
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

INTRA: INTERLEAVED NON-CONTIGUOUS TOKEN
SPARSE ATTENTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers achieve strong performance across modalities but are bottlenecked by
the quadratic cost of attention. Sparse attention reduces this cost, yet existing meth-
ods either incur high runtime overhead (dynamic patterns) or lose GPU efficiency
due to blockwise masking (static patterns). We introduce INTRA—Interleaved
Non-contiguous Token spaRse Attention—a token-level sparse attention kernel
that decouples memory loading from computation. INTRA preserves blockwise
access for GPU efficiency while flexibly supporting non-contiguous token sparsity,
eliminating mix-block overhead. To ensure global information exchange, INTRA
interleaves complementary static patterns across layers. We further propose the
ISPD Principle, a general guideline for constructing hardware-efficient sparse
patterns. On FLUX.1-dev, INTRA reduces 2K image generation latency from
66s → 43s with no quality loss after LoRA self-distillation. On LLaMA-3.1-8B,
INTRA matches existing sparse attention methods on the SCROLL benchmark
with sequence length up to 16K, demonstrating its scalability.

1 INTRODUCTION

Transformers excel across domains such as NLP and image generation, but their attention cost scales
quadratically with sequence length, creating a bottleneck for long contexts and high-resolution gener-
ation. For instance, FLUX.1-dev Team (2024) requires nearly a minute to produce a 2048×2048
image on a single A100, making generating high-quality images in real time impractical.

Sparse attention has been widely explored to reduce the computation overhead of full attention Liu
et al. (2025); Jiang et al. (2024). Sparse attention kernels can be broadly categorized into dynamic
and static designs. Dynamic sparse kernels flexibly adapt the sparse pattern at runtime and can be
directly applied to pretrained models without finetuning. However, their runtime flexibility comes at
the cost of higher memory and computation overhead, leading to slower inference. In contrast, static
sparse kernels fix the sparsity pattern in advance. While this requires model finetuning to adapt to the
kernel, it results in significantly higher efficiency at inference time. We focus on static kernels in this
work, aiming to design them in a GPU-friendly manner while still enabling rich token interactions.

One limitation of existing sparse attention methods is that they mainly preserve local patterns,
preventing tokens from accessing the global context. Since attention can be viewed as message
passing, restricting information flow to local neighborhoods weakens the model’s ability to capture
long-range dependencies. We argue that effective sparse attention must maintain complete information
propagation across all tokens.

Prior works address this by carefully crafting patterns. For example, CLEAR Liu et al. (2025) adopts
circular local sparsity, and NATTEN Hassani et al. (2023) uses sliding windows. However, these
fine-grained designs break the blockwise structure required for GPU efficiency. As shown in Figure 2,
even when only part of a block is needed, the entire block must still be computed and then masked,
adding overhead and diminishing real speedups compared to theoretical FLOP reductions.

We introduce INTRA—Interleaved Non-contiguous Token spaRse Attention. INTRA applies various
sparse patterns, including potentially non-contiguous ones, across different attention layers of a model.
Although such non-contiguous patterns are often overlooked in existing sparse attention design due
to concerns about non-locality and memory cost, we find that these are not the primary obstacle.
The critical requirement is that cohorts of query tokens consistently attend to the same key subset

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

4k Sequence Length (ms) 16k Sequence Length (ms)

3.6x 7.6x

01.0 0.81.2 0.6 0.4 0.2 2 4 126 148 1610

CLEAR

INTRA

Flash Attention 2

Figure 1: The figure reports the relative speedup achieved by INTRA compared to CLEAR and
FlashAttention 2 on 4K and 16K input lengths, evaluated on an A100 GPU. Note that the axis density
differs between the left and right sides of the figure to accommodate varying inference times.

within a sparse pattern (i.e., only “intra” connections are allowed). INTRA enforces this property,
preserving blockwise memory access (and thus compatibility with FlashAttention) while avoiding
mix-block overhead and enabling more expressive sparse structures. The tradeoff of this efficiency
is that information flows only locally in a layer. To recover global connectivity, INTRA interleaves
complementary static patterns across layers, ensuring that every token can directly or indirectly attend
to all others. (Illustration: think of two interwoven lattices that together span the entire sequence.) To
generalize this design, we propose the Intra Sparse Pattern Design (ISPD) Principle, a guideline for
constructing general hardware-efficient sparse patterns that extends beyond token-level designs.

Our contributions are: 1. A token-level sparse attention kernel that decouples the memory loading
from the attention calculation. 2. Interleave different patterns to ensure full information exchange
of all tokens while maintaining sparsity. 3. The ISPD Principle, a unified framework for designing
efficient sparse patterns, covering both token-wise and sliding window sparsity.

Apply
Attention
Mask

Final
Attention
Score

1.7 2.1 -0.6 3.1

-0.90.22.41.8

2.61.00.5-0.3

2.21.10.3

1.41.31.41.1

-inf -inf-inf

-inf -inf -inf -inf

-inf

-inf

-inf

-inf

-inf

-inf

-inf

-inf

-inf -inf -inf

-inf0.3

-1.2

1.5

1.0-0.6

4.5

Attention
Computation Block Desired OutputAttention Mask

Attention Map
(partial)

0.31.7 2.1 -0.6 3.1

-0.90.2-1.22.41.8

2.61.51.00.5-0.3

1.02.21.10.3-0.6

1.41.31.44.51.1

0.3

-1.2

1.5

1.0-0.6

4.5

Figure 2: Low-level implementation of blockwise sparsity for handling mixed blocks. A mix block is
the block that partially preserves attention scores, as shown on the left side of the figure.

