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Abstract

Although large language models (LLMs) have001
made significant advancements, they still lack002
the ability to personalize responses. However,003
manually inputting personal information into004
LLMs can be tedious and may never be com-005
pleted. Since conversations contain a wealth006
of personal information, we propose to ex-007
tract personal information and populate a per-008
sonal knowledge graph (PKG) from conversa-009
tion. We explored finetuning and prompting010
LLMs, but found that they still struggle with011
generating desired PKGs. Our analysis shows012
that GPT-3.5 cannot generate knowledge triples013
with desired relations and T5 often fails to iden-014
tify the correct subject. Furthermore, GPT-3.5015
struggles with extracting in-context subjects,016
recognizing negation expressions, and differen-017
tiating between questions and statements. By018
highlighting these limitations, we aim to inspire019
future research on PKG population from con-020
versation and the development of personalized021
dialogue systems.022

1 Introduction023

A personal knowledge graph (PKG) is a structured024

knowledge source that stores personalized informa-025

tion. In contrast to a general-purpose knowledge026

graph, the entities in a PKG may only be relevant027

to the user and not globally important (Balog and028

Kenter, 2019). For example, “Rose is pregnant”029

might be a significant event only for Rose’s friends030

but not the general public. Thus, the entity “Rose”031

would not exist in a general-purposed knowledge032

graph (unless Rose is a celebrity), nor would her033

personal information, such as her pregnancy status.034

A PKG can function as an external personal035

memory for tasks such as a personal memory assis-036

tant. It can also be integrated with other systems,037

such as chatbots or recommendation systems, to038

produce personalized results. Some might argue039

that personal information can be added from dia-040

logue histories, as many of current conversational041

Figure 1: An example of personal knowledge graph
population from conversation.

systems do (Roller et al., 2021). However, there 042

are limitations to the number of tokens that can 043

be included in the inputs of large language models 044

(LLMs), and studies have shown that LLMs still 045

struggle with remembering memories from a long 046

time ago or maintaining their knowledge across 047

multiple turns in the interaction. (Xu et al., 2022; 048

Bang et al., 2023) By storing information in the 049

form of a PKG, it can increase the interpretability 050

of how machines make decisions and allow users 051

to manage their information independently. 052

Documenting personal knowledge can be a te- 053

dious and overwhelming task. Requesting users to 054

input all range of their personal information cover- 055

ing their interests, preferences, etc., can be nearly 056

impossible. However, conversations, as a means 057

of human communication, provide a rich source 058

of personal information. Therefore, we propose to 059

automatically construct a PKG from conversations 060

instead of relying on users to manually supply their 061

personal information. 062

As shown in Fig.1, our goal is to generate the 063
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PKG of the two conversational partners given a064

