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Abstract
Score function estimation is the cornerstone of
both training and sampling from diffusion genera-
tive models. Despite this fact, the most commonly
used estimators are either biased neural network
approximations or high variance Monte Carlo es-
timators based on the conditional score. We in-
troduce a novel nearest neighbour score function
estimator which utilizes multiple samples from
the training set to dramatically decrease estima-
tor variance. We leverage our low variance esti-
mator in two compelling applications. Training
consistency models with our estimator, we report
a significant increase in both convergence speed
and sample quality. In diffusion models, we show
that our estimator can replace a learned network
for probability-flow ODE integration, opening
promising new avenues of future research.

1. Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021) have emerged as a powerful class
of generative models. They have seen broad adoption across
a variety of tasks such as image generation (Rombach et al.,
2022), video generation (Harvey et al., 2022), and 3D ob-
ject synthesis (Poole et al., 2023). Although these models
achieve state of the art performance, their sampling proce-
dure requires integration of the probability flow ODE (PF-
ODE) or diffusion SDE (Song et al., 2021). This procedure
hampers sampling speed as each integration step requires
a neural network evaluation. Typically, many integration
steps are required per sample (Ho et al., 2020; Karras et al.,
2022).

Motivated by this shortcoming, an array of methods have
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been proposed which learn few-step approximations of the
PF-ODE solution. Amongst these, some attempt to distill a
pre-trained diffusion network such as progressive distillation
(Salimans & Ho, 2022), consistency distillation (Song et al.,
2023) or adversarial diffusion distillation (Sauer et al., 2023).
Alternatively, consistency training (Song et al., 2023; Song
& Dhariwal, 2024) proposes a method to train consistency
models without a pre-trained diffusion model. We refer to
the general class of models including diffusion models and
related few-step methods as diffusion generative models.

As diffusion generative models are grounded in diffusion
processes, they utilize the score function. This critical quan-
tity can be estimated by network approximation or Monte
Carlo methods. Diffusion and consistency training utilize a
one-sample Monte Carlo estimator of the score in their train-
ing procedure, (excepting (Xu et al., 2023)). Alternatively,
both diffusion sampling and diffusion distillation methods
rely upon neural network estimators. However, each es-
timator has drawbacks. The single-sample Monte Carlo
estimator has high variance (Xu et al., 2023) while learned
neural network approximators are imperfect, leading to bias
(Karras et al., 2022).

Our work puts forward a new method for score function es-
timation with lower variance than the one-sample estimator
and less bias than neural network approximation. Utilizing
self-normalized importance sampling (Hesterberg, 1995),
we estimate the score through a weighted average over a
batch of training set examples. We draw these elements from
a proposal which prioritizes examples which are the most
likely to have generated the current noisy value (Figure 1).
We show that because diffusion processes are Gaussian,
these examples are equivalent to the ℓ2 nearest neighbours
to the noisy data. With this finding, we can rapidly identify
and sample important examples using a fast KNN search
(Johnson et al., 2019). We analyze our method and derive
bounds on the variance of our estimator.

Empirically, we measure our performance in three settings.
First, we compare our score estimate against the analytic
score on CIFAR-10 (Krizhevsky et al., 2009). We find that
our method has near-zero variance and bias – substantially
outperforming both STF (Xu et al., 2023) and EDM (Karras
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et al., 2022). Applying our method to consistency mod-
els, we find that replacing one-sample estimators with our
method improves consistency training – resulting in faster
convergence and higher sample quality. Finally, we show
that our method can replace neural networks in PF-ODE
integration, opening interesting future research avenues. We
release our code1 to encourage use of our estimator by the
community.

2. Background
Diffusion processes form the foundation of both diffusion
models (Sohl-Dickstein et al., 2015; Ho et al., 2020) and con-
sistency models (Song et al., 2023). In the variance explod-
ing formulation (Song et al., 2021), diffusion processes con-
volve a data distribution p(x), x ∈ Rd with zero-mean Gaus-
sian noiseN

(
0, σ(t)2I

)
, resulting in a continuous marginal

distribution path pt(z) =
∫
pdata (x)N

(
z;x, σ(t)2I

)
dx,

t ∈ [tmin, T ] , z ∈ Rd. The noise schedule of the dif-
fusion process σ(t) and diffusion length T are selected
to ensure pT (z) is indistinguishable from a normal prior
π(z) = N

(
z;0, σ(T )2I

)
.

Since the density p(x) is usually unknown, it is ap-
proximated by pdata(x), a finite mixture of Dirac mea-
sures pdata (x) = 1

N

∑
x(i)∈D δ

(
x− x(i)

)
where D ={

x(1), . . . ,x(N)
}

is a dataset of samples drawn from the
true data density. With this approximation, the time-varying
marginals pt(z) and posteriors pt(x(i)|z) take the forms

pt(z) =

N∑

i=1

pt(z|x(i))pdata(x
(i)) =

N∑

i=1

pt(z|x(i))

N
(1)

pt(x
(i)|z) = pt(z|x(i))pdata

(
x(i)
)

pt(z)
=

pt(z|x(i))

N · pt(z)
(2)

Under the finite data approximation, each posterior dis-
tribution pt(x

(i)|z) is categorical over the elements of
D, ie.

∑N
i=1 p(x

(i)|z) = 1. In addition, we refer to
pt(z|x(i)) = N

(
z;x, σ(t)2I

)
as the forward likelihood.

Diffusion processes can be described using stochastic or
ordinary differential equations (Song et al., 2021). In this
work, we focus on the probability flow ODE (PF-ODE)
formulation, introduced by Song et al. (2021). Following
the parameterization of EDM (Karras et al., 2022), we select
σ(t) = t. However, other choices are possible, as discussed
in Appendix B. With our chosen diffusion schedule, the
PF-ODE is given by

dz = −t ∇z log pt(z)dt. (3)

Numerical integration of the PF-ODE requires repeated
evaluation of∇z log pt(z), known as the score function. Be-
cause the forward likelihood is Gaussian, the conditional

1https://github.com/plai-group/knn-score

score has the straightforward form ∇z log pt(z|x(i)) =
x(i)−z

t2 . However, calculating the marginal score for fixed z

and t requires an expectation over the posterior pt(x(i)|z)

∇z log pt(z) = E
x(i)∼pt(x(i)|z)

[
∇z log pt(z|x(i))

]
(4)

=
E[x|z, t]− z

t2
(5)

where E [x|z, t] is the mean of pt(x(i)|z).
Since calculating posterior probabilities via Equation (2)
involves summing over D to find pt(z), exact evaluation
of Equation (5) is computationally prohibitive outside of
small data regimes. Instead, most methods which require the
score function must use estimators of various kinds. In the
following sections, we highlight the use of score estimators
in diffusion and consistency models.

2.1. Diffusion Models

Diffusion models are a class of generative models which
can generate samples through numerical integration of Equa-
tion (3) from T to tmin ≈ 0 with initial value z ∼ π(z).

In place of the exact score function discussed previously,
diffusion models use learned neural network estimators of
the marginal score sθ(z, t) to generate samples. Follow-
ing Equation (5), sθ can be parameterized as sθ(z, t) =
Dθ(z,t)−z

t2 where Dθ is a learned estimator of the poste-
rior mean E[x|z, t]. Training is performed via stochastic
gradient descent on a denoising score matching objective
LDSM = Et [λ(t)Lt] with weights λ(t). Lt is given by

Lt = Ez,x(i)∼pt(z,x(i))

[
∥Dθ (z, t)− x(i)∥22

]
. (6)

The minimizer of Equation (6) is D⋆
θ (z, t) = E [x|z, t]

(Karras et al., 2022). However, during stochastic gradi-
ent descent optimization, per-batch loss is calculated using
(x(i), z) tuples drawn from the joint distribution instead of
against the true posterior mean E[x|z, t]. Minimizing the
loss with individual x(i) converges to E [x|z, t] because the
joint distribution from which the tuples are drawn pt(z,x

(i))
is proportional to pt(x

(i)|z). Due to this relation, each x(i)

can be seen as a single-sample Monte Carlo estimator of the
posterior mean (Xu et al., 2023).

2.2. Consistency Models

Sampling from diffusion models requires repeated evalua-
tion of the score estimator sθ(z, t). To address this short-
coming, consistency models (Song et al., 2023) learn a one
step mapping between π(z) and the data distribution.