We apply INTRA to both image and text generation models, achieving significant speedups without
quality degradation. On the FLUX.1-dev image model, INTRA matches dense attention quality
while reducing 2K image generation from 66s → 43s on a single A100 after LoRA self-distillation.
On LLaMA 3.1 8B, INTRA achieves accuracy comparable to dense, MInference Jiang et al. (2024),
and XAttn Xu et al. (2025) on the long context SCROLL Shaham et al. (2022) benchmark that scales
to 16K tokens with better efficiency. We hypothesize that INTRA could deliver even greater speedups
on longer sequences. However, because it employs a static-pattern sparse attention mechanism,
fine-tuning at such extended sequence lengths exceeds our computational budget. Notably, a 16K
context represents a fairly standard long-context setting for both image and text tasks, and aligns with
the sequence length used in video generation (e.g., Wan 1.3B Wan et al. (2025) at 480p).

2 RELATED WORKS

2.1 STATIC SPARSE ATTENTION

Sparse attention mechanisms reduce the quadratic complexity of full attention by limiting token-to-
token interactions, making them crucial for scaling transformers to long sequences. Static sparse

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Flux
Original

Flux
INTRA

Flux
CLEAR 1-8

Figure 3: Visual comparison on FLUX.1-devwith different implementations: (left to right) Original
FlashAttention 2, INTRA (our method), and CLEAR. As shown, INTRA maintains image quality.
Please refer to Appendix H for more comparison examples.

attention adopts fixed, input-independent patterns, enabling predictable computation. For instance,
sliding window attention Jiang et al. (2023) restricts each token to attend only to a fixed local
neighborhood, effectively capturing local dependencies. StreamingLLM Peng et al. (2024) proposes
a memory mechanism that retains only the initial and most recent tokens, ensuring bounded latency
and memory usage in long-context settings. Dilated attention Hassani & Shi (2022) introduces
periodic strides to expand receptive fields while maintaining sparsity. Different works adopt sliding
window attention to image-related tasks. NATTEN Hassani et al. (2023) restricts each query token
to attend a 2D neighborhood region. CLEAR Liu et al. (2025) reduces the attention complexity of
diffusion transformers by employing a fixed local window. To improve context coverage, mixed
sparse patterns combine different attention types. Notably, BigBird Zaheer et al. (2020) combines
global tokens, local windows, and random connections to enable sparse yet expressive attention.
Similarly, Longformer Beltagy et al. (2020) integrates global and windowed attention mechanisms.

2.2 DYNAMIC SPARSE ATTENTION

In contrast, dynamic sparse attention adapts its patterns based on input content or model state, aiming
to allocate compute selectively to salient regions. MInference Jiang et al. (2024) and FlexPrefill Lai
et al. (2025) speed up prefill by selecting sparse patterns per attention head, although the cost of
selection remains a bottleneck. xAttention Xu et al. (2025) employs anti-diagonal scores to identify
and prioritize important token blocks dynamically. Native Sparse Attention (NSA) Yuan et al. (2025)
learns sparse attention masks directly through supervision or reinforcement learning, enabling flexible
adaptation to diverse long-context inputs. MoBA Lu et al. (2025a) leverages a Mixture-of-Experts
routing scheme to assign attention patterns based on input characteristics, balancing accuracy and
efficiency. H2O Zhang et al. (2023) introduces a hierarchical routing strategy to dynamically switch
between coarse and fine-grained attention.

2.3 OTHER IMAGE ACCELERATION METHODS

Beyond sparse attention, various token reduction strategies have been proposed to accelerate vision
transformer inference by reducing the effective sequence length. Token pruning methods eliminate
less informative tokens during inference. Dynamic approaches such as Dynamic Token Sparsifica-
tion Rao et al. (2021) or SPViT Kong et al. (2022) assess token importance via learned scoring net-
works or attention distributions. Token merging offers an alternative that avoids hard removal. ToMe
(Token Merging) Bolya et al. (2023) merges similar tokens based on feature proximity. ToMA Lu
et al. (2025b) extends ToMe by applying adaptive merging in both spatial and channel dimensions.

2.4 SPARSE VIDEO GENERATION

Extending sparse attention to video generation introduces additional challenges due to the high
dimensionality of spatiotemporal data. Video models must capture both local spatial details and long-
range temporal dynamics, while keeping computation feasible. STA Zhang et al. (2025) enforces each

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Q block to attend to a strict region to improve hardware efficiency, ensuring that the sparse pattern
remains well-suited for GPU block-wise calculation. Similarly, Video Swin Transformer Liu et al.
(2021) applies shifted window attention across spatial and temporal dimensions, reducing complexity
while maintaining temporal coherence. SparseVideo Xi et al. (2025) categorizes heads into spatial
and temporal ones, enabling efficient long-sequence modeling in diffusion-based video generation.

3 SCATTER AND GATHER SPARSE PATTERN DESIGN

1 2

3 4

21

3 4

21

3 4

21

3 4

1 2

3 4

21

3 4

21

3 4

21

3 4

Figure 4: Our intuition comes from the image subsampling. We split image pixels into four groups,
and the image formed by a single group can still preserve the global shape and content.

The idea behind our token-wise sparsity stems from the locality of images, and with modifications,
the same concept can be applied to language generation. As illustrated in Figure 4, if we divide an
image into non-overlapping 2×2 patches and select only one pixel from each patch, we can form a
new image that is 4 times smaller in resolution. Despite the lower resolution, the overall structure
and content of the image are still recognizable. This suggests that only attending to a subset of tokens
may be sufficient to preserve global image information. Based on this intuition, we apply a similar
concept to the attention mechanism. We divide the input feature map into non-overlapping patches.
Each patch contains a fixed number of tokens. Tokens at the same position across all patches are
grouped together, forming multiple token groups. Since we only compute attention within each group,
this pattern is referred to as Scatter pattern in Figure 5. Suppose the number of groups in the Scatter
pattern is M . Since attention is now applied within each group, the total number of computations is
reduced to M × 1

M2 = 1
M . This leads to a significant reduction in computation. We also note that

Scatter pattern is different from a dilated convolution, as the pattern applies to all tokens in the same
group and is not restricted to a convolutional local region.