snippet of their dialogue. Prior studies on per-065

sonal knowledge extraction from conversation have066

mainly focused on the utterance level of a single067

speaker, which entails extracting attributes of the068

speaker (Li et al., 2014; Tigunova et al., 2021, 2020;069

Wang et al., 2022). In contrast, our work operates070

at a more comprehensive conversational level of071

both speakers. In conversations, relations between072

entities may only become valid after confirmation073

by the other speaker. For instance, “A: Do you like074

Japanese food? B: I love it!”, the information that075

B likes Japanese food cannot be extracted without076

considering the entire conversation.077

The process of populating a knowledge graph078

typically involves several subtasks, including en-079

tity detection or named entity recognition (NER),080

relation extraction, and entity linking. In this work,081

we tackle the task of populating a personal knowl-082

edge graph from conversation by fine-tuning gener-083

ative T5 models (Raffel et al., 2020) and prompt-084

ing GPT-3.5 (Radford et al., 2018). We extract085

personal knowledge from the Life Event Dialog086

dataset (Chen et al., 2023) in the form of (Subject,087

Relation, Object) triples. Our results suggest that088

GPT-3.5 model enumerates all subtle activities but089

not outputs the desired relation types, while T5090

model struggles to predict the right subject even it091

correctly captures the relation and object.092

Our contributions can be summarized as follows:093

(1) We extend the task of personal knowledge graph094

population from conversation beyond the utterance095

level to the conversational level, identifying the per-096

sonal knowledge not only for a single speaker. (2)097

We explore finetuning and prompting LLMs for the098

task of personal knowledge graph population from099

conversation and provide a comprehensive analysis100

of how current LLMs understand conversations.101

2 PKG Population from Conversation102

2.1 Challenges103

In this section, we elaborate the challenges and the104

main differences of populating a PKG from conver-105

sations versus conventional information extraction106

tasks. Identifying spans and their types is crucial in107

conventional information extraction task. Both re-108

lation extraction and event extraction tasks predicts109

the types of a span in the given text of a single-110

person narrative. For instance, given a sentence111

“Steve became CEO of Apple in 1997,” relation ex-112

traction task focuses on classifying a predefined re-113

lation type (“work for”) from two mentions (“Steve” 114

and “Apple”). Event extraction task identifies spans 115

of trigger (“became”) and arguments (“Steve” and 116

“Apple”) from the given text, and classifies these 117

spans into predefined types (“start position”, “em- 118

ployee”, and “employer”). The mention-entity rela- 119

tionship is usually one-to-one or many-to-one map- 120

ping. In a conversation, there are only two entities 121

that we are focusing on, i.e., S1 and S2. However, 122

the surface form of mentions from different entities 123

are highly overlapped (Chen et al., 2023). For ex- 124

ample, the same surface form “I” might refer to the 125

Speaker 1 (S1) and the Speaker 2 (S2) in different 126

utterances. The mention itself is not important; in- 127

stead, we are solely concerned with the information 128

pertaining to the entity (S1 or S2). Nevertheless, 129

current IE models predict relations given mentions 130

and their locations or predict mentions and their 131

types based on the context, and when the surface 132

form is the same, the model get confused about 133

what to predict. 134

2.2 Approach 135

Given a conversation, our goal is to output the per- 136

sonal knowledge in the form of (Subject, Relation, 137

Object) triple. Following the PKG definition from 138

(Balog and Kenter, 2019), we limit the Subject to 139

either one of the speakers in the dialogue. 140

We examine finetuning T5 models with different 141

templates, and prompting GPT-3.5. The templates 142

for T5 are shown in Appendix C.2. We utilize 143

the GPT-3.5-turbo model from OpenAI’s API to 144

extract personal knowledge in the form of triples by 145

the prompt shown in Appendix C.1. To guide the 146

output, we supplied GPT-3.5 with a list of relations 147

and two examples, which are tailored to generate 148

triples based on the given conversation. 149

3 Experiment 150

3.1 Setting 151

Our experiment is conducted on the Life Event 152

Dialog dataset (Chen et al., 2023), a collection of 153

speakers’ daily life events annotated on DailyDi- 154

alogue (Li et al., 2017). More details about the 155

dataset is described in Appendix B. 156

Most end-to-end information extraction works 157

adopt the strict evaluation (Nayak and Ng, 2020), 158

in which a triple is considered correct only if all its 159

elements are correct (Ye et al., 2022). 160

However, in the case of personal knowledge 161

from conversations, the mentions of objects often 162

2



Strict P R F1 BERTScore Sbj-first Sbj Rel Obj
(BS) P R F1 P R F1 BS

T5 0.265 0.221 0.241 0.944 T5 0.644 0.827 0.723 0.558 0.428 0.483 0.964
GPT 0.069 0.151 0.094 0.897 GPT 0.575 0.974 0.723 0.317 0.540 0.399 0.933

Sbj-Rel P R F1 Obj Rel-first Sbj Rel Obj
BS P R F1 P R F1 BS

T5 0.362 0.428 0.391 0.919 T5 0.608 0.388 0.474 0.644 0.567 0.603 0.967
GPT 0.211 0.540 0.303 0.882 GPT 0.840 0.540 0.658 0.253 0.633 0.362 0.933

Table 1: Result of automatic evaluation metrics described in Section 3.1

Output Triples Valid Ratio

T5 206 54.4%
GPT 511 83.8%

Table 2: GPT generates more triples than T5 for all
dialogues in test set, and most of them are valid.

