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ABSTRACT

Large language model (LLM) agents increasingly rely on external tools such as
search engines to solve complex, multi-step problems, and reinforcement learn-
ing (RL) has become a key paradigm for training them. However, the trajectories
of search agents are structurally heterogeneous, where variations in the number,
placement, and outcomes of search calls lead to fundamentally different answer
directions and reward distributions. Standard policy gradient methods, which use
a single global baseline, suffer from what we identify and formalize as cross-
stratum bias—an “apples-to-oranges” comparison of heterogeneous trajectories.
This cross-stratum bias distorts credit assignment and hinders exploration of com-
plex, multi-step search strategies. To address this, we propose Stratified GRPO,
whose central component, Stratified Advantage Normalization (SAN), partitions
trajectories into homogeneous strata based on their structural properties and com-
putes advantages locally within each stratum. This ensures that trajectories are
evaluated only against their true peers. Our analysis proves that SAN eliminates
cross-stratum bias, yields conditionally unbiased unit-variance estimates inside
each stratum, and retains the global unbiasedness and unit-variance properties en-
joyed by standard normalization, resulting in a more pure and scale-stable learn-
ing signal. To improve practical stability under finite-sample regimes, we further
linearly blend SAN with the global estimator. Extensive experiments on diverse
single-hop and multi-hop question-answering benchmarks demonstrate that Strati-
fied GRPO consistently and substantially outperforms GRPO by up to 11.3 points,
achieving higher training rewards, greater training stability, and more effective
search policies. These results establish stratification as a principled remedy for
structural heterogeneity in RL for LLM search agents.

1 INTRODUCTION

Large Language Models (LLMs) (Achiam et al., 2023; DeepSeek-AI et al., 2025; Team, 2024) are
increasingly being enhanced with external tools, such as search engines, to create powerful agents
capable of tackling complex, multi-step tasks (Schick et al., 2023; Yao et al., 2023; Jin et al., 2025;
2024; Trivedi et al., 2023; Asai et al., 2023). Reinforcement learning (RL) has emerged as a powerful
paradigm for training these agents, enabling them to learn sophisticated multi-turn reasoning and
tool-use strategies directly from outcome-based rewards (Chen et al., 2025; Jin et al., 2025; Song
et al., 2025; Zheng et al., 2025).

A key, and often overlooked challenge for applying standard RL to search agents lies in the struc-
tural heterogeneity of agent trajectories. Unlike in conventional reinforcement learning with verifi-
able rewards (RLVR) settings, where trajectories are sampled from the policy model and follow a
relatively homogeneous pattern, the trajectories of search agents differ markedly in their structure
due to the number, placement, and outcomes of search invocations. For instance, a trajectory with
zero search calls is qualitatively different from one with multiple, as the retrieved information can
substantially alter subsequent generations and induce distinct behavior modes and, consequently,
different reward distributions. Standard policy gradient methods, which often rely on a single global
baseline to compute advantages, implicitly assume all trajectories are comparable. This creates a
flawed “apples-to-oranges” comparison. In this work, we identify and formalize this fundamental
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issue as cross-stratum bias. As we show, this structural flaw distorts credit assignment and hinders
exploration of complex multi-step search strategies, leading to suboptimal policies.

We propose Stratified GRPO to address this fundamental issue. Instead of using a single global
baseline, Stratified GRPO uses Stratified Advantage Normalization (SAN), a principled advantage
estimator designed for heterogeneous action spaces. The core idea is simple yet powerful: partition
trajectories into homogeneous strata, based on their structural properties (e.g., the number of search
calls), and then compute advantages within each stratum. By construction, SAN is free from cross-
stratum bias, ensuring that each trajectory is evaluated only against its true peers. Our theoretical
analysis formalizes the benefits of this approach. We show that SAN removes the cross-stratum
bias inherent in global baselines, ensuring fair credit assignment. We further prove that SAN is
conditionally unbiased and has unit variance within each stratum, acting as a pure and scale-stable
learning signal. Critically, we demonstrate that SAN achieves these superior conditional properties
while matching the global unbiasedness and unit variance of standard normalization methods. To
enhance practical stability in finite-sample regimes, we further introduce Blended Advantage that
robustly combines SAN with the global estimator.

We validate Stratified GRPO through comprehensive experiments on diverse single-hop and multi-
hop question-answering benchmarks. The results demonstrate the clear superiority of our method.
Stratified GRPO consistently outperforms the standard GRPO baseline, achieving a relative im-
provement of up to 11.3 points in average performance across all benchmarks. Furthermore, Strati-
fied GRPO also exhibits higher training rewards, greater training stability, and learns more effective
search policies than standard GRPO. These findings provide strong empirical evidence that our prin-
cipled approach successfully mitigates cross-stratum bias. Our main contributions are as follows:

• We identify and formalize cross-stratum bias, a fundamental challenge in policy gradient
methods for LLM search agents. We provide a theoretical decomposition that proves this
bias arises from using a global baseline across structurally heterogeneous agent trajectories.

• We propose Stratified GRPO, a principled RL algorithm that eliminates this cross-stratum
bias. Its core component, Stratified Advantage Normalization (SAN), partitions trajectories
into homogeneous strata and computes advantages locally, ensuring a fair and stable credit
assignment.

• We provide a rigorous theoretical analysis of SAN, proving that it eliminates cross-stratum
bias and is conditionally unbiased and has unit variance within each stratum. Crucially,
SAN achieves these superior conditional properties while preserving the global unbiased-
ness and unit variance of standard normalization, yielding a more pure and scale-stable
learning signal.

• We demonstrate through extensive experiments on diverse single-hop and multi-hop
question-answering benchmarks that Stratified GRPO substantially outperforms GRPO by
up to 11.3 points. Our method achieves higher training rewards, improves training stability,
and learns more effective search policies.

(Related Work in Appendix A)

2 METHODS

We study reinforcement learning (RL) for multi-turn search agents, in which trajectories from dif-
ferent strategies (e.g., varying search counts) are not directly comparable. We show that the struc-
tural heterogeneity of trajectories induces a cross-stratum bias whenever advantages are computed
with baselines that ignore the heterogeneity driver. We then introduce Stratified Advantage Nor-
malization (SAN), an estimator that partitions trajectories into homogeneous strata and normalizes
advantages therein, and analyze its statistical and structural properties.

2.1 RL FOR MULTI-TURN SEARCH AGENTS

Following Jin et al. (2025), we formulate the task of training a multi-turn search agent as a reinforce-
ment learning problem. The agent, parameterized by a policy pθ, interacts with a search engine by
interleaving token generation with search queries. For a given prompt x ∼ D, the agent generates
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a trajectory τ ∼ pθ(· | x), which consists of a sequence of actions of generating tokens or issuing
searches. Upon completion, the trajectory receives a scalar reward R(τ) that reflects the quality of
the final response. The objective is to maximize the expected reward:

max
θ

J(θ) = Ex∼D,τ∼pθ(τ |x)[R(τ)]. (1)

This problem is usually optimized using policy gradient methods.