Equation (3) defines trajectories which map between any
marginal distribution pt(z) and ptmin(z) ≈ pdata (x), where
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Figure 1: Illustration of our proposal and the posterior across three phases of a toy 1D diffusion process. Left: For small t,
the posterior probability is concentrated on the single, closest element to z. Middle: For intermediate t, we upper bound the
posterior probability for non-neighbour elements, resulting in under weighting neighbours. Right: As t becomes large, the
posterior approaches a uniform distribution and the proposal matches the posterior well.

tmin ≈ 0 is used for numerical stability. These mappings f :
(z, t)→ x are known as consistency functions because the
value f(z, t) = x⋆ is consistent for all (z, t) on a common
PF-ODE trajectory. Consistency models (Song et al., 2023)
exploit this self-consistency property to learn fθ(z, t), a
neural network parameterized approximation to the true
consistency function f . In practice, consistency models are
trained by optimizing the consistency matching objective
LCM = Eti [λ(ti)Lti ] where

Lti = E [d (fθ (z, ti) ,fθ− (ẑ, ti−1))] . (7)

The consistency matching objective is optimized with re-
spect to θ over N discrete time steps tmin = t1 < . . . <
tN = T , with an expectation over x(i) ∼ pdata (x), i ∼ p(i)
and z ∼ pti(z|x). Here p(i) is a categorical distribution
over integers i ∈ [2, N ], λ(ti) is a weighting function, and
d(x,y) is a metric function such as ℓ2, LPIPS (Zhang et al.,
2018), or Pseudo-Huber (Charbonnier et al., 1997).

The loss aims to ensure consistency between the student net-
work fθ and the teacher network fθ− , evaluated at points
(z, ti) and (ẑ, ti−1) which lie on the same PF-ODE trajec-
tory. To obtain ẑ, consistency model training performs a
one step integration of Equation (3) from from ti to ti−1,
setting ẑ = solver (z, ti, ti−1,∇z log pti(z)). An accu-
rate score function estimate is critical to performing this
integration, ensuring z and ẑ lie on the same PF-ODE path.

Since ∇z log pti(z) is infeasible to calculate exactly out-
side the small data regime, consistency models are trained
with score estimators. Song et al. (2023) propose train-
ing consistency models with two such estimators. Con-
sistency distillation utilizes a neural network approxima-
tor ∇z log pti(z) ≈ sθ(z, ti) from a pre-trained diffusion
“teacher” model. To train consistency models without a
pre-trained score estimator, consistency training utilizes the
estimator ∇z log pti(z) ≈ x(i)−z

t2 with x(i) and z sampled
from pt(z,x

(i)). Like diffusion training, a single-sample
Monte Carlo estimate is used in place of the marginal score.

3. Nearest Neighbour Score Estimators
3.1. SNIS Score Estimation

Although the score is necessary for both training and sam-
pling from diffusion generative models, there are only two
widely used estimators of the score function – learned net-
works or single-sample Monte Carlo estimators. Since the
latter is required to produce the former, we consider methods
to reduce variance in Monte Carlo score estimation.

When calculating the score via Equation (5), the unknown
quantity is E [x|z, t] which we will refer to as µ hereafter

µ = E [x|z, t] =
N∑

i=1

pt(x
(i)|z) x(i). (8)

If pt(x(i)|z) is available, Monte Carlo estimation can be
used to convert the sum over D in Equation (8) into a sum
over a batch S = {x1, . . . ,xn} ∼ pt(x

(i)|z) of size n

µ̂MC =
1

n

∑

x(i)∈S

x(i). (9)

The previously discussed single-sample Monte Carlo estima-
tor for diffusion and consistency training is an example of
Equation (9) with n = 1 and x1 ∼ pt(x

(i), z) ∝ pt(x
(i)|z).

This estimator is unbiased but the variance per-dimension
scales with 1/n (Owen, 2013). Unfortunately, drawing
n > 1 samples to reduce estimator variance is challenging
because pt(x

(i)|z) is expensive to compute. The normaliz-
ing constant pt(z) can only be found by summing overD, so
naive multi-sample Monte Carlo estimation is impractical.

To increase n and thereby decrease estimator variance, we
appeal to importance sampling (IS)(Kahn & Marshall, 1953)
taking inspiration from Xu et al. (2023). Instead of sam-
pling from pt(x

(i)|z), we draw samples from a proposal
distribution q(x(i)). We can formulate a new Monte Carlo
estimator using a batch of n samples drawn from the pro-
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posal Sq = {x1, . . . ,xn} ∼ q(x(i)) as

µ̂IS =
1

n

∑

x(i)∈Sq

pt
(
z|x(i)

)
pdata

(
x(i)
)

pt (z) q(x(i))
x(i). (10)

Equation (10) no longer requires samples from the pos-
terior and with the finite data approximation, we know
pdata(x

(i)) = 1/N . However, finding pt(z) still requires
a sum over D. We resolve this issue with self-normalized
importance sampling (Hesterberg, 1995). By also estimat-
ing pt(z) with an IS estimator of Equation (1) using the
same Sq, we arrive at a self-normalized importance sam-
pling (SNIS) estimator

µ̂SNIS =

∑
x(i)∈Sq

wix
(i)

∑
x(j)∈Sq

wj
, wi =

pt(z|x(i))

q(x(i))
. (11)

The constant factor pdata(x
(i)) cancels because it is present

in the numerator of Equation (10) and in Equation (1).

Combining Equation (11) with Equation (5) yields a SNIS
estimator of the marginal score. Although the SNIS estima-
tor has some bias, by drawing n > 1 samples we can greatly
reduce the variance of score estimation.

3.2. Nearest Neighbour Proposals

With a defined a framework for reducing score estimator
variance, we must next determine a suitable proposal dis-
tribution q(x(i)). To identify a good proposal, we start by
analyzing the variance of Equation (11) (Owen, 2013). The
diagonal of the SNIS score estimator covariance is

Diag
(

Cov
(
µ̂SNIS − z

t2

))

=
1

nt4

N∑

i=1

pt
(
x(i)|z

)2

q
(
x(i)
)
(
x(i) − µ

)◦2 (12)

Where ◦2 indicates the Hadamard power operator.

Examining Equation (12), we can infer that an appropri-
ate proposal distribution q(x(i)) is important for estimating
E [x|z, t] with low per-dimension variance. Specifically,
high importance ratios pt(x(i)|z)/q(x(i)) will increase vari-
ance if (x(i) − µ)◦2 is non-zero.

For univariate SNIS estimators, the optimal proposal q⋆(x)
for a target distribution p(x) with true mean µ = Ep[x] is
q⋆ (x) ∝ p (x) |x− µ| (Kahn & Marshall, 1953). However,
q⋆ is not directly applicable to our problem because x(i) is
multivariate and the true mean µ = E [x|z, t] is unknown.

Although we cannot make immediate use of the univariate
optimal proposal, we note that q⋆ is proportional to the
target distribution p(x). We therefore hypothesize that a
suitable choice for our proposal is to match the true posterior

Algorithm 1 Nearest Neighbour Score Estimator

Input: z, t, D, I,k,n
K, d← search(I, z, k)
pt(z|xi)← exp(−d2

i

2t2 ) ∀ xi ∈ K
Zq ←

∑
xi

pt(z|xi) + (N − k)pt(z|xk)

qt(x
(i)|z)← 1

Zq

{
pt(z|xi) ∀ x(i) ∈ K
pt(z|xk) ∀ x(i) /∈ K

Sample {x1, . . . ,xn} ∼ qt(x
(i)|z)

wi ← p(z|xi)/qt(xi|z)
w̄i ← wi∑n

j=1 wj

µ̂KNN ←
∑n

i=1 w̄ixi

return µ̂KNN−z
t2

pt(x
(i)|z) as closely as possible. Because pt(x

(i)|z) varies
with t and z, we propose also varying our proposal with
these variables, denoting our proposal as qt(x(i)|z).
Determining the posterior exactly requires summing over
D to compute pt(z). To more efficiently construct our pro-
posal, we structure qt(x

(i)|z) to approximate pt(x
(i)|z) by

using only k most probable elements of pt(x
(i)|z). Let

K(z, t) = (x1, . . .xk|xi ∈ D) s.t. pt(x1|z) ≥ . . . ≥
pt(xk|z) be the ordered set of the k most probable dataset
elements under the posterior distribution pt(x

(i)|z). The
subscript of each xj ∈ K(z, t) indicates its ordering, where
xk is the element of K(z, t) with the lowest probability. For
brevity, we refer toK(z, t) asK hereafter and use it to define
our nearest neighbours proposal

qt(x
(i)| z) = 1

Zq

{
pt
(
z|x(i)

)
x(i) ∈ K

pt (z|xk) x(i) /∈ K . (13)

There are several beneficial properties of our nearest neigh-
bours proposal. Most importantly, Equation (13), approx-
imates the posterior using only the elements of K, instead
requiring a full summation over D. In addition, since
pt(z|x) = N (z|x, t2I) is Gaussian, and the size of the D is
known, the normalizing constant Zq =

∑k
i=1 pt(z|xi) +

(N − k)pt(z|xk) is found easily. Finally, the shape of
qt(x

(i)|z) matches the shape of pt(x(i)|z), as demonstrated
in Figure 1.

