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Abstract

The increasing volume of commercially avail-001
able conversational agents (CAs) on the mar-002
ket has resulted in users being burdened with003
learning and adopting multiple agents to ac-004
complish their tasks. Though prior work has005
explored supporting a multitude of domains006
within the design of a single agent, the in-007
teraction experience suffers due to the large008
action space of desired capabilities. To ad-009
dress these problems, we introduce a new task010
BBAI: Black-Box Agent Integration, focus-011
ing on combining the capabilities of multi-012
ple black-box CAs at scale. We explore two013
techniques: question agent pairing and ques-014
tion response pairing aimed at resolving this015
task. Leveraging these techniques, we design016
One For All (OFA), a scalable system that pro-017
vides a unified interface to interact with multi-018
ple CAs. Additionally, we introduce MARS:019
Multi Agent Response Selection, a new en-020
coder model for question response pairing that021
jointly encodes user question and agent re-022
sponse pairs. We demonstrate that OFA is able023
to automatically and accurately integrate an en-024
semble of commercially available CAs span-025
ning disparate domains. Specifically, using the026
MARS encoder we achieve the highest accu-027
racy on our BBAI task, outperforming strong028
baselines.029

1 Introduction030

Influenced by the popularity of intelligent conver-031

sational agents (CAs), such as Apple Siri and Ama-032

zon Alexa, the conversational AI market is growing033

at an increasingly rapid pace and projected to reach034

a valuation of US $13.9 billion by 2025 (Market035

and Markets, 2020). These CAs have already begun036

to show great promise when deployed in domain-037

specific areas such as driver assistance (Lin et al.,038

2018), home automation (Luria et al., 2017), and039

food ordering (Frangoul, 2018) with platforms such040

as Pandora and Facebook today hosting more than041

Figure 1: An example interaction using One For All
which integrates multiple production black-box agents
into a unified experience.
300,000 of these agents (Chaves and Gerosa, 2018; 042

Nealon, 2018). 043

Most CAs are designed to be specialized in a 044

single or set of specific domains. As such, users 045

are required to interact with multiple agents in or- 046

der to complete their tasks and answer their queries 047

as shown in figure 1. E.g. A user may use Alexa 048

for online shopping but engage with Google Assis- 049

tant for daily news updates. Additionally, a given 050

agent may be more proficient at a specific domain 051

over another i.e A finance CA is better suited to an- 052

swer finance questions. As a result, users are taxed 053

with the burden of learning and adopting multi- 054

ple agents leading to an increase in the cognitive 055

load of interacting with agents, further discourag- 056

ing the proliferation of their usage (Dubiel et al., 057

2020; Novick et al., 2018; Saltsman et al., 2019). 058

This is escalated further as the number of conver- 059

sational agents deployed into the market continues 060

to increase. Therefore, the need arises for unifying 061

multiple independent CAs through one conversa- 062

tional interface. This need has manifested in the 063

commercial conversational AI industry with initia- 064

tives such as the Amazon Voice Interoperability 065

Initiative (Amazon, 2019) which aims to create 066

voice-enabled products that contain multiple, dis- 067

tinct, interoperable intelligent assistants on a single 068

device. However, this interaction is still manual, 069

requiring the user to orchestrate which agent is 070

initiated. In addition, while it is possible to have 071
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distinct agents in a single device, users prefer in-072

