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Abstract

Recently proposed Gated Linear Networks (GLNs) present a tractable nonlinear
network architecture, and exhibit interesting capabilities such as learning with
local error signals and reduced forgetting in sequential learning. In this work,
we introduce a novel gating architecture, named Globally Gated Deep Linear
Networks (GGDLNs) where gating units are shared among all processing units
in each layer, thereby decoupling the architectures of the nonlinear but unlearned
gating and the learned linear processing motifs. We derive exact equations for the
generalization properties of Bayesian Learning in these networks in the finite-width
thermodynamic limit, defined by N,P ! 1 while P/N = O(1) where N and
P are the hidden layers’ width and size of training data sets respectfully. We find
that the statistics of the network predictor can be expressed in terms of kernels
that undergo shape renormalization through a data-dependent order parameter
matrix compared to the infinite-width Gaussian Process (GP) kernels. Our theory
accurately captures the behavior of finite width GGDLNs trained with gradient
descent (GD) dynamics. We show that kernel shape renormalization gives rise to
rich generalization properties w.r.t. network width, depth and L2 regularization
amplitude. Interestingly, networks with a large number of gating units behave
similarly to standard ReLU architectures. Although gating units in the model
do not participate in supervised learning, we show the utility of unsupervised
learning of the gating parameters. Additionally, our theory allows the evaluation
of the network’s ability for learning multiple tasks by incorporating task-relevant
information into the gating units. In summary, our work is the first exact theoretical
solution of learning in a family of nonlinear networks with finite width. The rich
and diverse behavior of the GGDLNs suggests that they are helpful analytically
tractable models of learning single and multiple tasks, in finite-width nonlinear
deep networks.

1 Introduction

Despite the recent advances in machine learning, theoretical understanding of how machine learning
algorithms work is very limited. Many current theoretical approaches study infinitely wide networks
[1, 2, 3], where the input-output relation is equivalent to a Gaussian Process (GP) in function space
with a covariance matrix defined by a GP kernel. However, this GP limit holds when the network
width approaches infinity while the size of the training data remains finite, severely limiting its
applicability to realistic conditions. Another line of work focuses on finite-width deep linear neural
networks (DLNNs)[4, 5, 6], while applicable in a wider regime, the generalization behavior of linear
networks are very limited, and the bias contribution always remains constant with network parameters
[4], which fails to capture the behavior of generalization performance in general nonlinear networks.
Therefore, a tractable nonlinear network architecture is in need for theoretically probing into the
diverse generalization behavior of general nonlinear networks.
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Recently proposed Gated Linear Networks (GLNs) present a tractable nonlinear network architecture
[7, 8, 9], with capabilities such as learning with local error signals and mitigating catastrophic
forgetting in sequential learning. Inspired by these recent advances in GLNs, we propose Globally
Gated Deep Linear Networks (GGDLNs) as a simplified GLN structure that preserves the nonlinear
property of general GLNs, the decoupling of fixed nonlinear gating from learned linear processing
units, and the ability to separate the processing of multiple tasks using the gating units. Our
GGDLN structure is different from previous GLNs in several ways. First, the gating units are
shared across hidden layer units and different layers while in previous work each unit has its own
set of gatings [10, 8, 9]. Second, we define global learning objective instead of local errors [8, 9].
These simplifications allow us to obtain direct analytical expressions of memory capacity and exact
generalization error of these networks for arbitrary training and testing data, providing quantitative
insight into the effect of learning in nonlinear networks, as opposed to studies of generalization
bounds [10], expressivity estimates [9, 11], and indirect quantities relevant to generalization such as
the implicit bias of the network [12]. Furthermore, the kernel expression of the predictor statistics we
propose in this work also allow us to make qualitative explanations of the generalization and how it’s
related to data structure and network representation for single and multiple tasks.

