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ABSTRACT

Language models increasingly interact with quantum computing content through
theoretical exploration, paper summarization, and educational assistance, yet their
factual accuracy on quantum computing concepts remains unmeasured. QC-Bench
addresses this gap with 6,237 questions covering quantum algorithms, error cor-
rection, security protocols, circuit design, and theoretical foundations. We de-
signed expert-level questions informed by over 200 peer-reviewed papers from four
decades of quantum computing research to construct the benchmark. Evaluation
across 31 models from OpenAI, Anthropic, Google, Meta, and others reveals strong
performance on established theory contrasted with systematic failure on advanced
topics such as quantum security and recent attack vectors. We compared model
performance against quantum computing experts and practitioners who achieved
scores ranging from 26.7% to 86.7%. Notably, 8 models outperformed the human
expert average of 83.3%, yet all models struggled with questions about recent de-
velopments in advanced quantum computing topics. Top performers Claude Sonnet
4 and GPT-5 achieved 88% overall accuracy but drop to 76% on security questions.
Cross-format testing shows models achieve high multiple-choice scores but struggle
with generating coherent explanations without answer options, with some models
dropping 20 percentage points. Multilingual testing revealed an interesting pattern:
models consistently performed best in English, maintained reasonable accuracy
in French (11.2% degradation), but showed notably larger performance drops in
Spanish (16.2% degradation), indicating that quantum computing knowledge does
not transfer uniformly across languages. As language models become integral to
scientific workflows and even peer review processes where quantum computing
research is evaluated, ensuring their domain accuracy is critical for the AI com-
munity. QC-Bench offers a reliable benchmark for developing and validating AI
systems at the intersection of quantum computing and machine learning.

1 INTRODUCTION

Quantum computing has progressed significantly from theoretical research to experimental implemen-
tations with practical applications. Current quantum systems have rapidly evolved through successive
technological breakthroughs from operating with just a few qubits to recently surpassing the 1000-
qubit barrier AbuGhanem (2025), enabling exploration of quantum algorithms and protocols that were
previously confined to theoretical analysis. This technical advancement drives progress in quantum
simulation King et al. (2025); Halimeh et al. (2025); Puig et al. (2025), optimization problems Quin-
ton et al. (2025); Phillipson (2024), and cryptographic applications Sahu & Mazumdar (2024);
Ralegankar et al. (2021); Kalaivani et al. (2021). Beyond traditional quantum applications such as
quantum simulation and cryptography, recent research explores its potential in finance Innan et al.
(2024); Grossi et al. (2022), healthcare Ur Rasool et al. (2023); Flöther (2023), computer vision Li
et al. (2020); Afane et al. (2025); ALRikabi et al. (2022), and wireless communication Narottama &
Shin (2021); Narottama et al. (2023), among other promising real-world applications.

In parallel, Large Language Models (LLMs) have become sophisticated tools that address complex
challenges across many disciplines. These AI systems now approach or exceed human expert
performance in areas such as cybersecurity Tihanyi et al. (2024); Afane et al. (2024), medical
diagnosis Subedi (2025), and legal reasoning Guha et al. (2023); Kant et al. (2025). As these two fields
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continue to evolve, their intersection becomes increasingly important for scientific communication,
education, and research productivity. Despite significant advances in both domains, we face a critical
knowledge gap in evaluating LLMs’ understanding of specialized quantum concepts. While extensive
benchmarking exists across numerous related domains, including mathematics Gao et al. (2024); Fang
et al. (2024), physics Chung et al. (2025), and computer science Song et al. (2024), no standardized
frameworks comprehensively assess quantum computing knowledge in these models. This absence is
particularly concerning given the field’s counterintuitive principles, and rapidly evolving terminology
that challenge even domain experts. The complexity of quantum computing concepts, combined with
their inherent mathematical abstraction, creates a particularly demanding test case for evaluating the
depth of LLMs’ specialized knowledge. Without reliable evaluation metrics, LLMs risk spreading
plausible but incorrect quantum information to educational and research communities Wei et al.
(2024). This creates an urgent need for robust quantum computing benchmarks as researchers,
students, and industry professionals increasingly rely on these models for information and assistance
with quantum tasks. The growing adoption of LLMs across academic institutions and quantum
technology companies further amplifies the importance of ensuring these systems provide accurate
information on this emerging field. To address these challenges, we present the following key
contributions:

• We assemble 6,237 questions: 5,400 multiple-choice questions comprising QC1000 (with
QC500 as a subset translated into Spanish and French) and 4,400 additional questions mined
from four decades of quantum computing papers, plus 837 format variants (416 true/false,
421 open-ended) for testing different cognitive abilities.