Examining Figure 1, for x(i) ∈ K, the proposal is propor-
tional to the posterior with Zqqt(x

(i)|z) = pt(z)pt(x
(i)|z).

In general, pt(z) ≤ Zq with equality in two cases. When
pt(z|xk) = 0 or k = N , the posterior is fully concentrated
on K and pt(z) =

∑N
i=1 pt(z|x(i)) =

∑k
i=1 pt(z|xi). In

these cases, our nearest neighbour proposal exactly matches
the posterior distribution.

When pt(z|xk) > 0 and k < N , the likelihood pt(z|xk)
upper bounds the likelihood for all x(i) /∈ K. In this case,
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Figure 2: Visualization of posterior mean estimators on CIFAR-10 images. Top: Noisy z samples from pt(z|x(i)) for
increasing noise levels. Second Row: True posterior mean. Third Row: Posterior mean estimates from our estimator. Our
estimator nearly perfectly matches the true mean levels. Bottom: Estimated posterior mean from a trained diffusion model.
The diffusion model does not match the high frequency features for low noise levels, but has fewer artifacts at the highest
noise level than our method.

we underweight the probability for x(i) ∈ K and assign
more mass to the tails of the proposal distribution, as seen
in Figure 1b.

Equation (13) requires access to the k most probable el-
ements of the posterior. To quickly identify K, we rely
on the Gaussian nature of diffusion processes. Since
pt(x

(i)|z) ∝ pt(z|x(i)) and pt(z|x(i)) is Gaussian, the k
most probable elements of the posterior are equivalent to the
k elements of D with the smallest ℓ2 distance to z. There-
fore, we transform the difficult problem of finding the k
most likely elements of the posterior into the easier problem
of identifying the k nearest neighbours of z in Euclidean
space.

To determineK in practice, we utilize FAISS (Johnson et al.,
2019) to perform fast k nearest neighbour search over D.
To construct qt(x(i)|z) for a given z, we first use FAISS to
find the nearest neighbours of z. Helpfully, FAISS returns
both the nearest neighbour set K and their ℓ2 distances
d ∈ Rk to z. Using d, we compute the forward likelihood
for each element ofK, and use Equation (13) to compute the
proposal. We can then use the proposal to estimate the score
via Equation (11). Algorithm 1 outlines our full nearest
neighbour score estimation algorithm.

4. Estimator Performance
4.1. Analysis

Motivated by our goal of reducing the variance of the score
estimate, we derive two theoretical bounds on the trace
of the covariance of µ̂KNN – our posterior mean estimator.
We form our bounds using the trace of the covariance of a
Monte Carlo estimator µ̂MC and another SNIS estimator
with qt(x

(i)|z) = 1
N which we denote with µ̂U . We note

that µ̂U is is only asymptotically equivalent to STF (Xu
et al., 2023) because in addition to a uniform qt(x

(i)|z),
STF also deterministically includes the source x(i) in their
sample batch S.
Theorem 4.1. Let t ∈ (0,∞), µ̂MC be the Monte Carlo
estimator defined by Equation (9), and µ̂KNN be the esti-
mator described by Equation (11) with proposal given by
Equation (13). Then for a fixed n ≥ 1,

Tr (Cov (µ̂KNN)) ≤
Zq

pt(z)
Tr (Cov (µ̂MC)) . (14)

Proof. We defer the proof to Appendix C.1.

In general, our estimator’s trace-of-covariance is larger than
the simple Monte Carlo estimator’s trace-of-covariance. The
ratio of the two is upper bounded by the factor Zq

pt(z)
– the

ratio of the normalizing constants of the proposal and the
posterior distributions. This ratio will be exactly unity when
pt(x

(i)|z) is fully concentrated on K (as is true when t is
small or k = N ). The ratio will also approach unity as
pt(x

(i)|z) approaches a uniform distribution over D. In any
of these cases, the trace-of-covariance of our estimator will
approach the trace-of-covariance of multi-sample posterior
Monte Carlo.
Theorem 4.2. Let µ̂MC be defined by Equation (9). Let
µ̂KNN and µ̂U be two estimators defined by Equation (11)
with proposals given by Equation (13) and qt(x

(i)|z) = 1
N

respectively. Then, for t ∈ (0,∞) and a fixed n ≥ 1,

Tr (Cov (µ̂KNN)) ≤
(
1−

∑
x(i) /∈K pt(z|x(i))

pt(z)

)
Tr (Cov (µ̂MC))

+
(N − k)

N
Tr (Cov (µ̂U)) .
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Figure 3: Estimator performance on CIFAR-10. Our estimator reduces bias and variance to near zero, significantly
outperforming even a network score estimator. In contrast, STF reduces variance but has significant bias for intermediate t.

Proof. We defer the proof to Appendix C.3.

Our estimator’s trace-of-covariance is upper bounded by
the sum of a fixed multiple of the uniform SNIS estima-
tor’s trace-of-covariance and a time-varying multiple of the
posterior Monte Carlo trace-of-covariance. We note that
when pt(x

(i)|z) = 1
N ∀ x(i) ∈ D, then Tr (Cov (µ̂MC)) =

Tr (Cov (µ̂U)), the frst term coefficient becomes k
N , and the

trace-of-covariance of µ̂KNN and µ̂U are equal. For inter-
mediate t we expect the trace-of-covariance of µ̂KNN to be
lower than that of µ̂U because we expect Tr(Cov(µ̂MC)) <<
Tr(Cov(µ̂U)) in this region.

4.2. Empirical Performance

To gain insight into the performance of our estimator beyond
our theoretical analysis, we empirically compare our estima-
tor against various other score estimators on the CIFAR-10
dataset (Krizhevsky et al., 2009). We measure estimator
performance with average mean squared error

MSE (µ̂) =
1

d
E ∥µ̂− µ∥22 =

1

d

(
Bias (µ̂)2 + Var (µ̂)

)
.

(15)

Equation (15) compares the estimated posterior mean µ̂
against the true posterior mean µ, calculated via Equa-
tion (8). MSE is equivalent to the trace-of-covariance metric
introduced in (Xu et al., 2023) and discussed in Section 4.1
scaled by 1/d. The outer expectation of Equation (15) is cal-
culated over a large set of x(i) ∼ D, with one z ∼ pt(z|x(i))

for each x(i). For each z, we average over repeated esti-
mator evaluations. This allows us to decompose MSE into
squared bias and variance terms to further investigate esti-
mator performance. When calculating variance and squared
bias, we compute the sample mean from the repeated esti-
mator evaluations per-z.

In Figure 3, we plot score and posterior mean estimator
performance across a range of noise levels. At each t, we
evaluate the estimators using ten thousand z samples, and
one hundred estimator evaluations per z. We compare our
method against four others: the single-sample posterior esti-
mator typically used in diffusion and consistency training,
a n = 256 multi-sample posterior Monte Carlo estimator,
an STF (Xu et al., 2023) estimator with n = 256, and EDM
– a pre-trained near-SoTA diffusion model (Karras et al.,
2022). As EDM is deterministic, we do not report its vari-
ance. Further, we do not plot its score metrics since errors
in the posterior mean estimation for small t are amplified in
the score by a factor of 1/t4. For the multi-sample Monte
Carlo estimator, we calculate the posterior by calculating
Equation (1).

Examining Figure 3, we note several important results.
Firstly, our estimator outperforms the STF estimator in
both posterior mean and score estimation across every met-
ric. The difference is especially stark for score estima-
tion, where the peak MSE of our estimator is approxi-
mately 100 times better than that of STF. We hypothesize
that our excellent performance is because for an interme-
diate range of t, qt(x(i)|z) matches the posterior nearly
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perfectly. When pt(x
(i)|z) is fully concentrated on a sin-

gle element, the variance of the SNIS estimators is zero
because pt(x

(i)|z) = 1 =⇒ (x(i) − E [x|z, t])2 = 0 and
(x(i) − E [x|z, t])2 > 0 =⇒ pt(x

(i)|z) = 0. However,
as t increases, the number of elements of D with non-zero
pt(x

(i)|z) also increases, resulting in a non-zero estimator
variance. In these cases, we believe the variance is domi-
nated by the importance ratio pt/qt. Compared to STF, our
proposal has lower importance ratios when the posterior
mass is concentrated on less than k elements.