teracting with a single agent over multiple (Chaves073

and Gerosa, 2018).074

Prior work has explored in part combining the075

strengths of multiple agents in one system but they076

rely on direct access to the design and implementa-077

tion details of the to-be-integrated agents. Sub-078

ramaniam et al. (2018) and Cercas Curry et al.079

(2018) direct incoming user questions to a spe-080

cific agent based on the candidate agents’ internal081

knowledge graph and NLU architectures, respec-082

tively. However, in practice, the majority of the083

publicly available CAs are "black boxes" where084

their inner-workings contain highly-protected IP085

that is not accessible to the public. Additionally,086

Cercas Curry et al. (2018) facilitates their bot se-087

lection with a manual heuristic preference order088

that requires intimate knowledge of the agents to089

construct, and additional effort to maintain, thus090

not scaling well for the adaption of existing agents091

and introduction of new agents. Therefore, the task092

of integrating multiple production black-box CAs093

with a unified interface remains an open problem.094

In order to explore this problem, we introduce095

the task BBAI: Black-Box Agent Integration that096

focuses on integrating multiple black-boxes CAs.097

We propose two techniques to tackling black-box098

multi-agent integration: (1) Question agent pair-099

ing and (2) Question response pairing. Intuitively,100

these two approaches can be viewed as a query-to-101

agent classification problem in contrast to that of102

an response selection problem. This formulation103

allows us to facilitate multi-agent integration whilst104

operating within the black-box constraints of the105

agents. Using these techniques we develop One For106

All, a novel conversational system that accurately107

and automatically unifies a set of black-box CAs108

spanning disparate domains. Additionally, we in-109

troduce MARS: Multi Agent Response Selection,110

a new encoder model for question response pair-111

ing that jointly encodes user question and agent112

response pairs. We evaluate these techniques on a113

suite of 19 publicly available agents consisting of114

Amazon Alexa1, Google Assistant2, SoundHound115

Houndify3, Ford Adasa (Lin et al., 2018) and many116

more.117

Specifically, this paper makes the following con-118

tributions:119

1https://developer.amazon.com/en-US/
alexa

2https://assistant.google.com/
3https://www.houndify.com/

• Formulation of the BBAI task that focuses on 120

the challenge of integrating disparate black- 121

box conversational agents into one experience. 122

We construct a new dataset for this task, com- 123

prising of examples from a suite of 19 com- 124

mercially deployed conversational agents. We 125

publish our code and datasets. 4 126

• We design One For All, a novel conversational 127

system that accurately and automatically uni- 128

fies a set of black-box CAs and introduce the 129

MARS encoder model that outperforms strong 130

state-of-art classification and ranking model 131

baselines on the BBAI task. 132

• We conduct a thorough evaluation of various 133

agent integration approaches showing that our 134

MARS encoder outperforms strong baselines. 135

We show that by facilitating the integration 136

of multiple agents we can alleviate the needs 137

for users to adopt multiple agents whilst facil- 138

itating the improvement and growth of agents 139

over time. 140

2 BBAI: Black-Box Agent Integration 141

Task Formulation 142

Building a unified interface for production agents 143

spanning different domains presents several key 144

challenges. First, most commercially available 145

CAs are black-boxes, providing little to no informa- 146

tion on their inner workings. Any approaches for 147

agent integration must operate without relying of 148

the internals of any given agent. Second, these con- 149

versational agents are constantly improved upon 150

and expanded with new capabilities. The agent inte- 151

gration approaches need to be flexible and adaptive 152

to these changes with relative ease. Given these 153

constraints we assume the existence of the follow- 154

ing information sources for the agent integration 155

task: 156

1. User query/utterance: The question that the 157

user asks the agent. 158

2. Agent skill representation: A textual represen- 159

tation that denotes what each agent is capable 160

of. This can be in the form of example queries 161

or a description of that agent. 162

3. Agent response: Each agent’s response to the 163

query asked. 164

4https://datasets.code
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Figure 2: Overview of our proposed black-box agent
integration techniques. In QA Pairing, the goal is to
select the correct agent using information of the agent’s
capabilities. In QR Pairing, the goal is to select the
correct agent response.

Using this information we formulate the task of165

agent integration as given a query Q, a set of agents166

A = {a1, a2, . . . , an} and a set of agent responses167

R = {r1, r2, ..., rn} to query Q, determine the168

question-agent-response pair (Q,Ai, Ri) that re-169

solves the query Q. Further, given the information170

available, we can taxonomize our approach into171

two techniques: (1) Question agent pairing where172

we preemptively select the agent for the query and173

(2) Question response pairing where evaluate the174

set of returned responses as depicted in Figure 2.175

2.1 Question Agent Pairing176

As shown in Figure 2, the goal of question agent177

pairing is, given a query Q and a set of agents178

A = {a1, a2, . . . , an}, determine the question-179

agent pair (Q,Ai) that resolves the query Q. At its180

core, this can be viewed as a classification problem181

where the model learns the respective capabilities182

of each independent agent in order to predict which183

agent to use for a given question.184

2.2 Question Response Pairing185

As shown in Figure 2, the goal of question re-186

sponse pairing is, given a query Q and a set of187

agent responses R = {r1, r2, ..., rn}, determine188

the question-response pair (Q,Ri) such that Ri189

resolves the query Q.190

3 The One For All System191

In this section, we present the design One For All192

(OFA), a scalable system that integrates multiple193

black-box CAs with a unified interface. We ex-194

Figure 3: The transformer-based classification models
in the OFA system. The models are trained on question
agent pairs and tasked to predict a agent to route the
given query to.