• We conduct extensive evaluation across 31 models from leading AI research organizations
including OpenAI, Anthropic, Google, Meta, IBM, Microsoft, and DeepSeek, among others.
We compare their performance against 16 quantum computing experts and practitioners to
establish human baselines and assess how LLMs perform relative to human capabilities.

• We analyze model performance across different question formats and via Spanish and French
translations of QC500, revealing significant accuracy declines in the translated sets and
consistent sensitivity to question type, with larger drops in Spanish than in French.

• We explore the potential of our dataset for fine-tuning by using a subset of 4,000 questions
to enhance the quantum knowledge of five smaller models, demonstrating performance
improvements and establishing the benchmark’s value beyond evaluation.

2 RELATED WORK

Despite significant advancements in both quantum computing and LLMs, their intersection remains
surprisingly underexplored. While general benchmarks have driven improvements in broad language
capabilities, domain-specific evaluations for quantum computing have lagged behind other specialized
fields. Recent research has begun addressing this gap from different angles. Kashani Kashani (2024)
introduced QuantumLLMInstruct (QLMMI), a dataset of over 500,000 instruction-problem pairs
covering quantum cryptography, spin chain models, and Trotter-Suzuki decompositions. However,
QLMMI’s primary purpose is to enable instruction fine-tuning rather than comprehensive evaluation
of quantum knowledge. While extensive in size, QLMMI relies entirely on synthetically generated
content through a four-stage LLM pipeline. In contrast, QC-Bench offers 1,200 human-authored
evaluation questions extracted directly from research literature published over four decades, prioritiz-
ing authentic scientific content over synthetic generation. Wang et al. Wang et al. (2024) introduced
GroverGPT, an approach to simulating quantum algorithms using LLMs. Their 8-billion-parameter
model is fine-tuned to approximate Grover’s quantum search algorithm without explicitly represent-
ing quantum states. While GroverGPT demonstrates impressive capabilities in predicting specific
quantum circuit outputs, it focuses exclusively on a single quantum algorithm rather than evaluating
comprehensive knowledge across the quantum computing domain. QC-Bench differs by creating a
standardized benchmark across seven core quantum computing areas, enabling consistent evaluation
of models’ understanding throughout the field. Other existing science benchmarks that include
quantum topics typically feature a limited number of questions, lacking the depth needed to assess
understanding of quantum algorithms, implementation details, and hardware paradigms Cui et al.
(2025); Xu et al. (2025). QC-Bench fills this critical gap by providing thousands of questions from
fundamental theory through advanced applications, establishing the first comprehensive quantum
computing benchmark for LLMs.
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3 QC-BENCH DATASET

We constructed the QC-Bench dataset to evaluate quantum computing knowledge in LLMs across
a wide range of topics and difficulty levels. To ensure comprehensive coverage and relevance,
our team reviewed over 200 peer-reviewed research papers, preprints, and academic resources.
From these sources, questions were directly selected to reflect both foundational knowledge and
current advancements in the field. The dataset comprises QC1000, containing 1000 questions
manually extracted from quantum computing literature, with QC500 as a 500-question subset
selected for multilingual evaluation. To address concerns about model memorization, none of these
questions are reproduced verbatim from source materials; instead, we extracted core concepts and
reformulated them into original questions. This approach ensures that performance reflects genuine
understanding rather than memorization of published text. After refining and validating this content,
the benchmarks were finalized. The QC500 subset was translated into Spanish and French to evaluate
LLM performance in languages other than English.