Our second finding is that the STF estimator has a significant
bias for intermediate t. We believe this bias is because STF
deterministically includes the generating x(i) in its sample
batch, but does not account for this when computing the
SNIS weights. Although Xu et al. (2023) prove that as
n→∞, the bias of STF converges to 0, we see that the bias
of the estimator is not negligible for a practical choice of n.

Finally, we find that our estimator significantly outperforms
even a near-SoTA diffusion model for most t. Surprisingly,
we find that peak MSE for the diffusion model does not co-
incide with the Monte Carlo methods, and instead occurs at
substantially lower t than the peak for both SNIS estimators.

We further compare our method and EDM qualitatively in
Figure 2. We find our method better estimates the poste-
rior mean for most t. However, we find some evidence of
artifacts at high t which may be mitigated by increasing n.

5. Consistency Training
5.1. Consistency Models

We use our estimator to train consistency models on CIFAR-
10 (Krizhevsky et al., 2009). Specifically, we replace the
single-sample score estimator used to produce ẑ in Equa-
tion (7) with SNIS score estimators. We use the improved
consistency training (iCT) techniques proposed by Song
& Dhariwal (2024), comparing a baseline iCT model with
models trained with an STF (Xu et al., 2023) and a KNN
score estimator. For both SNIS score estimators, we use
n = 256, with a k = 2056 for the KNN proposal. We mea-
sure performance using Frechet Inception Distance (Heusel
et al., 2017) and Inception Score (Salimans et al., 2016).

From Table 1, we observe consistency training with KNN
score estimators results in lower FID and higher Inception
Score compared to our re-implementation of iCT (Song &
Dhariwal, 2024). While we are unable to reproduce the
results of (Song & Dhariwal, 2024) outright (training code
was not available at the time of writing) we do improve over
our re-implementation of iCT. Surprisingly, we find that
using the STF score estimator (Xu et al., 2023) results in
worse FID than both our method and the iCT baseline. We
hypothesize STF’s bias may contribute to this degradation.

Table 1: Single step unconditional image generation perfor-
mance on CIFAR-10. Bold indicates the best result within a
section, underline indicates the best result overall.

Method FID↓ IS↑
CD (Song et al., 2023) 3.55 9.48
CT (Song et al., 2023) 8.70 8.49
iCT (Song & Dhariwal, 2024) 2.83 9.54
iCT (Reimplemented) 3.67 9.45
iCT + STF (Xu et al., 2023) 3.79 9.50
iCT + KNN (ours) 3.59 9.49
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Figure 4: Impact of KNN score estimator performance on
Consistency Training. Horizontal lines indicate minimum
FID per model, vertical lines indicate when FID improves
on baseline iCT. Top: Effect of varying KNN search size.
Bottom: Effect of varying estimator sample size.

5.2. Ablations

We sweep over k and n to investigate their impact on down-
stream model performance. For our ablation, we train con-
sistency models with the same number of iterations but
halve the batch size to reduce computational cost.

Figure 4 highlights that for most hyperparameter choices,
our method improves the convergence rate of consistency
training. KNN models generally reach lower FID in less
time than the iCT baseline. However, the training time
required to achieve optimal FID is similar across all meth-
ods. Notably, we find reducing n and k improves sample
FID, even though this increases estimator variance (Ap-
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Figure 5: Comparison of sample FID versus tswitch in our
hybrid sampling approach. Initializing diffusion sampling
with KNN PF-ODE integration ith our score estimator yields
identical performance to forward process initialization. For
t < 2, STF is unsuitable for PF-ODE integration.

pendix D.1). We suspect score variance may have a regu-
larizing effect, and suggest future work investigate further
hyperparameter tuning to achieve optimal performance.

6. Diffusion Sampling
Motivated by the low error of our estimator compared to
network approximators (Figure 3) we investigate the ef-
fect of replacing a diffusion model with our estimator for
diffusion sampling. To this end, we generate samples via
PF-ODE integration using a hybrid sampling approach. For
T < t < tswitch, we integrate Equation (3) with our score
estimate using the Huen solver proposed by Karras et al.
(2022). After tswitch, we finish sampling with a pre-trained
EDM score estimator.

Figure 5 plots the quality of the resulting hybrid samples
against tswitch. We compare our estimator, STF, and a base-
line which initializes EDM sampling using samples from the
forward likelihood. Naively, our estimator is able to drive
FID to an unprecedented minimum of 0.5. However, this
performance is matched by forward process initialization,
indicating that integrating the PF-ODE with our estimator
is equivalent to drawing samples from the training dataset.
This means our method cannot be used on its own as a
generative model, as it does not produce generalization.

As shown by Section 5 and by Xu et al. (2023), training
diffusion generative models with improved score estimates
does not degrade generalization. However, when sampling
using an estimator which closely matches the exact min-
imizer of the diffusion training objective (Equation (6)),
we see that generalization disappears. This reinforces the
findings of (Yi et al., 2023): that the lauded generalization
properties of diffusion models can be attributed to bias in
the network score estimator caused by architecture, opti-
mization procedure or other factors.

Although integrating the PF-ODE using our estimator does

not produce generalization, we still closely match the for-
ward process initialization, indicating that our method is
capable of general PF-ODE integration. This finding sug-
gests that using our estimator, it may be possible to convert
distillation methods (Salimans & Ho, 2022; Sauer et al.,
2023; Lu et al., 2023) into from-scratch training procedures,
opening promising avenues of future research.

In contrast, when tswitch < 2, the FID of STF increases,
indicating it is unsuitable for general purpose PF-ODE in-
tegration. We hypothesize that this increase is because for
small t, the STF estimator’s performance is reliant on includ-
ing x(i) used to generate z in the SNIS batch. For general
PF-ODE integration where there is no such x(i), the uni-
form proposal of STF is unable to produce a suitable score
estimate.

7. Related Work
Generative Modelling with Diffusion Score Estimators
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020; Song et al., 2021) have become a widely utilized class
of generative models which use learned score estimators
to generate data across a variety of fields. Learned score
estimators are also used to train downstream models with
distillation (Salimans & Ho, 2022), consistency matching
(Song et al., 2023; Kim et al., 2023), or to regularize the
training of generative adversarial models (Sauer et al., 2023;
Lu et al., 2023).

Importance Sampling for Generative Model Training
Multiple methods have used importance sampling to re-
duce variance in generative model training. Reweighted
Wake-Sleep (Bornschein & Bengio, 2015) uses importance
sampling to improve variance in the sleep-phase of the wake-
sleep algorithm (Hinton et al., 1995). IWAE (Burda et al.,
2016) uses importance sampling to tighten the ELBO used
to train variational autoencoders (Kingma & Welling, 2014).
Importance sampling has also been utilized to minimize bias
in diffusion training (Kim et al., 2024). Similar to this work,
Stable Target Fields (Xu et al., 2023) utilizes an SNIS esti-
mator to estimate the marginal score of diffusion processes.
However, their work uses a uniform proposal and is focused
on improving diffusion models training instead of generally
estimating the score function.

Retrieval Augmented Methods Many recent methods have
proposed using memory systems to improve generative mod-
els. In natural language processing, methods propose com-
bining language model outputs (Khandelwal et al., 2020;
2021) or to augment transformer contexts with results from
a similarity search based over an external database (Guu
et al., 2020; Borgeaud et al., 2022). In computer vision, Re-
trieveGAN (Tseng et al., 2020) conditions generated images
on patches queried using text from a dataset while Retrieval-
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Fuse (Siddiqui et al., 2021) searches over a database of
3D structures to augment scene reconstruction. In diffusion
models, KNN-Diffusion (Sheynin et al., 2023) and Retrieval-
Augmented Diffusion Models (Blattmann et al., 2022) both
condition diffusion models on the k nearest CLIP (Radford
et al., 2021) embeddings of clean training images. Although
our method also uses a KNN search for diffusion generative
models, our approach is orthogonal to these methods as we
do not condition our network on the retrieved images.

8. Conclusions
Our work introduces a nearest neighbour estimator of the
score function for diffusion generative models. We ana-
lytically bound the variance of our estimator, and show
empirically that it has low bias and variance compared to
other estimation techniques. Training consistency models,
we find that our estimator both increases training speed and
sample quality. We highlight how our estimator can be used
for general purpose probability flow ODE traversal. We
believe our work opens intriguing opportunities for future
research. One possible research direction is substituting our
estimator for pre-trained diffusion networks in distillation
approaches, to produces new from-scratch training methods.
Another area of work is exploring alternate metric spaces.
The ℓ2 distance which forms the basis of our method does
not capture high level similarity between images well. By
transforming our data into a latent space as described by
Rombach et al. (2022), we may be able leverage more infor-
mative neighbours for score estimation. Finally, we believe
more research is warrented to investigate the cause of ob-
served differences between peak score network estimator
error and the peak error of SNIS estimators.