However, this Scatter attention design alone causes a major limitation: tokens in one group cannot
access information from other groups, leading to information isolation. Our experiments confirm this
issue in Table 5—image generation tasks work poorly when using only the Scatter pattern. To solve
this, we introduce the Gather pattern. The Gather pattern gathers tokens from all groups to perform
attention. Since each token carries the information of all tokens within its group, the Gather pattern
enables information sharing between groups.

For the FLUX.1-dev model, where each query attends to a fixed-size neighborhood in the Gather
pattern (Gather 0 in Figure 5). In practice, we use a 16×16 region, which spans multiple groups
and enables tokens to attend to information outside of their groups. For language models, we apply a
different Gather pattern (Gather 1 in Figure 5). Suppose the Scatter pattern has G groups. The Gather

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Gather 0 Gather 1

Attend to

Key
Tokens

Query
Tokens

TransformerBlock N

Interleaving

TransformerBlock N+1

Interleaving

Attend to

Key
Tokens

Query
Tokens

Scatter

Attend to

Key
Tokens

Query
Tokens

Figure 5: This figure illustrates the three attention patterns used in INTRA. Scatter and Gather 0
are designed for vision tasks, where query and key tokens are arranged in a 2D feature map format.
Gather 1 is used for language tasks and is visualized in a 1D token sequence layout. Due to space
constraints, the full token sequence in Gather 1 is split into multiple 1D segments, with curved arrows
indicating their consecutive order. We also apply the Scatter pattern to language tasks. For more
detailed visualizations of the LLMs’ Scatter and Gather 1 patterns, please refer to Appendix A.

1 also has G groups. Each group chooses contiguous G tokens along the input order one by one.
This token grouping repeats until all tokens belong to a group. Then, we perform attention within
each group. This effectively allows interaction between different groups because each one contains
tokens from all groups. By interleaving Scatter and Gather patterns, we ensure that all tokens can
exchange information, either directly or indirectly, while maintaining efficient attention computation.
In contrast, solely using either pattern will not work in the image task as shown in the Table 5.

4 INTRA SPARSE PATTERN DESIGN

In this section, we introduce the Intra Sparse Pattern Design (ISPD) Principle for guiding the
hardware-efficient sparse pattern design. The principle is intuitively simple: sparse patterns that
have only intra-CQS attention are efficient. We formalize the ISPD Principle using the concept of
Computational Query Sets (CQS).

A Computational Query Set is a group of query tokens that attend to the same set of key tokens
under a sparse attention pattern. Each token in a CQS is associated with four indices:

• iqg: Global index of the query token in the input sequence

• iql : Local index of the query token within its CQS

• ikg : Global index of the key token in the input sequence

• ikl : Local index of the key token within the attended key set

We define a sparse attention pattern as hardware-efficient if it satisfies the following three conditions:

1. Coverage: The union of all CQSs fully covers the set of query tokens. Each query token
can belong to more than one CQSs.

2. Index Mapping: There exist two functions fq and fk such that, for a given CQS index icqs,

iqg = fq(i
q
l , i

cqs), ikg = fk(i
k
l , i

q
l , i

cqs) (1)

These functions map local indices within the CQS to their global positions in the input
sequence.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3. Block Alignment: Each CQS should contain a number of query tokens approximately
divisible by a predefined query block size B. In our case, we use B = 64 to match the block
size used in FlashAttention.

Our proposed Scatter and Gather patterns adhere to the ISPD principle. Each group in the Scatter
pattern serves as a CQS. For instance, in the LLM Scatter configuration with 8 groups and an input
sequence length of 4096, each CQS comprises 512 tokens. This size is divisible by the block size
B = 64. The relevant mapping functions fq and fk are provided in Appendix C.1. In our proposed
Gather 0 pattern, each query block is treated as a CQS. This satisfies the coverage and block alignment
conditions. We provide the corresponding fq and fk functions in Appendix C.2.

Since attention computation is equivariant, its output changes in the same way we change the query
order, regardless of the K/V order. Therefore, if a pattern follows the ISDP principle, we can
manipulate the Q order in the attention map to group the tokens in the same CQS together. Then,
in each CQS, we can reorder the K in the attention map to gather the computation-needed places
together to form the structured rectangular regions as shown in Figure 6.

𝑄ଷ

𝑄ସ

𝑄ଶ

𝑄଺

𝑄ହ

𝑄ଵ

𝑄଴

𝑄଻

Shuffle

𝑄ଷ

𝑄ସ

𝑄ଶ

𝑄଺

𝑄ହ

𝑄ଵ

𝑄଴

𝑄଻

:𝐶𝑄𝑆ଶ :𝐶𝑄𝑆ଷ :𝐶𝑄𝑆ସ:𝐶𝑄𝑆ଵ

Attention Map

𝐾଴ 𝐾ଵ 𝐾ଶ 𝐾ଷ 𝐾ସ 𝐾ହ 𝐾଺ 𝐾଻ 𝐾଼ 𝐾ଽ 𝐾ଵ଴𝐾ଵଵ

𝐾଴ 𝐾ଵ 𝐾଻ 𝐾ଵ଴ 𝐾ଵଵ

𝐾ଶ 𝐾ସ 𝐾଼

𝐾଴ 𝐾ଵ 𝐾଼ 𝐾ଵ଴𝐾ଵଵ

𝐾ଶ 𝐾଺ 𝐾ଵଵ

Figure 6: We split the sample attention map into 4 CQSs. For each CQS, we can group the scores in
the attention map together to form the rectangular regions.

