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ABSTRACT

Language models have become practical tools for quantum computing education
and research, from summarizing technical papers to explaining theoretical concepts.
While existing benchmarks evaluate quantum code generation and circuit design,
their understanding of quantum computing concepts has not been systematically
measured. QC-Bench addresses this gap with over 6,000 expert-level questions
on quantum algorithms, error correction, and security protocols. Evaluating 31
models from OpenAl, Anthropic, Google, and Meta reveals strong performance on
established theory but systematic failures on advanced topics like quantum security
and recent attack vectors. Human participants scored between 23% and 86%,
with experts averaging 74% and all participants averaging 57%. Top-performing
models exceeded the expert average, with Claude Sonnet 4 and GPT-5 reaching
88% overall, yet dropping to 76% on security questions. Additional evaluation
across question formats and languages reveals variation in model performance,
demonstrating that QC-Bench provides a necessary framework for measuring
language model reliability in quantum computing contexts.

1 INTRODUCTION

Quantum computing has progressed significantly from theoretical research to experimental implemen-
tations with practical applications. Current quantum systems have rapidly evolved through successive
technological breakthroughs from operating with just a few qubits to recently surpassing the 1000-
qubit barrier AbuGhanem!| (2025), enabling exploration of quantum algorithms and protocols that were
previously confined to theoretical analysis. This technical advancement drives progress in quantum
simulation King et al.| (2025)); Halimeh et al.| (2025); [Puig et al.| (2025)), optimization problems |Quin-
ton et al.| (2025)); Phillipson| (2024), and cryptographic applications |Sahu & Mazumdar| (2024);
Ralegankar et al.| (2021)); Kalaivani et al.[|(2021). Beyond traditional quantum applications such as
quantum simulation and cryptography, recent research explores its potential in finance [nnan et al.
(2024); |Grossi et al.| (2022), healthcare |Ur Rasool et al.| (2023)); |[Flother| (2023)), computer vision |L1
et al.|(2020); |Afane et al.| (2025)); ]ALRikabi et al.|(2022)), and wireless communication Narottama &
Shin/(2021)); [Narottama et al.|(2023)), among other promising real-world applications.

In parallel, Large Language Models (LLMs) have become sophisticated tools that address com-
plex challenges across many disciplines. These Al systems now approach or exceed human expert
performance in areas such as cybersecurity [Tthanyi et al.|(2024); |Afane et al.|(2024), medical diag-
nosis [Subedi| (2025)), and legal reasoning |Guha et al.|(2023)); Kant et al.| (2025). As these two fields
continue to evolve, their intersection becomes increasingly important for scientific communication,
education, and research productivity. Despite significant advances in both domains, we face a critical
knowledge gap in evaluating LLMs’ understanding of specialized quantum concepts. While extensive
benchmarking exists across numerous related domains, including mathematics |Gao et al.| (2024);
Fang et al.| (2024), physics [Chung et al.| (2025)), and computer science |Song et al.| (2024])), no stan-
dardized frameworks comprehensively assess quantum computing knowledge in these models. This
absence is particularly concerning given the field’s counterintuitive principles, and rapidly evolving
terminology that challenge even domain experts. The complexity of quantum computing concepts,
combined with their inherent mathematical abstraction, creates a particularly demanding test case for
evaluating the depth of LLMs’ specialized knowledge. Without reliable evaluation metrics, LLMs risk
spreading plausible but incorrect quantum information to educational and research communities, as
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hallucinations, reasoning errors, and factual inaccuracies have been widely documented in similarly
complex and technically demanding specialized domains. |Orgad et al.| (2024); [Perkovi¢ et al.| (2024).

This creates an urgent need for robust quantum computing benchmarks as researchers, students,
and industry professionals increasingly rely on these models for information and assistance with
quantum tasks. The growing adoption of LLMs across academic institutions and quantum technology
companies further amplifies the importance of ensuring these systems provide accurate information
on this emerging field. To address these challenges, we present the following key contributions:

* We assemble 6,237 questions: 5,400 multiple-choice questions comprising QC1000 (1,000
entirely human-authored from peer-reviewed literature, with QC500 translated into Spanish
and French) and 4,400 human-validated questions filtered from 8,686 candidates, plus 837
format variants (416 true/false, 421 open-ended) for evaluating model performance across
question formats.

* We conduct extensive evaluation across 31 models from leading Al research organizations
including OpenAl, Anthropic, Google, Meta, IBM, Microsoft, and DeepSeek, among others.
We compare their performance against 43 quantum computing experts and practitioners to
establish human baselines and assess how LLMs perform relative to human capabilities.

* We analyze model performance across different question formats and via Spanish and French
translations of QC500, revealing significant accuracy declines in the translated sets and
consistent sensitivity to question type, with larger drops in Spanish than in French.

* We explore the potential of our dataset for fine-tuning by using a subset of 4,000 questions
to enhance the quantum knowledge of five smaller models, demonstrating performance
improvements and establishing the benchmark’s value beyond evaluation.

2 RELATED WORK

Despite significant advancements in both quantum computing and LLMs, their intersection remains
surprisingly underexplored. Recent research has begun addressing this gap from different angles.
Kashani [Kashani| (2024) introduced QuantumLLMInstruct (QLMMI), a dataset of over 500,000
instruction-problem pairs covering quantum cryptography, spin chain models, and Trotter-Suzuki
decompositions. However, QLMMI’s primary purpose is to enable instruction fine-tuning rather than
comprehensive evaluation of quantum knowledge. While extensive in size, QLMMI relies entirely on
synthetically generated content through a four-stage LLM pipeline. In contrast, QC-Bench offers
1,200 human-authored evaluation questions extracted directly from research literature published
over four decades, prioritizing authentic scientific content over synthetic generation. Wang et al.
Wang et al.| (2024) introduced GroverGPT, an approach to simulating quantum algorithms using
LLMs. Their 8-billion-parameter model is fine-tuned to approximate Grover’s quantum search
algorithm without explicitly representing quantum states. While GroverGPT demonstrates impressive
capabilities in predicting specific quantum circuit outputs, it focuses exclusively on a single quantum
algorithm rather than evaluating comprehensive knowledge across the quantum computing domain.

