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A : No. The 

bicycle is not 

visible.

Q : From the 

perspective of the 

man with a 

backpack, is the 

woman to the 

right of the silver 

car?

A : The woman is 

to the right of the 

silver car.

Q : If you are the man 

in the black vest, is the 

bicycle visible?

A : The wooden table is 

located closer than the 

man with a backpack.

Q : Can you determine which is 

closer from the woman’s 

perspective: the man with a 

backpack or the wooden table?

A : The dog is 

located on the 

right. 

Q : If you are the black 

pickup truck, is the dog 

located on the left or 

right side of you?

A : The man with a 

cowboy hat is 

closer than the 

sheep.

Q : From the perspective 

of the dog, is the man 

with a cowboy hat closer 

than the sheep?

Q : If you are 

the man with a 

cowboy hat, 

can you see the 

sheep?

A : The man 

with a cowboy 

hat sees no 

sheep.

Figure 1. We introduce Abstract Perspective Change (APC), a framework that empowers VLMs to adopt arbitrary perspectives for
spatial reasoning. As demonstrated by the examples above, APC significantly enhances VLM’s ability to imagine a scene from alternative
viewpoints, overcoming the inherent egocentric bias that constrains the spatial reasoning of existing VLMs to the camera’s viewpoint.

Abstract

We present a framework for perspective-aware reasoning001
in vision-language models (VLMs) through mental imagery002
simulation. Perspective-taking—the ability to perceive an003
environment or situation from an alternative viewpoint—is004
a key benchmark for human-level visual understanding, es-005
sential for environmental interaction and collaboration with006
autonomous agents. Despite advancements in spatial rea-007
soning within VLMs, recent research has shown that mod-008
ern VLMs significantly lack perspective-aware reasoning009
capabilities and exhibit a strong bias toward egocentric in-010
terpretations. To bridge the gap between VLMs and human011
perception, we focus on the role of mental imagery, where012
humans perceive the world through abstracted representa-013
tions that facilitate perspective shifts. Motivated by this,014
we propose a framework for perspective-aware reasoning,015
named Abstract Perspective Change (APC), that effectively016
leverages vision foundation models, such as object detec-017

tion, segmentation, and orientation estimation, to construct 018
scene abstractions and enable perspective changes. Our 019
experiments on synthetic and real-image benchmarks, com- 020
pared with various VLMs, demonstrate significant improve- 021
ments in perspective-aware reasoning with our framework, 022
further outperforming fine-tuned spatial reasoning models 023
and novel-view-synthesis-based approaches. 024

1. Introduction 025

Vision-language models (VLMs) have made remarkable 026
progress, positioning themselves as a crucial backbone 027
for general-purpose physical AI agents. The growing re- 028
search efforts to improve VLMs’ spatial reasoning capa- 029
bilities [8, 10, 45, 64] reflect this potential. Early VLMs 030
were limited to basic tasks such as visual question an- 031
swering (VQA) and image captioning [1, 34, 35]. How- 032
ever, recent advancements have enabled them to perform 033
complex visual reasoning [2, 14, 23, 24, 40, 63] and ex- 034
tract spatial properties, including spatial relationships, rela- 035
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tive sizes, and distances [31, 64]. Further techniques such036
as instruction-tuning and vision-centric adapters, have ex-037
panded their capabilities, allowing depth-aware [6, 8] and038
region-aware [10, 21] spatial reasoning.039

Despite these advances, progress remains largely con-040
fined to egocentric spatial reasoning, and even the lat-041
est VLMs struggle with allocentric reasoning—answering042
questions from perspectives other than the camera’s (Fig. 2).043
Allocentric reasoning is crucial for high-level planning, en-044
vironmental interaction, and collaboration with autonomous045
agents [16, 70, 74]. Moreover, it serves as a key bench-046
mark for human-level spatial understanding. However, as047
analyzed by Zhang et al. [78], most VLMs exhibit a strong048
bias toward an egocentric perspective. Even when explicitly049
prompted to adopt an allocentric viewpoint, VLMs often050
revert to egocentric interpretations [19, 37, 77, 78]. Recent051
efforts to enhance spatial reasoning remain focused on im-052
proving egocentric reasoning [8, 10, 45], leaving allocentric053
reasoning largely unaddressed.054

To bridge the gap between VLMs and human perspective055
reasoning, we ask: What cognitive process allows humans056
to effortlessly shift perspectives? Unlike current VLMs, hu-057
mans seamlessly form internal representations of the phys-058
ical world, making perspective reasoning an intuitive and059
natural process. The mechanism of creating internal repre-060
sentations, known as mental imagery [17, 29, 48, 49, 57],061
plays a fundamental role in cognition, enabling us to sim-062
ulate visual, spatial, and conceptual scenarios. This ability063
allows for abstraction beyond immediate perception, facili-064
tating sophisticated spatial reasoning tasks such as mentally065
rotating objects, inferring occlusions, and envisioning alter-066
native viewpoints [5, 12, 15].067