To explore the full potential of our design, we formulate the problem of general sparse pattern
implementation as a constrained optimization problem. The objective is to find the CQSs that
minimize the masking steps. Details of this formulation are provided in Appendix D.

5 KERNEL DESIGN: DECOUPLING MEMORY LOADING FROM COMPUTATION

We build our kernel by extending FlashAttention. To enable sparse pattern compatibility, we decom-
pose FlashAttention into two stages:

1. Global memory interaction: FlashAttention loads the Q/K/V/O blocks from global memory
into shared memory and writes the output tokens back to global memory (Please refer to
Appendix B for GPU memory hierarchy background information).

2. Attention computation: Performing softmax and value aggregation with shared memory.

Our kernel design follows the ISPD principle. It selects only the necessary Q, K, and V tokens
required by the sparse attention calculation from global memory and stores them contiguously into
shared memory. Our design changes the loading unit from blocks to potentially non-contiguous tokens
in global memory. Because we place the tokens in the contiguous location in shared memory, the
following attention computation remains unchanged and continues to leverage the high performance
of FlashAttention. After computation, the attention outputs are written back to their initial, potentially
non-contiguous positions in global memory. In comparison, a blockwise implementation could only
simulate this behavior by masking out unwanted values after loading large contiguous blocks—an

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

approach that is less efficient both in memory and compute. Our design ensures that the sparse
patterns that do not align with blockwise computation can still be efficiently implemented.

In fact, our custom token loader is a generalized version of the original FlashAttention contiguous
block loading. FlashAttention iteratively loads the Q, K, and V blocks according to the input token
order to compute outputs. This works well with dense attention but severely limits the flexibility
needed to support irregular or token-wise sparse patterns. Token-wise loading can perform block
loading by selecting the contiguous tokens inside the block. This flexible loading mechanism allows
us to implement many sparse patterns efficiently. Our kernel can only load the neighborhood required
by each Q block, making the neighborhood tilling more adaptable.

6 EVALUATION

We evaluate INTRA on both the FLUX.1-dev Team (2024) image generation model and the
LLaMA 3 Touvron et al. (2024) language model. Importantly, INTRA aims to mimic dense attention
by allowing full information interaction. In this way, INTRA changes how the model exchanges
information between tokens, and therefore, a fine-tuning stage is required. In practice, it is sufficient
to use LoRA Hu et al. (2022) adapters rather than full parameter fine-tuning to adapt the model to
INTRA. This makes INTRA applicable to existing models without heavy re-training. We hypothesize
that models pretrained with INTRA could potentially have better performance.

6.1 EXPERIMENTS

Baseline INTRA aims at simulating the full information exchange of dense attention. This differs
from the majority of previous sparse attention works that use dynamic or static patterns to preserve
the partial attention scores. Therefore, not many works are within our comparison scope. For image
generation, we chose CLEAR as the baseline method as it requires fine-tuning of the model. It is
the previous state-of-the-art static sparse pattern method. Since INTRA also uses static patterns,
comparing with CLEAR can test the fine-tuning efficiency of the INTRA interleaved design.

For text generation, we compare with MInference Jiang et al. (2024) and XAttn Xu et al. (2025) on the
long context SCROLL benchmark Shaham et al. (2022). We do not test INTRA on video generation
tasks due to limited resources. The SCROLL benchmark tasks have a long sequence length up to
16K tokens, which matches the sequence length of the Wan 1.3B video generation at 480p resolution.

Experiment Setup We use the same 10K self-generated image-text dataset used by CLEAR
to fine-tune FLUX.1-dev. Following the convention from CLEAR, we randomly sample 5k
COCO Lin et al. (2015) validation set prompts to generate images for evaluation on FID Seitzer
(2020), LPIPS Zhang et al. (2018), and CLIPI Radford et al. (2021). For LLaMA 3, we fine-tune and
evaluate using the SCROLL Shaham et al. (2022) benchmark. It provides standard train, validation,
and test splits. We conduct experiments on the GovReport Huang et al. (2021), Qasper Dasigi et al.
(2021), QMSum Zhong et al. (2021), QUALITY Pang et al. (2022), and SummScreen-FD Chen et al.
(2022) tasks. These datasets were selected because their average 16K input sequence lengths fall
within our fine-tuning capability, and they provide sufficient validation sets for reliable evaluation.

Resource Usage and Practicality All the fine-tuning and evaluations are conducted on NVIDIA
A100 GPUs. The FLUX.1-dev model fine-tuning takes 43 GPU hours, while LLaMA 3 fine-
tuning takes 320 GPU hours. These resource requirements are minimal compared to the cost of full
pretraining for these models, demonstrating that INTRA is a practical and efficient sparse solution.

Results The speedup comparisons of FLUX.1-dev and causal attention speedup are in the Table 1
and Table 2, respectively. For image generation, we compare with CLEAR in both 1024×1024 and
2048×2048 generation settings. The benchmark results of FLUX.1-dev are in the Table 3. INTRA
and CLEAR scores are close on 1k image generation, while INTRA exceeds CLEAR in 2k image
generation. The end-to-end generation time comparison is in the Table 3. INTRA achieves the lowest
inference time in both 1k and 2k image generation. For language tasks, INTRA achieves the best
speedup in all sequence length cases in Table 2 for single causal attention forward. The end-to-end
inference comparison up to 16K and the SCROLL Shaham et al. (2022) benchmark results are in the
Table 4. INTRA achieves the lowest latency in all sequence length settings. INTRA can approach the
performance of the XAttention and MInference after the LoRA fine-tuning on the task Gov Repor,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Single full attention speed comparison on A100 in image geneartion. In this table, we
interleave Scatter/Gather patterns to get the average latency and speedup.