2.2 CROSS-STRATUM BIAS IN POLICY-GRADIENT BASELINES

In search agents, trajectory heterogeneity is significant: the number, content, and outcomes of tool
calls vary, resulting in strata with systematically different answer directions and reward distributions.
A global baseline is poorly suited because it implicitly assumes that all strategies are comparable.
Using a global baseline across this heterogeneous mixture induces a cross-stratum bias, forcing an
“apples-to-oranges” comparison. This flaw can be formalized by decomposing the global advantage.

Notation. Let B = {τ1, . . . , τK} denote a batch of K trajectories sampled i.i.d. from pθ for
a fixed prompt x. The batch is partitioned into I non-empty strata B0, . . . , BI−1 according to a
predefined structure (e.g., search count), with |Bk| = nk. Each trajectory τi has reward Ri. Let
R̄global =

1
K

∑K
j=1 R(τj) be the global mean reward of the batch, and define the stratum-specific

mean R̄k = 1
nk

∑
τi∈Bk

Ri. This gives rise to two natural advantage estimators:

ÂG(τi) = Ri − R̄global (global), ÂS(τi) = Ri − R̄k (stratified, τi ∈ Bk).

Advantage Bias and Variance Decomposition. The following result shows how the global ad-
vantage differs systematically from the stratified advantage.

Proposition 1 (Advantage Decomposition). For any trajectory τi ∈ Bk, the global advantage de-
composes as

ÂG(τi) = ÂS(τi) + (R̄k − R̄global)︸ ︷︷ ︸
cross-stratum bias

.

(The proof follows directly from the definitions). This decomposition highlights a structural flaw:
the cross-stratum advantage bias is a deterministic offset applied uniformly within each stratum,
unfairly penalizing trajectories from low-reward strata while favoring those from high-reward strata.
Importantly, this offset is precisely the source of the excess variance of ÂG.

Theorem 1 (Variance Reduction via Stratified Baselines). The empirical variances of the stratified
and global advantage estimators satisfy Var[ÂS ] ≤ Var[ÂG]. Moreover, the reduction is exactly
the variance induced by the cross-stratum bias:

Var[ÂG]−Var[ÂS ] =
1

K

I−1∑
k=0

nk

(
R̄k − R̄global

)2
.

Equality holds if and only if all stratum means coincide, i.e. R̄0 = R̄1 = · · · = R̄I−1. Otherwise,
stratification strictly reduces variance.

(Proof in Appendix B.1). Together, Proposition 1 and Theorem 1 formalize the flaw of a global
baseline: the cross-stratum bias is precisely the term that inflates variance. Stratification corrects
this by ensuring comparisons are made only among homogeneous peers, yielding a strictly lower-
variance advantage estimator.

The principle in Theorem 1 applies to commonly-used policy gradient methods for LLMs that use
a baseline not conditioned on the stratum structure S. This includes REINFORCE with a global
baseline and RLOO (Ahmadian et al., 2024). For actor-critic methods such as PPO (Schulman
et al., 2017), similar effects may occur when the imperfectly learned critic does not condition on S,
effectively introducing a structural bias similar to that of a global baseline.
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2.3 STRATIFIED ADVANTAGE NORMALIZATION: DEFINITION AND THEORETICAL
GUARANTEES

Building on the principle of stratification, we propose Stratified Advantage Normalization (SAN),
an estimator that augments stratification with per-stratum normalization to create a stable, scale-
invariant learning signal.
Definition 1. For a given prompt x, partition the batch of trajectories into strata {Bk(x)} based on
a chosen partitioning function (e.g., the search count for search agents). The SAN advantage for a
trajectory τi ∈ Bk(x) is defined as

ASAN(τi) =
R(τi)− µ̂k(x)

σ̂k(x) + ε
, (2)

where µ̂k(x) and σ̂k(x) are the empirical mean and standard deviation of rewards in stratum Bk(x),
ε > 0 is a small constant for numerical stability.

Advantage Invariance and Robustness. A key property of SAN is its robustness to the scale and
shift of rewards, a desirable feature formalized below.
Proposition 2 (Invariance to Positive Affine Reward Transforms). Suppose ε = 0. The SAN advan-
tage ASAN(τ) is invariant under any positive affine transformation of the rewards, R′(τ) = aR(τ)+b
with a > 0. That is, A′

SAN(τ) = ASAN(τ).

(Proof in Appendix B.2). The invariance shown in Proposition 2 makes SAN robust to arbitrary
changes in reward scaling. While a small ε > 0 slightly breaks this perfect invariance in practice, it
ensures numerical stability.

Variance Decomposition. In Theorem 1, we analyzed the variance reduction of the stratified esti-
mator, ÂS , relative to the global estimator, ÂG. We now extend this comparison to the fully stratified
and normalized advantage, ASAN, providing an exact decomposition of the variance difference.
Theorem 2 (Variance Decomposition for Normalized Stratified Advantage). Let ASAN(τi) be the
stratified and normalized advantage. It is related to the global one ÂG by the following exact
decomposition:

Var[ÂG]−Var[ASAN] =
1

K

I−1∑
k=0

nk(R̄k − R̄global)
2

︸ ︷︷ ︸
Term A: Between-Stratum Variance

+
1

K

I−1∑
k=0

nkσ
2
k

(
1− 1

(σk + ε)2

)
︸ ︷︷ ︸

Term B: Normalization Effect

.

(Proof in Appendix B.3). Theorem 2 formalizes how SAN improves over the global baseline. Term
A quantifies the between-stratum variance that arises from heterogeneous stratum means: by cen-
tering rewards within each stratum, SAN fully removes this structural bias (Proposition 1), ensuring
that gradient estimates are not artificially inflated by cross-stratum differences. Term B captures the
effect of per-stratum normalization. While it can be positive or negative, it primarily stabilizes the
scale of rewards within each stratum, producing a more consistent and numerically robust learning
signal. These finite-sample insights will be complemented by the large-sample conditional proper-
ties in Theorem 4.

The Gradient Bias Trade-off. While SAN eliminates the structural bias of a global baseline, its
expected gradient admits a particularly clean form. Specifically, it decomposes into a weighted sum
of the true within-stratum gradients, with weights determined by the stratum probabilities and scaled
by their inverse standard deviations. The following theorem formalizes this result.
Theorem 3 (Population SAN Expectation). Let S = S(τ ; θ) be a discrete stratum assignment that
may depend on θ, and define the per-trajectory SAN advantage

ASAN(τ) :=
R(τ)− µS(θ)

σS(θ) + ε
,

where µk(θ) = Eθ[R | S = k] and σk(θ) > 0 are the stratum-wise mean and standard deviation,
and ε > 0 is a small regularizer. Then, under standard regularity conditions allowing differentiation
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under the expectation,

Eθ

[
ASAN(τ)∇θ log pθ(τ)

]
=
∑
k

pk(θ)

σk(θ) + ε
∇θµk(θ), pk(θ) := Prθ(S = k), (3)

i.e., the population SAN estimator exactly targets the weighted sum of within-stratum gradients, even
when the strata depend on θ.