A key aspect of mental imagery is that it is not simply068
the process of visualizing a clear image from different per-069
spectives; rather, it involves forming an abstract represen-070
tation of a scene that encodes essential spatial information071
and can be reinterpreted from a new perspective. From a072
computational standpoint, such an abstract representation073
is particularly advantageous, as equipping VLMs with the074
imaginative capability to generate novel views remains ex-075
tremely challenging. In contrast, constructing an abstract076
representation requires significantly less computation and077
can be achieved procedurally.078

Inspired by this, we introduce a novel framework for079
adapting perspectives in VLMs by simulating the mental080
imagery process and modifying the perspective in the given081
prompt. Our goal is to leverage the strengths of both VLMs082
and recent vision foundation models, such as object detec-083
tion [7, 43, 81], image segmentation [27, 52], and orienta-084
tion estimation [66]. The proposed framework takes an im-085
age and a perspective-based question as input and operates086
through three key stages. First, by simulating the mental087
imagery process, it builds an abstract representation of the088

Egocentric Question
Question:

Given the image, consider the real-world 

3D locations and orientations of the 

objects. If you stand at the camera’s 

position facing where it is facing, Is the 

cat on the left or right of the dog? 

Answer:

      Human: “on the right”

      VLM: “on the right”

Allocentric Question
Question:

Given the image, consider the real-world 

3D locations and orientations of the 

objects. If you stand at the man’s 

position facing where he’s facing, Is the 

dog on the left or right of the man? 

Answer:

      Human: “on the right”

      VLM: “on the left”

Figure 2. Egocentric vs. Allocentric. While VLMs perform well
when questions are asked from an egocentric (i.e. camera’s) per-
spective, they struggle when the same questions are posed from an
allocentric perspective, showing a strong bias toward egocentric
reasoning.

scene in the input image. The VLM parses the prompt to 089
identify objects in the image, while vision foundation mod- 090
els extract the center and orientation information of each 091
object in 3D space. Second, the VLM analyzes the prompt 092
to determine the reference object from whose perspective 093
the question is asked, and transforms the abstraction to be 094
aligned with that perspective. Finally, a new prompt is gen- 095
erated by reinterpreting the scene from the reference ob- 096
ject’s perspective. We explore different formats for ren- 097
dering the scene abstraction: (1) a text-based representa- 098
tion, where objects are described using numerical 3D coor- 099
dinates, and (2) an image-based representation, where ob- 100
jects are visualized as colored boxes corresponding to the 101
original image. The newly generated prompt is fed to the 102
VLM to obtain the final answer. Note that our framework 103
is not designed for a specific type of allocentric question. 104
We leverage the egocentric reasoning capabilities of VLMs 105
by performing allocentric-to-egocentric prompt conversion 106
through scene abstraction, removing the perspective-related 107
barrier in the question while preserving its original intent in 108
the new prompt. 109

In our experiments on COMFORT++ [78] and 3DSR- 110
Bench [46], our method achieves robust spatial reasoning 111
across a variety of tasks and perspectives. In constrast, base- 112
line VLMs and previous frameworks for spatial reasoning 113
often struggle with even simple viewpoint shifts, reconfirm- 114
ing a notable bias toward the camera’s perspective. These 115
results highlight how our abstraction-based representation 116
significantly enhances the spatial reasoning capabilities of 117
VLMs beyond their default egocentric perspectives. 118
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2. Related Work119

2.1. Spatial Reasoning with VLMs120

Building on the remarkable advancements of vision-121
language models (VLMs) [2, 14, 31, 40, 41], recent studies122
have adapted VLMs for real-world spatial reasoning. Nu-123
merous evaluations revealed that VLMs struggle on even124
elementary spatial-perception tasks [18, 50, 51, 62, 65]125
and higher-level spatial reasoning based on images or126
videos [26, 32, 39, 58, 60, 72]. SpatialVLM [8] tackles127
this issue with a data-synthesis pipeline that injects rich spa-128
tial cues, while Cambrian-1 [64] introduces an architecture129
purposed for improved spatial reasoning. Another line of130
work allows VLMs to utilize richer vision-centric data such131
as points, depth maps or segmentation masks through fine-132
tuning [6, 44, 60, 76] or employing auxiliary encoders [10].133
Taking a different approach, other works exploit the plan-134
ning and programming abilities of language models, build-135
ing LLM/VLM-in-the-loop systems that call external vision136
modules as needed [20, 47, 61]. Notably, SpatialPIN [45]137
extracts dense visual priors from multiple vision foundation138
models [25, 42] and uses a VLM [24] to combine and inter-139
pret this information.140

