.68 80.37 60.85 75.76 22.48 99.57 72.66 99.52 17.53 99.25 73.55

OOD w/ GenQuery 100.0 84.2 76.8 70.58 21.33 98.71 65.95 99.73 16.16 99.63 73.31
OOD w/ Layerwise 100.0 82.81 56.66 76.17 21.48 99.87 66.14 99.47 14.98 99.82 71.74
OOD w/ IPQ 100.0 84.59 66.26 75.27 19.82 99.83 68.45 99.5 14.81 99.82 72.84
OOD w/ Ours 93.75 70.71 51.17 71.02 19.21 99.6 65.25 100.0 16.56 98.72 68.6

Table 5: Comparison of OOD document detection across different retriever models, with the number of documents
selected by 2,000 sampled NQ documents.
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Retriever # Samples ArguAna Climate-
FEVER

DBPedia FiQA NFCorpus Quora Scidocs SciFact TREC-
COVID

Touché

BGE
1000 109 339 6940 15686 1236 1542 1204 221 10018 79
2000 103 323 6795 15593 1143 1458 1139 207 9632 76
3000 101 306 6660 15489 1063 1376 1073 190 9194 74

Contriever
1000 89 571 9712 13201 2429 6320 2926 505 10469 278
2000 85 540 9492 12655 2328 5922 2830 483 10005 246
3000 81 520 9378 12343 2271 5695 2769 480 9742 233

E5
1000 192 855 6035 16383 2379 7347 2591 523 14496 520
2000 187 836 5850 16328 2319 7059 2534 508 14464 505
3000 183 815 5736 16297 2289 6895 2500 506 14437 497

GTE
1000 16 494 3643 7095 469 2931 1828 193 7977 536
2000 16 499 3759 7259 486 2990 1853 201 8113 537
3000 16 497 3738 7219 478 2973 1846 197 8082 537

Table 6: The number of detected OOD documents for each dataset, determined by the randomly sampled 1000,
2000, and 3000 NQ documents.

Retriever ArguAna Climate-
FEVER

DBPedia FiQA NFCorpus Quora Scidocs SciFact TREC-
COVID

Touché

BGE 96.83 24.42 3.65 48.4 5.45 99.59 14.04 100.0 1.94 9.38

Contriever 81.97 30.43 8.0 26.53 4.93 96.06 23.27 89.81 0.76 23.53

E5 95.07 25.12 4.67 43.45 4.97 98.72 21.78 93.69 1.9 24.61

GTE 100.0 39.81 30.56 42.88 7.81 91.13 26.87 81.82 2.48 40.53

Table 7: DRR with Recall@10.

Retriever ArguAna Climate-
FEVER

DBPedia FiQA NFCorpus Quora Scidocs SciFact TREC-
COVID

Touché

BGE 98.41 32.26 9.23 62.69 8.53 99.79 23.97 100.0 4.20 46.88

Contriever 91.80 44.31 18.36 38.19 8.88 97.47 34.08 93.57 2.34 67.65

E5 98.03 34.74 8.38 57.64 8.74 99.21 32.46 97.6 5.44 69.11

GTE 100.0 54.37 56.97 56.17 14.51 95.91 45.26 90.91 5.39 88.17

Table 8: DRR with Recall@30.

Retriever # Samples ArguAna Climate-
FEVER

DBPedia FiQA NFCorpus Quora Scidocs SciFact TREC-
COVID

Touché

BGE
1000 8.71 10.12 25.63 68.71 5.42 2.0 7.39 6.0 14.4 3.15
2000 8.71 10.19 25.65 68.82 5.48 2.01 7.41 6.0 14.49 3.15
3000 8.99 10.42 26.14 69.96 5.67 2.09 7.81 6.45 15.6 3.48

Contriever
1000 8.21 22.25 46.57 41.71 38.32 13.21 46.89 49.33 34.88 10.33
2000 8.42 22.84 46.85 42.6 39.06 13.52 47.56 50.07 35.54 10.65
3000 8.71 22.84 47.09 43.25 39.61 13.74 47.99 50.22 36.35 11.09