(Proof in Appendix B.4). Given stratum k, µk(θ) := Eθ[R(τ) | S = k]. Its gradient with respect to
the policy parameters θ is ∇θµk(θ) = ∇θEθ[R(τ) | S = k]. Applying the score function identity
(or likelihood ratio trick) conditional on S = k gives:

∇θµk(θ) = ∇θ

∑
τ

R(τ) pθ(τ | S = k) =
∑
τ

R(τ)∇θpθ(τ | S = k)

=
∑
τ

R(τ) pθ(τ | S = k)∇θ log pθ(τ | S = k)

= Eθ

[
R(τ)∇θ log pθ(τ | S = k)

∣∣S = k
]
.

Subtracting the conditional mean inside the expectation does not change the result, because
Eθ[∇θ log pθ(τ | S = k) | S = k] = 0. Thus, we can write

∇θµk(θ) = Eθ

[
(R(τ)− µk(θ))∇θ log pθ(τ | S = k)

∣∣S = k
]
.

This shows explicitly that ∇θµk(θ) is exactly the true per-stratum policy gradient. Consequently,
the SAN estimator, which combines these per-stratum gradients weighted by pk(θ)/(σk(θ) + ε),
targets a weighted sum of the true per-stratum gradients, even when strata are θ-dependent.

In summary, SAN is a principled estimator. Compared to unnormalized advantages, it strictly
reduces variance (Theorem 1), is robust due to its invariance properties (Proposition 2), and is
asymptotically unbiased: the population SAN gradient estimator exactly targets the weighted sum
of within-stratum gradients, even when the strata depend on θ (Theorem 3). This combination of
variance reduction, robustness, and exact population-level alignment ensures that SAN provides a
reliable and well-behaved learning signal for policy gradient estimation.

To fully appreciate the importance of this principled design, we provide in the next section a rigorous
structural comparison against a simpler and more common alternative, Global Normalization (GN).

2.4 STRUCTURAL COMPARISON OF SAN AND GLOBAL NORMALIZATION

This section provides a rigorous structural comparison between Stratified Advantage Normalization
(SAN) and the simpler, more common Global Normalization (GN). We will demonstrate that GN, by
ignoring trajectory heterogeneity, suffers from a structural flaw that SAN is designed to correct. Our
analysis uses algebraic decomposition to pinpoint GN’s cross-stratum offset bias and conditional
statistics to prove SAN is a pure, scale-stable learning signal.

The Structural Flaw in Global Normalization. The global normalized (GN) advantage defined
in GRPO (Shao et al., 2024) et al. is

AGN(τi) :=
R(τi)− R̄global

σ̂global + ε
. (4)

Similar to Section 2.2, a core issue with GN is that it forces an “apples-to-oranges” comparison. This
can be made precise by algebraically expressing the GN advantage in terms of the SAN advantage.
Proposition 3 (Exact Advantage Decomposition). For any fixed batch partition {Bk(x)}I−1

k=0 and
any τi ∈ Bk(x),

AGN(τi) =
σ̂k(x) + ε

σ̂global(x) + ε︸ ︷︷ ︸
:=αk(x)

ASAN(τi) +
µ̂k(x)− R̄global(x)

σ̂global(x) + ε︸ ︷︷ ︸
:=∆k(x)

. (5)

(Proof in Appendix B.5). The decomposition in Proposition 3 reveals that the GN advantage equals
a rescaled SAN advantage plus a cross-stratum offset (∆k), which is the ultimate source of its
systematic bias. This flaw carries over directly to the policy gradient.
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Gradient Bias from the Cross-Stratum Bias. The decomposition in Equation (5) carries over
directly to the gradient estimators. The GN gradient, ĝGN, decomposes into a SAN-like term and an
additional bias-inducing term:

ĝGN(x) =
1
K

∑
k

∑
τi∈Bk

αk ASAN(τi)∇θ log pθ(τi | x) + 1
K

∑
k

∑
τi∈Bk

∆k∇θ log pθ(τi | x)︸ ︷︷ ︸
Bias from Cross-Stratum Offset

.

(6)

The decomposition in Equation (6) reveals a structural flaw in the GN gradient, driven by the cross-
stratum offset ∆k. This term couples reward differences across strata with the policy’s score vectors,
introducing a systematic bias that persists whenever strata are heterogeneous. This fundamentally
distorts the learning signal by forcing local credit assignment to depend on global statistics.

Cross-Stratum Bias Hurts Exploration. Because ∆k in Equation (5) has the sign of (µ̂k(x) −
R̄global), the GN estimator systematically downweights strata whose mean reward lies below the
global mean. As a result, GN may under-sample such strata even when they contain unexplored
high-reward modes. This structural bias can therefore hinder exploration, consistent with our em-
pirical findings in Figure 1 that GRPO cannot effectively explore policies that use more than one
search call. Removing the offset is thus beneficial for promoting exploration.

Analysis as a Signal Carrier. To understand this more clearly, we analyze the conditional proper-
ties of the two estimators. An ideal “signal carrier” should be unbiased and have a consistent scale
within each stratum, ensuring fair credit assignment. The following theorem formalizes why SAN
provides a more reliable learning signal.
Theorem 4 (Conditional Properties of SAN and GN Advantages). Let ε = 0, and let the population
reward statistics for a given prompt x and stratum k be defined as:

µk(x) := E[R(τ) | k, x], σ2
k(x) := Var(R(τ) | k, x);

µ(x) := E[R(τ) | x], σ2(x) := Var(R(τ) | x).

In the large-sample limit, the stratified (SAN) and global (GN) normalized advantages exhibit the
following conditional properties for any stratum k:

1) Conditional Expectation (Bias). The SAN advantage is unbiased within each stratum, whereas
the GN advantage carries a systematic bias proportional to the cross-stratum mean difference:

E[ASAN | k, x] = 0, E[AGN | k, x] =
µk(x)− µ(x)

σ(x)
.

2) Conditional Variance. The SAN advantage provides a consistent unit variance, whereas the GN
advantage’s variance scales with the ratio of stratum-to-global variance:

Var(ASAN | k, x) = 1, Var(AGN | k, x) =
σ2
k(x)

σ2(x)
.

Consequently, SAN acts as a pure and scale-stable signal carrier, while GN introduces a cross-
stratum bias and inconsistent scaling whenever reward heterogeneity is present.

(Proof in Appendix B.6). Theorem 4 shows SAN’s structural advantage: it enforces zero-mean,
unit-variance signals within each stratum, ensuring fair credit assignment relative to peers. GN, by
contrast, introduces a spurious offset (nonzero conditional mean) and distorts scaling across strata.

Having established their conditional properties, we now analyze the global (marginal) moments of
the two estimators.
Theorem 5 (Global Moments of SAN and GN). Let ε = 0. Fix a prompt x and let S ∈ {0, . . . , I −
1} denote the stratum index with mixing weights pk(x) = P(S = k | x). Write the population
reward moments as in Theorem 4:

µk(x) = E[R | S=k, x], σ2
k(x) = Var(R | S=k, x); µ(x) = E[R | x], σ2(x) = Var(R | x).

6
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Consider the large-sample (population) SAN and GN advantages:

ASAN =
R− µS(x)

σS(x)
, AGN =

R− µ(x)

σ(x)
.