plain the various approaches implemented in One 195

For All, detailing their inputs, outputs and training 196

methodology. 197

3.1 Question Agent Pairing 198

In order to predict the best agent for a given query, 199

knowledge of each agent’s individual skill-set is 200

required. However, as described in the task formu- 201

lation in Section 2, the internal details of the agents 202

are unavailable. Everyday users of these agents 203

have no insight into the internal specifics of these 204

agents. However, they are able to use these agents 205

to accomplish tasks by building a mental model of 206

each agents’ respective capabilities through usage 207

over time. We draw inspiration from this to deter- 208

mine the information we can use to represent an 209

agent’s skills without access to its internals. 210

3.1.1 Agent Skills Representation 211

Following the learning patterns described above, 212

we model an agent’s skill-set in two distinct ways: 213

(1) Query examples: Similar to building knowl- 214

edge over time via agent interaction, an agents’ 215

query examples allows the model to learn what 216

type of queries each agent is capable of resolv- 217

ing. For example, questions such as “Where is the 218

nearest gas station?" and "Direct me to Starbucks 219

please" will be amongst the query examples for a 220

“Directions" agent. 221

(2) Agent descriptions:. These are textual sum- 222

maries of an agent’s capabilities. For example, a 223

bank releases a new CA for its customers to use 224
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Figure 4: Overview of OFA approaches. (a) Bi-Encoder which is used for both QA and QR pairing encodes the
question and candidate response/description separately and computes a ranking score via a dot product calculation.
(b) Our MARS encoder jointly encodes the question and response into a single transformer and performs self-
attention between the question and candidate response. To score a response we reduce the candidate embedding
from a vector to a scalar score between 0...1 (Humeau et al., 2020).

instead of having to visit the bank. Accompanied225

with this agent will be a semi-formal description226

of what this agent is capable of doing. This infor-227

mation is often publicly available in the agent’s228

marketing materials.229

Using these query examples and agent descrip-230

tions, we explore approaches for determining the231

agent best to resolve a given query. We describe232

in more details the dataset collection process in233

Section 4.234

Question agent pairing using query examples235

QA pairing using query examples seeks to explore236

how best we can facilitate agent orchestration in a237

data constrained environment where only a few ex-238

amples of the questions the agents can answer are239

present. This is similar to the use of text examples240

for the training of an intent classifier but at the agent241

level instead. Therefore, we treat this as a multi-242

label classification problem where a given query243

Q is mapped to a set of agents A. e.g Q: ‘locate244

me some good places in Kentucky that serve sushi‘245

maps to the set of agents A: [“Alexa”, "Google"]246

indicating that this query can be correctly answered247

by the agents Alexa and Google. Specifically, as248

shown in Figure 3, we train a multi-label classi-249

fier on top of state-of-the-art transformer models,250

BERT (Devlin et al., 2019), RoBerta (Liu et al.,251

2019) and Electra (Clark et al., 2020) to predict an252

agent A given a query Q.253

Question agent pairing using agent descriptions 254

While query examples are useful for understanding 255

the capabilities of a given agent, they may not be 256

readily available. When a new agent is introduced, 257

users are unsure of the exact questions this agent 258

can answer but they would typically have access 259

to an explanation of its capabilities. As an alter- 260

native, we explore the use of such a description 261

of the agents. For this task, we assume a textual 262

description of an agent’s capabilities, e.g. "Our pro- 263

ductivity bot helps you stay productive and orga- 264

nized. From sleep timers and alarms to reminders, 265

calendar management, and email ....". 266

In order to map a given query Q to an agent A de- 267

scribed by description Di, we treat this as a seman- 268

tic similarity task. The intuition behind this is that 269

for a given query Q the agent that is capable of an- 270

swering a given question is likely to feature a agent 271

description semantically similar to the question. 272

We explore a suite of pre-trained and fine-tuned 273

language models focusing on ranking the relevance 274

of given description Di to a query Q. Addition- 275

ally, given the length of descriptions and the range 276

of capabilities that may be described within a sin- 277

gle description, we split the full description at the 278

sentence level and use each sentence to represent 279

a single skill Si belonging to agent A. With this 280

variation, the question-description similarity score 281

is calculated as the maxi SemSim(Q,Si). 282

For our BBAI task we consider the following 283
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state-of-art semantic retrieval based approaches284

