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ABSTRACT

Transformers achieve strong performance across modalities but are bottlenecked by
the quadratic cost of attention. Sparse attention reduces this cost, yet existing meth-
ods either incur high runtime overhead (dynamic patterns) or lose GPU efficiency
due to blockwise masking (static patterns). We introduce INTRA—Interleaved
Non-contiguous Token spaRse Attention—a token-level sparse attention kernel
that decouples memory loading from computation. INTRA preserves blockwise
access for GPU efficiency while flexibly supporting non-contiguous token sparsity,
eliminating mix-block overhead. To ensure global information exchange, INTRA
interleaves complementary static patterns across layers. We further propose the
ISPD Principle, a general guideline for constructing hardware-efficient sparse
patterns. On FLUX.1-dev, INTRA reduces 2K image generation latency from
66s → 43s with no quality loss after LoRA self-distillation. On LLaMA-3.1-8B,
INTRA matches existing sparse attention methods on the SCROLL benchmark
with sequence length up to 16K, demonstrating its scalability.

1 INTRODUCTION

Transformers excel across domains such as NLP and image generation, but their attention cost scales
quadratically with sequence length, creating a bottleneck for long contexts and high-resolution gener-
ation. For instance, FLUX.1-dev Team (2024) requires nearly a minute to produce a 2048×2048
image on a single A100, making generating high-quality images in real time impractical.

Sparse attention has been widely explored to reduce the computation overhead of full attention Liu
et al. (2025); Jiang et al. (2024). Sparse attention kernels can be broadly categorized into dynamic
and static designs. Dynamic sparse kernels flexibly adapt the sparse pattern at runtime and can be
directly applied to pretrained models without finetuning. However, their runtime flexibility comes at
the cost of higher memory and computation overhead, leading to slower inference. In contrast, static
sparse kernels fix the sparsity pattern in advance. While this requires model finetuning to adapt to the
kernel, it results in significantly higher efficiency at inference time. We focus on static kernels in this
work, aiming to design them in a GPU-friendly manner while still enabling rich token interactions.

One limitation of existing sparse attention methods is that they mainly preserve local patterns,
preventing tokens from accessing the global context. Since attention can be viewed as message
passing, restricting information flow to local neighborhoods weakens the model’s ability to capture
long-range dependencies. We argue that effective sparse attention must maintain complete information
propagation across all tokens.

Prior works address this by carefully crafting patterns. For example, CLEAR Liu et al. (2025) adopts
circular local sparsity, and NATTEN Hassani et al. (2023) uses sliding windows. However, these
fine-grained designs break the blockwise structure required for GPU efficiency. As shown in Figure 2,
even when only part of a block is needed, the entire block must still be computed and then masked,
adding overhead and diminishing real speedups compared to theoretical FLOP reductions.

We introduce INTRA—Interleaved Non-contiguous Token spaRse Attention. INTRA applies various
sparse patterns, including potentially non-contiguous ones, across different attention layers of a model.
Although such non-contiguous patterns are often overlooked in existing sparse attention design due
to concerns about non-locality and memory cost, we find that these are not the primary obstacle.
The critical requirement is that cohorts of query tokens consistently attend to the same key subset
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4k Sequence Length (ms) 16k Sequence Length (ms)
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CLEAR

INTRA 

Flash Attention 2

Figure 1: The figure reports the relative speedup achieved by INTRA compared to CLEAR and
FlashAttention 2 on 4K and 16K input lengths, evaluated on an A100 GPU. Note that the axis density
differs between the left and right sides of the figure to accommodate varying inference times.

within a sparse pattern (i.e., only “intra” connections are allowed). INTRA enforces this property,
preserving blockwise memory access (and thus compatibility with FlashAttention) while avoiding
mix-block overhead and enabling more expressive sparse structures. The tradeoff of this efficiency
is that information flows only locally in a layer. To recover global connectivity, INTRA interleaves
complementary static patterns across layers, ensuring that every token can directly or indirectly attend
to all others. (Illustration: think of two interwoven lattices that together span the entire sequence.) To
generalize this design, we propose the Intra Sparse Pattern Design (ISPD) Principle, a guideline for
constructing general hardware-efficient sparse patterns that extends beyond token-level designs.