Complementary efforts have emerged focusing on quantum code generation and circuit implemen-
tation capabilities. Vishwakarma et al. |Vishwakarma et al.|(2024) developed Qiskit HumanEval, a
hand-curated benchmark of over 100 tasks designed to evaluate LLM performance in generating
executable quantum code using the Qiskit SDK, complete with canonical solutions and compre-
hensive test cases. Guo et al. |Guo et al.[(2025) introduced QuanBench, which evaluates quantum
code generation across 44 programming tasks using both functional correctness (Pass@K) and
quantum semantic equivalence (Process Fidelity) metrics, finding that current LLMs achieve below
40% overall accuracy with frequent semantic errors including outdated API usage and incorrect
algorithm logic. Yang et al. [Yang et al.| (2024) presented QCircuitNet, a large-scale hierarchical
dataset for quantum algorithm design containing 120,290 data points with automatic syntax and
semantic verification functions. At a lower abstraction level, Li et al. |Li et al.|(2023)) developed
QASMBench, a benchmark suite of low-level OpenQASM programs for evaluating NISQ devices and
simulators. While these works provide valuable resources for assessing programming proficiency and
implementation capabilities at various levels of quantum software development, they primarily target
coding skills rather than evaluating deep conceptual understanding of quantum computing principles,
algorithmic theory, or the ability to reason about quantum phenomena. QC-Bench addresses this by
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evaluating theoretical knowledge and conceptual understanding across quantum computing topics,
from foundational algorithmic principles to advanced security protocols and attack vectors.

3 QC-BENCH DATASET

We constructed the QC-Bench dataset to evaluate quantum computing knowledge in LL.Ms across
a wide range of topics and difficulty levels. To ensure comprehensive coverage and relevance,
our team reviewed over 200 peer-reviewed research papers, preprints, and academic resources.
From these sources, questions were directly selected to reflect both foundational knowledge and
current advancements in the field. The dataset comprises QC1000, containing 1000 questions
manually extracted from quantum computing literature, with QC500 as a 500-question subset
selected for multilingual evaluation. To address concerns about model memorization, none of these
questions are reproduced verbatim from source materials; instead, we extracted core concepts and
reformulated them into original questions. This approach ensures that performance reflects genuine
understanding rather than memorization of published text. After refining and validating this content,
the benchmarks were finalized. The QC500 subset was translated into Spanish and French to evaluate
LLM performance in languages other than English.

To expand our benchmark, Gemini 2.0 Flash, Gemini 1.5 Pro, GPT-4.0, and Claude 3.7 Sonnet
were employed to extract additional relevant questions from the selected papers. Different prompt
engineering techniques were tested to optimize question generation quality. While zero-shot prompt-
ing produced acceptable results, few-shot prompting with five carefully selected examples from the
existing subsets significantly improved the relevance and technical accuracy of generated questions.
This approach generated 8,686 candidate questions, subsequently filtered to remove low-quality or
redundant items. The final selection included an additional 4,400 high-quality questions, bringing
the total benchmark size to 5,400 multiple-choice questions. To evaluate model performance across
different question formats, the benchmark was supplemented with 416 true/false questions and 421
open-ended questions. Figure[T]illustrates the distribution of these question types across different
topics. Given the interconnected nature of quantum computing, some concepts naturally appear
across multiple categories; for example, noise characterization relates to both error correction and
hardware-level circuit design. The multiple-choice format enables precise evaluation of factual
recall and conceptual understanding, while true/false questions assess binary comprehension, and
open-ended questions evaluate explanatory capabilities.

Quantum Security 732 §72 Total: 864
Error Correction 890 E Total: 1002
Distributed Computing 835 m Total: 951
Gates & Circuits 761 B Total: 856

Basic Concepts Total; 822 _Question Type
mmm Multiple Choice
True/False

0 200 400 600 800 10'00
Number of Questions

Figure 1: Breakdown of benchmark question topics and their internal composition by question type.
Each horizontal bar shows the total number of questions per topic. We intentionally included a larger
share of multiple choice items to enable standardized automated evaluation, whereas true/false items
offer limited challenge and open-ended questions require manual scoring.
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4 EXPERIMENTS

We evaluated 31 LLMs using a consistent benchmarking pipeline. Closed-source models, including
GPT-5, GPT-40 (standard, mini), Claude (Sonnet 4, Sonnet 3.7, Haiku 3.5), and Gemini (1.5 Pro,
2.0 Flash), were accessed through their official APIs in Google Colab environments. Open-access
models such as LLaMA3 (1B, 8B, 70B), LLaMA?2 (13B), Phi (2.7B, 3.8B, 14.7B), Mistral (7B,
24B), Qwenl.5 (2.7B, MoE-A2.7B), Zephyr, DeepSeek, Gemma, Granite, and GPT-J were deployed
using Hugging Face’s Transformers library on a cluster equipped with two Tesla V100 GPUs (32GB
each) using FP16 inference. For several larger models, including 1lama-3 (70b, 70b-versatile), and
Gemma-9B, we used Groq’s API instead of Hugging Face’s Transformers library for a faster and
more efficient evaluation. All models were configured with a temperature setting of 1 to balance
deterministic responses with reasonable diversity in answer generation.

For experiment preparation, all benchmark questions were structured in JSON format for efficient
processing and consistent evaluation across different model architectures. We developed standardized
prompting templates for each question type to ensure fair comparison between models. This data
preparation approach facilitated automated evaluation pipelines and ensured comparable results
despite the diversity of model implementations and access methods. The benchmark includes
multiple-choice, true/false, and open-ended formats, with multilingual versions available for a subset
of questions. Key findings from these experiments are presented in the following subsections, with
complete results and detailed analyses available in the appendix.