consist of multi-word descriptions instead of a sin-163

gle word. Consequently, we propose three addi-164

tional evaluation modes tailored to the task of PKG165

population from conversation.166

• In Sbj-Rel, we relaxed the strict evaluation by167

only evaluating F1 of (Subject, Relation), and168

evaluated Object by BERTScore (BS) (Zhang169

et al., 2020).170

• In Sbj-first, we turned triples into a hierarchy171

tree {Subject: {Relation: Object}}. We first172

calculated the F1 of Subject. For example, if173

the ground truth only contains information of S2,174

but the model predicts triples for both S1 and S2,175

then the precision, recall, and F1 of Subject is 0.5,176

1, and 0.67, respectively. Then, for the correctly177

predicted Subject, we calculated the Relation F1;178

for the correctly predicted relation, we calculated179

the Object BERTScore.180

• Rel-first is similar to Sbj-first, except that we first181

evaluated Relation, then Subject, and then Object.182

The hierarchy tree is like {Relation: {Subject:183

Object}}.184

In addition to the four automatic metrics (Strict,185

Sbj-Rel, Sbj-first, Rel-first), we conducted a human186

evaluation to check the Valid Ratio for both T5 and187

GPT-3.5 outputs. The Valid Ratio measures the ac-188

curacy of a triple in relation to the given dialogue.189

The authors manually examine each triple to deter-190

mine whether the model hallucinated non-existent191

triples or if the triples were correct solely based192

on the provided dialogue. This evaluation was per-193

formed without comparing the generated triples to194

the ground truth.195

3.2 Result 196

The results of automatic evaluations comparing the 197

GPT-3.5 (GPT) 1 and T5 models are shown in Ta- 198

ble 1. The finetuned T5 consistently outperforms 199

GPT in most automatic metrics by a substantial 200

margin. Despite being provided with a relation list 201

in the prompt, GPT still generates many relations 202

not included in the given list, leading to poor preci- 203

sion in Strict and Sbj-Rel metrics and low relation 204

precision (Rel P) in Sbj-first and Rel-first metrics. 205

Table 2 indicates that most GPT-generated triples 206

are valid, achieving a higher Valid Ratio than the 207

T5 model. Although 84% of GPT-generated triples 208

are accurate based on the dialogue, most of them do 209

not appear in the ground truth triples, causing the 210

discrepancy between Table 1 and Table 2. In com- 211

parison to the ground truth, which has a total of 237 212

triples, the GPT model generates more than twice 213

as many triples. These additional triples predomi- 214

nantly enumerate trivial information from the con- 215

versation rather than extracting significant personal 216

knowledge. On the other hand, we observe that T5 217

often struggles to identify the correct subject for 218

a triple, although it can output the predefined rela- 219

tions after fine-tuning. The choice between the T5 220

and GPT models may involve a trade-off between 221

controllability and coverage (variety). 222

3.3 GPT Error Analysis 223

We analyzed the 16% of invalid triples generated by 224

the GPT model and summarized our observations 225

with corresponding examples in Table 3. 226

GPT Error-1: Fail to predict in-context sub- 227

jects. The majority of GPT errors result from incor- 228

rect subject prediction, especially when the subject 229

is mentioned in the context. GPT often outputs 230

triples with subjects that are neither S1 nor S2, 231

even though our ground truth personal knowledge 232

focuses exclusively on the two speakers. In these 233

1All “GPT” in this paper refers to the GPT-3.5 model.
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Error Type Example Dialogue Triple

In-Context Subject 28.2% S2: “They’re on special offer today.” GPT: (S2, have special offer, today)
Correct: they

S2: “... bring my cat, Mr. Twinkles.” GPT: (S2, name, Mr Twinkles)
Correct: (S2’s) cat

Speaker Subject 27.1% S1: “Can you recommend some?”
S2: “I think Pond’s is the best.”

GPT: (S1, recommend, Pond’s)
Correct: S2

Negation 18.8% S1: “So have you accepted offers from other
companies?”
S2: “No, I haven’t got one by now.”

GPT: (S2, accept, offers from other
companies)

S1: “Did you go to the concert last week-
end?”
S2: “No, I didn’t. And you?”

GPT: (S2, go, concert last weekend)

S1: “I can’t find the book you lent me.” GPT: (S1, find, book)

S1: “I’ve never tasted anything better.” GPT: (S1, taste, anything better)

Questions as Statements 14.1% S1: “So have you accepted offers from other
companies ?”