2.2. Visual Perspective-Taking141

Visual perspective-taking (VPT) is the ability to imagine an142
alternate viewpoint, whether from another person’s perspec-143
tive or a different camera angle. This ability is essential for144
fundamental human skills such as navigation, spatial aware-145
ness, and social interaction [3, 11, 17, 55]. To be regarded146
as a general vision agent capable of human-like reasoning,147
a VLM should possess robust perspective-taking abilities.148
However, recent analyses reveal that current VLMs fail to149
shift to allocentric perspectives, showing a strong bias to-150
ward the egocentric viewpoint of a given image [19, 37, 46,151
77, 78]. Zhang et al. [78] propose a synthetic evaluation152
protocol to assess whether VLMs can adopt different frames153
of reference (i.e. perspective). Likewise, 3DSRBench [46]154
includes real image-question pairs asked from an object’s155
viewpoint, and finds that recent VLMs still demonstrate156
near chance level on perspective-related tasks. These find-157
ings suggest that while VLMs are rapidly improving in158
both complex visual reasoning [2, 14, 24, 40, 63] and ba-159
sic spatial reasoning [6, 8, 10, 21, 31, 64], their abilities re-160
main confined to the egocentric viewpoint, posing a signif-161
icant barrier to human-like reasoning. Recently, SAT [53]162
proposed to improve VLMs’ allocentric reasoning through163
instruction-tuning, yet it remains restricted to left/right re-164
lations with the need for annotations. In this work, we em-165
power VLMs to reason from arbitrary perspectives, by re-166
formulating any spatial reasoning task into their default ego-167
centric viewpoint, resulting in a generalizable framework.168

2.3. Visual Prompting 169

Visual prompting frames an input image as an instruction 170
for a VLM, functioning similarly to how text prompts guide 171
language models [30, 38, 59, 67, 69, 73, 80]. Numerous 172
studies have demonstrated its effectiveness by exploiting the 173
inherent image comprehension capabilities of VLMs. Set- 174
of-Marks [71] augments each object in an image with its 175
corresponding segmentation mask for more fine-grained vi- 176
sual grounding. Visual Sketchpad [22] provides tool-based 177
framework for VLMs to utilize drawing tools to annotate 178
images for complex tasks such as math problem solving 179
and visual search. Recent research further proposes visual 180
chain-of-thought (CoT) pipelines [9, 33, 54, 56, 68, 79, 80] 181
that visualize intermediate reasoning steps as images and 182
feed them back to the model as auxiliary inputs. This vi- 183
sual feedback loop has proven effective for spatial tasks, as 184
it anchors textual reasoning to concrete visual cues [33, 68]. 185
Building on this idea, we propose to transform an abstrac- 186
tion of a given scene and feed it back to a VLM in the form 187
of a visual prompt, offering a new way for the model to rea- 188
son from arbitrary viewpoints. 189

3. Method: Abstract Perspective Change 190

Our goal is to enable VLMs to solve spatial reasoning tasks 191
from any given perspective (Fig. 2). Let us call the entity of 192
the target perspective as the reference viewer. Since VLMs 193
inherently approach spatial reasoning from an egocentric 194
perspective [78], we propose to reformulate perspective- 195
specific questions to align with the reference viewer’s ego- 196
centric perspective. Inspired by theories in mental im- 197
agery [17, 48, 57], we begin by explicitly building an ab- 198
straction of the scene and use it as a foundation for shifting 199
perspectives (Fig. 3). 200

Overview of APC. We call our approach Abstract Per- 201
spective Change (APC), which consists of three main stages. 202

Q : From the person’s perspective, is 

the tree on the left or the right of the 

house?

Vision Modules

Mental Image

A: On the left! A : On the left!

Human VLM

Scene Abstraction

?

Figure 3. Mental Imagery Simulation. Inspired by how humans
employ mental imagery to reason from across different perspec-
tives (left), we propose a similar process for VLMs, by construct-
ing an explicit abstraction of the input scene and using it as a foun-
dation for perspective changes (right).
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Vision Modules

Orientation Semantics Depth

Abstract Perspective Change

3D Scene Abstraction Perspective Change Perspective Prompt Generation

The question requires 3D spatial 
relationship between the woman, 
the dog, and the chair.

Objects: [woman, dog, chair]

The question is asked from the 
woman’s perspective, which is 
different from the viewer’s 
perspective.

Perspective to look from: woman

Woman

Viewer

# Coordinate System

- The origin is at the woman’s position
- The woman's facing direction is [0, 0, 1]

# Object Coordinates

- woman : [0, 0, 0]
- chair : [-1.91, -0.535, 1.438]
- dog : [0.834, 0.467, 1.1]

Perspective-Aware 

Reasoning

Q : From the woman’s 

perspective, is the dog 

on the left or right of the 

chair?

A : Right Scene Abstraction

Visual Prompt

Numerical Prompt

Perspective 
Prompt

Answer: Left

The dog is on the left of 
the chair!

Vanilla VLM Output

Extract Objects of Interest Set a Reference Perspective

Perspective 

Change

Answer: Right

The dog is on the right of 
the chair!

VLM Output

Woman

Egocentric Transformation

Woman

Egocentric Rendering

(x,y,z)

Woman

(x,y,z)

woman

dog

chair

dog

chair

Q : In the woman’s 

perspective, is the 

dog on the left or 

right of the chair?

or

Inputs

Figure 4. Pipeline Overview of APC. Our proposed framework consists of three stages. 1) Scene Abstraction (Sec. 3.1): APC first detects
the objects of interest and build a coarse 3D abstraction of the scene using off-the-shelf vision foundation models. 2) Perspective Change
(Sec. 3.2): Then, a reference perspective is set and the abstraction is transformed into the reference viewer’s egocentric coordinate frame.
3) Perspective Prompting (Sec. 3.3): Finally, APC passes the transformed scene to the VLM by producing (1) a numerical (textual) prompt
or (2) an abstract visual prompt, and poses the question of interest from the reference perspective.