First, we introduce the architecture of our GGDLNs and analyze its memory capacity. We then derive
our theory for generalization properties of GGDLNs, and make qualitative connections between
the generalization behavior and the relation between the renormalization matrix and task structure.
Second, we apply our theory to GGDLNs performing multiple tasks, focusing on two scenarios
where tasks are either defined by different input statistics or different output labels on the same inputs.
While the effect of kernel renormalization is different in the two cases, we find that for fixed gating
functions, de-correlation between tasks always improves generalization.
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Figure 1: Globally gated deep linear networks. (a) Structure of GGDLNs, each neuron in the hidden
layer has M dendrites, each with a different input-dependent gating gm(x) which is fixed during
training, the M gatings are shared across neurons in the hidden layer. The m-th dendritic branch
of the i-th neuron in layer l connects to neuron j in the previous layer with weight Wm

l,ij(shown in
orange). (b) Training error of networks with 1-3 hidden layers in the GP limit as a function of M
evaluated on a noisy ReLU teacher task, training error goes to zero at network capacity (black dashed
lines). (c-e) Bias, variance and generalization error of the same network and task as (b). Bias and
generalization error diverges, variance generalization becomes nonzero at network capacity (black
dashed line). See Appendix C.1 for detailed parameters.

In GGDLNs, the network input-output relation is defined as follows,

f(x) =
1p
NM

NX

i=1

MX

m=1

am,ixL,igm(x), xl,i =

(
1p

N0M

PN0

j=1

PM
m=1 W

m
l,ijgm(x)xl�1,j l > 1

1p
N0

PN0

j=1 Wl,ijxl�1,j l = 1
(1)

where x0 = x is the input, N is the hidden layer width, M is the number of gating units in each
layer, and N0 is the input dimension. Each neuron in every layer has M dendrites, each with an
input-dependent global gating gm(x) shared across all neurons. The m-th dendritic branch of neuron
i in the L-th hidden layer connects to neurons in the previous layer with a dendrite-specific weight
vector Wm

L,i (or with readout weight vector am for the output neuron), as shown in Fig.1 (a). Note
that although the gatings are fixed during learning, changes in the weights affect how these gatings
act on the hidden layer activations, and it is interesting to understand how the learned task interacts
with these gating operations. Since adding gatings at the input layer is equivalent to expanding the
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input dimension and replacing xj by xjgm(x), and learning does not affect how the gatings interact
with the input, we do not add gatings at the input layer for simplicity.

Memory Capacity: Memory capacity refers to the maximum number of random (or generic) input-
output examples for which there exists a set of parameters such that the network achieves zero training
error (here we consider the mean squared error, MSE). By definition, it is irrespective of the learning
algorithm. The capacity bounds of deep nonlinear networks has been extensively studied in many
recent works [10, 13, 14]. To calculate the capacity of GGDLNs, note that the input-output relation
given by Eq.1 can be alternatively expressed as f(x) =

P
m1,··· ,mL,j W

e↵
m1,··· ,mL,jx

e↵
m1,··· ,mL,j ,

which is a linear combination of the effective input xe↵
m1,··· ,mL,j = gm1(x)gm2(x) · · · gmL(x)xj

(ml = 1, · · · ,M ;j = 1, · · · , N0), with some effective weights We↵ which is a complicated function
of a and W. Here ml is the index of the gatings in the l-th layer. As the gating units are shared
across layers, the effective input xe↵ has N0

�M+L�1
L

�
independent dimensions. This combinatorial

term represents the number of possible combinations of L gatings selected from M total number
of gatings. Assuming N � ML such that the effective weight W e↵

m1,··· ,mL,j can take any desired
value in the N0ML dimensional whole space, the problem of finding We↵ with zero training error
is equivalent to a linear regression problem with input xe↵ and the target outputs. Therefore, the
capacity is equivalent to the number of independent input dimensions, given by P  N0

�M+L�1
L

�
.

The above capacity is verified by Fig.1(b), where the training error becomes nonzero above the
memory capacity. The generalization behavior also changes drastically at network capacity (Fig.1(c-
e)), where generalization error and its bias contribution diverge, and the variance contribution
shrinks to 0 (see detailed calculation in the next paragraph and Appendix A.3). This double descent
property of the generalization error is similar to previously studied in linear and nonlinear networks.
Furthermore, although the output of the network is a linear function of the effective input xe↵ ,
due to the multiplicative nature of the network weights and the gatings, learning in GGDLNs is
highly nonlinear and the space of solution for W and a is highly nontrivial, and the network exhibit
properties unique to nonlinear networks, as we will show in the following sections.