GPT: (S2, accept, offers from other
companies)

Others 11.8%

Table 3: GPT error analysis and examples.

instances, GPT tends to incorrectly identify the sub-234

ject as either S1 or S2, when it actually refers to a235

third party mentioned in the context.236

GPT Error-2: Mess up the speaker and subject.237

Another common error occurs when GPT mess up238

the speaker and the subject. There is no apparent239

reason for these inaccuracies, but we did observe240

that about half of these examples contain questions241

in the dialogue. As we discuss later, GPT seems to242

struggle with interpreting questions.243

GPT Error-3: Hard to capture negation. Of244

the 15 dialogues containing negation, GPT incor-245

rectly predicts 8 of them as positive. These dia-246

logues sometimes include a question followed by a247

negative answer, or simply feature the speaker ex-248

pressing negation. However, GPT tends to interpret249

them as positive triples.250

GPT Error-4: Treat questions as true state-251

ments. As shown in the examples from Table 4,252

GPT occasionally predicts a triple given merely253

a question and before the other speaker has even254

provided an answer.255

GPT doesn’t hallucinate many personal knowl-256

edge from conversation. We investigated whether257

GPT hallucinates personal knowledge from con-258

versations, given that hallucination is one of the259

most notorious challenges faced by current LLMs.260

From our observations, most of the imagined per-261

sonal knowledge inferred from dialogues is either262

correct or remains unverified. Moreover, one of263

our goals in populating a PKG is to enable users to264

manipulate or correct any potentially false inferred 265

knowledge by themselves, regardless of whether 266

LLMs generate hallucinated personal knowledge. 267

Our investigation highlights potential weak- 268

nesses in GPT and analyzes the causes of errors. 269

We found GPT still does not fully understand the 270

conversational context, and further inspections on 271

how LLMs process negative expressions and ques- 272

tions is needed. 273

4 Conclusion 274

We introduce the task of personal knowledge graph 275

population from conversations and highlight the 276

challenges of directly applying conventional in- 277

formation extraction approaches to this task. We 278

explore fine-tuning T5 and prompting GPT-3.5 279

models for this purpose. While the fine-tuned T5 280

consistently outperforms GPT in automatic evalua- 281

tion metrics, GPT frequently generates more valid 282

triples based on the dialogue. The outputs from the 283

two models suggest that T5 often fails to identify 284

the correct subject, while the GPT model produces 285

numerous trivial relations not present in the ground 286

truth personal knowledge. Our error analysis fur- 287

ther reveals that GPT struggles with subject predic- 288

tion, interpreting questions, and handling negation 289

in this task. We hope this work can facilitate the 290

automatic construction of PKG from conversations, 291

assist users in managing their own personal data 292

when interacting with LLMs, and contribute to the 293

development of personalized dialogue systems. 294
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Limitations295

Some limitations of this work should be acknowl-296

edged. First, our investigation focuses on two spe-297

cific LLMs, GPT-3.5 and T5, which may not fully298

represent the broader landscape of large language299

models. Second, the extraction process may inad-300

vertently introduce biases or inaccuracies into the301

personal knowledge graphs. Lastly, our dataset is302

limited to English conversations about daily life303

and our approach may not be generalized to all304

types of dialogues or personal knowledge extrac-305

tion scenarios, as the quality of the extracted in-306

formation may vary depending on the content and307

context of the conversations.308

Besides, there are several potential risks associ-309

ated with this work, which should be carefully con-310

sidered. The primary concern for many people may311

be the privacy issues arising from extracting per-312

sonal knowledge from conversations. While we cir-313

cumvent this problem by using publicly available314

data in our study, privacy concerns could emerge315

when adopting this approach to real-world appli-316

cations. Users may not be fully informed, provide317

consent, or feel comfortable with having their per-318

sonal information stored in such a manner, partic-319

ularly if it is accessible to third parties. Also, the320

extracted personal information could potentially321

be misused by unauthorized individuals or entities,322

which might lead to identity theft, targeted adver-323

tising, or other malicious activities.324
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A Works on Personal Information407