Impact Statement
Diffusion models require large amounts of computation and
energy to train. Arguably, generating from such models is
even more energy intensive. Consistency models address
this inference energy problem by limiting the number of
integration steps required to generate data. Directly training
consistency models, rather than learning from a pre-trained
diffusion model further lessons the energy burden. Our work
directly addresses all these energy problems by making it
possible to train better consistency models more energy effi-
ciently, without first training a diffusion model. Powerful
generative AI models are dual-use technology. We generally
believe that democratizing access to the technology by low-
ering energy requirements for training and inference helps
rather than harms.
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Appendices

A. Derivations
A.1. Marginal Score as a Posterior Expectation of Conditional Scores

Below, we derive Equation (23).

∇z log pt(z) =
∇zpt(z)

pt(z)
(16)

=
∇z

∫
pt(z|x)p(x)dx
pt(z)

(17)

=

∫
∇zpt(z|x)p(x)dx

pt(z)
(18)

=

∫ pt(z|x)
pt(z|x)∇zpt(z|x)p(x)dx

pt(z)
(19)

=

∫
pt(z|x)∇z log pt(z|x)p(x)dx

pt(z)
(20)

=

∫
pt(z|x)p(x)

pt(z)
∇z log pt(z|x)dx (21)

=

∫
pt(x|z)∇z log pt(z|x)dx (22)

= E
x∼pt(x|z)

[∇z log pt(z|x)] . (23)

Equation (18) is due to the Leibniz integral rule, while Equation (22) is an application of Bayes Rule.

A.2. Conditional Score

We define pt(z|x) = N (z;x, t2I). Then the conditional score of pt(z|x) is

∇z log pt(z|x) =
∇zpt(z|x)
pt(z|x)

(24)

=
1

pt(z|x)
· ∇z

1√
(2π)ddet (t2I)

exp
(−1
2t2

(z− x)
⊤
(z− x)

)
(25)

=
pt(z|x)
pt(z|x)

∇z
−1
2t2

(z− x)
⊤
(z− x) (26)

=
x− z

t2
. (27)

A.3. Marginal Score via Posterior Mean

Substituting Equation (27) into Equation (23) we get

∇z log pt(z) = E
x∼pt(x|z)

[
x− z

t2

]

=
Ex∼pt(x|z) [x]− z

t2

=
E [x|z]− z

t2
,
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where E[x|z] = Ex∼pt(x|z) [x].

A.4. Score Matching Optimal Denoiser

We consider the diffusion objective from Equation (6),

Lt = Ez,x(i)∼pt(z,x(i))

[
∥Dθ (z, t)−∇z log pt (z|x)∥22

]
(28)

= Ez,x∼pt(z,x)

[
Dθ(z, t)

2 − 2Dθ(z, t)x
(i) + (x(i))2

]
. (29)

(30)

For a fixed z, we can write

Lt,z = Ex(i)∼pt(x(i)|z)

[
Dθ(z, t)

2 − 2Dθ(z, t)x
(i) + (x(i))2

]
(31)

= Dθ(z, t)
2 − 2Dθ(z, t)Ex(i)∼pt(x(i)|z)

[
x(i)
]
+ Ex(i)∼pt(x(i)|z)

[
(x(i))2

]
. (32)

Equation (32) is quadratic with respect to Dθ(z, t), so a unique minimizer D⋆
θ(z, t) can be found by solving ∂L

∂Dθ(z,t)
= 0.

∂Lt,z

∂Dθ(z, t)
= 0 = 2Dθ(z, t)− 2Ex(i)∼pt(x(i)|z)

[
x(i)
]

(33)

D⋆
θ(z, t) = Ex(i)∼pt(x(i)|z)

[
x(i)
]

(34)

= E [x|z, t] . (35)

A.5. Consistency Training as Consistency Matching with Euler Solver and One Sample Score Estimator

The original Consistency Training objective from (Song et al., 2023) is formulated as

LN
CT = E [λ(tn)d (fθ (x+ tn · ϵ, t) ,fθ− (x+ tn−1 · ϵ, tn−1))] , (36)

where ϵ ∼ N (0, I). Via the reparameterization trick, we define z ∼ ptn(z|x) as

z = x+ tnϵ. (37)

Substituting Equation (37) into the Euler update function solver(z, tn, tn−1,∇zptn(z, tn)) = z + (tn−1 − tn)
dz
dt for

Equation (3) with the single sample score estimate∇z log pt(z) ≈ x−z
t2 yields

z′ = z− (tn−1 − tn)
x− z

tn
(38)

= x+ tnϵ− (tn−1 − tn)
x− x+ tnϵ

tn
(39)

= x+ tnϵ− tnϵ+ tn−1ϵ (40)
= xtn−1ϵ. (41)

Substituting Equation (37) and Equation (41) into Equation (36) yields

LN
CT = E [λ(tn)d (fθ (z, t) ,fθ− (z′, tn−1))] (42)

which matches the form in Equation (7).
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B. Extension to Generalized Diffusion Processes
For simplicity, this paper utilizes the EDM diffusion process given by Equation (3). However, other diffusion processes are
widely used which vary the rate at which noise is added to the data and the scaling of the data through the diffusion process.
Karras et al. (2022) introduce a general purpose PF ODE which captures these choices

dx =

[
ṡ(t)

s(t)
x− s(t)2σ̇(t)σ(t)∇z log pt

(
z

s(t)

)]
dt. (43)

In our work, we select σ(t) = t, s(t) = 1, however other choices are possible. For example, one popular choice is the
variance preserving diffusion process (Ho et al., 2020; Song et al., 2021), corresponding to

σ(t) =

√
e

1
2βdt2+βmint − 1 (44)

s(t) = 1/
√
e

1
2βdt2+βmint. (45)

The derivations of s(t) and σ(t) is covered in depth in (Karras et al., 2022). We now derive a general KNN score estimator
for a generic diffusion processes defined by s(t) and σ(t). First, we define the forward likelihood for the generalized
diffusion process.

pt(z|x(i)) = N
(
z; s(t)x(i), s(t)2σ(t)2I

)
. (46)

Since the score function which is used for evaluation of Equation (43) is a function of z/s(t), we express Equation (46) in
that manner

pt(z|x(i)) = N
(
z; s(t)x(i), s(t)2σ(t)2I

)
(47)

= (2π)
−d
2 s(t)−dσ(t)−dexp

(
−
∥∥z− s(t)x(i)

∥∥2
2

2s(t)2σ(t)2

)
(48)

= (2π)
−d
2 s(t)−dσ(t)−dexp



−s(t)2

∥∥∥ z
s(t) − x(i)

∥∥∥
2

2

2s(t)2σ(t)2


 (49)

= s(t)−d · (2π)−d
2 σ(t)−dexp



−
∥∥∥ z
s(t) − x(i)

∥∥∥
2

2

2σ(t)2


 (50)

= s(t)−dN
(

z

s(t)
;x(i), σ(t)2I

)
. (51)

We define

pt

(
z

s(t)

∣∣∣x(i)

)
= N

(
z

s(t)
;x(i), σ(t)2I

)
. (52)

The score of Equation (52) is

∇z log pt

(
z

s(t)

∣∣∣x(i)

)
= pt

(
z

s(t)

∣∣∣x(i)

)−1

∇zpt

(
z

s(t)

∣∣∣x(i)

)
(53)

= pt

(
z

s(t)

∣∣∣x(i)

)−1

· pt
(

z

s(t)

∣∣∣x(i)

)
· ∇z

−
∥∥∥ z
s(t) − x(i)

∥∥∥
2

2

2σ(t)2
(54)

=
x(i) − z

s(t)

s(t)σ(t)2
. (55)
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Using Equation (4) derived in Appendix A.1, we write

∇z log pt

(
z

σ(t)

)
= E

x(i)∼pt(x(i)|z/s(t))

[
∇z log pt

(
z

s(t)

∣∣∣x(i)

)]
(56)

= E
x(i)∼pt(x(i)|z/s(t))

[
x(i) − z

s(t)

s(t)σ(t)2

]
(57)

=
E
[
x
∣∣∣ z
s(t) , t

]
− z

s(t)

s(t)σ(t)2
. (58)

Therefore, estimating the score function in Equation (43) is equivalent to estimating the posterior mean E
[
x
∣∣∣ z
s(t) , t

]
. The

posterior distribution pt

(
x(i)
∣∣∣ z
s(t)

)
can be expressed using Bayes Rule as

pt

(
x(i)
∣∣∣ z

s(t)

)
=

pt

(
z

s(t)

∣∣∣x(i)
)
p
(
x(i)
)

pt

(
z

s(t)

) (59)

=
pt

(
z

s(t)

∣∣∣x(i)
)

Npt

(
z

s(t)

) . (60)

We define K′ to be the k most probable elements of pt
(
x(i)
∣∣∣ z
s(t)

)
let xk be the element of K′ with the smallest posterior

probability. Then, using K′, we define a general proposal

Zq · qt
(
x(i)
∣∣∣ z

s(t)

)
=





pt

(
z

s(t)

∣∣∣x(i)
)
∀ x(i) ∈ K′

pt

(
z

s(t)

∣∣∣xk

)
∀ x(i) /∈ K′.