Our contributions are: 1. A token-level sparse attention kernel that decouples the memory loading
from the attention calculation. 2. Interleave different patterns to ensure full information exchange
of all tokens while maintaining sparsity. 3. The ISPD Principle, a unified framework for designing
efficient sparse patterns, covering both token-wise and sliding window sparsity.
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Figure 2: Low-level implementation of blockwise sparsity for handling mixed blocks. A mix block is
the block that partially preserves attention scores, as shown on the left side of the figure.

We apply INTRA to both image and text generation models, achieving significant speedups without
quality degradation. On the FLUX.1-dev image model, INTRA matches dense attention quality
while reducing 2K image generation from 66s → 43s on a single A100 after LoRA self-distillation.
On LLaMA 3.1 8B, INTRA achieves accuracy comparable to dense, MInference Jiang et al. (2024),
and XAttn Xu et al. (2025) on the long context SCROLL Shaham et al. (2022) benchmark that scales
to 16K tokens with better efficiency. We hypothesize that INTRA could deliver even greater speedups
on longer sequences. However, because it employs a static-pattern sparse attention mechanism,
fine-tuning at such extended sequence lengths exceeds our computational budget. Notably, a 16K
context represents a fairly standard long-context setting for both image and text tasks, and aligns with
the sequence length used in video generation (e.g., Wan 1.3B Wan et al. (2025) at 480p).

2 RELATED WORKS

2.1 STATIC SPARSE ATTENTION

Sparse attention mechanisms reduce the quadratic complexity of full attention by limiting token-to-
token interactions, making them crucial for scaling transformers to long sequences. Static sparse
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Flux
Original

Flux
INTRA

Flux
CLEAR 1-8

Figure 3: Visual comparison on FLUX.1-devwith different implementations: (left to right) Original
FlashAttention 2, INTRA (our method), and CLEAR. As shown, INTRA maintains image quality.
Please refer to Appendix H for more comparison examples.

attention adopts fixed, input-independent patterns, enabling predictable computation. For instance,
sliding window attention Jiang et al. (2023) restricts each token to attend only to a fixed local
neighborhood, effectively capturing local dependencies. StreamingLLM Peng et al. (2024) proposes
a memory mechanism that retains only the initial and most recent tokens, ensuring bounded latency
and memory usage in long-context settings. Dilated attention Hassani & Shi (2022) introduces
periodic strides to expand receptive fields while maintaining sparsity. Different works adopt sliding
window attention to image-related tasks. NATTEN Hassani et al. (2023) restricts each query token
to attend a 2D neighborhood region. CLEAR Liu et al. (2025) reduces the attention complexity of
diffusion transformers by employing a fixed local window. To improve context coverage, mixed
sparse patterns combine different attention types. Notably, BigBird Zaheer et al. (2020) combines
global tokens, local windows, and random connections to enable sparse yet expressive attention.
Similarly, Longformer Beltagy et al. (2020) integrates global and windowed attention mechanisms.

2.2 DYNAMIC SPARSE ATTENTION

In contrast, dynamic sparse attention adapts its patterns based on input content or model state, aiming
to allocate compute selectively to salient regions. MInference Jiang et al. (2024) and FlexPrefill Lai
et al. (2025) speed up prefill by selecting sparse patterns per attention head, although the cost of
selection remains a bottleneck. xAttention Xu et al. (2025) employs anti-diagonal scores to identify
and prioritize important token blocks dynamically. Native Sparse Attention (NSA) Yuan et al. (2025)
learns sparse attention masks directly through supervision or reinforcement learning, enabling flexible
adaptation to diverse long-context inputs. MoBA Lu et al. (2025a) leverages a Mixture-of-Experts
routing scheme to assign attention patterns based on input characteristics, balancing accuracy and
efficiency. H2O Zhang et al. (2023) introduces a hierarchical routing strategy to dynamically switch
between coarse and fine-grained attention.

2.3 OTHER IMAGE ACCELERATION METHODS

Beyond sparse attention, various token reduction strategies have been proposed to accelerate vision
transformer inference by reducing the effective sequence length. Token pruning methods eliminate
less informative tokens during inference. Dynamic approaches such as Dynamic Token Sparsifica-
tion Rao et al. (2021) or SPViT Kong et al. (2022) assess token importance via learned scoring net-
works or attention distributions. Token merging offers an alternative that avoids hard removal. ToMe
(Token Merging) Bolya et al. (2023) merges similar tokens based on feature proximity. ToMA Lu
et al. (2025b) extends ToMe by applying adaptive merging in both spatial and channel dimensions.