E5
1000 14.49 19.12 10.67 79.88 29.51 8.75 25.82 27.74 84.29 20.65
2000 14.20 18.68 10.25 79.17 28.57 8.48 25.32 26.84 83.70 19.57
3000 14.49 19.12 10.95 79.85 29.48 8.73 25.8 27.74 84.24 20.65

GTE
1000 0.21 9.45 4.49 11.96 2.2 3.91 13.73 1.5 8.49 40.43
2000 0.21 8.85 4.39 11.63 2.15 3.78 13.23 1.35 7.88 39.78
3000 0.07 6.62 3.69 9.89 1.49 3.15 10.92 0.6 5.86 35.87

Table 9: Ratio of detected OOD documents for each dataset over total documents, determined by the randomly
sampled 1000, 2000, and 3000 NQ documents.

16



Retriever Dropout Num Pos ArguAna Climate-
FEVER

DBPedia FiQA NFCorpus Quora Scidocs SciFact TREC-
COVID

Touché Avg (↓)

BGE

✗

1 98.99 68.32 35.25 79.48 19.07 99.85 62.51 100.0 15.06 89.19 66.77
2 98.99 62.57 33.65 79.24 18.59 99.71 61.25 99.7 15.33 91.89 66.09
4 98.99 60.23 32.66 79.21 18.43 99.71 60.96 99.72 14.89 89.19 65.4
8 98.99 62.34 31.53 79.13 18.64 99.78 61.06 99.72 14.83 91.89 65.79
16 98.99 62.34 31.53 79.13 18.64 99.78 61.06 99.72 14.83 91.89 65.79

0.02

1 99.01 67.31 36.78 79.29 19.37 99.35 59.1 100.0 16.17 89.33 66.57
2 99.01 77.89 34.66 79.23 19.01 99.42 57.86 100.0 15.84 88.16 67.11
4 99.01 78.24 33.15 79.22 18.72 99.49 57.77 100.0 15.74 90.54 67.19
8 99.01 61.14 31.49 79.16 18.36 99.71 56.97 100.0 15.22 89.19 65.03
16 99.01 60.65 31.57 79.15 18.39 99.85 60.31 100.0 15.0 89.19 65.31

0.05

1 99.01 61.06 35.71 79.45 19.35 99.78 63.91 100.0 15.47 90.54 66.43
2 99.01 60.0 33.87 79.37 18.92 99.78 62.16 100.0 15.18 90.54 65.88
4 99.01 59.27 32.42 79.28 18.42 99.85 61.74 100.0 15.06 89.19 65.42
8 99.01 58.76 31.63 79.15 18.21 99.85 61.52 100.0 15.02 89.19 65.24
16 99.01 58.76 31.63 79.15 18.21 99.85 61.52 100.0 15.02 89.19 65.24

Contriever

✗

1 92.41 71.08 45.11 57.55 17.54 99.32 52.87 97.79 8.25 92.7 63.36
2 92.41 70.45 44.47 57.25 17.63 99.24 52.58 98.02 8.04 91.85 63.09
4 90.12 71.08 45.11 57.55 17.54 99.32 52.87 97.79 8.25 92.7 63.36
8 91.36 64.35 43.68 57.07 17.42 99.42 51.72 97.79 7.77 93.56 62.41
16 92.59 64.35 43.68 57.07 17.42 99.42 51.72 97.79 7.77 93.56 62.54

0.02

1 92.59 71.19 43.18 56.32 17.39 97.91 50.97 97.8 8.6 91.88 62.78
2 92.59 69.85 41.87 56.18 17.09 98.14 50.01 97.83 8.44 91.03 62.30
4 90.12 68.72 40.97 56.1 16.99 98.33 50.78 97.8 8.35 90.17 61.83
8 91.36 63.92 40.63 56.12 17.11 98.75 50.64 97.78 8.09 90.17 61.46
16 92.59 64.12 43.6 57.12 17.39 99.42 51.68 97.78 7.69 94.02 62.54