whose utility map well to our problem domain:285

BM25 This classic method measures keyword286

similarity and uses it to estimate the relevance of287

documents to a given search query (Robertson and288

Zaragoza, 2009). We encode the collection of agent289

descriptions and return the agent whose description290

is most relevant to the given query.291

Universal Sentence Encoder (Cer et al., 2018)292

A sentence encoding model for encoding sentences293

into high dimensional vectors. We use the trans-294

former model5 for our experiment. As shown in295

part (a) of Figure 4, we encode the user query and296

the agent description and compute the dot product297

as a ranking score.298

Roberta + STS (Reimers and Gurevych, 2019)299

We fine-tune Roberta-base on the STS benchmark300

dataset and use this model to encode our agent301

descriptions and user query. We compute the co-302

sine similarity between the two vectors to compute303

a ranking score for each description as shown in304

Figure 4.305

3.2 Question Response Pairing306

Contrary to question agent pairing which selects307

the agent beforehand, question response pairing308

assumes that we provide each agent in the en-309

semble the opportunity to respond to the query310

Q and focus on selecting the best response from311

the set of returned responses. As such, we treat312

this as a response ranking problem of determining313

which question-response pair (Q,Ri) best answers314

the query Q. Prior work has shown strong per-315

formance on sentence pairing tasks such as this316

through the use of sentence encoders and language317

model fine-tuning (Henderson et al., 2019; Humeau318

et al., 2020; Reimers and Gurevych, 2019). We ex-319

plore the use of these architectures in the domain320

of response selection with the goal of learning rep-321

resentations for correct question answering from322

diverse conversational agents.323

BM25 Similar to our use of BM25 for question324

agent pairing we use it to rank each of our question325

response pairs.326

USE and USE QA (Yang et al., 2019) We apply327

the USE model from our agent pairing task to rank328

agent responses. In addition, we consider USE329

5https://tfhub.dev/google/
universal-sentence-encoder-large/3

QA, an extended version of the USE architecture 330

specifically designed for question-answer retrieval 331

applications. We use the Bi-Encoder architecture 332

as shown in Figure 4 (a). 333

Roberta + STS We fine-tune Roberta-base on 334

the STS benchmark dataset and use it to encode 335

our question response pairs using the bi-encoder 336

architecture in figure 4. 337

MARS encoder Pre-existing sentence pairing 338

scoring models are tuned to score sentence pairs 339

deemed semantically similar. However, in the case 340

of conversational systems, an agent’s response can 341

be semantically similar but still incorrect. e.g 342

Q: "What is the weather in Santa Clara today?", 343

R: "Weather information is currently unavailable". 344

These two sentences are semantically similar but 345

the response does not resolve the query. In the 346

MARS encoder we focusing on learning repre- 347

sentation beyond similarity by also incorporating 348

correctness of agent responses. Using the cross- 349

encoder architecture (Humeau et al., 2020) shown 350

in part (b) of Figure 4, we train a question response 351

pair scoring model for the task of ranking responses 352

to a given query Q generated by conversational 353

agents. We concatenate both the input question and 354

response performing full self attention on the entire 355

input sequence. By passing both the question and 356

agent response through a single transformer, the 357

agent response is able to attend to user query and 358

produce a more input sensitive representation of the 359

question response embedding. Using the generated 360

question response embedding vector we then con- 361

vert it to a scalar score S(Q,Ri) between 0..1 via 362

a linear layer. Our training objective is to minimize 363

the Cross-Entropy loss between the correct agent 364

responses and the negative agent responses to the 365

query Q. 366

4 Dataset Construction 367

For the task of BBAI, we construct a new dataset 368

focusing on making it representative of real-world 369

conversational agents at scale and covering a broad 370

range of domains. 371

Using Amazon Mechanical Turk and 372

scenario/paraphrasing-based prompts (Kang 373

et al., 2018; Larson et al., 2019), we crowd- 374

sourced utterances across a range of agent 375

skills/capabilities. These skills were extracted 376

from public information sources describing each 377

of the agents, in addition to observing their 378

5

https://tfhub.dev/google/universal-sentence-encoder-large/3
https://tfhub.dev/google/universal-sentence-encoder-large/3