2.4 SPARSE VIDEO GENERATION

Extending sparse attention to video generation introduces additional challenges due to the high
dimensionality of spatiotemporal data. Video models must capture both local spatial details and long-
range temporal dynamics, while keeping computation feasible. STA Zhang et al. (2025) enforces each
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Q block to attend to a strict region to improve hardware efficiency, ensuring that the sparse pattern
remains well-suited for GPU block-wise calculation. Similarly, Video Swin Transformer Liu et al.
(2021) applies shifted window attention across spatial and temporal dimensions, reducing complexity
while maintaining temporal coherence. SparseVideo Xi et al. (2025) categorizes heads into spatial
and temporal ones, enabling efficient long-sequence modeling in diffusion-based video generation.

3 SCATTER AND GATHER SPARSE PATTERN DESIGN

1 2
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Figure 4: Our intuition comes from the image subsampling. We split image pixels into four groups,
and the image formed by a single group can still preserve the global shape and content.

The idea behind our token-wise sparsity stems from the locality of images, and with modifications,
the same concept can be applied to language generation. As illustrated in Figure 4, if we divide an
image into non-overlapping 2×2 patches and select only one pixel from each patch, we can form a
new image that is 4 times smaller in resolution. Despite the lower resolution, the overall structure
and content of the image are still recognizable. This suggests that only attending to a subset of tokens
may be sufficient to preserve global image information. Based on this intuition, we apply a similar
concept to the attention mechanism. We divide the input feature map into non-overlapping patches.
Each patch contains a fixed number of tokens. Tokens at the same position across all patches are
grouped together, forming multiple token groups. Since we only compute attention within each group,
this pattern is referred to as Scatter pattern in Figure 5. Suppose the number of groups in the Scatter
pattern is M . Since attention is now applied within each group, the total number of computations is
reduced to M × 1

M2 = 1
M . This leads to a significant reduction in computation. We also note that

Scatter pattern is different from a dilated convolution, as the pattern applies to all tokens in the same
group and is not restricted to a convolutional local region.

However, this Scatter attention design alone causes a major limitation: tokens in one group cannot
access information from other groups, leading to information isolation. Our experiments confirm this
issue in Table 5—image generation tasks work poorly when using only the Scatter pattern. To solve
this, we introduce the Gather pattern. The Gather pattern gathers tokens from all groups to perform
attention. Since each token carries the information of all tokens within its group, the Gather pattern
enables information sharing between groups.

For the FLUX.1-dev model, where each query attends to a fixed-size neighborhood in the Gather
pattern (Gather 0 in Figure 5). In practice, we use a 16×16 region, which spans multiple groups
and enables tokens to attend to information outside of their groups. For language models, we apply a
different Gather pattern (Gather 1 in Figure 5). Suppose the Scatter pattern has G groups. The Gather
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Figure 5: This figure illustrates the three attention patterns used in INTRA. Scatter and Gather 0
are designed for vision tasks, where query and key tokens are arranged in a 2D feature map format.
Gather 1 is used for language tasks and is visualized in a 1D token sequence layout. Due to space
constraints, the full token sequence in Gather 1 is split into multiple 1D segments, with curved arrows
indicating their consecutive order. We also apply the Scatter pattern to language tasks. For more
detailed visualizations of the LLMs’ Scatter and Gather 1 patterns, please refer to Appendix A.

1 also has G groups. Each group chooses contiguous G tokens along the input order one by one.
This token grouping repeats until all tokens belong to a group. Then, we perform attention within
each group. This effectively allows interaction between different groups because each one contains
tokens from all groups. By interleaving Scatter and Gather patterns, we ensure that all tokens can
exchange information, either directly or indirectly, while maintaining efficient attention computation.
In contrast, solely using either pattern will not work in the image task as shown in the Table 5.

4 INTRA SPARSE PATTERN DESIGN

In this section, we introduce the Intra Sparse Pattern Design (ISPD) Principle for guiding the
hardware-efficient sparse pattern design. The principle is intuitively simple: sparse patterns that
have only intra-CQS attention are efficient. We formalize the ISPD Principle using the concept of
Computational Query Sets (CQS).