Methods Seq Len Config GFLOPS Latency(ms) Speedup FID ↓

FlashAttention 2
4K

- 260.9 1.181 - -
CLEAR r=8 63.5 0.893 1.32× 11.70
INTRA Interleave Scatter/Gather 50.75 0.324 3.64× 11.74

FlashAttention 2
16K

- 3507.9 15.764 - -
CLEAR r=8 246.2 4.625 3.41× 32.46
INTRA Interleave Scatter/Gather 345.5 2.056 7.67× 15.67

Table 2: Single causal attention speed comparison on A100 in text generation. In this table, we
interleave Scatter/Gather patterns to get the average latency and speedup.

Methods Seq Len GFLOPS Latency(ms) Speedup

FlashAttention 2 4K 137.4 0.82 -
INTRA 17.2 0.16 5.1×

FlashAttention 2

8K

549.8 2.86 -
MInference - 14.3 0.2×
XAttn S=16 - 1.91 1.5×
INTRA 68.7 0.51 5.6×

FlashAttention 2

16K

2199.1 10.57 -
MInference - 26.42 0.4×
XAttn S=16 - 4.22 2.5×
INTRA 274.9 1.75 6.0×

FlashAttention 2

32K

8796.3 40.96 -
MInference - 51.2 0.8×
XAttn S=16 - 8.03 5.1×
INTRA 1099.5 6.5 6.3×

Table 3: End-to-end inference speed comparison between INTRA and CLEAR on 1k and 2k image
generation, along with their image quality scores. CLEAR (r=4–8) samples K and V at 1/4 resolution
with a radius of 8. We omit results for CLEAR (r=4–8) as its generation time exceeds that of the
original dense FLUX.1-dev model.

1024×1024 Image Generation 2048×2048 Image Generation

Method FID (↓) LPIPS (↓) CLIPI (↑) Gen Time(s) FID (↓) LPIPS (↓) CLIPI (↑) Gen Time(s)

Original Model - - - 13.42 - - - 66.78

CLEAR (r=8) 11.70 49.96 0.8995 12.85 32.46 61.62 0.8046 47.81
CLEAR (r=4-8) - - - 13.73 19.27 54.60 0.8467 52.07
INTRA 11.75 49.46 0.9045 11.97 15.67 51.99 0.8559 43.72

Qmsum, and Summ Screen Fd. INTRA even exceeds in the Quality task. However, INTRA struggles
with the Qasper task, and we provide more analysis in the Appendix G.

6.2 ABLATION STUDY

To evaluate the effectiveness of INTRA for image generation, we conduct two ablation studies: (1)
using Scatter pattern only, using Gather pattern only, or interleaving both; (2) the impact of different
numbers of groups in the Scatter pattern when interleaving two patterns. The results are in the Table 5.
We further investigate the interleaving frequency, and the experiment details are in the Appendix E

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: End-to-end latency comparison (left) and SCROLL benchmark performance (right). INTRA
achieves the lowest latency while maintaining competitive benchmark results.

Inference Latency (s) SCROLL Long-context Benchmark

Method 8k ↓ 16k ↓ 32k ↓ Gov Report ↑ Qasper ↑ Qmsum ↑ Quality ↑ SummScreenFd ↑

XAttention 0.61 1.20 2.35 31.16 39.94 24.93 27.5 20.27
MInference 1.08 1.94 3.82 31.44 39.99 25.18 24.5 20.40
INTRA 0.55 1.09 2.21 27.77 36.68 24.45 29.0 19.71

Table 5: Ablation study: Left—whether to use Scatter/Gather or both; Right—number of groups used
in Scatter during interleave.

(a) Use Scatter/Gather or both

FID (↓) LPIPS (↓) CLIPI (↑)

Scatter 213.47 64.91 0.67
Gather 0 13.23 54.10 0.88
Interleave 0/1 11.75 49.46 0.90

(b) Number of groups in Scatter

FID (↓) LPIPS (↓) CLIPI (↑)

4 groups 10.99 48.29 0.908
8 groups 11.75 49.46 0.905
16 groups 12.85 49.88 0.896

Table 5 (a) presents the results of using the Scatter pattern only, the Gather pattern only, and
interleaving both patterns. We observe that using any single pattern leads to significantly worse
performance. In contrast, interleaving both patterns achieves the best results across all evaluation
metrics. This demonstrates the effectiveness of our interleaving approach, where Scatter and Gather
together exchange information among tokens. Table 5 (b) shows the results of varying the number
of groups in the Scatter pattern. The 8-group setting achieves a trade-off between 4 groups and 16
groups, which maintains good speedup and causes minor performance degradation.

6.3 OVERHEAD AND LIMITATION

INTRA introduces some overhead from computing the mapping functions fq and ikg (local-to-
global index conversion), which rely on costly modulo operations executed at each memory access.
Additional overhead arises from uncoalesced global memory access: the scatter operations load
tokens from non-contiguous addresses, resulting in inefficient transactions. Compared to Gather
0, Scatter suffers slightly lower speedups due to fewer local reads and more dispersed global
accesses (Table 2). Beyond efficiency, INTRA struggles with the Qasper task. We provide a detailed
analysis in Appendix G. Finally, we were unable to evaluate INTRA on video models due to limited
computational resources. While smaller video models as Wan 1.3B, share similar sequence lengths
(16K) with our studied image and text workloads, state-of-the-art video models require substantially
longer sequences. This setting could amplify INTRA’s advantages, but we lack enough resources to
conduct large-scale video experiments to verify the speedups. We leave it for future work.