LLM Model Provider Size Access Q500 Q1000 Q5400
A\ Claude Sonnet 4 Anthropic N/A Anthropic API 91.80 89.90 88.55
® GPT-5 OpenAl N/A OpenAl API 91.40 90.90 88.46
® GPT-40 OpenAl N/A OpenAI API 88.20 86.30 88.07
A\ Claude Sonnet 3.7 Anthropic N/A Anthropic API 92.40 84.70 87.98
® GPT-4.1 mini OpenAl N/A OpenAl API 87.20 82.30 86.42
G Gemini 2.0 Flash Google N/A Google API 82.40 84.60 84.44
G Gemini 1.5 Pro Google N/A Google API 80.20 84.80 83.92
® GPT-40-mini OpenAl N/A OpenAl API 80.00 81.90 83.85
O 1lama-3.3-70b-versatile Meta 70B Groq API 81.40 82.00 82.07
&% Phi-4-reasoning-plus Microsoft 14.7B HuggingFace 87.00 89.30 81.74
A\ Claude Haiku 3.5 Anthropic N/A Anthropic API 80.00 82.80 80.44
IEM granite-3.3-8b-instruct IBM 8.17B HuggingFace 84.20 81.10 76.07
O Llama-3.1-8B-Instruct Meta 8.03B HuggingFace 73.80 78.40 75.75
&% Phi-4-reasoning Microsoft 14.7B HuggingFace 81.00 80.20 75.59
® GPT-4.1 nano OpenAl N/A OpenAl API 86.00 86.20 74.58
# zephyr-7b-beta Hugging Face 7.24B HuggingFace 84.00 83.00 73.70
¥ DeepSeek-R1-Dist-Llama-8B DeepSeek 8.03B HuggingFace 78.00 85.20 73.62
G gemma2-9b-it Google 9B Groq API 84.60 86.40 73.55
¥ DeepSeek-R1-Dist-Qwen-7B DeepSeek 7.62B HuggingFace 78.20 86.90 72.51
® Llama-3.1-8B Meta 8B HuggingFace 81.00 79.50 72.51
L4 Mistral-7B-Instruct-v0.3 Mistral AT 7.25B HuggingFace 82.00 80.90 72.43
&% Phi-4-mini-reasoning Microsoft 3.84B HuggingFace 72.00 69.10 72.40
® Jlama3-70b Meta 70B Groq API 84.20 82.30 71.85
O Llama-2-13b-chat-hf Meta 13B HuggingFace 86.40 89.10 71.79
0 Llama-3.2-1B-Instruct Meta 1.24B HuggingFace 82.20 86.00 71.55
G gemma-7b Google 7B HuggingFace 72.80 74.30 69.70
&% phi-2 Microsoft 2.7B HuggingFace 81.20 78.50 67.85
G gemma-2-2b-it Google 2.61B HuggingFace 74.20 60.30 62.29
%7 Qwenl.5-MoE-A2.7B Qwen 14.3B HuggingFace 74.00 61.70 60.74
O EleutherAl/gpt-j-6b EleutherAl 6B HuggingFace 72.00 60.90 50.14
dolly-v1-6b Databricks 6B HuggingFace 36.80 34.30 48.29

Table 1: Evaluated language models with provider, size, access method, and accuracy on QC500,
QC1000, and QC5400. Rows shaded in green mark the highest performing models overall, and rows
shaded in light blue mark the best performing open-source models.

4.1 COMPREHENSIVE MODEL EVALUATION ON CORE BENCHMARK AND ACROSS TOPICS
Table [T] details the characteristics of each evaluated model and summarizes performance across the

three benchmark subsets. Results from these experiments demonstrate that increasing dataset size
from 500 to 5,400 questions does not substantially impact relative model performance.
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Model Error Correction Quantum Algorithms Quantum Security
A\ Claude Sonnet 4 92.81 81.76 76.09
® GPT-5 92.13 82.30 75.82
® GPT-4o 92.02 79.18 75.68
A\ Claude Sonnet 3.7 91.12 79.03 75.00
® GPT-4.1 mini 90.67 77.51 74.73
G Gemini 1.5 Pro 88.99 77.05 73.36
G Gemini 2.0 Flash 89.66 76.14 73.09
® GPT-40-mini 92.02 84.27 72.95
A\ Claude Haiku 3.5 83.71 74.16 71.17
O 1lama3-70b 82.13 74.01 70.63
&% Phi-4-reasoning-plus 81.01 82.08 69.95
O 1lama-3.3-70b-versatile 79.89 79.39 69.95
® GPT-4.1 nano 79.10 69.89 68.99
granite-3.3-8b-instruct 77.64 70.20 65.16
® Llama-3.1-8B-Instruct 77.19 67.92 64.62
# zephyr-7b-beta 75.39 68.28 64.07
G gemma2-9b-it 73.15 79.75 61.61
& DeepSeek-R1-Distill-Llama-8B 73.15 65.23 60.38
¥ DeepSeek-R1-Distill-Qwen-7B 72.25 73.66 58.33
00 Llama-3.1-8B 68.88 60.75 55.87
&% Phi-4-reasoning 67.30 75.63 56.46
L4 Mistral-7B-Instruct-v0.3 66.85 74.55 51.91
00 Llama-2-13b-chat-hf 65.96 52.33 51.78
® Llama-3.2-1B-Instruct 64.38 41.58 51.09
&% Phi-4-mini-reasoning 63.93 59.4 50.41
G gemma-7b 62.70 53.76 48.22
% Qwenl.5-MoE-A2.7B 47.30 38.53 46.45
% phi-2 58.20 37.63 43.72
G gemma-2-2b-it 53.93 27.24 40.16
O EleutherAl/gpt-j-6b 36.63 24.55 38.52
< dolly-v1-6b 25.84 22.58 30.87

Table 2: Model accuracy on selected quantum topics. Accuracy above 90% are shaded green and
those below 50% are shaded red.

Models performing well on QC500 and QC1000 maintained comparable performance levels on
larger benchmarks, suggesting that a carefully selected sample of a few hundred questions provides
sufficient evaluation of quantum computing knowledge. Among the evaluated models, Claude 4
Sonnet achieved the highest overall performance, closely followed by GPT-5, GPT-40, and Claude
Sonnet 3.7. Notably, among open-source models, Phi-4-reasoning-plus, IBM Granite-3.3-8b-instruct,
and Llama-3.1-8B-Instruct demonstrated reasonable performance on quantum computing tasks despite
their smaller parameter counts. While these models still trail behind the larger proprietary systems,
their relative competence suggests they could serve as practical starting points for domain-specific
fine-tuning where computational resources are limited.