(1) First, APC constructs a coarse 3D abstraction of the203
scene from the input image by selecting and extract-204
ing objects of interest using off-the-shelf vision modules205
(Sec. 3.1), drawing inspiration from human mental im-206
agery [17]. (2) Next, APC selects a reference viewer for207
the spatial reasoning task among the objects of interests in208
the constructed scene abstraction. This determines “where209
to look from”. Such a formulation allows the conver-210
sion of the allocentric reasoning problem to an egocentric211
spatial reasoning task by performing a perspective change212
that transforms the base coordinate system of the abstrac-213
tion from the original camera view to that of the reference214
viewer (Sec. 3.2). (3) Finally, the transformed abstracted215
scene, which can now be posed as an egocentric problem,216
is fed back into the VLM for spatial reasoning (Sec. 3.3).217
We explore two alternative representations when provid-218
ing the VLM with transformed astract scene information:219
1) directly feeding numerical 3D coordinates of each ob-220
ject as a text prompt (numerical prompt), and 2) generat-221
ing an abstract rendering of the scene as viewed by the ref-222
erence perspective (visual prompt). An illustration of our223
APC pipeline is shown in Fig. 4, and we detail each step as224
follows.225

3.1. Scene Abstraction226

APC begins by building a coarse 3D abstraction of the227
scene. Given an image I and a spatial reasoning ques-228
tion Q, we define the abstraction of a scene as the set229
SE := {Oi}ni=1 composed of objects of interest from the230
question Q. Here, E denotes that the abstraction is defined231
in the camera’s egocentric coordinate system, and the num-232
ber of objects of interest n is determined by the VLM based233
on Q. Each Oi corresponds to an object of interest in the im-234
age and is represented as a tuple (ti, ci, pi), where ti is the235
object’s description, ci ∈ R3 is its 3D position, and pi ∈ S3236

is a unit vector that indicates its orientation. Additionally, 237
the camera is also included as an object of interest. This 238
abstraction provides a minimal yet sufficient information in 239
order to perform perspective changes, and mirrors how hu- 240
mans draw and rotate mental images when reasoning with 241
perspectives [17, 57]. It allows for our APC to convert an 242
allocentric problem to an egocentric spatial reasoning task, 243
which VLMs can better solve [78]. More details are de- 244
scribed below. 245

Extracting Objects of Interest. To determine which ob- 246
jects in the image should be included in the scene abstrac- 247
tion SE , we provide the image I and the question Q to the 248
VLM and instruct it to identify the list of objects necessary 249
for answering the question. The VLM then returns the list 250
of objects of interest, specified by their name, which we de- 251
note as ti. The detailed instruction prompts are included in 252
the Appendix (Sec. E). 253

Building Object Abstractions. Given the list of objects 254
of interest, we complete our abstracted scene representa- 255
tion by extracting the position and orientation of each object 256
Oi using off-the-shelf vision foundation models. To obtain 257
the 3D position of Oi, we first query GroundingDINO [43] 258
with image I and the object description ti and obtain its 259
2D bounding box bi. We then crop I with bi, and uti- 260
lize SAM [28] to obtain a precise segmentation mask for 261
Oi. Next, we extract the metric depth map of I using 262
DepthPro [4] and unproject the pixels within the segmen- 263
tation mask to 3D. Subsequently, the position ci is obtained 264
by taking the median coordinate of this 3D point cloud. 265
For further implementation details, please refer to the Ap- 266
pendix (Sec. C). Estimating the orientation pi for each ob- 267
ject Oi is also necessary to perform the desired perspective 268
transformation. We utilize OrientAnything [66], which re- 269
turns the object’s frontal orientation within the camera co- 270
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Given the color-object map above, change all the colored boxes in the below response into 

their respective objects.

[Original Response]: The blue cube is located on the left side of the red cube.

      : The snowman is located on the left side of the horse.

Based on the previous response, answer the question: { Question }

Q : From the woman's 

perspective, which 

object located on the 
left side, the snowman 

or the horse?

A : snowman

Numerical Prompt

Imagine that you are at the woman’s position and facing 

where she is facing. We have the coordinates of different 

objects in the woman’s coordinate system.

# Coordinate System

• The origin is at the woman’s position.

• The woman's facing direction is [0, 0, 1], which is 

aligned with the z-axis.

• The x-axis is to the right, the y-axis is up, and the z-axis 

is forward.

# Object Coordinates

• woman : [0, 0, 0]

• snowman : [-1.741, -0.707, 1.611]

• horse : [0.746, 0.187, 1.08]

# Task

Given the above woman’s coordinate system and the 

object coordinates, please answer the following question:

{ Question }

Visual Prompt

# Object Abstraction

We provide a color-object map that maps each colored box to an 

object:

# Color-Object Map

• blue cube → snowman

• red cube → horse

# Abstract Question

Which object is located on the left side, the blue cube or the red cube?