A Computational Query Set is a group of query tokens that attend to the same set of key tokens
under a sparse attention pattern. Each token in a CQS is associated with four indices:

• iqg: Global index of the query token in the input sequence

• iql : Local index of the query token within its CQS

• ikg : Global index of the key token in the input sequence

• ikl : Local index of the key token within the attended key set

We define a sparse attention pattern as hardware-efficient if it satisfies the following three conditions:

1. Coverage: The union of all CQSs fully covers the set of query tokens. Each query token
can belong to more than one CQSs.

2. Index Mapping: There exist two functions fq and fk such that, for a given CQS index icqs,

iqg = fq(i
q
l , i

cqs), ikg = fk(i
k
l , i

q
l , i

cqs) (1)

These functions map local indices within the CQS to their global positions in the input
sequence.
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3. Block Alignment: Each CQS should contain a number of query tokens approximately
divisible by a predefined query block size B. In our case, we use B = 64 to match the block
size used in FlashAttention.

Our proposed Scatter and Gather patterns adhere to the ISPD principle. Each group in the Scatter
pattern serves as a CQS. For instance, in the LLM Scatter configuration with 8 groups and an input
sequence length of 4096, each CQS comprises 512 tokens. This size is divisible by the block size
B = 64. The relevant mapping functions fq and fk are provided in Appendix C.1. In our proposed
Gather 0 pattern, each query block is treated as a CQS. This satisfies the coverage and block alignment
conditions. We provide the corresponding fq and fk functions in Appendix C.2.

Since attention computation is equivariant, its output changes in the same way we change the query
order, regardless of the K/V order. Therefore, if a pattern follows the ISDP principle, we can
manipulate the Q order in the attention map to group the tokens in the same CQS together. Then,
in each CQS, we can reorder the K in the attention map to gather the computation-needed places
together to form the structured rectangular regions as shown in Figure 6.
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Figure 6: We split the sample attention map into 4 CQSs. For each CQS, we can group the scores in
the attention map together to form the rectangular regions.

To explore the full potential of our design, we formulate the problem of general sparse pattern
implementation as a constrained optimization problem. The objective is to find the CQSs that
minimize the masking steps. Details of this formulation are provided in Appendix D.

5 KERNEL DESIGN: DECOUPLING MEMORY LOADING FROM COMPUTATION

We build our kernel by extending FlashAttention. To enable sparse pattern compatibility, we decom-
pose FlashAttention into two stages:

1. Global memory interaction: FlashAttention loads the Q/K/V/O blocks from global memory
into shared memory and writes the output tokens back to global memory (Please refer to
Appendix B for GPU memory hierarchy background information).

2. Attention computation: Performing softmax and value aggregation with shared memory.

Our kernel design follows the ISPD principle. It selects only the necessary Q, K, and V tokens
required by the sparse attention calculation from global memory and stores them contiguously into
shared memory. Our design changes the loading unit from blocks to potentially non-contiguous tokens
in global memory. Because we place the tokens in the contiguous location in shared memory, the
following attention computation remains unchanged and continues to leverage the high performance
of FlashAttention. After computation, the attention outputs are written back to their initial, potentially
non-contiguous positions in global memory. In comparison, a blockwise implementation could only
simulate this behavior by masking out unwanted values after loading large contiguous blocks—an
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approach that is less efficient both in memory and compute. Our design ensures that the sparse
patterns that do not align with blockwise computation can still be efficiently implemented.

In fact, our custom token loader is a generalized version of the original FlashAttention contiguous
block loading. FlashAttention iteratively loads the Q, K, and V blocks according to the input token
order to compute outputs. This works well with dense attention but severely limits the flexibility
needed to support irregular or token-wise sparse patterns. Token-wise loading can perform block
loading by selecting the contiguous tokens inside the block. This flexible loading mechanism allows
us to implement many sparse patterns efficiently. Our kernel can only load the neighborhood required
by each Q block, making the neighborhood tilling more adaptable.

6 EVALUATION

We evaluate INTRA on both the FLUX.1-dev Team (2024) image generation model and the
LLaMA 3 Touvron et al. (2024) language model. Importantly, INTRA aims to mimic dense attention
by allowing full information interaction. In this way, INTRA changes how the model exchanges
information between tokens, and therefore, a fine-tuning stage is required. In practice, it is sufficient
to use LoRA Hu et al. (2022) adapters rather than full parameter fine-tuning to adapt the model to
INTRA. This makes INTRA applicable to existing models without heavy re-training. We hypothesize
that models pretrained with INTRA could potentially have better performance.