Table[2]shows a clear pattern: models handle basic concepts but decline sharply on advanced material,
with the largest drop on quantum algorithms and security. Security questions were especially
difficult, including recent work on phase mismatch attacks, crosstalk exploitation, QubitHammer, and
quantum backdoors. These gaps highlight the challenge of fast moving areas that demand specialized
knowledge, and the examples that follow illustrate the kinds of questions where even top models
failed.

* What specific attack technique can manipulate the error rates of specific quantum gates ?

* What specific vulnerability does a quantum reorder attack exploit?

* What makes dynamical decoupling ineffective against QubitHammer attacks ?

This performance gap between foundational and advanced topics is particularly revealing. The
disparity suggests that models have absorbed well-documented principles from extensive training data
but struggle with recent developments where literature is sparser and terminology less standardized.
The consistency of this pattern across model families, regardless of size or provider, indicates that the
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challenge lies in the nature of the material rather than individual model limitations. Notably, even
the expanded evaluation with agentic and deep research modes (Section 4.5) showed only marginal
improvements on these advanced topics, confirming that web access alone cannot compensate for
gaps in specialized reasoning. This finding has practical implications: users relying on LLMs for
quantum computing assistance should exercise particular caution in rapidly evolving subfields where
model knowledge may lag behind current research.

4.2 HUMAN PERFORMANCE BASELINE STUDY

To establish a human baseline for comparison with language model performance, we conducted
a survey study with quantum computing researchers and practitioners. We carefully selected 30
questions from QC-Bench spanning different topic areas and complexity levels to assess human
expertise across the quantum computing domain. The survey included questions from all seven
categories. Participants were recruited from academic institutions and quantum computing research
groups. Each respondent provided background information including their highest education level,
years of experience in quantum computing, and age group. Further details on each participant’s
background and individual score are provided in the appendix, offering context for the distribution
shown here. The sample questions below illustrate the style and difficulty of the survey items used in
this comparison.

* Why is Shor’s algorithm considered a threat to modern cryptographic security?
* How does quantum transpilation optimize quantum circuits for real hardware?

* Which quantum algorithm is specifically designed to process structured graph data?
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Figure 2: Performance comparison of selected LLMs across different capability tiers on the QC500
benchmark against human baselines. The visualization includes 12 representative models ranging
from top performers to those scoring below novice human levels. Bars are colored by model provider.

Figure 2] presents a representative sample of LLM performance on the QC500 benchmark, show-
casing models across the full performance spectrum. The majority of models shown exceed the
all-participants average of 57.2%, while several surpass the expert average of 74.6%. The visual-
ization highlights the dramatic performance range in quantum computing capabilities, from leading
models like Claude 4 Sonnet (88.55%) and GPT-5 (88.07%) to models performing well below novice
human levels, such as gpt-j-6b (50.14%) and dolly-v1-6b (48.29%). This selection demonstrates that
quantum computing proficiency varies significantly across model families, sizes, and providers.
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4.3 PERFORMANCE ACROSS DIFFERENT QUESTION FORMATS

Our evaluation extended beyond multiple-choice questions to assess model capabilities in diverse
testing scenarios. For true/false questions, we modified the standard prompts to request binary
verification of quantum computing statements. In open-ended questions we evaluated models’ ability
to generate explanations independently without options. Open-ended responses were graded based
on factual correctness and conceptual completeness, with multiple-choice questions serving as the
primary evaluation method while open-ended questions function as a supplementary diagnostic
tool. Most models maintained strong performance on the true/false questions while showing clear
degradation on open-ended assessments. Accuracy on the true/false set was tightly clustered, with
smaller models often matching the large models once the task was reduced to a simple binary choice.

The limited number of options in the true/false evaluation leaves less room to distinguish stronger
reasoning ability, so the gap between the very top systems and the weakest models nearly disappears
in this format. By contrast, multiple-choice questions with four options revealed a more visible
separation among high-end models, highlighting that true/false items are not an effective way to
validate deeper research questions. Open-ended questions told a different story. GPT-5 not only
produced the highest scoring answers when evaluated for correctness but also consistently provided
richer, more contextually grounded explanations than its peers, and those detailed responses were
closely aligned with the correct conclusions in most cases. This pattern underscores that open-ended
evaluation exposes real differences in reasoning quality that are obscured when models face only
binary decisions. Table[3|presents the complete results.

4.4  FINE-TUNING POTENTIAL FOR QUANTUM KNOWLEDGE

We explored QC-Bench’s utility for enhancing quantum computing capabilities through targeted
fine-tuning. Using a subset of 4,400 questions for training and 1,000 questions as a test set, we
fine-tuned five smaller language models using LoRA (Low-Rank Adaptation).

Our fine-tuning implementation used PyTorch with the Transformers library, applying LoRA with
rank=8 and alpha=16 targeting attention projection matrices. We used a learning rate of le-4 with
AdamW optimizer, batch size of 4 with gradient accumulation over 4 steps, and trained for a single
epoch with warmup steps to ensure stable adaptation without overfitting.

Table 4] demonstrates the results across our selected models. Llama-3.1-8B-Instruct showed the
strongest adaptation with a 5% improvement, while Gemma 2B achieved a modest 3.7% gain.
Qwenl.5-MoE-A2.7B showed minimal improvement despite its Mixture-of-Experts architecture.
Surprisingly, Phi-4-mini-reasoning experienced a slight performance decline, and EleutherAl/gpt-j-6b
demonstrated a substantial 7% drop in accuracy. These mixed results highlight how model architecture
significantly influences fine-tuning outcomes, with instruction-tuned models generally showing better
adaptation to specialized quantum computing knowledge than their general-purpose counterparts.