(61)

Because pt

(
x(i)
∣∣∣ z
s(t)

)
∝ pt

(
z

s(t)

∣∣∣x(i)
)

and pt

(
z

s(t)

∣∣∣x(i)
)

is Gaussian, the most probable elements of pt
(
x(i)
∣∣∣ z
s(t)

)
are

the elements with the smallest distance
∥∥∥ z
s(t) − x(i)

∥∥∥
2

2
. We can therefore use a fast KNN search with query z

s(t) over D to

identify K′. Together, an algorithm for estimating the score of a generic diffusion process is outlined in Algorithm 2

Algorithm 2 General Nearest Neighbour Score Estimator

Input: z, dataset D, index I, neighbour size k, sample size n, scale s(t), noise level σ(t)
K′, d← search(I, z/s(t), k)

pt(
z

s(t) |xi)← exp( −d2
i

2σ(t)2 ) ∀ xi ∈ K′

Zq ←
∑k

i=1 pt(
z

s(t) |xi) + (N − k)pt(
z

s(t) |xk)

qt(x
(i)| z

s(t) )← 1
Zq

{
pt(

z
s(t) |xi) ∀ x(i) ∈ K′

pt(
z

s(t) |xk) ∀ x(i) /∈ K′

Sample {x1, . . . ,xn} ∼ qt(x
(i)| z

s(t) )

wi = p( z
s(t) |xi)/qt(xi| z

s(t) )

w̄i =
wi∑n

j=1 wj

x̂ =
∑n

i=1 w̄ixi {Equation (11)}
return

x̂− z
s(t)

s(t)σ(t)2
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C. Proofs
C.1. Proof of Theorem 4.1

Theorem 4.1 states

Let t ∈ (0,∞), then for a fixed n

Tr (Cov (µ̂KNN)) ≤
Zq

pt(z)
Tr (Cov (µ̂MC)) . (62)

Proof. Starting with the diagonal of the covariance of the KNN estimator, we have

n · Diag
(

Cov
(

̂E [x|z, t]KNN

))
=

N∑

i=1

pt
(
x(i)|z

)2

qt
(
x(i)|z

)
(
x(i) − E [x|z, t]

)◦2
(63)

=
∑

x(i)∈K

pt
(
x(i)|z

)2

qt
(
x(i)|z

)
(
x(i) − E [x|z, t]

)◦2
+
∑

x(i) /∈K

pt
(
x(i)|z

)2

qt
(
x(i)|z

)
(
x(i) − E [x|z, t]

)◦2
(64)

=
Zq

pt (z)

∑

x(i)∈K

pt
(
z|x(i)

)
p
(
x(i)
)

pt
(
z|x(i)

)
p
(
x(i)
)pt

(
x(i)|z

)(
x(i) − E [x|z, t]

)◦2

+
Zq

pt (z)

∑

x(i) /∈K

pt
(
z|x(i)

)
p
(
x(i)
)

pt
(
z|x(k)

)
p
(
x(i)
)pt

(
x(i)|z

)(
x(i) − E [x|z, t]

)◦2 (65)

=
Zq

pt (z)

( ∑

x(i)∈K

pt

(
x(i)|z

)(
x(i) − E [x|z, t]

)◦2

+
∑

x(i) /∈K

pt
(
z|x(i)

)

pt
(
z|x(k)

)pt
(
x(i)|z

)(
x(i) − E [x|z, t]

)◦2

±
∑

x(i) /∈K

pt

(
x(i)|z

)(
x(i) − E [x|z, t]

)◦2
)

(66)

=
Zq

pt (z)

(
N∑

i=1

pt

(
x(i)|z

)(
x(i) − E [x|z, t]

)◦2

+
∑

x(i) /∈K

pt
(
z|x(i)

)

pt
(
z|x(k)

)pt
(
x(i)|z

)(
x(i) − E [x|z, t]

)◦2

−
∑

x(i) /∈K

pt

(
x(i)|z

)(
x(i) − E [x|z, t]

)◦2
)

(67)

=
Zq

pt (z)

(
N∑

i=1

pt

(
x(i)|z

)(
x(i) − E [x|z, t]

)◦2

+
∑

x(i) /∈K

pt
(
z|x(i)

)

pt
(
z|x(k)

)pt
(
x(i)|z

)(
x(i) − E [x|z, t]

)◦2

−
∑

x(i) /∈K

pt
(
z|x(k)

)

pt
(
z|x(k)

)pt
(
x(i)|z

)(
x(i) − E [x|z, t]

)◦2
)

(68)
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=
Zq

pt (z)

(
N∑

i=1

pt

(
x(i)|z

)(
x(i) − E [x|z, t]

)◦2

+
∑

x(i) /∈K

pt
(
z|x(i)

)
− pt

(
z|x(k)

)

pt
(
z|x(k)

) pt

(
x(i)|z

)(
x(i) − E [x|z, t]

)◦2 (69)

=
Zq

pt (z)

(
N∑

i=1

pt

(
x(i)|z

)(
x(i) − E [x|z, t]

)◦2

+
∑

x(i) /∈K

pt
(
z|x(i)

)
− pt

(
z|x(k)

)

pt
(
z|x(k)

) pt

(
x(i)|z

)(
x(i) − E [x|z, t]

)◦2
.

(70)

For x(i) /∈ K, pt
(
z|x(i)

)
≤ pt

(
z|x(k)

)
so therefore

(
pt
(
z|x(i)

)
− pt

(
z|x(k)

))
≤ 0. Since all other factors in the second

term are positive, The term as a whole is negative. We upper bound this term with 0 and continue with an elementwise
inequality on the elements of the vector

n · Diag
(

Cov
(

̂E [x|z, t]KNN

))
≤ Zq

pt (z)

(
N∑

i=1

pt

(
x(i)|z

)(
x(i) − E [x|z, t]

)◦2
)

(71)

≤ Zq

pt (z)
· n · Diag (Cov (µ̂MC)) (72)

Diag (Cov (µ̂KNN)) ≤
Zq

pt (z)
Diag (Cov (µ̂MC)) . (73)

Let Diag (Cov (·))j denote the jth component of the diagonal vector. Since the inequaltiy is expressed element wise,
∀j ∈ [0, . . . , d] we have

Diag (Cov (µ̂KNN))
j ≤ Zq

pt (z)
Diag (Cov (µ̂MC))

j
. (74)

Summing over j, we write

d∑

j=1

Diag (Cov (µ̂KNN))
j ≤

d∑

j=1

Zq

pt (z)
Diag (Cov (µ̂MC))

j (75)

d∑

j=1

Diag (Cov (µ̂KNN))
j ≤ Zq

pt (z)

d∑

j=1

Diag (Cov (µ̂MC))
j (76)

Tr (Cov (µ̂KNN)) ≤
Zq

pt (z)
Tr (Cov (µ̂MC)) , (77)

concluding the proof.

C.2. Uniform SNIS Trace of Covariance

For utility in future proofs, we derive an expression for the trace of covariance for a self-normalized importance sampling
estimator with a uniform proposal

Lemma C.1. Let µ̂U be a SNIS posterior mean estimator with q(x(i)) = 1
N ∀x(i) ∈ D then,

n · Tr (Cov (µ̂U)) = N ·
N∑

i=1

pt(x
(i)|z)2(x(i) − E [x|z, t])◦2. (78)
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Proof.

n · Diag (Cov(µ̂SNIS)) =

N∑

i=1

pt(x
(i)|z)2

q(x(i))
(x(i) − E [x|z, t])◦2 (79)

n · Diag (Cov(µ̂SNIS)) =

N∑

i=1

pt(x
(i)|z)2

1/N
(x(i) − E [x|z, t])◦2 (80)

n · Diag (Cov(µ̂SNIS)) = N ·
N∑

i=1

pt(x
(i)|z)2(x(i) − E [x|z, t])◦2. (81)

C.3. Proof of Theorem 4.2

Let t ∈ (0,∞), then for a fixed n

Tr (Cov (µ̂KNN)) ≤(
1−

∑
x(i) /∈K pt(z|x(i))

pt(z)

)
Tr (Cov (µ̂MC)) +

(N − k)

N
Tr (Cov (µ̂U)) .