Posterior distribution of network weights: We consider a Bayesian network setup, where the
network weights are random variables whose statistics are determined by the training data and
network parameters, instead of deterministic variables. This probabilistic approach enables us to
study the properties of the entire solution space instead of a single solution which may be heavily
initialization dependent. We consider the posterior distribution of the network weights induced by
learning with a Gaussian prior [15, 16, 17, 18], given by

P (⇥) = Z�1 exp(� 1

2T

PX

µ=1

(f(xµ,⇥)� Y µ)2 � 1

2�2
⇥>⇥) (2)

where Z is the partition function Z =
R
d⇥P (⇥). The first term in the exponent is the MSE of the

network outputs on a set of P training data points xµ from their target outputs Y µ, and the second
term is a Gaussian prior on the network parameters ⇥ = {W,a} with amplitude ��2. In this work we
focus on the T ! 0 limit where the first term dominates. Below the network capacity, the distribution
of ⇥ concentrates onto the solution space that yields zero training error, the Gaussian prior then
biases the solution space towards weights with smaller L2 norms. The fundamental properties of
the system can be derived from the partition function. As the distribution is quadratic in the readout
weights am,i, it is straightforward to integrate them out, which yields

Z =

Z
dW exp[� 1

2�2
Tr(W>W) +

1

2
Y>KL(W)�1Y +

1

2
log det(KL(W))] (3)

where W denotes all the remaining weights in the network, and KL(W) is the W dependent P ⇥ P

kernel on the training data, defined as Kµ⌫
L (W) = (�

2

M g(xµ)>g(x⌫))( 1
N xµ

L(W)>x⌫
L(W)).

Generalization in infinitely wide GGDLNs: It is well known that in infinitely wide networks where
N ! 1 while P remains finite (also referred to as the GP limit), KL(W) is self-averaging and does
not depend on the specific realization of W. It can therefore be replaced by the GP kernel defined as
hKL(W)iW where W ⇠ N (0,�2) [2]. For GGDLNs, the GP kernel for a pair of arbitrary data x

and y is given by KGP (x,y) = (�
2

M g(x)>g(y))LK0(x,y), where K0(x,y) =
�2

N0
x>y. We denote

the P ⇥ P kernel data matrix as KGP where Kµ⌫
GP = KGP (xµ,x⌫), and the input kernel matrix

on training data as K0 where Kµ⌫
0 = K0(xµ,x⌫).
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Generalization error is measured by MSE including the bias and the variance contributions, ✏g =
(hf(x)i⇥ � y(x))2| {z }

bias

+ h�f(x)2i⇥| {z }
variance

, which depends on the first and second order statistics of the

predictor. In the GP limit, we have

hf(x)i = kGP (x)
>K�1

GPY, h�f(x)2i = KGP (x,x)� kGP (x)
>K�1

GPkGP (x) (4)

where kµGP (x) = KGP (x,xµ). Note that the rank of KGP is the same as the capacity of the network,
and the kernel matrix becomes singular as P approaches its capacity (the interpolation threshold),
which results in nonzero training error, diverging bias and vanishing variance contribution to the
generalization error (Fig.1 (b-e)). The singularity of the kernel at the interpolation threshold holds
also for finite width networks, and similar diverging bias and vanishing variance are seen in our finite
width theory below (Section 3 ) and are confirmed by simulation of networks trained with GD (see
Appendix B.1,[19]).

3 Kernel shape renormalization theory in finite-width GLNs

We now address the finite width thermodynamic limit, where P,N ! 1 but P/N ⇠ O(1),
M,L ⇠ O(1). In this limit, calculating the statistics of the network predictor requires integration over
W in Eq.3 . To do so, we apply the previous method of Back-propagating Kernel Renormalization
[4] (see Appendix A) to GGDLNs. The partition function for a single hidden layer network is given
by Z = exp(�H1), where the Hamiltonian H1 is given by

H1 =
1

2
Y>K̃�1

1 Y +
1

2
log det(K̃1)�

N

2
log detU1 +

1

2�2
NTr(U1)

K̃µ⌫
1 = (

1

M
g(xµ)>U1g(x

⌫))Kµ⌫
0 (5)

Comparing the matrix K̃1 to KGP , we note that the GP kernel is renormalized by an an M ⇥M
matrix order parameter U1. This order paramter satisfies the self-consistent equation