6.1 EXPERIMENTS

Baseline INTRA aims at simulating the full information exchange of dense attention. This differs
from the majority of previous sparse attention works that use dynamic or static patterns to preserve
the partial attention scores. Therefore, not many works are within our comparison scope. For image
generation, we chose CLEAR as the baseline method as it requires fine-tuning of the model. It is
the previous state-of-the-art static sparse pattern method. Since INTRA also uses static patterns,
comparing with CLEAR can test the fine-tuning efficiency of the INTRA interleaved design.

For text generation, we compare with MInference Jiang et al. (2024) and XAttn Xu et al. (2025) on the
long context SCROLL benchmark Shaham et al. (2022). We do not test INTRA on video generation
tasks due to limited resources. The SCROLL benchmark tasks have a long sequence length up to
16K tokens, which matches the sequence length of the Wan 1.3B video generation at 480p resolution.

Experiment Setup We use the same 10K self-generated image-text dataset used by CLEAR
to fine-tune FLUX.1-dev. Following the convention from CLEAR, we randomly sample 5k
COCO Lin et al. (2015) validation set prompts to generate images for evaluation on FID Seitzer
(2020), LPIPS Zhang et al. (2018), and CLIPI Radford et al. (2021). For LLaMA 3, we fine-tune and
evaluate using the SCROLL Shaham et al. (2022) benchmark. It provides standard train, validation,
and test splits. We conduct experiments on the GovReport Huang et al. (2021), Qasper Dasigi et al.
(2021), QMSum Zhong et al. (2021), QUALITY Pang et al. (2022), and SummScreen-FD Chen et al.
(2022) tasks. These datasets were selected because their average 16K input sequence lengths fall
within our fine-tuning capability, and they provide sufficient validation sets for reliable evaluation.

Resource Usage and Practicality All the fine-tuning and evaluations are conducted on NVIDIA
A100 GPUs. The FLUX.1-dev model fine-tuning takes 43 GPU hours, while LLaMA 3 fine-
tuning takes 320 GPU hours. These resource requirements are minimal compared to the cost of full
pretraining for these models, demonstrating that INTRA is a practical and efficient sparse solution.

Results The speedup comparisons of FLUX.1-dev and causal attention speedup are in the Table 1
and Table 2, respectively. For image generation, we compare with CLEAR in both 1024×1024 and
2048×2048 generation settings. The benchmark results of FLUX.1-dev are in the Table 3. INTRA
and CLEAR scores are close on 1k image generation, while INTRA exceeds CLEAR in 2k image
generation. The end-to-end generation time comparison is in the Table 3. INTRA achieves the lowest
inference time in both 1k and 2k image generation. For language tasks, INTRA achieves the best
speedup in all sequence length cases in Table 2 for single causal attention forward. The end-to-end
inference comparison up to 16K and the SCROLL Shaham et al. (2022) benchmark results are in the
Table 4. INTRA achieves the lowest latency in all sequence length settings. INTRA can approach the
performance of the XAttention and MInference after the LoRA fine-tuning on the task Gov Repor,
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Table 1: Single full attention speed comparison on A100 in image geneartion. In this table, we
interleave Scatter/Gather patterns to get the average latency and speedup.

Methods Seq Len Config GFLOPS Latency(ms) Speedup FID ↓

FlashAttention 2
4K

- 260.9 1.181 - -
CLEAR r=8 63.5 0.893 1.32× 11.70
INTRA Interleave Scatter/Gather 50.75 0.324 3.64× 11.74

FlashAttention 2
16K

- 3507.9 15.764 - -
CLEAR r=8 246.2 4.625 3.41× 32.46
INTRA Interleave Scatter/Gather 345.5 2.056 7.67× 15.67

Table 2: Single causal attention speed comparison on A100 in text generation. In this table, we
interleave Scatter/Gather patterns to get the average latency and speedup.