To expand our benchmark, Gemini 2.0 Flash, Gemini 1.5 Pro, GPT-4.0, and Claude 3.7 Sonnet
were employed to extract additional relevant questions from the selected papers. Different prompt
engineering techniques were tested to optimize question generation quality. While zero-shot prompt-
ing produced acceptable results, few-shot prompting with five carefully selected examples from the
existing subsets significantly improved the relevance and technical accuracy of generated questions.
This approach generated 8,686 candidate questions, subsequently filtered to remove low-quality or
redundant items. The final selection included an additional 4,400 high-quality questions, bringing
the total benchmark size to 5,400 multiple-choice questions. To evaluate model performance across
different question formats, the benchmark was supplemented with 416 true/false questions and 421
open-ended questions. Figure 1 illustrates the distribution of these question types across different
topics, highlighting how each format contributes to comprehensive domain coverage. The multiple-
choice format enables precise evaluation of factual recall and conceptual understanding, while
true/false questions assess binary comprehension, and open-ended questions evaluate explanatory
capabilities and deeper reasoning.
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Figure 1: Breakdown of benchmark question topics and their internal composition by question type.
Each horizontal bar shows the total number of questions per topic. We intentionally included a larger
share of multiple choice items to enable standardized automated evaluation, whereas true/false items
offer limited challenge and open-ended questions require manual scoring.
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4 EXPERIMENTS

We evaluated 31 LLMs using a consistent benchmarking pipeline. Closed-source models, including
GPT-5, GPT-4o (standard, mini), Claude (Sonnet 4, Sonnet 3.7, Haiku 3.5), and Gemini (1.5 Pro,
2.0 Flash), were accessed through their official APIs in Google Colab environments. Open-access
models such as LLaMA3 (1B, 8B, 70B), LLaMA2 (13B), Phi (2.7B, 3.8B, 14.7B), Mistral (7B,
24B), Qwen1.5 (2.7B, MoE-A2.7B), Zephyr, DeepSeek, Gemma, Granite, and GPT-J were deployed
using Hugging Face’s Transformers library on a cluster equipped with two Tesla V100 GPUs (32GB
each) using FP16 inference. For several larger models, including llama-3 (70b, 70b-versatile), and
Gemma-9B, we used Groq’s API instead of Hugging Face’s Transformers library for a faster and
more efficient evaluation. All models were configured with a temperature setting of 1 to balance
deterministic responses with reasonable diversity in answer generation.

For experiment preparation, all benchmark questions were structured in JSON format for efficient
processing and consistent evaluation across different model architectures. We developed standardized
prompting templates for each question type to ensure fair comparison between models. This data
preparation approach facilitated automated evaluation pipelines and ensured comparable results
despite the diversity of model implementations and access methods. The benchmark includes
multiple-choice, true/false, and open-ended formats, with multilingual versions available for a subset
of questions. Key findings from these experiments are presented in the following subsections, with
complete results and detailed analyses available in the appendix.

LLM Model Provider Size Access Q500 Q1000 Q5400

Claude Sonnet 4 Anthropic N/A Anthropic API 91.80 89.90 88.55
GPT-5 OpenAI N/A OpenAI API 91.40 90.90 88.46
GPT-4o OpenAI N/A OpenAI API 88.20 86.30 88.07

Claude Sonnet 3.7 Anthropic N/A Anthropic API 92.40 84.70 87.98
GPT-4.1 mini OpenAI N/A OpenAI API 87.20 82.30 86.42

Gemini 2.0 Flash Google N/A Google API 82.40 84.60 84.44
Gemini 1.5 Pro Google N/A Google API 80.20 84.80 83.92
GPT-4o-mini OpenAI N/A OpenAI API 80.00 81.90 83.85

llama-3.3-70b-versatile Meta 70B Groq API 81.40 82.00 82.07
Phi-4-reasoning-plus Microsoft 14.7B HuggingFace 87.00 89.30 81.74
Claude Haiku 3.5 Anthropic N/A Anthropic API 80.00 82.80 80.44

granite-3.3-8b-instruct IBM 8.17B HuggingFace 84.20 81.10 76.07
Llama-3.1-8B-Instruct Meta 8.03B HuggingFace 73.80 78.40 75.75
Phi-4-reasoning Microsoft 14.7B HuggingFace 81.00 80.20 75.59
GPT-4.1 nano OpenAI N/A OpenAI API 86.00 86.20 74.58