     : The blue cube is located on the left side of the red cube

Figure 5. Perspective Prompt Samples. We explore two variations of perspective prompting, numerical (left) and visual (right). Numerical
(textual) prompt is generated by directly utilizing the 3D coordinate and orientation information. To generate the Visual prompt, we first
place a colored cube at each object’s identified 3D position then render the scene at the reference viewpoint, which results in an egocentric
depiction of the scene. In addition, we construct an abstract question along with object-color mapping to ground the abstracted view.

ordinate system. For this, we crop the image with bi and271
feed the cropped image to OrientAnything to obtain Oi’s272
orientation, hence completing our scene abstraction repre-273
sentation.274

3.2. Perspective Change275

With egocentric scene abstraction SE for a given image I276
and question Q, APC then determines the reference viewer277
and performs perspective change to obtain a transformed278
scene abstraction from the reference viewer’s perspective.279
This effectively converts an allocentric problem into an ego-280
centric task, which VLMs find easier to handle.281

Setting a Reference Perspective. APC first determines282
“where to look from” by selecting a reference viewer from283
the set of objects of interest. For this, we provide the spatial284
reasoning question Q to the VLM and instruct it to identify285
the reference perspective from which the question should286
be answered. We denote the extracted reference perspective287
as A, and provide the complete instruction for perspective288
extraction in the Appendix (Sec. E).289

Transforming Scene Abstraction. After identifying the290
reference viewer, we then transform the original camera-291
based scene abstraction SE into the reference viewer’s ego-292
centric coordinate system. Specifically, we apply coor-293
dinate transformation from the camera’s frame to that of294
the reference viewer A. In the resulting abstraction SA,295
the reference viewer A is placed at the origin, and its ori-296
entation is aligned with the z-axis. This step supports297
APC’s main objective of reframing a general perspective298
question—typically an allocentric problem—into the refer-299
ence viewer’s egocentric viewpoint, making it an egocentric300
task. Finally, we provide SA to the VLM so it can answer301
the question Q from A’s perspective. We describe this stage302
more in depth below.303

3.3. Perspective Prompting 304

The final step of APC involves generating a prompt from 305
the transformed scene abstraction SA to feed as input for 306
the VLM. That is, how is the VLM asked with the trans- 307
formed, now egocentric spatial reasoning task? We refer to 308
our generated prompt as the perspective prompt for image 309
I and question Q. Since VLMs can take images and text 310
inputs, we explore two choices for the representation of this 311
prompt: numerical (textual) and visual. 312

Numerical (Textual) Prompt. Recall that an object ab- 313
straction in the transformed scene abstraction SA consists 314
of the object’s textual description, its corresponding 3D po- 315
sition, and its orientation, i.e. O′

i = (ti, c
′
i, p

′
i). Hence, a 316

straightforward approach is to directly feed this information 317
into the VLM. Specifically, we include the 3D position c′i in 318
a predefined instruction template and instruct the VLM to 319
directly solve the question Q. The full instruction template 320
is provided in the Appendix (Sec. E). 321

Visual Prompt. Our goal is to let VLMs “view the scene 322
from A’s perspective”; thus an alternative choice for the per- 323
spective prompt is a visualization of our abstraction SA. We 324
begin by assigning each object an equal-sized cube, with 325
each cube’s position matching the objects’ positions c′i. We 326
then render these cubes from the reference viewer A’s van- 327
tage point, generating an egocentric depiction of the scene 328
abstraction. To distinguish between objects, each cube is 329
assigned a unique color. When providing this information 330
to the VLM, we modify the original question Q to reflect 331
the abstract visual representation. Specifically, we replace 332
object names (e.g. “dog”) with their corresponding colored 333
cubes (e.g. “red box”), forming an abstract question Q∗. 334
Refer to Fig. 5 for an example of an obtained abstraction 335
question. Putting it all together, the VLM receives as a 336
prompt both the abstract rendered image—showing colored 337
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cubes—and the reformulated question Q∗. This allows it338
to answer spatial reasoning questions originally posed from339
arbitrary perspectives by reasoning with this abstract, ego-340
centric visual prompt. More details on the visual prompting341
process are presented in the Appendix (Sec. C.3).342

4. Results343

In this section, we present the experimental results of our344
APC across a range of spatial reasoning tasks that include345
specified reference perspectives. We compare APC to mul-346
tiple baseline methods and show how our abstraction-based347
allocentric-to-egocentric reasoning framework enables the348
VLM to handle alternative perspectives. We use Qwen2.5-349
VL [2] as our backbone VLM.350

4.1. Evaluation Settings351

Benchmarks. We validate our APC on both synthetic [78]352
and real-world [46] benchmarks in which the spatial reason-353
ing requires perspective changes. Sample image-question354
pairs from each benchmark are shown in Fig. 6.355

• COMFORT++: Zhang et al. [78] introduce COMFORT,356
a benchmark synthesis protocol designed to evaluate357
VLMs on perspective-aware spatial reasoning. It employs358
a simple Blender [13] rendering pipeline to place multi-359
ple objects in a synthetic scene with one reference viewer360
and various other objects. Each scene poses a spatial rea-361
soning question from the reference viewer’s perspective.362
Building on COMFORT, we construct four types of spa-363

Real – 3DSRBench

Spatial Relationship (L/R) Visibility

Q : If I stand at the teddy 

bear’s position facing where it 

is facing, is the kid visible or 
not?