U1 = I � 1

NM
U1/2

1 g>[K̃�1
1 �K0]gU

1/2
1 +

1

NM
U1/2

1 g>[K̃�1
1 YY>K̃�1

1 �K0]gU
1/2
1 (6)

where � denotes element-wise multiplication. In the linear case (which corresponds to M = 1), the
GP kernel is renormalized by a scalar factor. In the M > 1 case, the effect of renormalization is more
drastic as it changes that not only the amplitude but also the shape of the kernel. The renormalization
matrix has an interesting physical interpretation that relates it to the readout weights a of GGDLNs,

Umn
1 = h 1

N

NX

i=1

am,ian,ii (7)

The calculation can be extended to multiple layers with a new order parameter introduced for each
layer (see Appendix A). The predictor statistics for a input x can be expressed in terms of the
renormalized kernels, for a network with L = 1

hf(x)i⇥ = k̃1(x)
>K̃�1

1 Y, h�f(x)2i⇥ = K̃1(x,x)� k̃1(x)
>K̃�1

1 k̃1(x) (8)

where K̃1(x,y) = ( 1
M g(x)>U1g(y))K0(x,y) denotes the renormalized kernel function for two

arbitrary inputs x and y, K̃1 denotes the P ⇥ P renormalized kernel matrix on the training data,
and k̃1(x) is a P -dimensional vector, k̃µ1 (x) = K(x,xµ). The kernel renormalization in GGDLNs
changes the shape of the kernel through the data dependent U1, reflecting the nonlinear property
of the network, and resulting in more complex behavior of predictor statistics relative to the linear
networks, as shown in Section 4. Our theory describes the properties of the posterior distribution
of the network weights induced at equilibrium by Langevin dynamics with the MSE cost function
and the Gaussian prior [4, 20, 21, 22]. Simulating this dynamics agrees remarkably well with
the simulation (see Appendix B.2). Although our theoretical results do not directly describe the
solutions obtained by running gradient descent (GD) dynamics on the training error, it is interesting
to ask to what extent the predicted behaviors of our theory are also exhibited by GD dynamics of
the same network architectures, as GD-based learning is more widely used. We will compare our
theoretical results with numerics of GD dynamics throughout the paper. We consider the case where
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the network is initialized with Gaussian i.i.d. weights with variance �2, and the mean and variance
of the predictors are evaluated across multiple initializations (see Appendix C.5 for details). As we
will show, our theory makes accurate qualitative predictions for GD dynamics in all examples in this
paper, in the sense that while the exact values may not match, the general trend of how generalization
or representation varies with different parameters in different regimes are very similar.

4 Generalization

For linear networks the generalization error depends on N,�2 and L through the variance only, while
the mean predictor always assumes the same value as in the GP limit [4]. This is because the scalar
kernel renormalization of k̃1(x) is cancelled out in the mean predictor by the renormalization of
the inverse kernel K̃�1

1 . In contrast, for GGDLNs the mean predictor and hence the error bias also
change with these network parameters due to the matrix nature of the kernel renormalization (Eq.8) .
Below we investigate in detail how matrix renormalization of the kernel affects the generalization
behavior (especially the bias term) of the network.

4.1 Networks with single hidden layer
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Figure 2: Dependence of generalization error on network width for a ReLU teacher task. (a)Top:
The ReLU teacher network, the input x is divided into 5 subsets of input dimensions, the input layer
weights either assume same order of magnitude across different input dimensions (left, (b)), or assume
larger amplitudes for one subset of input dimensions-the preferred inputs (right, bold connections to a
subset of input neurons,(c-e)). Bottom: The student network is a GGDLN with one hidden layer and
gatings with localized receptive fields: each gating is connected to only a subset of input dimensions.
(b) Bias, variance and generalization error decreases as a function of N for a regular ReLU teacher,
theory agrees qualitatively well with GD dynamics. (c) Bias and generalization error increases as
a function of N for ReLU teacher with preferred inputs. (d) The renormalization matrix U1 for
different network widths for the teacher with preferred inputs. The first 10⇥ 10 block corresponds to
the gatings with the same receptive field as the teacher’s preferred inputs, and is amplified for small
N . (e) The ratio of the average amplitude of the first 10⇥ 10 block relative to the average amplitude
of the other four 10⇥ 10 diagonal blocks decreases as a function of N .