(82)

Proof. We start from the expression for the Diagonal of the covariance of an SNIS posterior mean estimator

n · Diag (Cov (µ̂SNIS)) =

N∑

i=1

pt(x
(i)|z)2

qt(x(i)|z)
(
x(i) − E [x|z, t]

)◦2
(83)

=
∑

x(i)∈K

pt(x
(i)|z)2

qt(x(i)|z)
(
x(i) − E [x|z, t]

)◦2
+
∑

x(i) /∈K

pt(x
(i)|z)2

qt(x(i)|z)
(
x(i) − E [x|z, t]

)◦2
. (84)

(85)

For the KNN based proposal described in Equation (13), we can write

n · Diag (Cov (µ̂KNN)) =
∑

x(i)∈K

pt(x
(i)|z)2

qt(x(i)|z)
(
x(i) − E [x|z, t]

)◦2

+
∑

x(i) /∈K

Zq

pt(z|x(k))
pt(x

(i)|z)2
(
x(i) − E [x|z, t]

)◦2 (86)

=
∑

x(i)∈K

pt(x
(i)|z)2

qt(x(i)|z)
(
x(i) − E [x|z, t]

)◦2

+
Zq

pt(z|x(k))

∑

x(i) /∈K

pt(x
(i)|z)2

(
x(i) − E [x|z, t]

)◦2 (87)

=
∑

x(i)∈K

pt(x
(i)|z)2

qt(x(i)|z)
(
x(i) − E [x|z, t]

)◦2

+
Zq

pt(z|x(k))

∑

x(i) /∈K

pt(x
(i)|z)2

(
x(i) − E [x|z, t]

)◦2

± Zq

pt(z|x(k))

∑

x(i)∈K

pt(x
(i)|z)2

(
x(i) − E [x|z, t]

)◦2

(88)
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=
∑

x(i)∈K

pt(x
(i)|z)2

qt(x(i)|z)
(
x(i) − E [x|z, t]

)◦2

− Zq

pt(z|x(k))

∑

x(i)∈K

pt(x
(i)|z)2

(
x(i) − E [x|z, t]

)◦2

+
Zq

pt(z|x(k))

N∑

i=1

pt(x
(i)|z)2

(
x(i) − E [x|z, t]

)◦2

(89)

=
∑

x(i)∈K

pt(x
(i)|z)2

qt(x(i)|z)
(
x(i) − E [x|z, t]

)◦2

−
∑

x(i)∈K pt(z|x(i)) + (N − k)pt(z|x(k))

pt(z|x(k))

∑

x(i)∈K

pt(x
(i)|z)2

(
x(i) − E [x|z, t]

)◦2

+

∑
x(i)∈K pt(z|x(i)) + (N − k)pt(z|x(k))

Npt(z|x(k))
·

N∑

i=1

N · pt(x(i)|z)2
(
x(i) − E [x|z, t]

)◦2

(90)

=
∑

x(i)∈K

pt(x
(i)|z)2

qt(x(i)|z)
(
x(i) − E [x|z, t]

)◦2

−
∑

x(i)∈K pt(z|x(i))

pt(z|x(k))

∑

x(i)∈K

pt(x
(i)|z)2

(
x(i) − E [x|z, t]

)◦2

− (N − k)pt(z|x(k))

pt(z|x(k))

∑

x(i)∈K

pt(x
(i)|z)2

(
x(i) − E [x|z, t]

)◦2

+

∑
x(i)∈K pt(z|x(i))

Npt(z|x(k))
·

N∑

i=1

N · pt(x(i)|z)2
(
x(i) − E [x|z, t]

)◦2

+
(N − k)pt(z|x(k))

Npt(z|x(k))
·

N∑

i=1

N · pt(x(i)|z)2
(
x(i) − E [x|z, t]

)◦2
.

(91)

We substitute Equation (78) into last term of Equation (91). Continuing, we have

n · Diag (Cov (µ̂KNN)) =
∑

x(i)∈K

pt(x
(i)|z)2

qt(x(i)|z)
(
x(i) − E [x|z, t]

)◦2

−
∑

x(i)∈K pt(z|x(i))

pt(z|x(k))

∑

x(i)∈K

pt(x
(i)|z)2

(
x(i) − E [x|z, t]

)◦2

− (N − k)pt(z|x(k))

pt(z|x(k))

∑

x(i)∈K

pt(x
(i)|z)2

(
x(i) − E [x|z, t]

)◦2

+

∑
x(i)∈K pt(z|x(i))

Npt(z|x(k))
·

N∑

i=1

N · pt(x(i)|z)2
(
x(i) − E [x|z, t]

)◦2

+
(N − k)

N
· n · Diag (Cov (µ̂U))

(92)
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=
∑

x(i)∈K

pt(x
(i)|z)2

qt(x(i)|z)
(
x(i) − E [x|z, t]

)◦2

− (N − k)pt(z|x(k))

pt(z|x(k))

∑

x(i)∈K

pt(x
(i)|z)2

(
x(i) − E [x|z, t]

)◦2

+

∑
x(i)∈K pt(z|x(i))

pt(z|x(k))
·
∑

x(i) /∈K

pt(x
(i)|z)2

(
x(i) − E [x|z, t]

)◦2

+
(N − k)

N
· n · Diag (Cov (µ̂U))

(93)

=
∑

x(i)∈K

pt(x
(i)|z)2

qt(x(i)|z)
(
x(i) − E [x|z, t]

)◦2

− (N − k)pt(z|x(k))

pt(z)

∑

x(i)∈K

pt(z|x(i))

pt(z|x(k))
pt(x

(i)|z)
(
x(i) − E [x|z, t]

)◦2

+

∑
x(i)∈K pt(z|x(i))

pt(z)
·
∑
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N
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(94)

We note that for x(i) /∈ K, pt(z|x(i))
pt(z|x(k))

≤ 1. Similarly for x(i) ∈ K, pt(z|x(i))
pt(z|x(k))

≥ 1 Swapping these fractions with 1 in the

second and third term upper bounds each dimension of the trace of covariance. We substitute pt(z|x(i))
pt(z|x(k))

= 1 in the second
and third terms of Equation (94), and swap the equality with a element-wise inequality

n · Diag (Cov (µ̂KNN)) ≤
∑

x(i)∈K

pt(x
(i)|z)2

qt(x(i)|z)
(
x(i) − E [x|z, t]

)◦2

− (N − k)pt(z|x(k))

pt(z)

∑

x(i)∈K

pt(x
(i)|z)

(
x(i) − E [x|z, t]

)◦2
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∑
x(i)∈K pt(z|x(i))

pt(z)
·
∑

x(i) /∈K

pt(x
(i)|z)

(
x(i) − E [x|z, t]

)◦2

+
(N − k)

N
· n · Diag (Cov (µ̂U))

(95)

≤
∑

x(i)∈K

pt(x
(i)|z)2

qt(x(i)|z)
(
x(i) − E [x|z, t]

)◦2

− (N − k)pt(z|x(k))

pt(z)

∑

x(i)∈K

pt(x
(i)|z)

(
x(i) − E [x|z, t]

)◦2

+
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pt(z)
·
∑

x(i) /∈K

pt(x
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(
x(i) − E [x|z, t]

)◦2

+
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N
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(96)
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≤ Zq
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(97)

≤ Zq

pt(z)

N∑
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pt(x
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(
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)◦2
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(
x(i) − E [x|z, t]

)◦2

+
(N − k)

N
· n · Diag (Cov (µ̂U)) .

(98)

We substitute n ·Diag (Cov (µ̂MC)) =
∑N

i=1 pt(x
(i)|z)

(
x(i) − E [x|z, t]

)◦2
into the second and third terms of Equation (98)

n · Diag (Cov (µ̂KNN)) ≤
Zq

pt(z)
· n · Diag (Cov (µ̂MC))

− (N − k)pt(z|x(k))

pt(z)
· n · Diag (Cov (µ̂MC))

+
(N − k)

N
· n · Diag (Cov (µ̂U))

(99)

≤ Zq − (N − k)pt(z|x(k))

pt(z)
· n · Diag (Cov (µ̂MC))

+
(N − k)

N
· n · Diag (Cov (µ̂U))
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≤
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x(i)∈K pt(z|x(i))

pt(z)
· n · Diag (Cov (µ̂MC))

+
(N − k)

N
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(101)

≤
(
1−

∑
x(i) /∈K pt(z|x(i))

pt(z)

)
· n · Diag (Cov (µ̂MC))

+
(N − k)

N
· n · Diag (Cov (µ̂U) .)