zephyr-7b-beta Hugging Face 7.24B HuggingFace 84.00 83.00 73.70
DeepSeek-R1-Dist-Llama-8B DeepSeek 8.03B HuggingFace 78.00 85.20 73.62
gemma2-9b-it Google 9B Groq API 84.60 86.40 73.55
DeepSeek-R1-Dist-Qwen-7B DeepSeek 7.62B HuggingFace 78.20 86.90 72.51
Llama-3.1-8B Meta 8B HuggingFace 81.00 79.50 72.51
Mistral-7B-Instruct-v0.3 Mistral AI 7.25B HuggingFace 82.00 80.90 72.43
Phi-4-mini-reasoning Microsoft 3.84B HuggingFace 72.00 69.10 72.40
llama3-70b Meta 70B Groq API 84.20 82.30 71.85
Llama-2-13b-chat-hf Meta 13B HuggingFace 86.40 89.10 71.79
Llama-3.2-1B-Instruct Meta 1.24B HuggingFace 82.20 86.00 71.55
gemma-7b Google 7B HuggingFace 72.80 74.30 69.70
phi-2 Microsoft 2.7B HuggingFace 81.20 78.50 67.85
gemma-2-2b-it Google 2.61B HuggingFace 74.20 60.30 62.29
Qwen1.5-MoE-A2.7B Qwen 14.3B HuggingFace 74.00 61.70 60.74
EleutherAI/gpt-j-6b EleutherAI 6B HuggingFace 72.00 60.90 50.14
dolly-v1-6b Databricks 6B HuggingFace 36.80 34.30 48.29

Table 1: Evaluated language models with provider, size, access method, and accuracy on QC500,
QC1000, and QC5400. Rows shaded in green mark the highest performing models overall, and rows
shaded in light blue mark the best performing open-source models.

4.1 COMPREHENSIVE MODEL EVALUATION ON CORE BENCHMARK AND ACROSS TOPICS

Table 1 details the characteristics of each evaluated model and summarizes performance across the
three benchmark subsets. Results from these experiments demonstrate that increasing dataset size
from 500 to 5,400 questions does not substantially impact relative model performance.
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Model Error Correction Quantum Algorithms Quantum Security

Claude Sonnet 4 92.81 81.76 76.09
GPT-5 92.13 82.30 75.82
GPT-4o 92.02 79.18 75.68

Claude Sonnet 3.7 91.12 79.03 75.00
GPT-4.1 mini 90.67 77.51 74.73

Gemini 1.5 Pro 88.99 77.05 73.36
Gemini 2.0 Flash 89.66 76.14 73.09
GPT-4o-mini 92.02 84.27 72.95

Claude Haiku 3.5 83.71 74.16 71.17
llama3-70b 82.13 74.01 70.63
Phi-4-reasoning-plus 81.01 82.08 69.95
llama-3.3-70b-versatile 79.89 79.39 69.95
GPT-4.1 nano 79.10 69.89 68.99
granite-3.3-8b-instruct 77.64 70.20 65.16

Llama-3.1-8B-Instruct 77.19 67.92 64.62
zephyr-7b-beta 75.39 68.28 64.07
gemma2-9b-it 73.15 79.75 61.61
DeepSeek-R1-Distill-Llama-8B 73.15 65.23 60.38
DeepSeek-R1-Distill-Qwen-7B 72.25 73.66 58.33
Llama-3.1-8B 68.88 60.75 55.87
Phi-4-reasoning 67.30 75.63 56.46
Mistral-7B-Instruct-v0.3 66.85 74.55 51.91

Llama-2-13b-chat-hf 65.96 52.33 51.78
Llama-3.2-1B-Instruct 64.38 41.58 51.09
Phi-4-mini-reasoning 63.93 59.4 50.41
gemma-7b 62.70 53.76 48.22
Qwen1.5-MoE-A2.7B 47.30 38.53 46.45
phi-2 58.20 37.63 43.72
gemma-2-2b-it 53.93 27.24 40.16
EleutherAI/gpt-j-6b 36.63 24.55 38.52
dolly-v1-6b 25.84 22.58 30.87

Table 2: Model accuracy on selected quantum topics. Accuracy above 95% are shaded green and
those below 50% are shaded red.

Models performing well on QC500 and QC1000 maintained comparable performance levels on
larger benchmarks, suggesting that a carefully selected sample of a few hundred questions provides
sufficient evaluation of quantum computing knowledge. Among the evaluated models, Claude 4
Sonnet achieved the highest overall performance, closely followed by GPT-5, GPT-4o, and Claude
Sonnet 3.7. Notably, among open-source models, Phi-4-reasoning-plus, IBM Granite-3.3-8b-instruct,
and Llama-3.1-8B-Instruct demonstrated reasonable performance on quantum computing tasks despite
their smaller parameter counts. While these models still trail behind the larger proprietary systems,
their relative competence suggests they could serve as practical starting points for domain-specific
fine-tuning where computational resources are limited.