Question Agent Response
Alexa Google Houndify Adasa

At how many miles will
I run out of gas

"here’s something I
found on the web
according to
freakonomics.com
previously when cars
got 8 to 12 miles ...."

"on the website post
Dash gazette.com they
say some popular car
models can make it
between 30 and 50
miles ....",

Didn’t get that!
"With your current fuel
economy of 28 MPG,
you should be able to
cover about 532 miles
with the fuel you have."

Is it gonna be warm Fri-
day in Alhambra?

"here’s something I
found on the web
according to Wikipedia.
Org Cobra is one of the
100 selected cities in
India which will be
developed ...."

"No, it won’t be hot
Friday in Alhambra,
California. Expect a
high of 21 and a low of
6.",

"There will be a high of
seventy degrees in
Alhambra on Friday
November
twenty-seventh."

"Out of scope!"

Table 1: Sample question agent responses from the One For All dataset. Responses highlighted in green represent
agent responses voted as correct by crowd workers.

capabilities. Our dataset is comprised of utterances379

across 37 broad domain categories. These include380

domains such as Weather, Flight Information,381

Directions, Automobile, etc. Crowd workers were382

paid $0.12 for 5 utterances. These submitted383

utterances were then vetted by hand to ensure384

quality. Using the curated utterances, we then385

generated question responses by querying each386

agent to gather its response to the utterance.387

In order to generate ground truth samples on388

which of the question-response pairs (Q,Ri) cor-389

rectly resolves the query Q we launched a crowd-390

sourcing task asking workers to indicate the candi-391

date responses that best answer the question shown.392

Five workers were assigned to each response se-393

lection task and majority voting (>2) was used to394

label the gold responses. As such for each query395

Q and the set of responses R we were able to396

gather the necessary question-agent pairs (Q,Ai)397

and question-response pairs (Q,Ri) needed evalu-398

ate our approaches.399

Agent Descriptions We gather our agent descrip-400

tions by scraping the contents of each of the agent’s401

public product pages and their built-in feature doc-402

umentation web pages. We then manually clean,403

reformat and merge this data into a single docu-404

ment per agent. For our experiment, we focus only405

on extracting descriptions related to the built-in406

features of our agents.407

Overall our dataset contains 5550 utterances408

with 19 question-response pairs per question (one409

from each of the 19 agents), 105,450 in total. The410

utterances are split into 3700 utterances (100 per411

domain) for the training set and 1850 (50 per do-412

main) for the test set. The train and test sets re-413

spectively contain 2399 and 1186 utterances with414

at least one positive question-response pair. In the415

remaining examples, none of the agents were able416

to achieve annotator agreement (>= 3). A sample417

dataset example is shown in table 1 with responses 418

from 4 of the 19 agents. 419

5 Results and Discussion 420

In this section we present and analyze the results 421

of our experiments, detailing our insights and dis- 422

cussing the implications of each of our techniques. 423

Evaluation task: Similar to standard informa- 424

tion retrieval evaluation measures, we denote accu- 425

racy as the metric precision@1 and use it to evalu- 426

ate both our question agent and question response 427

pairing approaches. For question agent pairing this 428

metric denotes: Given a set of N agents to the 429

given query, whether the agent selected ultimately 430

resolves the query successfully. For question re- 431

sponse pairing it denotes: Given a set of N re- 432

sponses to the given query, whether the top-scoring 433

response resolves the query successfully. For this 434

evaluation, we test on examples with at least one 435

valid agent response. 436

5.1 Question agent pairing 437

The results are summarized in tables 2 and 3. We 438