Feature selection in finite-width networks: Unlike in DLNs, the bias term in GGDLNs depends on
N , exhibiting different dependence in different parameter regimes. This dependence also varies with
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the choice of the gating functions. In Fig.2 we consider a student-teacher learning task, commonly
used for evaluating and understanding neural network performance[23, 24, 25, 26]. We present
results of learning a ReLU teacher task in GGDLNs with gatings that have localized receptive fields
(i.e., the activation of each gating unit depends on only a subset of input dimensions, the receptive
field of all gating units tile the N0 input dimensions, as shown in Fig.2(a) bottom), where the student
GGDLN is required to learn the input-output relation of a given ReLU teacher. For a ReLU teacher
with a single fully connected hidden layer (Fig.2(a) top left), gatings with different receptive fields
are of equal importance, hence the renormalization does not play a beneficial functional role, and
the infinitely wide network performs better than finite N . As shown in Fig.2(b), bias, variance and
generalization error all decrease with N . For a ’local’ ReLU teacher with larger input weights for one
subset of input components (the preferred inputs, Fig.2(a) top right), renormalization improves task
performance by the selective increase of the elements in U1 that correspond to gating units whose
receptive fields overlap the teacher’s preferred inputs (Fig.2(d&e)). Hence, narrower networks (with
a stronger renormalization) generalize better, and both the bias and the generalization error increase
with N (Fig.2(c)). More generally, the input can represent a set of fixed features of the data, and the
’local’ teacher generate labels depending on a subset of the features. Therefore, networks with finite
width are able to select the relevant set of features by adjusting the amplitude in the renormalization
matrix U1 to assign the gating units with different importance for the task, while in the GP limit the
network always assigns equal importance to all the gating units.

To summarize, our theory not only captures the more complex behavior of generalization (especially
bias) as a function of network width, but also provides qualitative explanation of how generalization
is affected by the structure of the renormalization matrix in different tasks.

Effect of regularization strengths on generalization performance: Similar to the dependence on
N , generalization also exhibits different behavior as a function of the regularization parameter � in
different parameter regimes, with contributions from both the bias and the variance. The dependence
of error bias on � also arises due to the matrix nature of the renormalization. In Fig.3 , we show
parameter regimes where the bias can increase (Fig.3 (a-c)) or decrease (Fig.3 (d-f)) with � on MNIST
dataset [19] (Appendix C.3 ). Although the dependence on � is complicated and diverse, and there
lacks a general rule for when the qualitative behavior changes, we found that our theory accurately
captures the qualitative behavior of results obtained from GD (Appendix B.3 Fig.3). In both regimes
the variance increases with � as the solution space expands for a weaker regularization. Specifically
in Fig.3 (d-f), due to the increasing variance (e) and decreasing bias (d), there is a minimum error rate
((f), Appendix A.3 Eq.50 for how error rate is calculated from the mean and variance of the predictor)
at intermediate �, indicating an optimal level of regularization strength as opposed to linear networks
[4], where strong regularization (� = 0) always results in optimal generalization
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Figure 3: Generalization as a function of � for GGDLNs trained on MNIST dataset predicted by our
theory. (a-c) Bias (a), variance (b) and error rate (c) increase as a function of � . (b-f) Bias decreases
as a function of � while variance increases, leading to an optimal � with minimum error rate.

GGDLNs with different choices of gatings achieve comparable performance to ReLU networks:
The nonlinear operation of the gatings enables the network to learn nonlinear tasks. In Fig.4, we show
that although the gatings are fixed during training, the network achieves comparable performance as a
fully trained nonlinear (ReLU) network with the same hidden layer width for classifying even and odd
digits in MNIST data when M is sufficiently large (over-parameterization does not lead to over-fitting
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here, as shown also in other nonlinear networks [27, 28], possibly due to the explicit L2 prior).
Furthermore, although the gatings are fixed during the supervised training of the GGDLN, they can be
cleverly chosen to improve generalization performance. To demonstrate this strategy, we compared
two different choices of gatings. Random gatings take the form gm(x) = ⇥( 1p