Methods Seq Len GFLOPS Latency(ms) Speedup

FlashAttention 2 4K 137.4 0.82 -
INTRA 17.2 0.16 5.1×

FlashAttention 2

8K

549.8 2.86 -
MInference - 14.3 0.2×
XAttn S=16 - 1.91 1.5×
INTRA 68.7 0.51 5.6×

FlashAttention 2

16K

2199.1 10.57 -
MInference - 26.42 0.4×
XAttn S=16 - 4.22 2.5×
INTRA 274.9 1.75 6.0×

FlashAttention 2

32K

8796.3 40.96 -
MInference - 51.2 0.8×
XAttn S=16 - 8.03 5.1×
INTRA 1099.5 6.5 6.3×

Table 3: End-to-end inference speed comparison between INTRA and CLEAR on 1k and 2k image
generation, along with their image quality scores. CLEAR (r=4–8) samples K and V at 1/4 resolution
with a radius of 8. We omit results for CLEAR (r=4–8) as its generation time exceeds that of the
original dense FLUX.1-dev model.

1024×1024 Image Generation 2048×2048 Image Generation

Method FID (↓) LPIPS (↓) CLIPI (↑) Gen Time(s) FID (↓) LPIPS (↓) CLIPI (↑) Gen Time(s)

Original Model - - - 13.42 - - - 66.78

CLEAR (r=8) 11.70 49.96 0.8995 12.85 32.46 61.62 0.8046 47.81
CLEAR (r=4-8) - - - 13.73 19.27 54.60 0.8467 52.07
INTRA 11.75 49.46 0.9045 11.97 15.67 51.99 0.8559 43.72

Qmsum, and Summ Screen Fd. INTRA even exceeds in the Quality task. However, INTRA struggles
with the Qasper task, and we provide more analysis in the Appendix G.

6.2 ABLATION STUDY

To evaluate the effectiveness of INTRA for image generation, we conduct two ablation studies: (1)
using Scatter pattern only, using Gather pattern only, or interleaving both; (2) the impact of different
numbers of groups in the Scatter pattern when interleaving two patterns. The results are in the Table 5.
We further investigate the interleaving frequency, and the experiment details are in the Appendix E
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Table 4: End-to-end latency comparison (left) and SCROLL benchmark performance (right). INTRA
achieves the lowest latency while maintaining competitive benchmark results.

Inference Latency (s) SCROLL Long-context Benchmark

Method 8k ↓ 16k ↓ 32k ↓ Gov Report ↑ Qasper ↑ Qmsum ↑ Quality ↑ SummScreenFd ↑

XAttention 0.61 1.20 2.35 31.16 39.94 24.93 27.5 20.27
MInference 1.08 1.94 3.82 31.44 39.99 25.18 24.5 20.40
INTRA 0.55 1.09 2.21 27.77 36.68 24.45 29.0 19.71

Table 5: Ablation study: Left—whether to use Scatter/Gather or both; Right—number of groups used
in Scatter during interleave.

(a) Use Scatter/Gather or both

FID (↓) LPIPS (↓) CLIPI (↑)

Scatter 213.47 64.91 0.67
Gather 0 13.23 54.10 0.88
Interleave 0/1 11.75 49.46 0.90

(b) Number of groups in Scatter

FID (↓) LPIPS (↓) CLIPI (↑)

4 groups 10.99 48.29 0.908
8 groups 11.75 49.46 0.905
16 groups 12.85 49.88 0.896

Table 5 (a) presents the results of using the Scatter pattern only, the Gather pattern only, and
interleaving both patterns. We observe that using any single pattern leads to significantly worse
performance. In contrast, interleaving both patterns achieves the best results across all evaluation
metrics. This demonstrates the effectiveness of our interleaving approach, where Scatter and Gather
together exchange information among tokens. Table 5 (b) shows the results of varying the number
of groups in the Scatter pattern. The 8-group setting achieves a trade-off between 4 groups and 16
groups, which maintains good speedup and causes minor performance degradation.

6.3 OVERHEAD AND LIMITATION

INTRA introduces some overhead from computing the mapping functions fq and ikg (local-to-
global index conversion), which rely on costly modulo operations executed at each memory access.
Additional overhead arises from uncoalesced global memory access: the scatter operations load
tokens from non-contiguous addresses, resulting in inefficient transactions. Compared to Gather
0, Scatter suffers slightly lower speedups due to fewer local reads and more dispersed global
accesses (Table 2). Beyond efficiency, INTRA struggles with the Qasper task. We provide a detailed
analysis in Appendix G. Finally, we were unable to evaluate INTRA on video models due to limited
computational resources. While smaller video models as Wan 1.3B, share similar sequence lengths
(16K) with our studied image and text workloads, state-of-the-art video models require substantially
longer sequences. This setting could amplify INTRA’s advantages, but we lack enough resources to
conduct large-scale video experiments to verify the speedups. We leave it for future work.