A : Yes

Q : If I stand at the fridge’s 

position facing where it is 

facing, is the microwave on 
the left or right of me?

A : Right

Q : From the cat’s perspective, 

which object between dog, 

snowman is visible? 
A : Snowman

Q : From the horse’s 

perspective, which object is 

located closer to the viewer, 
the duck or the basketball?

A : Duck

Synthetic-COMFORT++

Spatial Relationship (L/R) Facing Direction (U/B)

Facing Direction

Q : Which object is the man in 

blue t-shirt facing towards, the 

frisbee or the bench?
A : Frisbee

Q : From the refrigerator’s 

perspective, which object is 

located closer to the viewer, 
the laptop or the camel?

A : Laptop

Closer

Figure 6. Benchmark Visualization. Example image-question
pairs from 3DSRBench [46] and COMFORT++ [78] benchmarks.
The tasks probe spatial reasoning across left-right relations, object
visibility, closenss, and the facing direction of objects.

tial reasoning tasks that require a reference viewer differ- 364
ent from the camera: left/right, closer/further, visibility, 365
and facing. 366

• 3DSRBench: Ma et al. [46] introduce a 3D spatial rea- 367
soning benchmark based on MS-COCO images [36]. We 368
focus on three categories that require an allocentric view- 369
point: left/right, visibility, and facing. Note that we recast 370
the original front/behind question in 3DSRBench into a 371
visibility question using the same images. We provide fur- 372
ther discussion on the dataset and the evaluation protocol 373
in the Appendix (Sec. D). 374

Baselines: VLMs. We benchmark our APC against multi- 375
ple state-of-the-art VLMs, including both open-source and 376
proprietary models. For open-source, we include LLaVA- 377
NeXT [41], LLaVA-OneVision [31], Molmo [14], and 378
Qwen2.5-VL [2]. We also include proprietary models: 379
GPT-4o [24] and Gemini-2.0-Flash [63]. We refer to these 380
as pure VLMs. Additionally, we compare against grounded 381
VLMs, which include models explicitly tuned for spatial 382
reasoning, such as SpatialVLM [8] and SpatialRGPT [10]. 383
We also include SpatialPIN [45], which leverages inter- 384
actions between VLMs and vision foundation models for 385
complex spatial reasoning. 386

Baselines: Dense Reconstruction. To compare APCwith 387
standard dense reconstruction techniques for novel view 388
synthesis, we introduce two baselines. First, we extend 389
SpatialPIN [45] to include our perspective change phase 390
(Sec. 3.2). We use the generated meshes from its original 391
pipeline and render the meshes from the reference perspec- 392
tive, and denote this extension as SpatialPIN∗. Refer to the 393
Appendix (Sec. B) for more details. Second, we adopt 394
ViewCrafter [75], a novel view synthesis method designed 395
for single-image inputs. For both baselines, we synthesize a 396
novel view according to the reference perspective’s relative 397
pose, and feed the resulting image to the VLM for spatial 398
reasoning. 399

4.2. Evaluation on COMFORT++ [78] 400

Tab. 1 (cols 2-5) provides quantitative comparisons on 401
COMFORT++. Here, APC-Vis refers to our visual 402
prompt, and APC-Num corresponds to the numerical 403
prompt. Even though the benchmark consists of objects 404
rendered in a simple, synthetic scene (see Fig. 6), we find 405
that most pure VLMs (rows 3-9) struggle with the left/right 406
task, hovering around chance level with the best perform- 407
ing model LLaVA-OneVision scoring only 55.33%. This 408
confirms earlier observations [78] that VLMs fail to adopt 409
alternative perspectives. Even specialist VLMs designed 410
for spatial reasoning perform poorly, with SpatialVLM at 411
46.0% and both SpatialRGPT and SpatialPIN also exhibit- 412
ing low accuracy. We observed that SpatialRGPT often gen- 413
erates hallucinated responses unrelated to the instruction, 414
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Method COMFORT++ [78] 3DSRBench [46]

left/right closer visibility facing left/right visibility facing

Random 50.00 50.00 50.00 50.00 50.00 50.00 50.00

LLaVA-NeXT [41] 48.00 47.33 40.00 39.00 34.10 41.57 50.29
LLaVA-OneVision [31] 55.33 79.00 50.94 38.33 32.09 46.51 60.12
Molmo [14] 36.33 35.67 31.88 29.00 19.77 22.97 32.08
Qwen2.5-VL [2] 43.33 74.33 51.25 43.00 34.96 45.06 53.47
Cambrian-1 [64] 52.00 79.00 57.50 41.00 40.97 49.71 65.03
GPT-4o [24] 41.00 61.33 53.75 38.67 2.01 40.12 47.70
Gemini-2.0-Flash [63] 43.67 26.00 40.31 13.00 24.93 57.65 55.20