7 CONCLUSION

We introduced INTRA for an alternative sparse attention design that supports non-contiguous token
access under a blockwise implementation, avoiding mix-block overhead and preserving compatibility
with FlashAttention. By enforcing intra-block connections and interleaving complementary static
patterns across layers, INTRA enables full information propagation while maintaining efficient
memory access. We further proposed the ISPD Principle, a general guideline for hardware-friendly
sparse pattern design. INTRA achieves substantial gains in practice: on FLUX.1-dev, it reduces 2K
image generation from 66s to 43s on a single A100 without quality loss, and on LLaMA 3.1 it matches
the Minference and XAttn on the SCROLL long-context benchmark. At this scale, INTRA delivers
up to 7.7× (full) and 6.3× (causal) speedups over dense attention. These results show that INTRA
makes long-context and high-resolution generation significantly faster and more resource-friendly,
paving the way for broader deployment of efficient sparse attention.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used exclusively as auxiliary tools to enhance the writing
of this paper, focusing on grammar, phrasing, and stylistic clarity. They did not influence the
conception of research ideas, methodological design, execution of experiments, or interpretation of
results. All core scientific contributions—including problem formulation, technical development, and
validation—were performed solely by the authors.

9 REPRODUCIBILITY STATEMENT

Details of the experimental setup, including the models and benchmark tasks, are included in
Section 6.1. The detailed configuration of the INTRA index function is in Section C. The INTRA
kernel implementation will be made publicly available on GitHub in the future.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Wenruo Bai, Rishabh Iyer, Kai Wei, and Jeff Bilmes. Algorithms for optimizing the ratio of
submodular functions. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of
The 33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pp. 2751–2759, New York, New York, USA, 20–22 Jun 2016. PMLR. URL
https://proceedings.mlr.press/v48/baib16.html.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint 2004.05150, 2020.

Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster, 2023. URL https://arxiv.org/abs/2210.
09461.

Mingda Chen, Zewei Chu, Sam Wiseman, and Kevin Gimpel. Summscreen: A dataset for abstractive
screenplay summarization, 2022. URL https://arxiv.org/abs/2104.07091.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers, 2021. URL https:
//arxiv.org/abs/2105.03011.

Ali Hassani and Humphrey Shi. Dilated neighborhood attention transformer. arXiv preprint
2209.15001, 2022.

Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. Neighborhood attention
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In Proceedings of the
10th International Conference on Learning Representations (ICLR), 2022.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for long
document summarization. In Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, pp. 1419–1436,
Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.
112. URL https://aclanthology.org/2021.naacl-main.112.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.
org/abs/2310.06825.

Huiqiang Jiang, Yucheng Li, Chengruidong Zhang, and et al. MInference 1.0: Accelerating pre-filling
for long-context llms via dynamic sparse attention. In Advances in Neural Information Processing
Systems 38 (NeurIPS), 2024.

Zhenglun Kong, Peiyan Dong, Xiaolong Ma, Xin Meng, Mengshu Sun, Wei Niu, Xuan Shen,
Geng Yuan, Bin Ren, Minghai Qin, Hao Tang, and Yanzhi Wang. Spvit: Enabling faster vision
transformers via soft token pruning, 2022. URL https://arxiv.org/abs/2112.13890.

Xunhao Lai, Jianqiao Lu, Yao Luo, Yiyuan Ma, and Xun Zhou. FlexPrefill: A context-aware sparse
attention mechanism for efficient long-sequence inference. In Proceedings of the 13th International
Conference on Learning Representations (ICLR), 2025.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft coco: Common objects
in context, 2015. URL https://arxiv.org/abs/1405.0312.

Songhua Liu, Zhenxiong Tan, and Xinchao Wang. CLEAR: Conv-like linearization revs pre-trained
diffusion transformers up. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2025. Earlier version: arXiv 2412.16112.

11

https://proceedings.mlr.press/v48/baib16.html
https://arxiv.org/abs/2210.09461
https://arxiv.org/abs/2210.09461
https://arxiv.org/abs/2104.07091
https://arxiv.org/abs/2105.03011
https://arxiv.org/abs/2105.03011
https://aclanthology.org/2021.naacl-main.112
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2112.13890
https://arxiv.org/abs/1405.0312

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin
transformer, 2021. URL https://arxiv.org/abs/2106.13230.

Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,
Enming Yuan, Yuzhi Wang, Zhiqi Huang, Huan Yuan, Suting Xu, Xinran Xu, Guokun Lai, Yanru
Chen, Huabin Zheng, Junjie Yan, Jianlin Su, Yuxin Wu, Yutao Zhang, Zhilin Yang, Xinyu Zhou,
Mingxing Zhang, and Jiezhong Qiu. Moba: Mixture of block attention for long-context llms. arXiv
preprint arXiv:2502.13189, 2025a.

Wenbo Lu, Shaoyi Zheng, Yuxuan Xia, and Shengjie Wang. ToMA: Token merging with attention for
diffusion models, 2025b. URL https://openreview.net/forum?id=xhtqgW5b93.

Richard Yuanzhe Pang, Alicia Parrish, Nitish Joshi, Nikita Nangia, Jason Phang, Angelica Chen,
Vishakh Padmakumar, Johnny Ma, Jana Thompson, He He, and Samuel R. Bowman. Quality:
Question answering with long input texts, yes!, 2022. URL https://arxiv.org/abs/
2112.08608.