7 CONCLUSION

We introduced INTRA for an alternative sparse attention design that supports non-contiguous token
access under a blockwise implementation, avoiding mix-block overhead and preserving compatibility
with FlashAttention. By enforcing intra-block connections and interleaving complementary static
patterns across layers, INTRA enables full information propagation while maintaining efficient
memory access. We further proposed the ISPD Principle, a general guideline for hardware-friendly
sparse pattern design. INTRA achieves substantial gains in practice: on FLUX.1-dev, it reduces 2K
image generation from 66s to 43s on a single A100 without quality loss, and on LLaMA 3.1 it matches
the Minference and XAttn on the SCROLL long-context benchmark. At this scale, INTRA delivers
up to 7.7× (full) and 6.3× (causal) speedups over dense attention. These results show that INTRA
makes long-context and high-resolution generation significantly faster and more resource-friendly,
paving the way for broader deployment of efficient sparse attention.
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8 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) were used exclusively as auxiliary tools to enhance the writing
of this paper, focusing on grammar, phrasing, and stylistic clarity. They did not influence the
conception of research ideas, methodological design, execution of experiments, or interpretation of
results. All core scientific contributions—including problem formulation, technical development, and
validation—were performed solely by the authors.

9 REPRODUCIBILITY STATEMENT

Details of the experimental setup, including the models and benchmark tasks, are included in
Section 6.1. The detailed configuration of the INTRA index function is in Section C. The INTRA
kernel implementation will be made publicly available on GitHub in the future.
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A LLM SCATTER AND GATHER 1 PATTERNS

Illustration of Scatter and Gather 1 Patterns on LLM viewed in 1D token sequence layout.

…
…

…
…

Scatter - LLM Gather 1 - LLM

Token Sequence

: Token groups

Figure 7: The figure depicts the Scatter and Gather 1 patterns applied to the language model’s input
tokens, with a grouping factor of 4. Tokens are partitioned into 4 distinct groups, each represented by
a different color. Both patterns perform attention within each group.

B GPU MEMORY HIERARCHY

NVIDIA GPUs are designed with a hierarchical memory architecture that includes three primary
levels: Global memory, Shared memory, and Register. Global memory is a large-capacity, high-
latency memory where all data resides initially. Shared memory is a fast, medium-sized memory
space shared among threads within the same thread block. Registers are the fastest and smallest
memory, used by individual threads for performing computations.

C SPARSE PATTERN INDEX FUNCTION

C.1 SCATTER

We take the LLM Scatter pattern as an example here. The Query block size is 64. The CQS index is
icqs. The group number is 8.

fq(i
q
l , i

cqs) = icqs + 8 · iql (2)

fk(i
k
l , i

q
l , i

cqs) = icqs + 8 · ikl (3)

C.2 GATHER 0

Assume the image feature map has width W and height H . The Query block size and Key block size
are both 8×8=64, and the neighborhood region is 16×16. The CQS index is icqs. The group number
is 8.

fq(i
q
l , i

cqs) =

⌊
icqs

(W/8)

⌋
· (8 ·W ) + (iql % 8) ·W + (iql % 8) (4)
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fk(i
k
l , i

q
l , i

cqs) =


fq(i

q
l , i

cqs)− 4 ·W +
ikl
8 ·W + ikl % 8 if icqs % (W/8) == 0

fq(i
q
l , i

cqs)− 4 ·W − 8 +
ikl
8 ·W + ikl % 8 if icqs % (W/8) == (W/8)− 1

fq(i
q
l , i

cqs)− 4 ·W − 4 +
ikl
8 ·W + ikl % 8 else

(5)

Algorithm 1: INTRA Kernel Implementation
Input: Q, K, V , O
Output: O

Load Q, K, V , O from global memory to shared memory according to fq , fk, fv , fo. fq and fo
have same formulation, fk and fv have same formulation. Loading can follow the Scatter or
Gather pattern. Both patterns interpret tokens into a grid shape and find corresponding needed
tokens using f ;

Compute attention based on the shared memory;

Store the attention result back to O in global memory using fo;