Extraction408

Earlier work like Li et al. (2014) constructed per-409

sonal knowledge graph by a pipeline approach.410

Given private query logs from Microsoft Cortana,411

they first determined whether the input utterance412

contains personal information, then classified the413

utterance into one predefined relation types, fol-414

lowed by slot filling the attributes of relations.415

Tigunova (2020); Tigunova et al. (2020) identify416

attribute-related keywords and rank relevant docu-417

ments to predict a person’s hobby and profession418

from Reddit.419

These previous works focused only on one420

speaker and on utterance-level instead of dialogue-421

level. That is, they all only detect personal knowl-422

edge from the speaker’s own utterance and only423

the speaker’s relations. Therefore, they didn’t en-424

counter the challenge of subject detection or entity425

linking. Not to mention that their data were not real426

conversational data but natural sentences crawled427

from social media or single-person utterance, ex-428

cept the private data in (Li et al., 2014). Besides,429

they only detect a few relation types, ranging from430

2 to 39.431

Our work, in contrast, is conducted on real con-432

versation of two speakers, capturing their real-time433

interaction to build the PKG and extracting up to434

103 relationships of personal knowledge. Step fur-435

ther to SVM, LSTM, and other neural networks,436

we showed the effects of prompting or finetuning437

of LLMs and provide an in-depth analysis on the438

results.439

Train Valid Test

# Sample 1,631 141 110
# Triple 3,473 362 237

Table 4: Data statistics.

B Details about Life Event Dialog Dataset440

The Life Event Dialog (LED) dataset is built on441

DailyDialogue, both datasets are licensed under CC442

BY-NC-SA 4.0. LED covers five topics (Relation-443

ship, Ordinary Life, Work, Tourism, and Attitde &444

Emotion) on English conversations. LED annotates445

personal life events, each consisting of a subject, an 446

object, three granularities of event types, and event 447

statuses (polarity, modality, and time). We consid- 448

ered only events with positive and actual statuses, 449

in which the subject is one of the two speakers (S1 450

or S2). In our experiment, we utilized the Class 451

event type as the relation and limited the triples to 452

those with relations appearing more than 5 times 453

in the training set, resulting in 103 relation types. 454

Additionally, we converted the mentions of S1 and 455

S2 to either “S1” or “S2” in the triples. The data 456

statistics are presented in Table 4. 457

This research aligns with the intended usage of 458

LED. We build upon the task of conversational life 459

event extraction proposed in LED, focusing on the 460

events involving both speakers and further populat- 461

ing a PKG. We authors have manually checked for 462

offensive content and identifiers by sampling 10% 463

of dialogues in the dataset. 464

C Details about Experiments 465

Given a dialog, extract a personal knowledge graph
in the form of triples: (SUBJECT, RELATION,
OBJECT), where the RELATION is from the fol-
lowing list: {relation_list}.

Example:
dialog: "S1 : May I help you ?\nS2 : Yes . I have to
stay in your city for just one day , can you suggest a
short tour ?\nS1 : Are you interested in the natural
landscape or the human landscape ?"
triples: [["S1", "suggest", "S2"], ["S1", "suggest",
"a short tour"],["S1", "help", "S2"],["S2", "stay",
"in your city"]]

Example:
dialog: "S1 : Do you really have to work today
?\nS2 : Yes . I ’m afraid so .\nS1 : But you ’ll
miss out on the football game .\nS2 : Oh . Well ,
it ca n’t be helped ."
triples:[["S2", "work", "NO_OBJ"],["S2", "miss",
"football game"]]

dialog: {input}
triples:

Table 5: The prompt design for GPT-3.5.

C.1 GPT 466

Table 5 is the prompt design for GPT-3.5. We re- 467

placed the injectable slots relation_list and input 468
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with the relation list and the input dialogue respec-469

tively, and provided two demonstrative examples to470

guide the generation of desired triples output. We471

set the temperature to 0.1 to ensure the determinis-472

tic generation and kept other parameters the same473

as the default setting.474

C.2 T5 Templates475

We introduced special tokens <SOE>, <EOE>,476

<SBJ>, <VERB>, <OBJ>, and tried different com-477

binations with and without these special tokens in478

the five templates in Table 6.479

We conducted experiments with each template480

10 times and averaged the results, as presented in481

Table 7. The best template scores for each evalua-482

tion metric are reported in Table 1.483

D Human Evaluation on Valid Ratio484

The author assessed the Valid Ratio on 110 samples485

from the test set, determining whether the output486

triple is a fact in the dialogue. As this judgement487

is not subjective, we did not recruit annotators for488

this evaluation.489
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ID Templates

1 ["{sbject}", "{relation}", "{object}"]
2 <S><SBJ>{sbject}<REL>{relation}<OBJ>{object}<E>
3 <S><REL>{relation}<SBJ>{sbject}<OBJ>{object}<E>
4 <S><SBJ>{sbject}</SBJ><REL>{relation}</REL><OBJ>{object}</OBJ><E>
5 <S><REL>{relation}</REL><SBJ>{sbject}</SBJ><OBJ>{object}</OBJ><E>

Table 6: Templates used for finetuning T5.