Baolin Peng, Ruyi Xu, Haofeng Huang, and Song Han. Efficient streaming language models with
attention sinks. In Proceedings of the 12th International Conference on Learning Representations
(ICLR), 2024. Project page: https://github.com/mit-han-lab/streaming-llm.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021. URL https:
//arxiv.org/abs/2103.00020.

Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsification, 2021. URL https://arxiv.
org/abs/2106.02034.

Maximilian Seitzer. pytorch-fid: FID Score for PyTorch. https://github.com/mseitzer/
pytorch-fid, August 2020. Version 0.3.0.

Uri Shaham, Elad Segal, Maor Ivgi, and et al. SCROLLS: Standardized comparison over long
language sequences. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2022.

Black Forest AI Research Team. FLUX: Flow-matching diffusion transformers. https://
huggingface.co/docs/diffusers/main/en/api/pipelines/flux, 2024. Tech-
nical report / model card; no formal paper as of May 2025.

Hugo Touvron, Angela Fan, and many others. The llama 3 herd of models. arXiv preprint 2407.21783,
2024. 8 B, 70 B and larger checkpoints released by Meta AI.

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
arXiv preprint arXiv:2503.20314, 2025.

Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han
Cai, Jintao Zhang, Dacheng Li, Jianfei Chen, Ion Stoica, Kurt Keutzer, and Song Han. Sparse
videogen: Accelerating video diffusion transformers with spatial-temporal sparsity, 2025. URL
https://arxiv.org/abs/2502.01776.

Ruyi Xu, Guangxuan Xiao, Haofeng Huang, Junxian Guo, and Song Han. XAttention: Block sparse
attention with antidiagonal scoring. arXiv preprint 2503.16428, 2025.

12

https://arxiv.org/abs/2106.13230
https://openreview.net/forum?id=xhtqgW5b93
https://arxiv.org/abs/2112.08608
https://arxiv.org/abs/2112.08608
https://github.com/mit-han-lab/streaming-llm
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2106.02034
https://arxiv.org/abs/2106.02034
https://github.com/mseitzer/pytorch-fid
https://github.com/mseitzer/pytorch-fid
https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux
https://huggingface.co/docs/diffusers/main/en/api/pipelines/flux
https://arxiv.org/abs/2502.01776

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
Y. X. Wei, Lean Wang, Zhiping Xiao, Yuqing Wang, Chong Ruan, Ming Zhang, Wenfeng Liang,
and Wangding Zeng. Native sparse attention: Hardware-aligned and natively trainable sparse
attention, 2025. URL https://arxiv.org/abs/2502.11089.

Manzil Zaheer, Guru Guruganesh, Avinava Dubey, and et al. Big bird: Transformers for longer
sequences. In Advances in Neural Information Processing Systems 33 (NeurIPS), 2020.

Peiyuan Zhang, Yongqi Chen, Runlong Su, Hangliang Ding, Ion Stoica, Zhengzhong Liu, and Hao
Zhang. Fast video generation with sliding tile attention. In Proceedings of the 42nd International
Conference on Machine Learning (ICML), 2025. arXiv 2502.04507.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In CVPR, 2018.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models, 2023. URL https:
//arxiv.org/abs/2306.14048.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan Awadallah,
Asli Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir Radev. QMSum: A New Benchmark
for Query-based Multi-domain Meeting Summarization. In North American Association for
Computational Linguistics (NAACL), 2021.

13

https://arxiv.org/abs/2502.11089
https://arxiv.org/abs/2306.14048
https://arxiv.org/abs/2306.14048

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A LLM SCATTER AND GATHER 1 PATTERNS

Illustration of Scatter and Gather 1 Patterns on LLM viewed in 1D token sequence layout.

…
…

…
…

Scatter - LLM Gather 1 - LLM

Token Sequence

: Token groups

Figure 7: The figure depicts the Scatter and Gather 1 patterns applied to the language model’s input
tokens, with a grouping factor of 4. Tokens are partitioned into 4 distinct groups, each represented by
a different color. Both patterns perform attention within each group.

B GPU MEMORY HIERARCHY

NVIDIA GPUs are designed with a hierarchical memory architecture that includes three primary
levels: Global memory, Shared memory, and Register. Global memory is a large-capacity, high-
latency memory where all data resides initially. Shared memory is a fast, medium-sized memory
space shared among threads within the same thread block. Registers are the fastest and smallest
memory, used by individual threads for performing computations.

C SPARSE PATTERN INDEX FUNCTION

C.1 SCATTER

We take the LLM Scatter pattern as an example here. The Query block size is 64. The CQS index is
icqs. The group number is 8.

fq(i
q
l , i

cqs) = icqs + 8 · iql (2)

fk(i
k
l , i

q
l , i

cqs) = icqs + 8 · ikl (3)

C.2 GATHER 0

Assume the image feature map has width W and height H . The Query block size and Key block size
are both 8×8=64, and the neighborhood region is 16×16. The CQS index is icqs. The group number
is 8.

fq(i
q
l , i

cqs) =

⌊
icqs

(W/8)

⌋
· (8 ·W) + (iql % 8) ·W + (iql % 8) (4)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

fk(i
k
l , i

q
l , i

cqs) =


fq(i

q
l , i

cqs)− 4 ·W +
ikl
8 ·W + ikl % 8 if icqs % (W/8) == 0

fq(i
q
l , i

cqs)− 4 ·W − 8 +
ikl
8 ·W + ikl % 8 if icqs % (W/8) == (W/8)− 1

fq(i
q
l , i

cqs)− 4 ·W − 4 +
ikl
8 ·W + ikl % 8 else

(5)