D ARBITRARY SPARSE PATTERN COROLLARY

Given an arbitrary sparse pattern, we typically cannot formulate it into well-structured rectangular
regions on the sparse attention map. Even using the INTRA kernel implementation, we still need
to mask the extra-calculated attention scores to create the desired pattern. Therefore, we could turn
the arbitrary pattern implementation into an optimization problem of choosing the least number of
Computational Query Sets while ensuring we have the least number of masking operations. We
formulate our corollary as follows:

Given an arbitrary sparse pattern, assume we want to choose all the CQSs greedily. For choosing
a single CQS S, we define a function Col(si) that maps the query token si in the current CQS to
the number of columns it needs to calculate inside the sparse attention map. For a CQS, the total
columns we need to calculate is

|S| · |
⋃
si∈S

Col(si)|

The total columns that do not need masking is

∑
si∈S

|Col(si)|

We need to find a S such that

max
S

∑
si∈S |Col(si)|

|S| · |
⋃

si∈S Col(si)|

The function k(S) = |
⋃

si∈S Col(si)| is a submodular function. If we have a CQS M, for any subset

N ⊆ M and element v ∈ M \ N, k(N ∪ {v}) ≥ k(M ∪ {v}). The function
∑

si∈S |Col(si)|
|S| is also

a submodular function. To maximize the ratio between two submodular functions, we follow the
solution framework proposed in Bai et al. (2016). The selection of all CQSs can then be approached
either via a greedy algorithm guided by this ratio-based optimization objective, or by formulating the
task as a token partitioning problem.
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Table 6: Ablation study on interleaving frequency of sparse patterns.

Interleaving Frequency FID (↓) LPIPS (↓) CLIPI (↑)

1 layer 12.6 51.7 0.895
2 layers 11.7 49.4 0.904
3 layers 13.1 51.0 0.892
4 layers 12.8 53.2 0.890

Table 7: Original LLaMA 3.1 8B model’s performance on SCROLL benchmark without finetuning.

Gov Report Qasper Qmsum Quality SummScreenFd

Original model(No fine-tune) 24.13 34.91 21.17 0.0 16.77
Original model 31.05 40.09 25.37 26.0 20.51
INTRA 29.07 21.51 22.48 30.0 19.41

E INTERELEAVING FREQUENCY

INTRA interleaves two distinct sparse attention patterns across model layers. To investigate how the
interleaving frequency affects performance, we conduct an ablation study summarized in Table 6. The
number of layers in the table indicates how many consecutive layers share the same sparse pattern
before switching to the other. For example, when using a frequency of 2 layers, layers 0–1 apply the
Scatter pattern, layers 2–3 apply the Gather pattern, and so on. We find that interleaving the Scatter
and Gather patterns every 2 layers achieves the best performance across all metrics.

F ORIGINAL MODEL WITHOUT FINETUNING RESULT

In Table 7 we show the comparison between the original LLaMA model without fine-tuning, the
original LLaMA model with fine-tuning, and INTRA with fine-tuning. The original model’s perfor-
mance shows a significant improvement after finetuning. INTRA can approach the fine-tuned original
model’s performance (except Qasper), demonstrating INTRA’s training effectiveness.

G QASPER ANALYSIS

Unlike other datasets, Qasper is a question answering benchmark specifically designed for scientific
research papers, which presents unique challenges. We hypothesize that our method, INTRA,
is particularly data-hungry in domains characterized by high lexical and conceptual complexity.
Scientific texts typically span a broad range of specialized fields and exhibit dense terminology and
complex sentence structures, making the task of question answering in this domain more demanding
than in general-purpose texts, such as government reports. Consequently, models require deeper
semantic understanding to perform effectively in this domain. However, Qasper provides only
2,567 training examples, which is insufficient for INTRA to capture the intricacies of the task. We
hypothesize that INTRA’s performance would improve significantly with access to a larger-scale
scientific QA dataset. Furthermore, the full-parameter fine-tuning, as opposed to LoRA parameter-
efficient tuning, could potentially yield better results in this task. It allows the model to adapt more
comprehensively to the scientific text.

H QUALITATIVE RESULT

Please refer to Figure 8 and Figure 9 for more qualitative results comparison between the Original
FLUX.1-dev model, INTRA, and CLEAR. INTRA preserves image quality and often demonstrates
greater robustness compared to CLEAR
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Figure 8: Visual examples comparison between original FLUX.1-dev model, INTRA, and CLEAR
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Figure 9: Visual examples comparison between original FLUX.1-dev model, INTRA, and CLEAR
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