Table 2 shows a clear pattern: models handle basic concepts but decline sharply on advanced material,
with the largest drop on quantum algorithms and security. Security questions were especially
difficult, including recent work on phase mismatch attacks, crosstalk exploitation, QubitHammer, and
quantum backdoors. These gaps highlight the challenge of fast moving areas that demand specialized
knowledge, and the examples that follow illustrate the kinds of questions where even top models
failed.

• What specific attack technique can manipulate the error rates of specific quantum gates ?

• What specific vulnerability does a quantum reorder attack exploit?

• What makes dynamical decoupling ineffective against QubitHammer attacks ?

These failures on contemporary quantum security topics underscore a critical limitation: while LLMs
excel at recalling established quantum principles documented extensively in literature, they lack
understanding of cutting-edge developments that define the current research frontier.

5
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4.2 HUMAN PERFORMANCE BASELINE STUDY

To establish a human baseline for comparison with language model performance, we conducted
a survey study with quantum computing researchers and practitioners. We carefully selected 30
questions from QC-Bench spanning different topic areas and complexity levels to assess human
expertise across the quantum computing domain. The survey included questions from all seven
categories. Participants were recruited from academic institutions and quantum computing research
groups. Each respondent provided background information including their highest education level,
years of experience in quantum computing, and age group. Further details on each participant’s
background and individual score are provided in the appendix, offering context for the distribution
shown here. The sample questions below illustrate the style and difficulty of the survey items used in
this comparison.

Sample Survey Questions

• Why is Shor’s algorithm considered a threat to modern cryptographic security?
• How does quantum transpilation optimize quantum circuits for real hardware?
• Which quantum algorithm is specifically designed to process structured graph data?
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Figure 2: Performance comparison of selected LLMs across different capability tiers on the QC500
benchmark against human baselines. The visualization includes 12 representative models ranging
from top performers to those scoring below novice human levels. Bars are colored by model provider.

Figure 2 presents a representative sample of LLM performance on the QC500 benchmark, showcasing
models across the full performance spectrum. Among the 13 models shown, 10 models (62.5%)
exceed the all-participants average of 64.6%, while 7 models (43.8%) surpass the expert average
of 83.3%. The visualization highlights the dramatic performance range in quantum computing
capabilities, from leading models like Claude 4 Sonnet (88.55%) and GPT-5 (88.07%) to models
performing well below novice human levels, such as gpt-j-6b (50.14%) and dolly-v1-6b (48.29%).
This selection demonstrates that quantum computing proficiency varies significantly across model
families, sizes, and providers.

4.3 PERFORMANCE ACROSS DIFFERENT QUESTION FORMATS

Our evaluation extended beyond multiple-choice questions to assess model capabilities in diverse
testing scenarios. For true/false questions, we modified the standard prompts to request binary
verification of quantum computing statements. In open-ended questions we evaluated models’ ability
to generate explanations independently without options. Table 3 presents these results.

Most models maintained strong performance on the true/false questions while showing clear degrada-
tion on open-ended assessments. Accuracy on the true/false set was tightly clustered, with smaller
models often matching the large models once the task was reduced to a simple binary choice.
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The limited number of options in the true/false evaluation leaves less room to distinguish stronger
reasoning ability, so the gap between the very top systems and the weakest models nearly disappears
in this format. By contrast, multiple-choice questions with four options revealed a more visible
separation among high-end models, highlighting that true/false items are not an effective way to
validate deeper research questions. Open-ended questions told a different story. GPT-5 not only
produced the highest scoring answers when evaluated for correctness but also consistently provided
richer, more contextually grounded explanations than its peers, and those detailed responses were
closely aligned with the correct conclusions in most cases. This pattern underscores that open-ended
evaluation exposes real differences in reasoning quality that are obscured when models face only
binary decisions.

4.4 FINE-TUNING POTENTIAL FOR QUANTUM KNOWLEDGE

We explored QC-Bench’s utility for enhancing quantum computing capabilities through targeted
fine-tuning. Using a subset of 4,400 questions for training and 1,000 questions as a test set, we
fine-tuned five smaller language models using LoRA (Low-Rank Adaptation).