(102)

Dividing both sides by n yields

Diag (Cov (µ̂KNN)) ≤(
1−

∑
x(i) /∈K pt(z|x(i))

pt(z)

)
Diag (Cov (µ̂MC)) +

(N − k)

N
Diag (Cov (µ̂U)) .

(103)

Let Diag (Cov (·))j denote the jth component of the diagonal vector. Since the inequaltiy in Equation (103) is expressed
element wise, ∀j ∈ [0, . . . , d] we have
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Diag (Cov (µ̂KNN))
j ≤

(
1−

∑
x(i) /∈K pt(z|x(i))

pt(z)

)
Diag (Cov (µ̂MC))

j
+

(N − k)

N
Diag (Cov (µ̂U))

j
.

(104)

Summing Equation (104) from j = 1 to j = d, we get

d∑

j=1

Diag (Cov (µ̂KNN))
j ≤

d∑

j=1

((
1−

∑
x(i) /∈K pt(z|x(i))

pt(z)

)
Diag (Cov (µ̂MC))

j
+

(N − k)

N
Diag (Cov (µ̂U))

j

)
(105)

Tr (Cov (µ̂KNN)) ≤
(
1−

∑
x(i) /∈K pt(z|x(i))

pt(z)

)
d∑

j=1

Diag (Cov (µ̂MC))
j
+

(N − k)

N

d∑

j=1

Diag (Cov (µ̂U))
j (106)

Tr (Cov (µ̂KNN)) ≤
(
1−

∑
x(i) /∈K pt(z|x(i))

pt(z)

)
Tr (Cov (µ̂MC)) +

(N − k)

N
Tr (Cov (µ̂U)) , (107)

concluding the proof.

D. Additional Results
D.1. Score Estimator Hyperparameter Ablation

We include additional results from the investigation of estimator errors from Section 4.2. Figures 6 and 7 show the
performance of the posterior Monte Carlo, STF, and KNN estimators for varying n and k. In both cases, we see that the
KNN estimator improves with k with low bias for all estimators, and lower MSE than STF. Increasing the sample size n
reduces MSE substantially for our method, but not STF due to the prevalent bias of their estimator. We see that for small k
and n, the KNN estimator exhibits similar variance to STF. We hypothesize that becuase STF deterministically includes only
one image from the posterior, the weights of this image dominates that of the other images drawn from the data distribution,
in turn leading to lower sample variance.

D.2. Additional Denoiser Images

Figure 8 shows additional KNN posterior mean estimates for a variety of source images and noise levels.

D.3. CIFAR-10 Consistency Model Samples

Figure 9 shows examples from our trained consistency models for the models reported in Table 1. The samples are drawn
with consistent seeds for each of the three models.

D.4. Diffusion Models

Although we demonstrate our method’s effectiveness for consistency model training in Section 5, our method is not
specifically tailored to consistency models, and may be used during model training whenever a empirical score estimator is
required. In particular, our estimator can be directly applied to train diffusion models.

To evaluate the effect of our estimator on diffusion model training, we train and evaluate unconditional EDM (Karras et al.,
2022) models on CIFAR-10 (Krizhevsky et al., 2009) using varying score estimators. Specifically, we train models using the
standard single-sample Monte Carlo estimator, the STF estimator (Xu et al., 2023), and our nearest neighbour estimator. We
retrain EDM and STF from their official repositories, utilizing the DDPM++ architecture for all models. We report the best
FID and IS on 50,000 samples across all model checkpoints in Table 2

From Table 2, we see that both our method and STF improve the quality of generated samples over EDM. Compared to STF,
our method has similar FID and better Inception Score.
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Figure 6: Estimator performance for n = 256. KNN estimator performance generally improves with k.
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Figure 7: Estimator performance for n = 64. KNN estimator performance generally improves with k.
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Figure 8: Additional qualitative comparisons of our estimator versus the ground truth posterior mean and a trained EDM
denoiser.

Table 2: Unconditional EDM CIFAR-10 sample quality with varying score estimators.

Method FID↓ IS↑
EDM (Karras et al., 2022) 2.01 9.76
STF (Xu et al., 2023) 1.94 9.81
EDM + KNN (ours) 1.96 9.87

D.5. Score Estimation on Additional Datasets

We apply our approach to two additional datasets to evaluate the efficacy of our method on larger and higher dimensionality
data. Figure 10 shows the performance of our score estimator on CelebA 64x64 (Liu et al., 2015), while Figure 11
demonstrates the score estimation error of out method on Imagenet 64x64 (Deng et al., 2009).

Applying our method to higher dimensional and larger datasets presents two challenges. Firstly, to perform fast nearest
neighbours search, we generate an index of the entire dataset which is stored in memory. Larger images and larger datasets
therefore present memory concerns. Secondly, larger datasets increase the runtime of nearest neighbour search, which
especially apparent on large datasets such as Imagenet.

To address these challenges, we apply two strategies. To reduce the memory overhead of our index, we quantize the data to 8
bit precision, reducing memory overhead by a factor of four. This has a minimal affect on our estimator, as pixel intensities
are generally represented as 8 bit values. To improve the runtime of nearest neighbour search, we utilize an inverted file
index (IVF) which partitions the data into c clusters and performs nearest neighbour search over only the p closest partitions.
Both c and p can be tuned to trade off runtime versus accuracy. For CelebA 64x64 we utilized c = 1788 and p = 25 while
for Imagenet, we used c = 4527 and p = 100.

In our work, we assume that the nearest neighbour search returns the k most probable elements of the posterior distribution.
However, by switching to an approximate nearest neighbour search, this may no longer be true. We evaluate the impact of
using approximate nearest neighbour search on estimator performance in Figure 12.
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Figure 9: CIFAR-10 samples from trained consistency models with varying score estimators.

From Figure 12, we can see that approximate nearest neighbour introduces some additional bias to the posterior mean
estimation, however the bias is still less that STF for the majority of noise levels. We expect bias could be reduced by
increasing the number of samples n or the number of search partitions p.
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Figure 10: Comparison of various score estimators on unconditional CelebA 64x64
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Figure 11: Comparison of various score estimators on unconditional Imagenet 64x64

E. Experimental Details
E.1. Consistency Model Training Configurations

To train the consistency models reported in Table 1, we follow the configuration outlined by Song & Dhariwal (2024).
For the reader’s convenience we reiterate that configuration here. We use the NCSN++ architecture (Song et al., 2021)
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Figure 12: Comparison of approximate and exact nearest neighbour score estimators on CelebA 64x64

Table 3: Hyperparameter choices for CIFAR-10 consistency model training

Hyperparameter iCT iCT + KNN iCT + STF
Training iterations 400,000 400,000 400,000
Batch Size 1024 1024 1024
Learning Rate 0.0001 0.0001 0.0001
EMA Decay Rate 0.99993 0.99993 0.99993
Dropout 0.3 0.3 0.3
ODE Solver Euler Huen Huen
Score Estimator Posterior MC KNN STF
Estimator batch size 1 256 256
KNN search size N/A 2048 N/A

for all models. Each model was trained using the improved consistency training algorithm, with the Pseudo-Huber loss
function (Charbonnier et al., 1997) with c = 0.03. We weight the consistency matching loss with the weighting function
λ(t) = 1

σt−σt−1
. Noise levels are sampled from a log-normal distribution with Pmean = −1.1 and Pstd = 2.0. We follow

an exponential discretzation schedule, starting with s0 = 10 discretization steps, doubling every 50,000 training iterations to
a final value of s1 = 1280. We do not use exponential averaging on the teacher network, instead just applying a stopgrad to
the student network weights. Hyperparameters for all runs are reported in Table 3

We checkpoint each model every 2.5 million training images. We evaluate each checkpoint by generated 50,000 images
and comparing against the training dataset using the torch-fidelity package (Obukhov et al., 2020). We share random seeds
across all evaluations. For each method, we select the checkpoint with the minimum FID to report in Table 1.

Table 4: Total training times for consistency model training

Model Training time Training Time vs iCT
iCT 188.9 hrs 100%
iCT + KNN 220.5 hrs 117%
iCT + STF 185.8 hrs 98.3%
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The total training time for each of the above configurations is reported in Table 4. We note that each model was trained on
a different node of A100 GPUs which may explain how the iCT+STF model was able to train faster than the iCT model
despite extra score estimation overhead.
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