0.05

1 92.59 68.93 41.86 56.19 17.11 98.16 49.99 97.83 8.48 91.03 62.75
2 92.59 68.93 41.86 56.19 17.11 98.16 49.99 97.83 8.48 91.03 62.22
4 90.12 68.83 40.99 56.03 17.01 98.3 50.92 97.8 8.28 90.17 61.85
8 91.36 63.65 40.6 56.03 17.1 98.79 50.58 97.76 8.04 89.74 61.36
16 92.59 63.85 43.66 56.88 17.22 99.42 51.66 97.79 7.8 94.42 62.53

E5

✗

1 99.45 75.21 32.43 74.54 16.91 99.38 55.11 98.35 15.83 97.03 66.42
2 99.45 76.79 30.44 74.46 16.9 99.49 54.97 98.65 15.73 96.63 66.35
4 99.45 75.25 29.84 74.5 16.99 99.61 55.02 98.75 15.84 96.25 66.15
8 99.45 69.19 29.65 74.47 17.03 99.68 55.52 98.55 15.85 96.43 65.58
16 99.45 66.97 31.21 74.52 17.05 99.75 55.72 98.35 15.71 96.6 65.53

0.02

1 99.45 75.21 32.47 74.54 16.91 99.38 55.11 98.35 15.83 97.03 66.43
2 99.45 76.8 30.44 74.46 16.9 99.49 55.01 98.65 15.73 96.63 66.36
4 99.45 75.25 29.9 74.5 16.99 99.59 55.0 98.75 15.84 96.25 66.15
8 99.45 69.19 29.74 74.47 17.02 99.68 55.5 98.56 15.85 96.43 65.59
16 99.45 66.99 30.99 74.52 17.09 99.77 55.71 98.35 15.72 96.6 65.52

0.05

1 99.51 64.88 40.74 74.41 16.79 99.8 53.42 98.83 14.95 97.4 66.07
2 99.51 62.81 40.92 74.69 16.59 99.85 52.99 98.21 15.04 97.92 65.85
4 99.51 61.76 41.09 74.6 16.41 99.8 52.45 98.83 15.19 96.88 65.70
8 99.51 63.96 42.99 74.8 15.68 99.9 51.86 99.12 15.41 98.96 66.22
16 99.51 63.96 42.94 74.79 15.65 99.9 51.86 99.12 15.42 98.96 66.21

GTE

✗

1 93.75 80.05 53.77 73.15 21.77 99.66 69.18 99.73 16.31 98.9 70.63
2 93.75 83.22 54.14 73.14 21.14 99.73 67.8 100.0 15.89 98.9 70.77
4 93.75 80.18 57.45 72.14 22.52 99.66 67.73 99.72 15.89 98.9 70.79
8 93.75 78.16 60.09 72.09 21.62 99.66 67.42 99.73 16.24 98.72 70.75
16 93.75 78.16 60.09 72.09 21.62 99.66 67.42 99.73 16.24 98.72 70.75

0.02

1 93.75 76.5 41.71 69.61 19.6 99.63 64.1 100.0 17.7 99.27 68.19
2 93.75 82.36 43.65 69.89 18.5 99.66 64.2 100.0 17.32 99.09 68.84
4 93.75 75.33 46.1 70.26 19.0 99.56 65.08 100.0 17.1 98.72 68.49
8 93.75 70.83 51.24 71.02 19.22 99.6 65.22 100.0 16.56 98.72 68.62
16 93.75 78.03 60.04 72.05 19.71 99.66 67.44 99.73 15.87 98.9 70.52

0.05

1 93.75 76.54 41.97 69.7 19.59 99.56 64.2 100.0 17.67 99.27 68.23
2 93.75 82.41 43.45 69.89 18.44 99.66 64.26 100.0 17.33 99.09 68.83
4 93.75 75.31 46.52 70.25 19.06 99.56 65.08 100.0 17.12 98.72 68.54
8 93.75 70.5 51.17 71.09 19.28 99.6 65.28 100.0 16.54 98.72 68.59
16 93.75 78.41 60.08 72.12 19.61 99.66 67.37 99.73 16.01 98.9 70.56

Table 10: Ablation study on the number of positives for computing GradNormIR in (p in Eq. ( 2)). The results
present the DRR values of OOD documents prediction, comparing results without dropout and with dropout rates of
0.02 and 0.05 for the document query.
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