Then, (a) Global Means: E[ASAN | x] = 0, E[AGN | x] = 0.

(b) Global Variances: Var(ASAN | x) = Var(AGN | x) = 1.

(Proof in Appendix B.7). This theorem shows that despite their different mechanisms: SAN nor-
malizing locally within strata and GN normalizing globally, both idealized estimators are globally
unbiased (mean zero) and achieve the exact same unit variance in the idealized case where ε = 0.

The comparison of moments in Theorems 4 and 5 is summarized in Appendix C. Theorems 4 and 5
reveal a crucial distinction between the global (overall) and conditional (within-stratum) properties
of the idealized SAN and GN estimators. Globally, the two estimators appear equivalent: Theorem
5 shows that both are unbiased (mean zero) and, in the ideal case where ε = 0, have the exact same
unit variance. However, this global equivalence masks a fundamental structural difference at the
conditional level, which is what truly governs the learning dynamics. Theorem 4 establishes that
SAN is conditionally pure: it delivers a zero-mean, unit-variance signal within every single stratum.
In stark contrast, GN is conditionally biased and has inconsistent scaling, meaning its mean and
variance fluctuate from one stratum to another.

3 BLENDED ADVANTAGE FOR FINITE-SAMPLE STABILITY

From Theorem 4, SAN yields a pure, scale-stable learning signal: it is conditionally unbiased within
each stratum and has unit conditional variance. In contrast, GN reintroduces a cross-stratum offset
and inconsistent scaling (Theorem 4), but couples information across strata (Proposition 3). In
the finite sample regime, SAN may face a practical challenge when some strata contain very few
trajectories, which may cause noisy advantage estimates. To address this, we employ a convex
combination of SAN and GN that preserves SAN’s local purity while borrowing GN’s global signal
to stabilize small strata.
Definition 2 (Blended Advantage). For τ ∈Bk(x), define

Ablend(τ) = αASAN(τ) + (1− α)AGN(τ), α ∈ [0, 1]. (7)

The endpoints recover known estimators: α = 1 yields SAN, and α = 0 yields GN. Incorporating
the blended advantage into SAN gives our practical method, Stratified GRPO (Algorithm 1).

4 EXPERIMENTS

We evaluate Stratified GRPO on seven diverse question-answering benchmarks, confirming that
it significantly outperforms a wide range of strong baselines, particularly on multi-hop QA tasks.
Further analysis reveals that compared to standard GRPO, our method also achieves superior training
stability and learns a more effective multi-step search policy.

4.1 EXPERIMENTAL SETUP

Models and Training. We conduct experiments on the Qwen-2.5-3B Base and Instruct models
(Yang et al., 2024). For retrieval, we use the 2018 Wikipedia dump (Karpukhin et al., 2020) as the
knowledge source and E5 (Wang et al., 2022) as the retriever, fetching the top-3 passages per query.
Following the setup in Jin et al. (2025), we construct our training set by merging the training splits
of Natural Questions (NQ) (Kwiatkowski et al., 2019) and HotpotQA (Yang et al., 2018). We use
Exact Match (EM) as the training reward. Additional experiment details are in Appendix D.

Evaluation Benchmarks. We evaluate performance on seven diverse question-answering
datasets. These include three single-hop QA benchmarks: NQ (Kwiatkowski et al., 2019), Triv-
iaQA (Joshi et al., 2017), and PopQA (Mallen et al., 2023); and four multi-hop QA benchmarks:
HotpotQA (Yang et al., 2018), 2WikiMultiHopQA (Ho et al., 2020), MuSiQue (Trivedi et al., 2022),
and Bamboogle (Press et al., 2023). Consistent with standard practice (Yu et al., 2024; Jin et al.,
2025), EM is used as the evaluation metric.

7
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Table 1: Experiment results on seven QA benchmarks. Bold denotes best results.
Single-Hop QA Multi-Hop QA

Methods NQ TriviaQA PopQA HotpotQA 2Wiki Musique Bamboogle Avg.

Non-RL Baselines
Direct Generation 10.6 28.8 10.8 14.9 24.4 2.0 2.4 13.4
SFT 24.9 29.2 10.4 18.6 24.8 4.4 11.2 17.6
RAG 34.8 54.4 38.7 25.5 22.6 4.7 8.0 27.0
Search-o1 23.8 47.2 26.2 22.1 21.8 5.4 32.0 25.5
IRCoT 11.1 31.2 20.0 16.4 17.1 6.7 24.0 18.1

Qwen2.5-3B-Base
Search-R1 40.6 58.7 43.5 28.4 27.3 4.9 8.8 30.3
R1 22.6 45.5 17.3 20.1 26.8 5.5 22.4 22.9
ReSearch 42.7 59.7 43.0 30.5 27.2 7.4 12.8 31.9
GRPO 45.2 61.2 43.8 32.6 29.7 7.8 12.9 33.3
Stratified GRPO 45.9 61.4 43.0 40.8 39.9 17.7 42.7 41.6

Qwen2.5-3B-Instruct
Search-R1 34.1 54.5 37.8 32.4 31.9 10.3 26.4 32.5
R1 21.0 44.9 17.1 20.8 27.5 6.0 19.2 22.4
ReSearch 36.5 57.1 39.5 35.1 27.2 9.5 26.6 33.1
GRPO 33.4 52.9 36.7 26.5 27.4 6.4 21.0 29.2
Stratified GRPO 44.5 60.9 44.3 41.0 37.3 16.9 38.7 40.5

Baselines. We compare Stratified GRPO against a comprehensive set of non-RL and RL methods.
Non-RL methods include Direct Generation, Supervised Fine-Tuning (SFT), RAG (Lewis et al.,
2020), Search-o1 (Li et al., 2025), and IRCoT (Trivedi et al., 2023). RL Methods includes Search-
R1 (Jin et al., 2025), RL without search (R1) (DeepSeek-AI et al., 2025), ReSearch (Chen et al.,
2025), and GRPO (Shao et al., 2024). Most baseline results are cited from Jin et al. (2025) since
their experiment setting is consistent with ours.

4.2 MAIN RESULTS

The experiment results, summarized in Table 1, demonstrate that Stratified GRPO consistently out-
performs all baseline methods across seven QA benchmarks. On average, our method improves upon
GRPO by up to 11.3 points and surpasses the best-performing baseline by up to 8.3 points. The ad-
vantage is particularly pronounced on multi-hop benchmarks, where Stratified GRPO achieves an
average performance gain of up to 14.5 points over the strongest baseline. We attribute this success
to our method’s ability to eliminate systematic cross-stratum bias, enabling more effective learning
from trajectories with varying search counts.

Notably, the consistent outperformance of Stratified GRPO over the PPO-based Search-R1 empir-
ically suggests that the challenge of cross-stratum bias should also hold true for PPO. While our
analysis focuses on the explicit bias in policy gradient’s global baseline, this issue likely manifests
in algorithms like PPO through the difficulty of training an accurate value function for structurally
diverse trajectories. Our results, therefore, indicate that a principled handling of trajectory structure
is a key factor in robustly training effective search agents.