Strict P R F1 BS

1 0.199 (± 0.02) 0.178 (± 0.01) 0.188 (± 0.01) 0.934 (± 0.00)
2 0.265 (± 0.03) 0.221 (± 0.03) 0.241 (± 0.03) 0.944 (± 0.01)
3 0.233 (± 0.03) 0.233 (± 0.04) 0.231 (± 0.03) 0.937 (± 0.00)
4 0.246 (± 0.03) 0.221 (± 0.01) 0.233 (± 0.02) 0.938 (± 0.01)
5 0.268 (± 0.04) 0.214 (± 0.03) 0.237 (± 0.03) 0.943 (± 0.01)

Sbj-Rel P R F1 Obj-BS

1 0.329 (± 0.03) 0.355 (± 0.03) 0.341 (± 0.02) 0.918 (± 0.00)
2 0.385 (± 0.03) 0.388 (± 0.03) 0.386 (± 0.03) 0.924 (± 0.01)
3 0.362 (± 0.04) 0.428 (± 0.04) 0.391 (± 0.03) 0.919 (± 0.01)
4 0.367 (± 0.03) 0.403 (± 0.03) 0.384 (± 0.02) 0.922 (± 0.01)
5 0.375 (± 0.05) 0.368 (± 0.06) 0.370 (± 0.05) 0.926 (± 0.01)

Sbj-first Sbj-P Sbj-R Sbj-F1 Rel-P Rel-R Rel-F1 Obj-BS

1 0.661 (± 0.02) 0.807 (± 0.04) 0.726 (± 0.02) 0.500 (± 0.04) 0.355 (± 0.03) 0.415 (± 0.03) 0.961 (± 0.01)
2 0.660 (± 0.02) 0.768 (± 0.05) 0.709 (± 0.02) 0.581 (± 0.05) 0.388 (± 0.03) 0.464 (± 0.03) 0.967 (± 0.01)
3 0.644 (± 0.02) 0.827 (± 0.06) 0.723 (± 0.03) 0.558 (± 0.05) 0.428 (± 0.04) 0.483 (± 0.03) 0.964 (± 0.01)
4 0.652 (± 0.03) 0.802 (± 0.03) 0.719 (± 0.02) 0.560 (± 0.04) 0.403 (± 0.03) 0.468 (± 0.03) 0.966 (± 0.01)
5 0.653 (± 0.02) 0.738 (± 0.06) 0.692 (± 0.02) 0.567 (± 0.06) 0.368 (± 0.06) 0.445 (± 0.05) 0.974 (± 0.01)

Rel-first Sbj-P Sbj-R Sbj-F1 Rel-P Rel-R Rel-F1 Obj-BS

1 0.580 (± 0.02) 0.355 (± 0.03) 0.440 (± 0.03) 0.577 (± 0.04) 0.534 (± 0.04) 0.554 (± 0.03) 0.961 (± 0.01)
2 0.608 (± 0.04) 0.388 (± 0.03) 0.474 (± 0.03) 0.644 (± 0.05) 0.567 (± 0.02) 0.603 (± 0.03) 0.967 (± 0.01)
3 0.607 (± 0.03) 0.428 (± 0.04) 0.501 (± 0.03) 0.605 (± 0.05) 0.593 (± 0.03) 0.598 (± 0.03) 0.964 (± 0.01)
4 0.605 (± 0.03) 0.403 (± 0.03) 0.483 (± 0.03) 0.600 (± 0.04) 0.581 (± 0.03) 0.590 (± 0.03) 0.966 (± 0.01)
5 0.595 (± 0.05) 0.368 (± 0.06) 0.454 (± 0.06) 0.637 (± 0.07) 0.558 (± 0.03) 0.593 (± 0.04) 0.974 (± 0.01)

Table 7: Result of finetuning T5 using different templates.
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