find that for the QA pairing Roberta yields the 439

best result with an accuracy of 69% in selecting 440

the correct agent and 61.8% when scaled to 19 441

agents. Similarly, we see that we achieve can fair 442

performance in extreme data scarce environments 443

when using simple agent descriptions compared to 444

that of query agent examples, with USE achieving 445

47.8% accuracy. Using agent descriptions offers 446

greater flexibility in facilitating the improvement of 447

agents over time compared to query examples since 448

it only requires an update to the agent description. 449

However, it still falls short when compared to using 450

a single agent like Google or Alexa. Also, while 451

consistent in learning to recognize the domain a 452

given agent may be performant in, QA approaches 453

fall short in a few cases: 454
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Agent Breakdown
Method Accuracy (n=4) Alexa Google Houndify Adasa

Question Agent Pairing
(QA Labels)

Bert 68.31 37.98 40.93 18.49 2.6
Electra 67.86 35.28 42.01 20.11 2.6
Roberta 69.03 34.92 41.56 20.65 2.87

Question Agent Pairing
(Descriptions)

BM25 27.91 13.91 10.95 17.33 57.81
USE 47.84 13.20 28.82 52.42 5.56
Roberta+STS 39.40 18.94 22.35 51.35 7.36

Response Selection

BM25 51.07 28.64 24.69 14.81 31.86
USE 72.89 34.20 27.65 22.98 15.17
USE QA 75.49 41.65 36.45 17.95 3.95
Roberta+STS 69.83 18.94 22.35 51.35 7.36
MARS 79.70 37.34 43.9 15.71 3.05

Individual Agents

Alexa 49.37 - - - -
Google 51.79 - - - -
Houndify 34.82 - - - -
Adasa 4.12 - - - -

Table 2: Performance breakdown of QA and QR approaches on our BBAI task when using our 4 largest agents
Alexa, Google, Houndify and Adasa. Note: n = number of agents.

Method Accuracy (n=19) Agents

Question Agent Pairing
(QA Labels)

Bert 59.10 Alexa, Google
Houndify, Adasa

Recipe agent
Dictionary agent

Task Manager
Hotel agent, Stock agent
Math agent, Sports agent

Wikipedia agent
Mobile Account agent

Banking agent
Coffee shop agent
Event Search agent

Jokes agent
Reminders agent
Covid-19 agent

Electra 52.86
Roberta 61.88

Question Agent Pairing
(Descriptions)

BM25 23.69
USE 43.59
Roberta+STS 36.67

Response Selection

BM25 59.94
USE 64.42
USE QA 71.66
Roberta+STS 56.82
OFA Encoder 83.55

Individual Agents

Alexa 44.09
Google 48.06
Houndify 32.04
Adasa 3.45

Table 3: Performance breakdown of QA and QR ap-
proaches on our BBAI task on all 19 commericial
agents we show that the MARS encoder is able to scale
and leverage the capabilities of new agents added to the
ensemble without diminishing performance compared
to other approaches.

(1) Agent overlap - This is when a given do-455

mains’ coverage is split between various agents. e.g456

The model learns that both Alexa & Google have457

proficiency handling some weather queries but it458

remains unclear about which one is best suited for459

the current query at hand.460

(2) Query variation - While an agent’s exam-461

ples or descriptions may allude to proficiency in462

a given domain, it may still fail when asked cer-463

tain query variations. e.g Figure 1 shows a case464

where Alexa is capable of handling weather queries465

but fails when a condition like humidity is asked466

for. Another example is when a similar question467

in asked in a different or more complex way. Both468

Houndify & Alexa are known to be proficient at469

answering age related questions but for question470

like "How old I will be on September 28, 1995 if I471

was born on March 29, 1967?", Alexa is unable to472

answer as opposed to Houndify.473

These cases are further highlighted when inspect-474

ing QA pairing performance at the domain level475

in table 4. We find that the QA approaches strug-476

Evaluation Performance per Domain (n=19)
Domain MARS (QR) USE (QA) Roberta (QA)
Weather 0.88 0.45 0.67
Directions 0.78 0.29 0.44
Auto 1.00 0.79 0.82
Restaurant Suggestion 0.79 0.5 0.68
Travel Suggestion 0.97 0.33 0.57
Time 0.81 0.54 0.76
Flight Info 0.83 0.61 0.7
Date 0.82 0.47 0.56