Model T/F (%) O-E (%)

Model Size Before After
GPT-5 93.27 89.07
Claude Sonnet 4 93.99 88.84 Llama-3.1-8B-Instruc 8B 74.75 79.80 1
GPT-40 93.75 86.22 Gemma 2B 7B 62.29 65.70 1
Gemini 2.0 Flash 92.31 84.09 Qwenl.5-MoE-A2.7B 14.3B 58.50 58.90
GPT-4.1 mini 93.03 79.81 Phi-4-mini-reasoning 3.84B 74.00 73.60
1lama-3.3-70b-versatile 91.35 74.58 EleutherAl/gpt-j-6b 6B 31.80 24.80 |
Claude Haiku 3.5 93.75 78.15

Table 4: Performance change after fine-tuning
Table 3: Accuracy on other question formats

Since effective fine-tuning remains feasible only for smaller models that consistently underperform
relative to frontier systems, we shift focus to inference-time augmentation strategies. Retrieval-
augmented generation and emerging agentic reasoning capabilities present promising alternatives,
particularly for the largest models where parameter updates prove impractical. These approaches
sidestep the weight-adaptation bottleneck by empowering models to dynamically query external
sources and execute multi-step reasoning during inference, offering a more scalable pathway for
specialized domain applications.
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4.5 PERFORMANCE WITH AGENTIC AND DEEP RESEARCH MODES

Given the limited improvements observed from fine-tuning and the practical constraints of adapting
larger models, we explored an alternative approach through agentic reasoning capabilities and deep
research modes. These capabilities enable models to perform multi-step reasoning, search external
sources, and synthesize information across multiple queries without requiring model adaptation or
training data. This paradigm augments models with tool use and extended reasoning processes rather
than modifying model weights to encode domain-specific knowledge. We evaluated frontier models
equipped with their respective advanced capabilities: Claude Sonnet 4.5 Research Mode, Claude
Sonnet 4.5 Extended Thinking, GPT-5.1 Deep Research, GPT-5.1 Agent Mode, and Gemini 3 Deep
Research. These modes allow models to break down complex questions, search for relevant informa-
tion, and synthesize answers through multi-step reasoning processes. We tested these capabilities on
the QC500 subset, which provides a balanced evaluation across all quantum computing topics in our
benchmark.

Model Before (%) After (%) Improvement
Claude Sonnet 4.5 (Research Mode) 91.80 92.20 +0.40
Claude Sonnet 4.5 (Extended Thinking) 91.80 92.60 +0.80
GPT-5.1 (Deep Research) 91.40 92.80 +1.40
GPT-5.1 (Agent Mode) 91.40 91.20 -0.20
Gemini 3 (Deep Research) 87.40 89.20 +1.80

Table 5: Performance of frontier models with advanced reasoning capabilities on QC500. Average
improvement is 0.84 percentage points.

Results in Table 5] show the performance of these advanced reasoning modes. GPT-5.1 with Deep
Research achieved the highest score at 92.80%, while both Claude Sonnet 4.5 variants performed
above 92%. Gemini 3 Deep Research showed the largest improvement, gaining 1.8 percentage points
to reach 89.20%. Notably, GPT-5.1 Agent Mode showed a slight decline of 0.2 percentage points
compared to the base model. The average improvement across all models was 0.84 percentage points,
demonstrating modest gains from these advanced capabilities.

These results indicate that while agentic and deep research modes provide measurable benefits, the
improvements remain relatively modest on our benchmark. This suggests that the fundamental
challenge in quantum computing knowledge assessment lies in the breadth and depth of knowledge
encoded during pretraining rather than in reasoning capabilities alone. Questions in QC-Bench are
designed to test factual knowledge and conceptual understanding rather than multi-step reasoning,
which may explain why reasoning-augmented modes show limited advantage. However, advanced
reasoning modes offer key advantages: (1) they require no training data or computational resources for
model adaptation, (2) they can access current information beyond the model’s knowledge cutoff, and
(3) they can be applied to the largest and most capable models where fine-tuning is often impractical.

4.6 MULTILINGUAL BENCHMARK PERFORMANCE

To investigate how quantum computing knowledge transfers across languages, we evaluated all models
on Spanish and French translations of QC500. This experiment provides quantitative insights into
linguistic generalization of specialized technical knowledge. Figure [3]shows Spanish versus French
accuracy for selected models. While most models fall along a diagonal cluster indicating correlated
cross-lingual performance, the distribution reveals systematic language-dependent performance
gaps. Across our full benchmark set, models lose on average 11.2 percentage points in French
and 15.2 percentage points in Spanish relative to English baselines. This asymmetry is particularly
notable, as Spanish exhibits approximately 55 percent greater performance degradation than French.
Remarkably, only 34.5% of models maintain scores above 75% in Spanish, compared to 44.8% in
French and 69.0% in English. The most linguistically consistent models (Claude 4 Sonnet, GPT-5,
and Gemini 2.0 Flash) show standard deviations below 0.6 across languages, while the least consistent
(Phi-4-reasoning) exhibits a standard deviation of 31.2.
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Figure 3: Bubble chart of Spanish (vertical) versus French (horizontal) accuracy on the QC500
benchmark. Each bubble’s area is proportional to the model’s parameter count; colors indicate
providers. The diagonal dashed line marks equal performance across the two languages. Bubbles
below the line signal larger accuracy loss in Spanish.

5 DISCUSSION

Our evaluation reveals a clear performance pattern across all tested models: strong results on
foundational topics with significant decline on advanced domains. Top models achieve over 92%
accuracy on basic quantum concepts but drop below 77% for quantum security questions. This
performance drop is particularly evident in questions about emerging attack vectors like phase
mismatch attacks and QubitHammer, where even the most advanced models failed to provide accurate
responses consistently. Notably, leading LL.Ms outperform many practitioners and experts in our
human survey, where performance ranged from 26.6% to 86% depending on education level and
experience (detailed results in the appendix). In addition, the results highlight a widening gap
between recent state-of-the-art LLMs and smaller models, a trend that persists even after fine-tuning.
These high-capacity systems show clear advantages not only on complex multiple-choice tasks but
especially on open-ended questions, where they deliver more accurate and detailed explanations.
Smaller models, by contrast, plateau despite fine-tuning, indicating that model scale and training
pipelines remain critical for strong performance on demanding quantum computing assessments.