Algorithm 1: INTRA Kernel Implementation
Input: Q, K, V , O
Output: O

Load Q, K, V , O from global memory to shared memory according to fq , fk, fv , fo. fq and fo
have same formulation, fk and fv have same formulation. Loading can follow the Scatter or
Gather pattern. Both patterns interpret tokens into a grid shape and find corresponding needed
tokens using f ;

Compute attention based on the shared memory;

Store the attention result back to O in global memory using fo;

D ARBITRARY SPARSE PATTERN COROLLARY

Given an arbitrary sparse pattern, we typically cannot formulate it into well-structured rectangular
regions on the sparse attention map. Even using the INTRA kernel implementation, we still need
to mask the extra-calculated attention scores to create the desired pattern. Therefore, we could turn
the arbitrary pattern implementation into an optimization problem of choosing the least number of
Computational Query Sets while ensuring we have the least number of masking operations. We
formulate our corollary as follows:

Given an arbitrary sparse pattern, assume we want to choose all the CQSs greedily. For choosing
a single CQS S, we define a function Col(si) that maps the query token si in the current CQS to
the number of columns it needs to calculate inside the sparse attention map. For a CQS, the total
columns we need to calculate is

|S| · |
⋃
si∈S

Col(si)|

The total columns that do not need masking is

∑
si∈S

|Col(si)|

We need to find a S such that

max
S

∑
si∈S |Col(si)|

|S| · |
⋃

si∈S Col(si)|

The function k(S) = |
⋃

si∈S Col(si)| is a submodular function. If we have a CQS M, for any subset

N ⊆ M and element v ∈ M \ N, k(N ∪ {v}) ≥ k(M ∪ {v}). The function
∑

si∈S |Col(si)|
|S| is also

a submodular function. To maximize the ratio between two submodular functions, we follow the
solution framework proposed in Bai et al. (2016). The selection of all CQSs can then be approached
either via a greedy algorithm guided by this ratio-based optimization objective, or by formulating the
task as a token partitioning problem.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Ablation study on interleaving frequency of sparse patterns.

Interleaving Frequency FID (↓) LPIPS (↓) CLIPI (↑)

1 layer 12.6 51.7 0.895
2 layers 11.7 49.4 0.904
3 layers 13.1 51.0 0.892
4 layers 12.8 53.2 0.890

Table 7: Original LLaMA 3.1 8B model’s performance on SCROLL benchmark without finetuning.

Gov Report Qasper Qmsum Quality SummScreenFd

Original model(No fine-tune) 24.13 34.91 21.17 0.0 16.77
Original model 31.05 40.09 25.37 26.0 20.51
INTRA 29.07 21.51 22.48 30.0 19.41

E INTERELEAVING FREQUENCY

INTRA interleaves two distinct sparse attention patterns across model layers. To investigate how the
interleaving frequency affects performance, we conduct an ablation study summarized in Table 6. The
number of layers in the table indicates how many consecutive layers share the same sparse pattern
before switching to the other. For example, when using a frequency of 2 layers, layers 0–1 apply the
Scatter pattern, layers 2–3 apply the Gather pattern, and so on. We find that interleaving the Scatter
and Gather patterns every 2 layers achieves the best performance across all metrics.

F ORIGINAL MODEL WITHOUT FINETUNING RESULT

In Table 7 we show the comparison between the original LLaMA model without fine-tuning, the
original LLaMA model with fine-tuning, and INTRA with fine-tuning. The original model’s perfor-
mance shows a significant improvement after finetuning. INTRA can approach the fine-tuned original
model’s performance (except Qasper), demonstrating INTRA’s training effectiveness.

G QASPER ANALYSIS

Unlike other datasets, Qasper is a question answering benchmark specifically designed for scientific
research papers, which presents unique challenges. We hypothesize that our method, INTRA,
is particularly data-hungry in domains characterized by high lexical and conceptual complexity.
Scientific texts typically span a broad range of specialized fields and exhibit dense terminology and
complex sentence structures, making the task of question answering in this domain more demanding
than in general-purpose texts, such as government reports. Consequently, models require deeper
semantic understanding to perform effectively in this domain. However, Qasper provides only
2,567 training examples, which is insufficient for INTRA to capture the intricacies of the task. We
hypothesize that INTRA’s performance would improve significantly with access to a larger-scale
scientific QA dataset. Furthermore, the full-parameter fine-tuning, as opposed to LoRA parameter-
efficient tuning, could potentially yield better results in this task. It allows the model to adapt more
comprehensively to the scientific text.

H QUALITATIVE RESULT

Please refer to Figure 8 and Figure 9 for more qualitative results comparison between the Original
FLUX.1-dev model, INTRA, and CLEAR. INTRA preserves image quality and often demonstrates
greater robustness compared to CLEAR

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 8: Visual examples comparison between original FLUX.1-dev model, INTRA, and CLEAR

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 9: Visual examples comparison between original FLUX.1-dev model, INTRA, and CLEAR

18

	Introduction
	Related Works
	Static Sparse Attention
	Dynamic Sparse Attention
	Other Image Acceleration Methods
	Sparse Video Generation

	Scatter and Gather Sparse Pattern Design
	Intra Sparse Pattern Design
	Kernel Design: Decoupling Memory Loading from Computation
	Evaluation
	Experiments
	Ablation Study
	Overhead and Limitation

	Conclusion
	THE USE OF LARGE LANGUAGE MODELS (LLMS)
	REPRODUCIBILITY STATEMENT
	LLM Scatter and Gather 1 Patterns
	GPU Memory Hierarchy
	Sparse Pattern Index Function
	Scatter
	Gather 0

	Arbitrary Sparse Pattern Corollary
	Intereleaving Frequency
	Original Model Without Finetuning Result
	Qasper Analysis
	Qualitative Result