N0
V>

mx� b), where
Vm is a N0-dimensional random vector with standard Gaussian i.i.d. elements, b is a scalar threshold,
and ⇥(x) is the heaviside step function. The pretrained gatings are trained on the unlabelled training
dataset with unsupervised soft k-means clustering, such that the m-th gating gm(x) outputs the
probability of assigning data x to the m-th cluster (Appendix C.3). As shown in Fig.4, for pretrained
gatings, generalization performance improves with M much faster compared to random gatings, and
approaches the performance of ReLU network at a smaller M . Our theory (Fig.4) and numerical
results of GD dynamics (Appendix B.3 Fig.4) agree qualitatively well. The result shows that GGDLNs
can still achieve competitive performance on nonlinear tasks while remaining theoretically amenable.
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Figure 4: Dependence of generalization on M for GGDLNs trained on MNIST dataset predicted by
our theory. Bias (a), variance (b) and error rate (c) as a function of M for random (red lines) and
pretrained gatings (blue lines), and ReLU network with the same width (black dashed lines).

4.2 Kernel shape renormalization in deeper networks

We now consider the effect of the matrix renormalization on GGDLNs with more layers. We
begin by analyzing the renormalization effect on the shape of the kernel in deep architectures. It is
well known that the GP kernel of many nonlinear networks flattens (the kernel function goes to a
constant) as network depth increases [2], ultimately losing information about the input and degrading
generalization performance. Here we show that kernel shape renormalization slows down flattening
of kernels by incorporating data relevant information into the learned weights.

To study the shape of the kernel independent of kernel magnitude, we define the normalized kernel
KL(x,y) =

K̃L(x,y)

K̃L(x,x)1/2K̃L(y,y)1/2
, where K̃L(x,y) denotes the renormalized kernel for GGDLN

with L hidden layers. This normalized kernel measures the cosine of the vectors x and y with
generalized inner product defined by the kernel K̃L(x,y), and therefore KL(x,y) 2 [�1, 1]. For the
GP kernel of GGDLNs, we have KL(x,y) = cos(g(x),g(y))L cos(x,y). While KL depends on
the specific choice of gatings in general, in the special case of random gatings with zero threshold
gm(x) = ⇥( 1p

N0
V>

mx) and the number of gatings M ! 1, we can write KL analytically as a
function of the angle ✓ between input vectors x and y, given by KL(✓) = (⇡�✓

⇡ )L cos(✓), ✓ 2 [�⇡,⇡].
Thus, as L ! 1, KL(✓) shrinks to zero except for ✓ = 0. This ’flattening’ effect reflects the loss
of information in deep networks, as pairs of inputs with different similarities now all have hidden
representations that are orthogonal. The effect also empirically holds true for networks with finite M
(see Appendix B.4).

In Fig.5 ,we study the effect of kernel renormalization on the ’flattening’ effect of deep GGDLNs. As
shown in Fig.5 (a)-(c), the elements of the renormalized kernel shrink to zero at a much slower rate
compared to the GP kernel. (Note that unlike the variance, the bias is affected only by shape changes,
but not by changes in the amplitude of the kernel, in Fig.5(d) we plot only the bias contribution
to the generalization.) While mitigating the flattening of the GP kernel is a general feature of our
renormalized kernel for different parameters, its effect on the generalization performance (especially
the bias) may be different for different network parameters. In the specific example in Fig.5, finite
width networks with a less ’flattened’ renormalized kernel achieve better performance than the GP
limit. Both the GP limit and the finite width networks have optimal performance at L = 2 in this
example.
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Figure 5: Shape renormalization slows down flattening of kernels in deep networks. (a-b) Distribution
of kernel elements KL(x,y) for the renormalized kernel (a) and GP kernel (b) for different network
depth L. (c) Ratio of kernel elements smaller or equal to 0.05 increases faster for GP kernel (blue
line) compared to the renormalized kernel (black line), the renormalization slows down the rate at
which elements in the GP kernel shrink to zero as a function of L. (d) The bias contribution to the
generalization first decreases then increases as a function of L due to the flattening of the kernel (blue
line). Finite width network with renormalized kernel performs better for L > 1 in this parameter
regime (black line). See Appendix C.3 for detailed parameters.