Question format comparison shows GPT-5 maintaining 89.07% accuracy on open-ended quantum
explanations while most competitors show degradation without multiple-choice options. This sug-
gests many models rely on recognizing answer patterns rather than constructing explanations from
fundamental understanding. Our multilingual testing reveals concerning disparities, with average per-
formance dropping 11.2 percentage points in French and 15.2 points in Spanish. Fine-tuning results
demonstrate significant variation in how models adapt to quantum knowledge. Llama-3.1-8B-Instruct
improved by 5.3% through fine-tuning, while EleutherAl/gpt-j-6b declined by 7%, suggesting that
instruction-tuned models more readily incorporate specialized quantum knowledge.
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As quantum computing advances toward practical implementation, retrieval-augmented generation
can complement fine-tuning, particularly since practical fine-tuning is mainly feasible for smaller
models. While targeted fine-tuning can modestly improve accuracy for compact systems, it remains
costly and inflexible for the larger architectures that already set the performance frontier. Retrieval-
augmented generation, by contrast, allows those high-capacity LLMs to access curated domain
sources and continuously updated technical literature, avoiding the need for repeated full retraining.

6 LIMITATIONS AND FUTURE WORK

QC-Bench offers a comprehensive evaluation of quantum computing knowledge, with English as the
primary language and a large QC500 subset already available in Spanish and French. A next step is
to expand coverage beyond QC500 by translating a larger portion of the benchmark into Spanish and
French, and by adding more languages to better reflect global practice. Additional work includes
increasing the diversity of non-English source materials and assessing cross-lingual consistency to
provide a more complete view of multilingual performance.

Our evaluation relies primarily on accuracy as the central performance metric, which effectively
captures models’ factual knowledge but may not fully represent their conceptual understanding or
reasoning capabilities. We chose accuracy for its interpretability, directness, and alignment with
our goal of measuring factual correctness in quantum computing knowledge. Future research could
explore alternative metrics such as calibration scores for confidence assessment, partial credit scoring
for near-correct responses, or semantic similarity measures for evaluating open-ended explanations
beyond binary correctness judgments.

Additionally, incorporating statistical frameworks such as error bars and confidence intervals would
enhance the interpretability of results, as discussed by |[Miller| (2024). Given the extensive nature of
our evaluation across 31 models, multiple question formats, three languages, fine-tuning experiments,
and agentic evaluation modes, incorporating this level of statistical rigor was beyond the current
scope. We leave this as a direction for future work.

7 CONCLUSION

As Large Language Models (LLMs) are increasingly tasked with reading, explaining, and answering
questions about quantum computing literature, rigorous domain evaluation is essential. QC-Bench
provides a comprehensive assessment with 5,400 multiple-choice items plus 416 true/false and 421
open-ended questions across seven core domains. Across 31 systems, we find a consistent pattern:
strong results on foundational material but marked drops on advanced topics. Top systems clear 92%
on basic concepts yet fall below 77% on security questions, including items on recent developments
in quantum security. Format matters: many models score well on multiple choice but degrade on
open-ended responses; GPT-5 maintains the strongest open-ended performance among evaluated
systems (89.07%) and produces more detailed, context-grounded explanations. Relative to human
baselines (23.3%-86.7%), eight models exceed the all-participants average of 74.6% and surpass the
expert average of 80.0%. Multilingual testing shows asymmetry, with average accuracy declines of
11.2 points in French and 16.2 in Spanish relative to English, indicating that quantum knowledge
does not transfer uniformly across languages.

Methodologically, the results indicate a widening gap between state-of-the-art, high-capacity systems
and smaller models, a difference that persists even after fine-tuning. Gains from fine-tuning are
modest, typically only a few percentage points, and can sometimes reduce accuracy, making the
computational cost difficult to justify for larger architectures. Evaluation of frontier models with
agentic and deep research capabilities showed an average improvement of only 0.84 percentage
points even with full internet access, suggesting that web search alone cannot compensate for gaps in
specialized technical reasoning. Alternative approaches for enhancing performance on demanding
technical domains remain an open research question. Quantum computing remains one of the most
demanding areas for language models, and continued evaluation of LLM capabilities in this domain
is essential for tracking progress and ensuring reliable performance as the field evolves.
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A APPENDIX

A.1 QUESTION EXTRACTION AND GENERATION

For the QC500 and QC1000 subsets, researchers systematically reviewed the selected quantum
computing papers and identified key concepts, algorithms, and principles that capture both foun-
dational and advanced material. Rather than copying sentences directly, each question was crafted
by rephrasing important findings and definitions from the literature to create original items while
preserving scientific accuracy. Draft questions underwent multiple rounds of verification for technical
correctness and clarity to ensure they tested understanding rather than memorization of phrasing. In
parallel, we leveraged language models in a controlled setting to suggest candidate questions from
the same source papers, but every suggestion was filtered and rewritten by researchers to maintain
consistency with the human-validated style and difficulty. This combined process produced a balanced
set of high-quality questions that reflect authentic quantum computing research while supporting
rigorous evaluation across diverse topics and difficulty levels. The question creation process involved
developing multiple answer options for each extracted concept. Below we illustrate this process with
an example:

Initial concept from paper: Quantum circuit synthesis involves decomposing unitary
operations into implementable gate sequences.

Generated question: What is the primary purpose of quantum circuit synthesis?

Initial answer options (6 generated):

A. To convert a quantum circuit into a classical circuit by removing superposition
properties

B. To merge multiple unitary matrices into a single high-dimensional operator without
gate decomposition

C. To decompose a unitary matrix representing the circuit into a sequence of gates from
the native gate set

D. To encode classical information into qubit states without performing any gate-level
modifications

E. To simulate quantum circuits on classical computers using tensor networks
F. To optimize quantum algorithms for specific hardware architectures

Final selection (4 options): Options E and F were eliminated as they describe related but
distinct processes. The final question includes the correct answer (C) and three plausible
distractors that test understanding of quantum circuit concepts.

Question: What is the primary purpose of quantum circuit synthesis?

A. To convert a quantum circuit into a classical circuit by removing superposition
properties

B. To merge multiple unitary matrices into a single high-dimensional operator without
gate decomposition

C. To decompose a unitary matrix representing the circuit into a sequence of gates from
the native gate set

D. To encode classical information into qubit states without performing any gate-level
modifications

Answer: C
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A.2 AUTOMATED QUESTION MINING FROM RESEARCH PAPERS

To expand our benchmark beyond human-authored questions, we employed Large Language Models
(LLMs), specifically Gemini 2.0 Flash, Gemini 1.5 Pro, GPT-4.0, and Claude 3.7 Sonnet, to extract
additional questions from 212 carefully selected quantum computing papers. This automated ex-
traction process generated an initial pool of over 8,000 candidate questions, each with six potential
answer options.