Table 4: Further breakdown of the best-performing ap-
proaches per technique on a subset of 8 out of the 37
domains. We find that our MARS encoder generalizes
well across the various agent domains.

gle with domains such as "travel suggestion" and 477

"Directions" which are heavily split in coverage. 478

5.2 Question response pairing 479

In overall performance we find that our MARS 480

encoder outperforms strong baselines, achieving 481

83.55% accuracy on the BBAI task. We note that 482

our MARS encoder outperforms the best single per- 483

forming agent (Google Assistant) by 32%. This 484

shows the utility and power of OFA in not only al- 485

leviating the need for you users to learn and adopt 486

multiple agents but also validating that multiple 487

agents working collectively can achieve signifi- 488

cantly more than single agents working in isolation. 489

When inspecting the performance of MARS at 490

the domain level we see in Table 4 that it is able to 491

maintain its high performance across the varying 492

domains unlike the QA approaches. This advantage 493

comes from the ability to select an agent at the 494

response level allowing the system to catch cases 495

in which an agent once deemed proficient fails or 496

another agent improves. 497
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5.3 Agent pairing vs Response pairing498

We now describe the trade-offs between agent pair-499

ing and response pairing. Question response pair-500

ing greatly outperforms agent pairing in terms of501

accuracy, given that it is privy to the final responses502

from each of the agents. However, in practice this503

comes with additional networking, compute, and504

latency costs, having to send the query to each of505

the agents and await their response. Given that the506

querying of agents is done in parallel, the latency507

cost is equal to that of the slowest agent. Question508

response pairing also better supports agent adap-509

tation. With response pairing, a system can seam-510

lessly add or remove an agent without diminishing511

the experience as show by MARS in table 3. In512

addition, as conversational agents are upgraded to513

offer a more diverse feature-set such as new domain514

support or improved responses, they can instantly515

be integrated into a response pairing approach.516

5.4 Scalability517

We evaluate our approaches on a suite of 19 com-518

mercially deployed agents spanning 37 broad do-519

main categories. As shown in table 2 we exam-520

ine performance when using the 4 largest agents521

in terms of domain sport and popularity (Alexa,522

Google Assistant, Houndify and Ford Adasa) show-523

ing improvement upon single agent use in both QA524

and QR approaches. When scaled up to 19 agents,525

MARS encoder improves even further by leverag-526

ing the new capabilities of the additional agents527

and is the only approach that does not decrease in528

performance as the number of agents and domains529

scale. This improvement is achieved via the more530

input sensitive representations that the MARS en-531

coder is able to learn by encoding both the question532

and response in a single transformer.533

6 Related Work534

Ensemble approaches to solving complex tasks in535

the context of NLP are widely used (Deng and536

Platt, 2014; Araque et al., 2017). In dialogue sys-537

tems, recent attempts at ensemble approaches and538

multi-agent architectures include Cercas Curry et al.539

(2018) and Subramaniam et al. (2018). AlanaV2540

(Cercas Curry et al., 2018) demonstrated an en-541

semble architecture of multiple bots using a com-542

bination of rule-based machine learning systems543

built to support topic-based conversations across544

domains. It was built to be an open domain bot545

supporting topic based conversations. Specifically,546

AlanaV2’s architecture utilizes a variety of ontolo- 547

gies and NLU pipelines that draw information from 548

a variety of web sources such as reddit. However, 549

its agent selection approach is guided by a sim- 550

ple priority bot list. Subramaniam et al. (Subra- 551

maniam et al., 2018) describe their conversational 552

framework that employs an Orchestrator Bot to 553

understand the user query and direct them to a 554

domain-specific bot that handles subsequent dia- 555

logue. In our work, we expand up the multi-agent 556

goal by focusing on the integration of black-box 557

conversational agents at scale. 558

6.1 Response Selection 559

This is the task of selecting the most appropriate 560

response given context from a pool of candidates. 561

It is a central component to information retrieval 562

applications and has become a focus point in the 563