SpatialVLM [8] 46.00 41.67 42.81 29.33 22.35 46.51 47.11
SpatialRGPT [10] 27.08 33.90 29.25 1.33 25.98 27.19 42.55
SpatialPIN [45] 19.62 23.96 48.43 43.91 11.10 42.40 11.66

SpatialPIN∗ [45] 59.80 70.45 49.84 50.51 50.10 52.30 28.86
ViewCrafter [75] 32.33 53.00 38.75 37.46 28.41 22.47 18.31

APC-Num (Ours) 88.67 96.00 71.25 62.00 71.92 62.79 60.98
APC-Vis (Ours) 89.67 94.33 90.00 88.33 72.78 67.44 66.47

Table 1. Quantitative Comparisons. Purple ( ) represents pure VLMs, green ( ) represents grounded VLMs, and red ( ) represents
dense reconstruction-based frameworks. Gray ( ) corresponds to our APC. Bold and underline indicate the best and the second-best result
for each column, respectively. APC-Num and APC-Vis refer to our method employing numerical prompt and visual prompt, respectively.

thereby resulting in low accuracy. While SpatialPIN∗—415
employing perspective change—shows better performance,416
low-quality meshes often bottleneck further improvements417
(refer to Sec. B for more discussions). In contrast, our418
APC significantly outperforms these baselines, achieving419
89.67% accuracy with a visual prompt and 88.67% with a420
numerical (textual) prompt.421

For the closer task, some VLMs show relatively high ac-422
curacy (79.00% for both LLaVA-OneVision and Cambrian-423
1), likely since they can also solve the question by compar-424
ing object distances directly from the egocentric viewpoint.425
Even in this case, APC achieves higher accuracy, attaining426
96% when using a numerical prompt. Moreover, for vis-427
ibility and facing categories, the baseline models perform428
at near-chance levels, failing to take the reference perspec-429
tives into account. Notably, APC exhibits a performance430
gap between visual and numerical prompts, with the visual431
prompt outperforming the numerical one by +18.75% and432
+26.33%, respectively. We attribute this difference to triv-433
ial logical errors that VLMs often make when relying on434
numerical coordinates. In contrast, for these two tasks the435
visual prompt requires only simple visual perception, miti-436
gating such logical errors and achieving more accurate re-437
sults.438

4.3. Evaluation on 3DSRBench [46]439

Tab. 1 (cols 6-8) presents quantitative comparisons on440
3DSRBench, which includes real images. Compared to441

the synthetic environment in COMFORT++, using real im- 442
ages introduces additional noise into both the VLMs’ vi- 443
sual reasoning and our APC’s scene abstraction phase. For 444
the left/right task, baseline VLMs consistently fall un- 445
der 50% accuracy, including the grounded VLMs. Even 446
SpatialPIN∗ with perspective change only reaches 50.10%, 447
at near chance-level. We find that using ViewCrafter to gen- 448
erate a novel view from the reference perspective yields 449
28.41% accuracy, due to the noise and hallucinations dur- 450
ing generation. We provide visualizations of the rendered 451
views from both SpatialPIN∗ [45] and ViewCrafter [75] in 452
the Appendix (Sec. B), along with more discussions on the 453
different between our abstraction-based approach and the 454
dense reconstruction-based approaches. Compared to other 455
baselines, APC consistently achieves accuracies above 60% 456
both with visual and numerical prompts, showing that our 457
framework is robust to real images. 458

For visibility task, while our method outperforms the 459
baselines, the accuracy appears lower than previous tasks— 460
67.44% with the visual prompt and 62.79% with the nu- 461
merical prompt. We attribute this decline to the noise in 462
the scene abstraction phase, particularly errors in detected 463
orientations or centroids. This issue is evident when com- 464
pared to the visibility task in COMFORT++, which employs 465
the same question format but with a simpler scene. Lastly, 466
for the facing task, Cambrian-1 achieves 64.03%, yet our 467
APC with a visual prompt still leads at 66.47%. Qualitative 468
examples on 3DSRBench are shown in Fig. 7. 469
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Q: Which object is the man facing towards, the trash bin or the motorcycle?

Ours (Numerical) Ours (Visual)Qwen2.5-VL Cambrian

Q: From the cat’s perspective, which object is located on the left side, the camel or the chair?

Q: From the woman’s perspective, which object between penguin, duck is visible?

A: The man is facing towards the 

motorcycle. He appears to be looking 

at it closely, possibly reading 

something on it or examining it. The 

trash bin is behind him and not the 

focus of his attention.

The answer is: Motorcycle

A: The motorcycle is positioned in 

front of him, and his gaze is directed 

towards it, indicating that his attention 

is focused on the motorcycle. 