The filtering process involved multiple stages. First, we identified and removed questions that strayed
from quantum computing into adjacent domains. Examples of filtered questions include:

Example: Filtered Question - General Cybersecurity

Question: Which encryption protocol is most commonly used for securing HTTP connec-
tions?

A. TLS/SSL
B. SSH

C. IPSec
D. WPA2

Reason for filtering: While encryption is relevant to quantum cryptography, this question
addresses classical network security without quantum computing connection.

Example: Filtered Question — Mathematical Modeling

Question: In the analysis of an ordinary differential equation system, what does a non-positive
log-norm of the coefficient matrix imply?

A. The system is unstable for all inputs

B. The matrix has only imaginary eigenvalues

C. The solution decays or remains bounded over time
D. The matrix is diagonalizable over the complex field

Reason for filtering: While this concept appears in resource analyses for quantum-inspired
algorithms, it tests classical stability theory in differential equations and does not assess
quantum computing knowledge.

After removing duplicate questions, filtering irrelevant content, and conducting manual quality review,
we retained 4,400 high-quality questions. For each retained question, we selected the four most
relevant answer options from the initial six, ensuring each question had one correct answer and three
well-crafted distractors that effectively test quantum computing knowledge.

A.3 QUESTION TRANSLATION AND MULTILINGUAL VALIDATION

For the QC500 subset, we created Spanish and French translations using a multi-stage process. We
employed the same four LLMs (Gemini 2.0 Flash, Gemini 1.5 Pro, GPT-4.0, and Claude 3.7 Sonnet)
to generate initial translations. A typical translation prompt was structured as follows:

"Translate the following quantum computing question from English to French,
maintaining technical accuracy and appropriate scientific terminology:
[Question and answer options]"

For each question, we collected translations from all four models and selected the most accurate
version. This selection was then reviewed by individuals proficient in both languages who verified
technical terminology and ensured conceptual accuracy. The translation process preserved the
semantic content while adapting to language-specific conventions for scientific terminology.
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Examples of translated questions include:

French Translation Example 1

Question: Pourquoi les attaques par impulsion & grande échelle sont-elles difficiles a réaliser
dans les systemes partagés ?

A. Elles dépendent d’un acces chiffré aux qubits
B. Elles nécessitent un acces a la machine au niveau administrateur

C. Elles requierent de nombreux qubits, auxquels les utilisateurs n’ont généralement
pas acces

D. Elles échouent si la machine est calibrée
Answer: C

French Translation Example 2

Question: Pourquoi les algorithmes quantiques paramétriques sont-ils difficiles a vérifier
sémantiquement ?

A. IIs utilisent des parametres fixes définis dans le matériel

B. Ils reposent uniquement sur un post-traitement classique

C. Leurs parametres entrainés manquent d’interprétabilité inhérente

D. Leur structure est identique pour tous les ensembles de données
Answer: C

Spanish Translation Example 1

Question: ;Cual es la principal diferencia entre la privacidad diferencial clasica y la privaci-
dad diferencial cudntica?

A. La PD cuantica extiende las garantias de privacidad a estados cudnticos indistin-
guibles utilizando distancias de traza

B. La PD cuadntica elimina la necesidad de anélisis probabilistico

C. La PD cuantica se aplica solo a registros de qubits entrelazados

D. La PD cudéntica se impone eliminando los resultados de medicién de qubits
Answer: A

| '
\

Spanish Translation Example 2

Question: ;Qué algoritmo clésico se utiliza cominmente después del paso cuantico del
Algoritmo de Shor?

A. Algoritmo de Dijkstra

B. Expansién de fracciones continuas
C. Integracién de Monte Carlo

D. Bisqueda binaria

Answer: B

A.4 QUESTION FORMAT DIVERSIFICATION

To evaluate models’ performance across different cognitive tasks, we expanded our benchmark with
true/false and open-ended questions. For this expansion, we selected 40 additional research papers
to ensure diverse content and avoid repetition. Both LLMs and human experts generated questions
following similar protocols to the initial question creation phase.
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This process yielded 416 true/false questions and 421 open-ended questions. True/false questions
were created by converting factual statements into binary assessments:

Question: The Bloch sphere is a geometrical representation of pure quantum states of a
two-level quantum mechanical system.
Answer: True

Question: Dirac notation can only represent pure states, not mixed states.
Answer: False

Question: The E91 protocol is based on entangled particles and provides a method for secure
quantum key distribution.
Answer: True

Question: Quantum error correction codes do not require any additional qubits beyond the
physical qubits used to represent the logical qubit.
Answer: False

Open-ended questions were designed to assess deeper understanding and explanatory capabilities:

Question: What is the no-cloning theorem and its implication for quantum information?

Question: How does the Heisenberg uncertainty principle affect the measurement of quantum
states?

Question: In the context of quantum states, what distinguishes a pure state from a mixed
state?

Question: Explain the significance of the CNOT gate in quantum entanglement.

Sample Answer: The CNOT gate, or controlled-NOT gate, is crucial for creating entangle-
ment between two qubits, as it flips the state of the target qubit only if the control qubit is in
the state |1).

For each open-ended question, we developed sample answers to facilitate consistent evaluation across
different models. These questions were assessed manually to determine whether model responses
captured the essential concepts and technical accuracy required for each topic.

A.5 HUMAN PERFORMANCE BASELINE STUDY

Table [0 reports accuracies for the first 20 respondents. Scores range from 23.3% to 86.7%, with an
overall average of 57.2%. Participants with 5+ years of experience achieved an average of 79.4%,
providing a reference point for expert-level performance. Education level shows a clear pattern: all
PhD-trained participants scored at or above 73.3%, while no BS-level participant reached 60%. These
results provide a concrete reference distribution for interpreting model-human comparisons in the
main results.