evaluation of dialogue systems. (Sato et al., 2020; 564

Henderson et al., 2019; Wang et al., 2020). Prior 565

work has shown strong performance on sentence 566

pairing tasks through the use of sentence encoders 567

and language model fine-tuning (Henderson et al., 568

2019; Humeau et al., 2020; Reimers and Gurevych, 569

2019). In our work we explore the task of response 570

selection using it as one of the basis for integrating 571

black-box conversation agents. 572

7 Conclusion 573

The rapid proliferation of conversational agents 574

calls for a unified approach to interacting with 575

multiple CAs. Key challenges of building such 576

an interface lies in that most commercial CAs are 577

black-boxes with hidden internals. This paper in- 578

troduces BBAI a new task of agent integration that 579

focuses on unifying black-boxes CAs across vary- 580

ing domains. We explore two task techniques, ques- 581

tion agent pairing and question response pairing 582

and present One For All, a scalable system that 583

unifies multiple black-box CAs with a centralized 584

user interface. Using a combination of commer- 585

cially available conversational agents, we evaluate 586

a variety of approaches to multi-agent integration 587

through One For All. Our MARS encoder achieves 588

88.5% accuracy on BBAI and outperforms the best 589

single agent configuration by over 32%. These re- 590

sults demonstrate the power of One For All which 591

can leverage state-of-the-art NLU approaches to 592

enable multiple agents to collectively achieve more 593

than any single conversational agent in isolation 594

eliminating the need for users to learn and adopt 595
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multiple agents.596

References597

Amazon. 2019. Amazon and leading technology com-598
panies announce the voice interoperability initiative.599

Oscar Araque, Ignacio Corcuera-Platas, J. Fernando600
Sánchez-Rada, and Carlos A. Iglesias. 2017. En-601
hancing deep learning sentiment analysis with en-602
semble techniques in social applications. Expert Sys-603
tems with Applications, 77:236 – 246.604

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,605
Nicole Limtiaco, Rhomni St. John, Noah Constant,606
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,607
Brian Strope, and Ray Kurzweil. 2018. Universal608
sentence encoder for English. In Proceedings of609
the 2018 Conference on Empirical Methods in Nat-610
ural Language Processing: System Demonstrations,611
pages 169–174, Brussels, Belgium. Association for612
Computational Linguistics.613

Amanda Cercas Curry, Ioannis Papaioannou, Alessan-614
dro Suglia, Shubham Agarwal, Igor Shalyminov,615
Xu Xinnuo, Ondrej Dusek, Arash Eshghi, Ioan-616
nis Konstas, Verena Rieser, and Oliver Lemon.617
2018. Alana v2: Entertaining and informative open-618
domain social dialogue using ontologies and entity619
linking. In 1st Proceedings of Alexa Prize (Alexa620
Prize 2018).621

Ana Paula Chaves and Marco Aurelio Gerosa. 2018.622
Single or multiple conversational agents?: An in-623
teractional coherence comparison. In Proceedings624
of the 2018 CHI Conference on Human Factors in625
Computing Systems, CHI ’18, pages 191:1–191:13,626
New York, NY, USA. ACM.627

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and628
Christopher D. Manning. 2020. Electra: Pre-629
training text encoders as discriminators rather than630
generators.631

Li Deng and John Platt. 2014. Ensemble deep learning632
for speech recognition. In Proc. Interspeech.633

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and634
Kristina Toutanova. 2019. BERT: Pre-training of635
deep bidirectional transformers for language under-636
standing. In Proceedings of the 2019 Conference637
of the North American Chapter of the Association638
for Computational Linguistics: Human Language639
Technologies, Volume 1 (Long and Short Papers),640
pages 4171–4186, Minneapolis, Minnesota. Associ-641
ation for Computational Linguistics.642

Mateusz Dubiel, Martin Halvey, Leif Azzopardi, and643
Sylvain Daronnat. 2020. Interactive evaluation of644
conversational agents: Reflections on the impact of645
search task design. In Proceedings of the 2020 ACM646
SIGIR on International Conference on Theory of In-647
formation Retrieval, ICTIR ’20, page 85–88, New648
York, NY, USA. Association for Computing Machin-649
ery.650

Anmar Frangoul. 2018. Here’s how 651
robots are transforming takeout deliveries. 652
https://www.cnbc.com/2018/08/02/ 653
virtual-assistants-and-robotic-deliveries-are-transforming-takeout.654
html. 655

Matthew Henderson, Iñigo Casanueva, Nikola Mrkšić, 656
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