Our fine-tuning implementation used PyTorch with the Transformers library, applying LoRA with
rank=8 and alpha=16 targeting attention projection matrices. We used a learning rate of 1e-4 with
AdamW optimizer, batch size of 4 with gradient accumulation over 4 steps, and trained for a single
epoch with warmup steps to ensure stable adaptation without overfitting.

Table 4 demonstrates the results across our selected models. Llama-3.1-8B-Instruct showed the
strongest adaptation with a 5% improvement, while Gemma 2B achieved a modest 3.7% gain.
Qwen1.5-MoE-A2.7B showed minimal improvement despite its Mixture-of-Experts architecture.
Surprisingly, Phi-4-mini-reasoning experienced a slight performance decline, and EleutherAI/gpt-j-6b
demonstrated a substantial 7% drop in accuracy. These mixed results highlight how model architecture
significantly influences fine-tuning outcomes, with instruction-tuned models generally showing better
adaptation to specialized quantum computing knowledge than their general-purpose counterparts.

Model T/F (%) O-E (%)

GPT-5 93.27 89.07
Claude Sonnet 4 93.99 88.84
GPT-4o 93.75 86.22
Gemini 2.0 Flash 92.31 84.09
GPT-4.1 mini 93.03 79.81
llama-3.3-70b-versatile 91.35 74.58
Claude Haiku 3.5 93.75 78.15

Table 3: Accuracy on other question formats

Model Size Before After

Llama-3.1-8B-Instruc 8B 74.75 79.80 ↑
Gemma 2B 7B 62.29 65.70 ↑
Qwen1.5-MoE-A2.7B 14.3B 58.50 58.90
Phi-4-mini-reasoning 3.84B 74.00 73.60
EleutherAI/gpt-j-6b 6B 31.80 24.80 ↓

Table 4: Performance change after fine-tuning

Given that effective fine-tuning is practical mainly for smaller models that already trail the best
performers, retrieval-augmented generation may offer a more scalable and flexible path for building
customized systems, enabling larger models to incorporate domain-specific sources and continually
updated materials without the limitations observed in direct fine-tuning.

4.5 MULTILINGUAL BENCHMARK PERFORMANCE

To investigate how quantum computing knowledge transfers across languages, we evaluated all models
on Spanish and French translations of QC500. This experiment provides quantitative insights into
linguistic generalization of specialized technical knowledge. Figure 3 shows Spanish versus French
accuracy for selected models. While most models fall along a diagonal cluster indicating correlated
cross-lingual performance, the distribution reveals systematic language-dependent performance
gaps. Across our full benchmark set, models lose on average 11.2 percentage points in French
and 15.2 percentage points in Spanish relative to English baselines. This asymmetry is particularly
notable, as Spanish exhibits approximately 55 percent greater performance degradation than French.
Remarkably, only 34.5% of models maintain scores above 75% in Spanish, compared to 44.8% in
French and 69.0% in English. The most linguistically consistent models (Claude 4 Sonnet, GPT-5,
and Gemini 2.0 Flash) show standard deviations below 0.6 across languages, while the least consistent
(Phi-4-reasoning) exhibits a standard deviation of 31.2.
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Figure 3: Bubble chart of Spanish (vertical) versus French (horizontal) accuracy on the QC500
benchmark. Each bubble’s area is proportional to the model’s parameter count; colors indicate
providers. The diagonal dashed line marks equal performance across the two languages. Bubbles
below the line signal larger accuracy loss in Spanish.

5 DISCUSSION

Our evaluation reveals a clear performance pattern across all tested models: strong results on
foundational topics with significant decline on advanced domains. Top models achieve over 92%
accuracy on basic quantum concepts but drop below 77% for quantum security questions. This
performance drop is particularly evident in questions about emerging attack vectors like phase
mismatch attacks and QubitHammer, where even the most advanced models failed to provide accurate
responses consistently. Notably, leading LLMs outperform many practitioners and experts in our
human survey, where performance ranged from 26.6% to 86% depending on education level and
experience (detailed results in the appendix). In addition, the results highlight a widening gap
between recent state-of-the-art LLMs and smaller models, a trend that persists even after fine-tuning.
These high-capacity systems show clear advantages not only on complex multiple-choice tasks but
especially on open-ended questions, where they deliver more accurate and detailed explanations.
Smaller models, by contrast, plateau despite fine-tuning, indicating that model scale and training
pipelines remain critical for strong performance on demanding quantum computing assessments.