Therefore, the correct answer to the 

question is: Motorcycle

Reasoning based on 

## Coordinates ## 

man : [0, 0, 0]

trash bin : [-2.644, 0.113, 3.06]…

Then based on the coordinates,…

A: Motorcycle

Reasoning based on #abstract visual 

prompt#, #abstract question#, #color-

object map#:

A: Motorcycle

A: From the cat's perspective, the 

camel is located on the left side, and 

the chair is on the right side.

The answer is: Camel

A: The cat is positioned to the right of 

the chair, and the camel is to the left 

of the chair. Since the question 

specifies the object on the left side 

from the cat's perspective, the correct 

answer is: Camel

Reasoning based on 

## Coordinates ## 

cat : [0, 0, 0]

camel : [0.809, 0.209, 0.268]

Then based on the coordinates,…

A: Chair

Reasoning based on #abstract visual 

prompt#, #abstract question#, #color-

object map#:

A: Chair

A: From the woman's perspective, 

both the penguin and the duck are 

visible. The penguin is on her left side, 

and the duck is on her right side.

The answer is: Both

A: The duck is placed to the right of 

the woman and is closer to her than 

the penguin, which is on the left. 

Therefore, the correct answer to the 

question is: Duck

Reasoning based on 

## Coordinates ## 

penguin : [-0.22, -0.159, 1.228]

duck : [0.246, -0.25, -1.265]

Then based on the coordinates,…

A: Penguin

Reasoning based on #abstract visual 

prompt#, #abstract question#, #color-

object map#:

A: Penguin

Q: If I stand at the person’s position facing where it is facing, is the table on the left or on the right of me?

A: If you stand at the person's position 

and face the same direction they are 

facing, the table would be on your left. 

The table is to the left of the person in 

the image.

The answer is: Left

A: The person is seated with their 

back to the television, and the table is 

directly to their left, partially obscured 

by the laptop stand. 

Therefore, the correct answer is:

Left

 

Reasoning based on 

## Coordinates ## 

person : [0, 0, 0]

table : [0.556, -0.004, -0.646]

Then based on the coordinates,…

A: Right

Reasoning based on #abstract visual 

prompt#, #abstract question#, #color-

object map#:

A: Right

Figure 7. Spatial Reasoning with Perspective Change. Recent VLMs such as Qwen2.5-VL [2] and Cambrian-1 [64] often struggle with
spatial reasoning tasks that require a shift to a specific reference viewpoint. In constrast, our APC effectively handles such perspective
changes by constructing a scene abstraction and delivering the transformed view through a simple prompting technique.

4.4. Probing the Perspective Awareness of VLMs470

Finally, we analyze the perspective-awareness of each471
method by assessing spatial reasoning accuracy across dif-472
ferent viewpoints. Specifically, we select two tasks—473
left/right and closer—and construct 60 scenes similar fol-474
lowing our setting in COMFORT++. Each scene is rendered475
from 20 evenly spaced azimuth angles. We define θ as the476
angular offset between the camera’s orientation and the ref-477
erence viewer’s orientation. Here, for θ = 0◦ the camera is478
aligned with the reference perspective, while θ = 180◦ indi-479
cates that the reference viewer is facing towards the camera.480

COMFORT++ Left/Right COMFORT++ Closer

Ac
cu

ra
cy

Angle
Molmo

Qwen2.5-VL Random
LLaVA-OneVisionLLaVA-NeXTCambrian-1

APC-Vis (Ours)

Figure 8. Perspective Awareness. Each plot shows accuracy
versus the angular offset θ between the camera and the refer-
ence viewpoint. While baselines show clear degradation at certain
ranges of θ, APC retains robust accuracy across all angles, demon-
strating strong perspective-aware reasoning.

The results are shown in Fig. 8. For the left/right task 481
(left), the baselines exhibit clear bell-shaped curves, achiev- 482
ing near perfect accuracy when θ is close to 0◦ (egocentric) 483
but rapidly declining as the magnitude of θ increases (allo- 484
centric). In contrast, APC maintains consistently high ac- 485
curacy across all angles, demonstrating strong perspective- 486
aware reasoning. For the closer task (right), baseline mod- 487
els also show noticeable accuracy drops, especially near the 488
leftmost and rightmost θ ranges. APC consistently achieves 489
over 80% accuracy, robustly handling viewpoints regardless 490
of their deviation from the egocentric perspective. 491

5. Conclusion 492

In this work, we introduced APC, a framework empower- 493
ing VLMs with the capability of perspective-aware reason- 494
ing. Our key idea is to simulate the mental imagery pro- 495
cess of humans, abstracting the scene in an image to facili- 496
tate allocentric-to-egocentric perspective shifts, and in turn 497
convey the transformed view to the VLM in the form of a 498
prompt. The scene abstraction is constructed using vision 499
foundation models for object detection, segmentation, and 500
orientation estimation. The reframed prompt from the new 501
perspective, either in text or image form, is then processed 502
by VLMs, leveraging their egocentric reasoning capabili- 503
ties. As shown by our experiment on both synthetic and real 504
spatial reasoning benchmarks, APC enables robust accuracy 505
across diverse perspectives, thereby opening new possibili- 506
ties of VLMs on real-world spatial tasks. 507
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