4.3 ANALYSIS

In this section, we conduct an ablation study to isolate the contributions of Stratified GRPO’s com-
ponents. We also empirically analyze its training dynamics in comparison to GRPO.

Ablation Studies. We perform an ablation study to analyze the contribution of each component of
our proposed method. As shown in Table 2, each component provides a clear benefit. SAN alone
yields significant gains over the baseline GRPO. The subsequent addition of advantage blending
further enhances performance, establishing the effectiveness of the full Stratified GRPO algorithm,
which consistently outperforms the other variants, especially on complex multi-hop QA tasks.
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Table 2: Ablation study analyzing the components of Stratified GRPO, comparing the baseline
GRPO, GRPO with SAN, and our full Stratified GRPO.

Single-Hop QA Multi-Hop QA

Model Variants NQ TriviaQA PopQA HotpotQA 2wiki Musique Bamboogle Avg.

Qwen2.5-3B-Base
GRPO 45.2 61.2 43.8 32.6 29.7 7.8 12.9 33.3
w/ SAN 43.7 59.3 41.1 36.6 38.4 12.6 25.0 36.7
Stratified GRPO 45.9 61.4 43.0 40.8 39.9 17.7 42.7 41.6

Qwen2.5-3B-Instruct
GRPO 33.4 52.9 36.7 26.5 27.4 6.4 21.0 29.2
w/ SAN 42.5 60.1 44.2 39.4 41.0 16.0 36.3 39.9
Stratified GRPO 44.5 60.9 44.3 41.0 37.3 16.9 38.7 40.5
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Figure 1: Training dynamics of Stratified GRPO and GRPO. The left plots show training rewards,
and the right plots show the number of search calls per question over training steps.

Improved Reward and Training Stability. Figure 1 (left) illustrates the training reward curves.
For the base model, Stratified GRPO consistently achieves higher rewards than the standard GRPO
baseline. More notably, when applied to the instruct model, standard GRPO suffers from training
collapse—a known instability issue also documented by prior works (Jin et al., 2025). In contrast,
Stratified GRPO maintains a stable and monotonically increasing reward signal, demonstrating its
superior stability and learning efficiency.

Learning an Effective Search Policy. A crucial ability for search agents is learning to identify
knowledge gaps and issue search queries accordingly. We analyze this by tracking the average num-
ber of search calls per question during training (Figure 1, right). Stratified GRPO successfully learns
a policy that converges to approximately 2.5 search calls, indicating it has learned to perform itera-
tive searches. Conversely, the baseline GRPO stagnates at around one search call for the base model
and causes training collapse for the instruct model. This is because GRPO’s cross-stratum bias pre-
vents it from exploring potentially better search policies. This result demonstrates that Stratified
GRPO learns a more effective search policy, which directly translates to its superior performance on
multi-hop benchmarks that require sequential information retrieval, as shown in Table 1.

5 CONCLUSION

In this work, we identify and formalize cross-stratum bias, a key obstacle for training LLM search
agents with RL. It arises from improperly comparing structurally heterogeneous trajectories using
a global baseline. It causes distorted credit assignment and hampers exploration. To address this,
we introduce Stratified GRPO, a principled algorithm that partitions trajectories into homogeneous
strata and computes advantages locally. Our analysis proves this method eliminates cross-stratum
bias and achieves conditional unbiasedness and unit variance within each stratum, while retaining
these properties globally. Extensive experiments on diverse question-answering benchmarks demon-
strate that Stratified GRPO substantially outperforms GRPO by up to 11.3 points, achieving higher
rewards, greater training stability, and more effective search strategies. These results establish strat-
ification as a principled remedy for structural heterogeneity in RL for LLM search agents.
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Algorithm 1: Stratified GRPO
Require: Policy pθ, batch B = {τ1, . . . , τK} with rewards {Ri}, blending α∈ [0, 1], stabilizer

ε>0.
1: Compute global stats: R̄global← 1

K

∑
i Ri ;

σ̂global←
√

1
K

∑
i(Ri − R̄global)2.

2: For all i, set AGN(τi)←(Ri − R̄global)/(σ̂global + ε).
3: Partition indices into per-prompt, per-stratum groups Ik(x) (e.g., by search count).
4: for each prompt x do
5: for each stratum k with index set Ik(x) do
6: nk←|Ik(x)|; R̄k← 1

nk

∑
i∈Ik(x)

Ri; σ̂k←
√

1
nk

∑
i∈Ik(x)

(Ri − R̄k)2.

7: for i ∈ Ik(x) do
8: ASAN(τi)←(Ri − R̄k)/(σ̂k + ε).
9: Ablend(τi)←αASAN(τi) + (1− α)AGN(τi).

10: end for
11: end for
12: end for
13: Return gradient estimate ĝblend ← 1

K

∑K
i=1 Ablend(τi)∇θ log pθ(τi | x).

A RELATED WORK

A.1 REINFORCEMENT LEARNING FOR LARGE LANGUAGE MODELS

Reinforcement learning (RL) (Kaelbling et al., 1996; Sutton et al., 1999) has become a central com-
ponent in post-training large language models (LLMs). The most widely adopted paradigm is Rein-
forcement Learning from Human Feedback (RLHF), which learns a reward model from human pref-
erences and then optimizes a policy with RL algorithms, most often Proximal Policy Optimization
(PPO) (Ouyang et al., 2022; Schulman et al., 2017). Although effective, RLHF can be computation-
ally expensive and brittle due to reward model training and distribution shift. To reduce the cost and
instability of explicit reward modeling, direct alignment methods like DPO optimize preference data
without training a separate reward model (Rafailov et al., 2023; Zhu et al., 2025). A complemen-
tary line of work targets reasoning by exploiting verifiable outcomes using Reinforcement Learning
with Verifiable Rewards (RLVR) (DeepSeek-AI et al., 2025; Shao et al., 2024; Ahmadian et al.,
2024; Yu et al., 2025). A prominent approach is Group Relative Policy Optimization (GRPO) (Shao
et al., 2024), which removes PPO’s dependency on a learned value function by using group-based
baselines, and RLOO (Ahmadian et al., 2024) revisits REINFORCE (Williams, 1992) with simpli-
fications tailored to LLM training. However, most of these advances target general conversational
capabilities. By contrast, the systematic study of RL algorithms for LLM agents, especially search
agents that interleave generation with search over external information and require long-horizon rea-
soning, remains underexplored. Our work addresses this gap by providing a systematic analysis of
the LLM search agent setting and proposing RL algorithms tailored to its unique challenges.