5 GGDLNs for multiple tasks

In this section, we apply our theory to investigate the ability of GGDLNs to perform multiple
tasks. We consider two different scenarios below. First, different tasks require the network to learn
input-output mappings on input data with different statistics. This scenario corresponds to real life
situations where the training data distribution is non-stationary. The tasks can be separated without
any additional top-down information. In this case, the gatings are bottom-up, and are functions of
the input data only. In the second case, different tasks give conflicting labels for the same inputs,
corresponding to the situation where performing the two tasks require additional top-down contextual
information, and the information can be incorporated into the gating units in GGDLNs. In both
scenarios, when the gatings are fixed and we modulate the de-correlation by changing network width
and thus the strength of the kernel renormalization, we find that de-correlation between tasks leads to
better generalization performance.

5.1 Bottom-up gating units
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Figure 6: GGDLNs with bottom-up gat-
ing units learning multiple tasks trained
on permuted MNIST. (a-b) Task-task
correlation matrix C for N = 50 and
N = 1000, different permutations are
more decorrelated for larger N. (c) Er-
ror rate decreases as a function of N
due to the decorrelation. (d) Ratio of
the average amplitude of diagonal ele-
ments versus off-diagonal elements in
C increases as a function of N. (e) Error
rate first decreases then increases as a
function of gating threshold. (f) Decor-
relation increases as a function of gating
threshold.

First we consider learning different tasks defined by vastly different input statistics with bottom-up
gatings, using permuted MNIST as an example. Previous works have shown that GLNs mitigate
catastrophic forgetting when sequentially trained on permuted MNIST [8]. While our theory does not
address directly the dynamics of sequential learning, we aim to shed light on this question by asking
how the two tasks interfere with each other when they are learned simultaneously.

We introduce a measure of inter-task interference by noting that after learning the mean predictor
on a new data x , Eq.8, is a linear combination of the output labels Y µ of all the training data,
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and the coefficient of this linear combination, is given by the µ-th coefficient of k̃(x)>K̃�1. Thus,
we define a task-task correlation matrix, via Cpq =

PP
µ=1

PPt

�=1|k̃T K̃�1|p�,qµ(p, q = 1, · · · , n),
where we assume there are P training examples and Pt test data for each task, with a total of n
tasks. The amplitude of each element Cpq measures how much training data of task q contribute
to the prediction on the test data of task p. Stronger diagonal elements indicates that the network
separates the processing of data of different tasks (Fig.6(a)-(b)). As we show in Fig.6, we can
tune the relative strength of the diagonal elements of C smoothly by changing the network width
(Fig.6(a)-(d)) or by changing the threshold of the gating (Fig.6 (e)-(f)). In the case where the gatings
are fixed and the network width is changed, an increase in the strength of the diagonal elements
(Fig.6(d)) results in better generalization (Fig.6(c)), indicating that the network generalizes better by
processing data of different tasks separately through the gating units. However, in the case where
we change the activation of the gatings by adjusting the threshold, although different tasks are more
de-correlated when the threshold is large due to a set of less overlapping gatings activated for each
task, generalization error first decreases and then increases again. This is because for large threshold
the sparsity of the gatings activated for each task limits the nonlinearity of the network, and therefore
the generalization performance on this nonlinear task.

5.2 Combined top-down and bottom-up gating units
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Figure 7: Kernel renormalization de-correlates different tasks defined by different labels on the same
inputs. (a) GGDLNs performing two tasks using combined top-down and bottom-up task signal. (b)
Top: Renormalized kernel calculated with Eq. 7 from GD dynamics. Bottom: Renormalized kernel
theory. (c) Ratio of the magnitude of diagonal (blocks with white dashed lines in (b)) versus off
diagonal blocks decreases as a function of N . (d) Generalization error increases with N.