REFERENCES FOR EACH TOPIC

Table [/|lists the literature sources and citation coverage for all seven benchmark topics. Rapidly
developing areas such as quantum cybersecurity and quantum machine learning rely heavily on the
most recent papers to capture ongoing advances, whereas foundational categories such as quantum
theory and quantum error correction draw on a broader historical record to reflect the principles that
remain central to the discipline. This distribution ensures that the benchmark balances up-to-date
research with enduring theoretical foundations, giving a clear view of how source material supports
each topic area.
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Participant  Education = Experience = Age Group Score  Accuracy

Pl MS 2-5yrs 25-35 19/30 63.3%
P2 BS <lyr 18-25 14/30 46.7%
P3 PhD S5+ yrs 35-45 25/30 83.3%
P4 MS 1-2 yrs 25-35 21/30 70.0%
P5 PhD 2-5yrs 35-45 23/30 76.7%
P6 BS <lyr 18-25 12/30 40.0%
P7 MS 1-2 yrs 25-35 17/30 56.7%
P8 MS 5+ yrs 35-45 24/30 80.0%
P9 PhD 2-5yrs 25-35 22/30 73.3%
P10 BS 1-2 yrs 18-25 16/30 53.3%
P11 PhD 5+ yrs 45-55 26/30 86.7%
P12 BS <lyr 18-25 11/30 36.7%
P13 MS 2-5yrs 25-35 20/30 66.7%
P14 PhD 1-2 yrs 25-35 22/30 73.3%
P15 BS <lyr 18-25 8/30 26.7%
P16 PhD 5+ yrs 35-45 25/30 83.3%
P17 MS 2-5yrs 25-35 23/30 76.7%
P18 PhD S5+ yrs 45-55 24/30 80.0%
P19 BS <lyr 18-25 7/30 23.3%
P20 MS 1-2 yrs 25-35 18/30 60.0%

Expert Average (5+ years experience): 79.4%

All Participants Average: 57.2%

Table 6: Human participant survey results on 30-question quantum computing assessment

A.6 FINE-TUNING METHODOLOGY

Our fine-tuning experiments employed Low-Rank Adaptation (LoRA) to efficiently adapt smaller
language models to quantum computing knowledge while maintaining computational feasibility.
The implementation utilized a carefully selected subset of 4,167 question-answer pairs from the
QC-Bench dataset for training, with an additional 1,000 questions reserved for evaluation. The
training data was formatted as concatenated prompt-completion pairs to maximize learning efficiency
within context length constraints. We applied LoRA with rank 8 and alpha 16, specifically targeting
the attention projection matrices (q_proj, k_proj, v_proj, o_proj) which are critical for knowledge
representation. The training configuration employed a batch size of 4 with gradient accumulation
over 4 steps, resulting in an effective batch size of 16, paired with a conservative learning rate of
le-4 using the AdamW optimizer. To ensure stable convergence, we implemented 50 warmup steps
followed by training for a single epoch, which empirical testing showed was sufficient to achieve
knowledge transfer without overfitting. The models were loaded in FP16 precision to reduce memory
requirements while maintaining numerical stability, with automatic device mapping to optimize GPU
utilization. Early stopping was monitored through validation accuracy computed every 200 steps,
though most models converged within the single epoch. This approach resulted in training only
approximately 0.5-2% of total model parameters, demonstrating that quantum computing knowledge
can be effectively incorporated through targeted parameter updates rather than full model retraining.
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Topic

References

Years

Basic Concepts

Aharonov et al. '

Terashima & Uedg]m Arrazola et al.

; ( ; ]
;[Knill et al.| (2001); King et al.
1 (2025); [Munro et al.| (2005);

1980-2025

39

Gates & Circuit Design

Zhang et al.|(2022b); |Ren et al. li Peham et al. 1| Kusyk et al.
(2021);|Ostaszewski et al.| 1| Rosa et al || DiVincenzol| (1998);
l ) .| (2012); |Venturelli
; I 29 lﬂ‘l‘ll‘
(2002); [Cory et al.| (2000 (
nxfx nx
nnx

Wille et al.

;/Zulehner et al.

1995-2025

26

Quantum Machine Learning

Wittek|(2014); Bowles et al | (2024 ;[Vishwakarma et al.[(2024); Ranga et al |
;IRath & Date| s Biswas ;Bischof et al. s [Krepli
Roth|(2024); (Chinzei et al.|(2024);|Afane et al.|(2025);|Yu et al.|(2024);

Schuld eta @]} Eav icek et al. @ m@p Elamome
);[Farhi & Neven

5078): Bencdet 4l 20 -mmmx
mm 1071 Fiara < ST EOTH
Grant et al. (20T8); C Cong & AI0T Borwld L a1

NE.IEEI

i

2014-2025

35

Distributed Computing

Cuomo et al.|(2020);|/Cacciapuoti et al.] 2020, ;[Wehner et al.] 2018);|Kimble
2008);[Stmon|(2017);|D’ Adamo et al.|(2022); Dahlberg et al.|(2019);|Caleffi

acclapuoti ; \Pompili et al. ; ISimon| ;/Van Mete
eter et al. ; an

;iMunro Cl al. 3 eter et al. N

I_H—tﬂ@b R & Wide 2071 Bhaskar e 3030 Askarl
etal. |Chi et al.|(2022); [Kozlowski et al.| (2020); Muralidharan et al,

1993-2024

35

Quantum Security

Dhar et al. m Mehic et al. Chu et al. m Zhao et al.
Xu et al[(2023); [Krawec et al. [Zhang et al.|(2022a); Xu & Szefef']

;| Tan et al [Sahu & Mazumda ; |IRalegankar et al.
2021); [Kalaivani et al, 1);|Pirandola et al. ;\Bernstein & Lange
2017);Lo et al.| (2014); Bennett & Brassard! (2014);/Xu et al.|(2020); [Ekert.
1991): Bennett (1992): Scarani et al (2009):[Lo & Chau (1999): Shor &
reskil] :Mayers| (2001); Renner| (2008); Wootters & Zurek| (1982);

1982-2025

26

Error Correction

1amanti et al.
Fowler et al. ; ; Lidar & Brun !erha ;

:Aharonov & Ben- Oﬂ WW; Eeed et al.|(2012);

1e sen & Flensberg
1 006); |Alif;

1995-2024

29

Quantum Algorithms

ennett et al
rassard et

[Ratonson & Ar EElpov @

1995-2025

30

Table 7: Topic Coverage and Source Papers
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