A.2 LARGE LANGUAGE MODEL SEARCH AGENTS

Large language models (LLMs) (Achiam et al., 2023; Team, 2024; Zhao et al., 2023) exhibit strong
reasoning capabilities (DeepSeek-AI et al., 2025). Building on this capacity, recent work has devel-
oped agentic workflows that equip LLMs with external tools for complex problem solving (Schick
et al., 2023). A prominent instantiation is the LLM search agent, which treats a search engine as a
callable tool at inference time (Schick et al., 2023): the model iteratively proposes queries, retrieves
evidence, and updates its reasoning based on retrieved documents (Trivedi et al., 2023). Two main
approaches have emerged. One line of work uses carefully designed prompts to instruct LLMs to
interleave reasoning and retrieval (Trivedi et al., 2023; Yao et al., 2023). Another line curates trajec-
tories that mix reasoning with search and then applies supervised fine-tuning (Schick et al., 2023;
Asai et al., 2023). More recently, several studies (Chen et al., 2025; Jin et al., 2025; Song et al.,
2025; Zheng et al., 2025) show that complex search-and-reasoning behaviors can be acquired di-
rectly from outcome-based rewards using RL algorithms such as PPO or GRPO. However, these RL
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applications typically adopt general-purpose algorithms without addressing the specific intricacies
of the search agent setting. Our work identifies and formalizes cross-stratum bias as a fundamental
challenge for LLM search agents, arising from the heterogeneous nature of agent trajectories that
use different search strategies. To overcome this, we propose Stratified GRPO, a principled algo-
rithm designed to eliminate this bias and improve learning more effective search policies for LLM
search agents.

B PROOFS OF THEORETICAL RESULTS

B.1 PROOF OF THEOREM 1

Proof. By construction, both advantage estimators are centered, meaning their sample mean over
the batch B is zero:

1

K

K∑
i=1

ÂG(τi) = 0,
1

K

K∑
i=1

ÂS(τi) =
1

K

I−1∑
k=0

∑
τi∈Bk

(Ri − R̄k) = 0. (8)

The variance of the global advantage estimator is the total sample variance of the rewards:

Var[ÂG] =
1

K

K∑
i=1

(Ri − R̄global)
2.

We decompose this total variance by partitioning the sum by stratum and adding and subtracting the
stratum mean R̄k within the squared term:

Var[ÂG] =
1

K

I−1∑
k=0

∑
τi∈Bk

(
(Ri − R̄k) + (R̄k − R̄global)

)2
=

1

K

I−1∑
k=0

∑
τi∈Bk

(Ri − R̄k)
2

+
1

K

I−1∑
k=0

∑
τi∈Bk

2(Ri − R̄k)(R̄k − R̄global)

+
1

K

I−1∑
k=0

∑
τi∈Bk

(R̄k − R̄global)
2.

The cross-term in the above equation vanishes because, for each stratum k, the inner sum∑
τi∈Bk

(Ri − R̄k) = 0 by the definition of R̄k. The above expression thus simplifies to the well-
known variance decomposition formula:

Var[ÂG] =
1

K

I−1∑
k=0

∑
τi∈Bk

(Ri − R̄k)
2

︸ ︷︷ ︸
Within-Stratum Variance

+
1

K

I−1∑
k=0

nk(R̄k − R̄global)
2

︸ ︷︷ ︸
Between-Stratum Variance

. (9)

The first term in Equation (9) is precisely the definition of Var[ÂS ], since

Var[ÂS ] =
1

K

K∑
i=1

(
ÂS(τi)− ¯̂

AS

)2
,

where ¯̂
AS is the sample mean of the stratified advantages over the entire batch. As established in

Equation (8), this mean is zero ( ¯̂AS = 0). Therefore, the variance simplifies to the mean squared
value:

Var[ÂS ] =
1

K

K∑
i=1

(
ÂS(τi)

)2
.
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To evaluate this sum, we partition it according to the strata {Bk}I−1
k=0:

Var[ÂS ] =
1

K

I−1∑
k=0

∑
τi∈Bk

(
ÂS(τi)

)2
.

Finally, we substitute the definition of the stratified advantage, ÂS(τi) = Ri − R̄k, for trajectories
within each stratum Bk:

Var[ÂS ] =
1

K

I−1∑
k=0

∑
τi∈Bk

(Ri − R̄k)
2.

This expression is identical to the first term in the variance decomposition identity (Equation (9)),
thus proving the assertion.

The second term in Equation (9), the between-stratum variance, is a weighted sum of squares and is
therefore non-negative. This yields the inequality:

Var[ÂG] = Var[ÂS ] +
1

K

I−1∑
k=0

nk(R̄k − R̄global)
2 ≥ Var[ÂS ]. (10)

Equality holds if and only if the between-stratum variance component is zero. This requires every
term in the sum to be zero, which means R̄k = R̄global for all k. This condition is met only when
all stratum means coincide. Otherwise, the between-stratum variance is strictly positive, and the
inequality is strict.

Remark 1. Equation (9) is the finite-sample form of the classical within–between variance de-
composition in ANOVA. It shows that replacing the global baseline with stratum-specific baselines
always weakly reduces the variance of advantage estimates, and strictly reduces it whenever the
strata have heterogeneous reward means.

B.2 PROOF OF PROPOSITION 2

Proof. Let a stratum for a given prompt x be denoted by Bk(x), containing nk(x) trajectories with
rewards {R1, . . . , Rnk(x)}. The empirical mean and standard deviation are

µ̂k(x) =
1

nk(x)

nk(x)∑
i=1

Ri

and

σ̂k(x) =

√√√√ 1

nk(x)

nk(x)∑
i=1

(Ri − µ̂k(x))2.

Without loss of generality, suppose that nk ≥ 2, and σ̂k(x) > 0.

Consider the affine transformation R′
i = aRi + b for a > 0. We first compute the new empirical

mean µ̂′
k(x) and standard deviation σ̂′

k(x) for the transformed rewards.

The new mean is:

µ̂′
k(x) =

1

nk(x)

nk(x)∑
i=1

R′
i =

1

nk(x)

nk(x)∑
i=1

(aRi + b) = a

 1

nk(x)

nk(x)∑
i=1

Ri

+ b = aµ̂k(x) + b.
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The new variance is:

(σ̂′
k(x))

2 =
1

nk(x)

nk(x)∑
i=1

(R′
i − µ̂′

k(x))
2

=
1

nk(x)

nk(x)∑
i=1

(
(aRi + b)− (aµ̂k(x) + b)

)2
=

1

nk(x)

nk(x)∑
i=1

(
a(Ri − µ̂k(x))

)2
= a2

 1

nk(x)

nk(x)∑
i=1

(Ri − µ̂k(x))
2

 = a2(σ̂k(x))
2.

Since a > 0, the new standard deviation is σ̂′
k(x) =

√
a2(σ̂k(x))2 = aσ̂k(x).

Finally, we compute the new advantage A′
SAN for an arbitrary trajectory τi ∈ Bk(x):

A′
SAN(τi) =

R′
i − µ̂′

k(x)

σ̂′
k(x)

=
(aRi + b)− (aµ̂k(x) + b)

aσ̂k(x)

=
a(Ri − µ̂k(x))

aσ̂k(x)

=
Ri − µ̂k(x)

σ̂k(x)
= ASAN(τi).

This shows that the advantage computed from the transformed rewards is identical to the original,
completing the proof.