We now consider learning two tasks that provide conflicting labels on the same input data. The
gating units combine both top-down task signal which informs the system of which task to perform
for a given input, and bottom-up signals which, as before, depend on the input. In different tasks,
different sets of gatings are permitted or forbidden depending on the top-down signal, then the states
of the permitted gatings are further determined as a function of the input x, while the forbidden
gatings are set to 0, and the corresponding dendritic branches do not connect to the previous layer
neurons (Fig.7(a)) in this task. For a single hidden layer network, with a similar argument as in
Section 2, it is straightforward to show that the number of different tasks that can be memorized is
given by n  M and the number of training examples for each task needs to satisfy P  N0Mp,
where Mp is the number of permitted gating units in each task. In the limiting case where a set of
non-overlapping gating units are permitted in each of the n tasks, the network is equivalent to n
sub-networks, each independently performing one task. In this case Mp is limited by M/n, which in
turn limits the capacity and the effective input-output nonlinearity for each independent task. We
consider the case where the permitted gatings are chosen randomly for each task and are therefore in
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general overlapping across tasks. We then investigate how learning modifies the correlation induced
by the overlapping gatings through the renormalization matrix. As an example we consider training
on permuted and un-permuted MNIST digits of 0 and 1’s. One task is to classify the two digits in
both permuted and un-permuted data, and the second task is to separate the permuted digits (both 0
and 1) from the un-permuted digits. The labels of the two tasks are uncorrelated, while the permitted
gatings of the two tasks are partially overlapping. In this case the renormalized kernel K̃1 can be
written as K̃pµ,q⌫ = ( 1

M gp(xµ)>U1gq(x⌫)) �2

N0
xµ>x⌫ . Here p, q 2 {1, 2} are the task indices,

and µ,⌫ = 1, · · · , P are the input indices. The kernel is therefore 2P ⇥ 2P as shown in Fig.7(b)
(P = 600); the diagonal blocks (white dashed lines) correspond to kernels of task 1 and task 2, while
the off diagonal blocks correspond to the cross kernels. In Fig.7(b) bottom, we show the renormalized
kernel with the renormalization matrix U1 calculated by solving Eq.6. Similar results are achieved
by by numerically estimating Eq.7 with readout weights obtained from GD dynamics (Fig.7(b) top).

The results demonstrate that stronger kernel renormalization achieved in narrower networks sup-
presses more strongly the correlation between tasks, reflected by the weaker off-diagonal blocks in
Fig.7(b). A decreasing ratio between the average amplitudes of the diagonal and off-diagonal blocks
shows that the de-correlation effect diminishes for large N , leading to increasing generalization error
with N (Fig.7(c & d)).

6 Discussion

In this work, we proposed a novel gating network architecture, the GGDLN, amenable to theoretical
analysis of the network expressivity and generalization performance. The predictor statistics of
GGDLNs can be expressed in terms of kernels that undergo shape renormalization, resulting diverse
behavior of the bias as a function of various network parameters. This renormalization slows down
the flattening of the GP kernel in deep networks, suggesting that the loss of input information as L
increases may be prevented in finite-width nonlinear networks. We also investigate the capability
of GGDLNs to perform multiple tasks. While our theory is an exact description of the posterior of
weight distribution induced by Langevin dynamics in Bayesian learning, it provides surprisingly
well qualitative agreement with results obtained with GD dynamics for not only the generalization
but also the kernel representation with matrix renormalization, largely extending its applicability.
There are several limitations of our work. Our mean-field analysis is accurate in the ‘finite-width’
thermodynamic limit where both P and N go to infinity, but M and L remain finite. In practice, the
size of the renormalization matrix increases as ML, hence for some moderate M , as L increases,
any large but finite N might eventually get the network outside the above thermodynamic regime.
The theory also focuses on the equilibrium distribution induced by learning and does not address
important questions related to the learning dynamics. Finally, although we have shown qualitative
correspondence of the GGDLN properties and standard DNNs with local nonlinearity, as ReLU, a
full theory of the thermodynamic limit of DNNs with local nonlinearity is still an open challenge.

While our theory currently addresses learning in GGDLNs using a global cost function, exploring
the possibility of extending the formalization of the equilibrium distribution to characterize local
learning dynamics is an ongoing work. Recent works have shown that multilayer perceptrons
(MLPs) with learned gatings that implements spatial attention have surprisingly good performance on
Natural Language Processing (NLP) and computer vision [29]. Extension of our theory to learnable
gatings that implements attention mechanisms remains to be explored. Furthermore, incorporating
convolutional architecture [30, 31, 32, 33, 34] into our GGDLNs and using the gating units to encode
context-dependent modification of different feature maps is an interesting direction related to the
fast-developing research topic of visual question-answering (VQA) [35, 36, 37] , where answering
different questions about the same image is similar to performing multiple tasks in different contexts
with different labels on the same dataset, as we discussed in Section 5.2. We leave these exciting
research directions for future work.
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