B.3 PROOF OF THEOREM 2

Proof. We prove the identity by introducing the variance of the intermediate stratified estimator,
Var[ÂS ], and decomposing the total difference into two parts. The total difference can be written as
a telescoping sum:

Var[ÂG]−Var[ASAN] =
(
Var[ÂG]−Var[ÂS ]

)
+
(
Var[ÂS ]−Var[ASAN]

)
. (11)

By Theorem 1,

Var[ÂG]−Var[ÂS ] =
1

K

I−1∑
k=0

nk(R̄k − R̄global)
2.

Moreover, by direct expansion, the empirical variance of the stratified advantage is

Var[ÂS ] =
1

K

I−1∑
k=0

nkσ
2
k, Var[ASAN] =

1

K

I−1∑
k=0

nk
σ2
k

(σk + ε)2
.

Then we can compute their difference:

Var[ÂS ]−Var[ASAN] =
1

K

I−1∑
k=0

nkσ
2
k −

1

K

I−1∑
k=0

nk
σ2
k

(σk + ε)2
=

1

K

I−1∑
k=0

nkσ
2
k

(
1− 1

(σk + ε)2

)
.

Substituting the two expressions into Equation (11) can get the final result.

B.4 PROOF OF THEOREM 3

Proving Theorem 3 relies on the following two lemmas:

16
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Lemma 1 (Conditional expectation of the score function). Let B ⊆ {τ} be a fixed stratum and fix
the context x. Assume pθ(τ | x) is differentiable in θ, and that differentiation may be interchanged
with summation/integration. Define

Z(θ;x) := Prθ(τ ∈ B | x) =
∑
τ∈B

pθ(τ | x) (or the corresponding integral in the continuous case).

(12)
If Z(θ;x) > 0, then

E[∇θ log pθ(τ | x) | τ ∈ B, x] = ∇θ log Prθ(τ ∈ B | x).

In particular, this conditional expectation equals zero if and only if Prθ(τ ∈ B | x) is constant in θ.

Proof. By definition, the conditional distribution restricted to B is

pθ(τ | x, τ ∈ B) =
pθ(τ | x)
Z(θ;x)

, τ ∈ B.

Hence, using p∇ log p = ∇p and assuming we can exchange differentiation and summa-
tion/integration,

E[∇θ log pθ(τ | x) | τ ∈ B, x] =
∑
τ∈B

pθ(τ | x, τ ∈ B)∇θ log pθ(τ | x)

=
1

Z(θ;x)

∑
τ∈B

pθ(τ | x)∇θ log pθ(τ | x)

=
1

Z(θ;x)

∑
τ∈B

∇θpθ(τ | x)

=
∇θZ(θ;x)

Z(θ;x)

= ∇θ logZ(θ;x),

where the sum can be replaced by an integral if τ is continuous. This proves the stated identity. The
final claim about vanishing follows immediately.

Remark 2. The identity above does not imply the conditional expectation is zero unless Prθ(τ ∈
B | x) is independent of θ. If the stratum B depends on θ (i.e., B = B(θ)), differentiating Prθ(τ ∈
B(θ) | x) introduces additional terms due to the moving support; the above proof assumes B is
fixed.

Lemma 2 (Conditional Advantage–Score Identity). For any stratum k, the following identity holds:

Eθ

[
(R(τ)− µk(θ))∇θ log pθ(τ | S = k)

∣∣ S = k
]
= ∇θµk(θ), (13)

where µk(θ) := Eθ[R(τ) | S = k] is the mean reward in stratum k.

Proof. This identity is a standard result from policy gradient theory, derived by applying the
log-derivative trick to the gradient of an expectation and introducing the stratum mean µk(θ) as
a variance-reducing baseline. For detailed derivations, see the original REINFORCE paper by
Williams (1992) and the textbook treatment in Sutton & Barto (2018).

Next, we give a proof of Theorem 3:

Proof. We prove the identity by first applying the law of total expectation to decompose the total
expectation over the strata k:

Eθ

[
ASAN(τ)∇θ log pθ(τ)

]
=
∑
k

Eθ

[
ASAN(τ)∇θ log pθ(τ)1S=k

]
=
∑
k

pk(θ)Eθ

[
ASAN(τ)∇θ log pθ(τ)

∣∣S = k
]
. (14)
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Now, we analyze the conditional expectation for a single stratum k. The key is to decompose the
score function using the chain rule of probability, pθ(τ) = pθ(τ | S = k) pk(θ). Taking the log-
gradient gives the identity:

∇θ log pθ(τ) = ∇θ log pθ(τ | S = k) +∇θ log pk(θ).

Substituting this into the conditional expectation allows us to split it into two terms by linearity:

Eθ

[
ASAN(τ)∇θ log pθ(τ)

∣∣S = k
]

= Eθ

[
ASAN(τ)∇θ log pθ(τ | S = k)

∣∣S = k
]

︸ ︷︷ ︸
Term 1: Conditional Score Part

+Eθ

[
ASAN(τ)∇θ log pk(θ)

∣∣S = k
]

︸ ︷︷ ︸
Term 2: Marginal Score Part

.

We analyze each term separately.

Term 2 (Marginal Score Part). The term ∇θ log pk(θ) depends only on the stratum index k and
the parameter θ, so it is a constant with respect to the expectation conditional on S = k. We can
therefore factor it out:

Eθ

[
ASAN(τ)∇θ log pk(θ)

∣∣S = k
]
= (∇θ log pk(θ)) · Eθ[ASAN(τ) | S = k]

= (∇θ log pk(θ)) ·
Eθ[R(τ)− µk(θ) | S = k]

σk(θ) + ε

= (∇θ log pk(θ)) ·
µk(θ)− µk(θ)

σk(θ) + ε
= 0.

Thus, the second term vanishes exactly. This is the crucial step where the structural part of the
gradient is eliminated.

Term 1 (Conditional Score Part). For this term, we substitute the definition of ASAN(τ), noting
that conditional on S = k, µS(θ) becomes the constant µk(θ):

Eθ

[
ASAN(τ)∇θ log pθ(τ | S = k)

∣∣S = k
]

= Eθ

[
R(τ)− µk(θ)

σk(θ) + ε
∇θ log pθ(τ | S = k)

∣∣∣∣S = k

]
=

1

σk(θ) + ε
Eθ

[
(R(τ)− µk(θ))∇θ log pθ(τ | S = k)

∣∣S = k
]
.

The remaining expectation is precisely the Conditional Advantage–Score Identity (Lemma 2), which
equals ∇θµk(θ). Therefore, the first term equals:

1

σk(θ) + ε
∇θµk(θ).

Conclusion. Substituting the results for Term 1 and Term 2 back into the original sum over strata,
we obtain the final result:

Eθ

[
ASAN(τ)∇θ log pθ(τ)

]
=
∑
k

pk(θ)

(
1

σk(θ) + ε
∇θµk(θ) + 0

)
=
∑
k

pk(θ)

σk(θ) + ε
∇θµk(θ).

This completes the proof.
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B.5 PROOF OF PROPOSITION 3

Proof. The proof follows from direct algebraic manipulation. We start from the right-hand side
(RHS) and substitute the definitions of αk(x), ASAN(τi), and ∆k(x):

RHS = αk(x) ·ASAN(τi) + ∆k(x)

=

(
σ̂k(x) + ε

σ̂global(x) + ε

)
·
(
R(τi)− µ̂k(x)

σ̂k(x) + ε

)
+

(
µ̂k(x)− R̄global(x)

σ̂global(x) + ε

)
(by definition)

=
R(τi)− µ̂k(x)

σ̂global(x) + ε
+

µ̂k(x)− R̄global(x)

σ̂global(x) + ε
(cancel (σ̂k(x) + ε))

=
(R(τi)− µ̂k(x)) + (µ̂k(x)− R̄global(x))

σ̂global(x) + ε
(combine terms)

=
R(τi)− R̄global(x)

σ̂global(x) + ε
(cancel µ̂k(x))

= AGN(τi). (definition of AGN)

B.6 PROOF OF THEOREM 4

Proof. The proof proceeds by direct calculation of the conditional expectation and variance for each
estimator in the large-sample limit. All quantities are conditioned on a fixed prompt x.

First, we prove the results for ASAN. The SAN advantage for a trajectory τ in stratum k is defined
as ASAN(τ) =

R(τ)−µk

σk
(ignoring ε for clarity in the limit). By the linearity of expectation,

E[ASAN(τ) | k, x] = E
[
R(τ)− µk

σk

∣∣∣∣ k, x]
=

1

σk

(
E[R(τ) | k, x]− µk

)
=

1

σk
(µk − µk) = 0.

This shows that SAN is an unbiased signal carrier within each stratum. Next, by the properties of
variance, Var(cX + d) = c2 Var(X),

Var(ASAN(τ) | k, x) = Var

(
R(τ)− µk

σk

∣∣∣∣ k, x)
=

1

σ2
k

Var(R(τ)− µk | k, x)

=
1

σ2
k

Var(R(τ) | k, x)

=
σ2
k

σ2
k

= 1.

This shows that SAN provides a consistently scaled (unit variance) carrier in every stratum.

Second, we prove the results for AGN. The GN advantage is defined as AGN(τ) =
R(τ)−µ

σ . So

E[AGN(τ) | k, x] = E
[
R(τ)− µ

σ

∣∣∣∣ k, x]
=

1

σ

(
E[R(τ) | k, x]− µ

)
=

µk − µ

σ
.
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This is generally non-zero whenever stratum means differ (µk ̸= µ), which confirms that GN is a
biased carrier within the stratum. This non-zero expectation represents a spurious signal. Next,

Var(AGN(τ) | k, x) = Var

(
R(τ)− µ

σ

∣∣∣∣ k, x)
=

1

σ2
Var(R(τ)− µ | k, x)

=
1

σ2
Var(R(τ) | k, x) = σ2

k

σ2
.

This shows that the variance of the GN carrier is not consistent across strata; it depends on the ratio
of the stratum’s variance to the global variance.

The analysis of the conditional statistics reveals the structural superiority of SAN. Within any given
stratum, SAN provides a zero-mean, unit-variance signal carrier, which serves as a pure and con-
sistent baseline for the policy gradient calculation. GN, in contrast, introduces a spurious signal (a
non-zero mean) and has an inconsistent variance, making it a biased and less reliable signal carrier.
This completes the proof.

B.7 PROOF OF THEOREM 5

Proof. For (a), applying the law of total expectation,

E[ASAN | x] =
∑
k

pk(x)E
[
R− µk(x)

σk(x)

∣∣∣S=k, x

]
=
∑
k

pk(x)
E[R− µk(x) | S=k, x]

σk(x)

= 0.

E[AGN | x] =
E[R | x]− µ(x)

σ(x)
= 0.

For (b), by the law of total variance,
Var(ASAN | x) = E[Var(ASAN | S, x)] + Var(E[ASAN | S, x]) .

We now analyze each of the two terms in the right-hand side separately.

From Theorem 4, we know that the idealized SAN advantage is conditionally unbiased in every
stratum:

E[ASAN | S = k, x] = 0, for all strata k.
Since the conditional expectation is a constant (zero) regardless of the stratum S, its variance is zero:

Var(E[ASAN | S, x]) = Var(0) = 0.

Next, we evaluate the first term, which is the expected variance within strata. We start with the inner
term, the variance conditional on a specific stratum k:

Var(ASAN | S = k, x) = Var

(
R− µk(x)

σk(x)

∣∣∣∣∣ k, x
)

=
1

σ2
k(x)

Var(R | k, x)

=
σ2
k(x)

σ2
k(x)

= 1.

Now, we take the expectation of this quantity over the random stratum S. This is equivalent to a
weighted average over all strata, where the weights are the probabilities pk(x) := P (S = k | x):

E[Var(ASAN | S, x)] =
∑
k

pk(x) ·Var(ASAN | S = k, x)

=
∑
k

pk(x)
σ2
k(x)

σ2
k(x)

=
∑
k

pk(x) = 1.
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Finally, we add the two components back together:

Var(ASAN | x) = E[Var(ASAN | S, x)] + Var(E[ASAN | S, x]) = 1 + 0 = 1.

For GN, since AGN = (R− µ(x))/σ(x),

Var(AGN | x) =
Var(R | x)

σ2(x)
=

σ2(x)

σ2(x)
= 1.

C COMPARISON OF LOCAL VS. GLOBAL MOMENTS OF SAN AND GN
ADVANTAGES

Table 3: Local (conditional on stratum S=k) vs. global (marginal over S) moments of SAN and
GN advantages. Here σ2

k = Var(R | S=k, x) and σ2 = Var(R | x). For ε = 0, SAN achieves joint
standardization (local & global), whereas GN only standardizes globally.

Local (given S=k) Global (marginal over S)
SAN mean 0 0
SAN variance 1 1

GN mean µk−µ
σ 0

GN variance σ2
k

σ2 1

D EXPERIMENT DETAILS

D.1 TRAINING SETTINGS

We train our models on 8 GPUs using a global batch size of 256 and a mini-batch size of 256.
The maximum sequence length is set to 4096 tokens, with maximum response length and retrieved
content length of 500 tokens in each interaction turn. For rollout sampling, we use a temperature of
1.0 and a top-p value of 1.0. We use a learning rate of 1e-6 with a warm-up ratio of 0.1. Training is
conducted for 200 steps. We use a KL divergence coefficient β of 0.001 and a clipping ratio ϵ of 0.2.
For both GRPO and Stratified GRPO, we sample 8 responses per prompt. Stratified GRPO uses α
of 0.8 for Qwen 2.5 3B Instruct and 0.6 for Qwen 2.5 3B Base. The number of maximum interaction
turns is set to 4, and we retrieve the top 3 passages for each search call. Our implementation is based
on the Verl framework (Sheng et al., 2025).

E LLM USAGE DISCLOSURE

We utilized a large language model (LLM) as a writing assistant to enhance the clarity, grammar,
and readability of this manuscript. The LLM’s role was limited to tasks such as rewording sentences,
refining technical descriptions, and formatting tables into LATEX. All scientific content—including
the conceptual framework, analysis, experiments, and conclusions—was developed exclusively by
the human authors. The authors have meticulously reviewed all LLM-generated suggestions and
bear full responsibility for the scientific integrity and final content of this work.
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