Question format comparison shows GPT-5 maintaining 89.07% accuracy on open-ended quantum
explanations while most competitors show degradation without multiple-choice options. This sug-
gests many models rely on recognizing answer patterns rather than constructing explanations from
fundamental understanding. Our multilingual testing reveals concerning disparities, with average per-
formance dropping 11.2 percentage points in French and 15.2 points in Spanish. Fine-tuning results
demonstrate significant variation in how models adapt to quantum knowledge. Llama-3.1-8B-Instruct
improved by 5.3% through fine-tuning, while EleutherAI/gpt-j-6b declined by 7%, suggesting that
instruction-tuned models more readily incorporate specialized quantum knowledge.
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As quantum computing advances toward practical implementation, retrieval-augmented generation
can complement fine-tuning, particularly since practical fine-tuning is mainly feasible for smaller
models. While targeted fine-tuning can modestly improve accuracy for compact systems, it remains
costly and inflexible for the larger architectures that already set the performance frontier. Retrieval-
augmented generation, by contrast, allows those high-capacity LLMs to access curated domain
sources and continuously updated technical literature, avoiding the need for repeated full retraining.

6 LIMITATIONS

QC-Bench offers a comprehensive evaluation of quantum computing knowledge, with English as the
primary language and a large QC500 subset already available in Spanish and French. A next step is
to expand coverage beyond QC500 by translating a larger portion of the benchmark into Spanish and
French, and by adding more languages to better reflect global practice. Additional work includes
increasing the diversity of non-English source materials and assessing cross-lingual consistency to
provide a more complete view of multilingual performance.

Our evaluation relies primarily on accuracy as the central performance metric, which effectively
captures models’ factual knowledge but may not fully represent their conceptual understanding or
reasoning capabilities. We chose accuracy for its interpretability, directness, and alignment with
our goal of measuring factual correctness in quantum computing knowledge. Future research could
explore alternative metrics such as calibration scores for confidence assessment, partial credit scoring
for near-correct responses, or semantic similarity measures for evaluating open-ended explanations
beyond binary correctness judgments.

7 CONCLUSION

As Large Language Models (LLMs) are increasingly tasked with reading, explaining, and answering
questions about quantum computing literature, rigorous domain evaluation is essential. QC-Bench
provides a comprehensive assessment with 5,400 multiple-choice items plus 416 true/false and 421
open-ended questions across seven core domains. Across 31 systems, we find a consistent pattern:
strong results on foundational material but marked drops on advanced topics. Top systems clear
92% on basic concepts yet fall below 77% on security questions, including items on recent attack
vectors (e.g., phase mismatch attacks and QubitHammer). Format matters: many models score well
on multiple choice but degrade on open-ended responses; GPT-5 maintains the strongest open-ended
performance among evaluated systems (89.07%) and produces more detailed, context-grounded
explanations. Relative to human baselines (26.7%–86.7%), 15 models exceed the all-participants
average of 64.6% and 8 exceed the expert average of 83.3%. Multilingual testing shows asymmetry,
with average accuracy declines of 11.2 points in French and 16.2 in Spanish relative to English,
indicating that quantum knowledge does not transfer uniformly across languages.

Methodologically, the results indicate a widening gap between state-of-the-art, high-capacity systems
and smaller models, a difference that persists even after fine-tuning. Gains from fine-tuning are
modest—typically only a few percentage points—and can sometimes reduce accuracy, making the
computational cost difficult to justify for larger architectures. This suggests that exploring less
computationally expensive approaches, such as retrieval-augmented generation that can operate
effectively on large models, may be a promising direction. Quantum computing remains one of the
most demanding areas for language models, and continued evaluation of LLM capabilities in this
domain is essential for tracking progress and ensuring reliable performance as the field evolves.
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A APPENDIX

A.1 QUESTION EXTRACTION AND GENERATION

For the QC500 and QC1000 subsets, researchers systematically reviewed the selected quantum
computing papers and identified key concepts, algorithms, and principles that capture both foun-
dational and advanced material. Rather than copying sentences directly, each question was crafted
by rephrasing important findings and definitions from the literature to create original items while
preserving scientific accuracy. Draft questions underwent multiple rounds of verification for technical
correctness and clarity to ensure they tested understanding rather than memorization of phrasing. In
parallel, we leveraged language models in a controlled setting to suggest candidate questions from
the same source papers, but every suggestion was filtered and rewritten by researchers to maintain
consistency with the human-validated style and difficulty. This combined process produced a balanced
set of high-quality questions that reflect authentic quantum computing research while supporting
rigorous evaluation across diverse topics and difficulty levels. The question creation process involved
developing multiple answer options for each extracted concept. Below we illustrate this process with
an example:

Example: Question Development Process

Initial concept from paper: Quantum circuit synthesis involves decomposing unitary
operations into implementable gate sequences.
Generated question: What is the primary purpose of quantum circuit synthesis?
Initial answer options (6 generated):

A. To convert a quantum circuit into a classical circuit by removing superposition
properties

B. To merge multiple unitary matrices into a single high-dimensional operator without
gate decomposition

C. To decompose a unitary matrix representing the circuit into a sequence of gates from
the native gate set

D. To encode classical information into qubit states without performing any gate-level
modifications

E. To simulate quantum circuits on classical computers using tensor networks
F. To optimize quantum algorithms for specific hardware architectures

Final selection (4 options): Options E and F were eliminated as they describe related but
distinct processes. The final question includes the correct answer (C) and three plausible
distractors that test understanding of quantum circuit concepts.

Quantum Circuit Synthesis

Question: What is the primary purpose of quantum circuit synthesis?
A. To convert a quantum circuit into a classical circuit by removing superposition

properties
B. To merge multiple unitary matrices into a single high-dimensional operator without

gate decomposition
C. To decompose a unitary matrix representing the circuit into a sequence of gates from

the native gate set
D. To encode classical information into qubit states without performing any gate-level

modifications
Answer: C

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

A.2 AUTOMATED QUESTION MINING FROM RESEARCH PAPERS

To expand our benchmark beyond human-authored questions, we employed Large Language Models
(LLMs), specifically Gemini 2.0 Flash, Gemini 1.5 Pro, GPT-4.0, and Claude 3.7 Sonnet, to extract
additional questions from 212 carefully selected quantum computing papers. This automated ex-
traction process generated an initial pool of over 8,000 candidate questions, each with six potential
answer options.

The filtering process involved multiple stages. First, we identified and removed questions that strayed
from quantum computing into adjacent domains. Examples of filtered questions include:

Example: Filtered Question - General Cybersecurity

Question: Which encryption protocol is most commonly used for securing HTTP connec-
tions?

A. TLS/SSL
B. SSH
C. IPSec
D. WPA2

Reason for filtering: While encryption is relevant to quantum cryptography, this question
addresses classical network security without quantum computing connection.

Example: Filtered Question – Mathematical Modeling

Question: In the analysis of an ordinary differential equation system, what does a non-positive
log-norm of the coefficient matrix imply?

A. The system is unstable for all inputs
B. The matrix has only imaginary eigenvalues
C. The solution decays or remains bounded over time
D. The matrix is diagonalizable over the complex field

Reason for filtering: While this concept appears in resource analyses for quantum-inspired
algorithms, it tests classical stability theory in differential equations and does not assess
quantum computing knowledge.

After removing duplicate questions, filtering irrelevant content, and conducting manual quality review,
we retained 4,400 high-quality questions. For each retained question, we selected the four most
relevant answer options from the initial six, ensuring each question had one correct answer and three
well-crafted distractors that effectively test quantum computing knowledge.

A.3 QUESTION TRANSLATION AND MULTILINGUAL VALIDATION

For the QC500 subset, we created Spanish and French translations using a multi-stage process. We
employed the same four LLMs (Gemini 2.0 Flash, Gemini 1.5 Pro, GPT-4.0, and Claude 3.7 Sonnet)
to generate initial translations. A typical translation prompt was structured as follows:

"Translate the following quantum computing question from English to French,
maintaining technical accuracy and appropriate scientific terminology:
[Question and answer options]"

For each question, we collected translations from all four models and selected the most accurate
version. This selection was then reviewed by individuals proficient in both languages who verified
technical terminology and ensured conceptual accuracy. The translation process preserved the
semantic content while adapting to language-specific conventions for scientific terminology.
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Examples of translated questions include:

French Translation Example 1

Question: Pourquoi les attaques par impulsion à grande échelle sont-elles difficiles à réaliser
dans les systèmes partagés ?

A. Elles dépendent d’un accès chiffré aux qubits
B. Elles nécessitent un accès à la machine au niveau administrateur
C. Elles requièrent de nombreux qubits, auxquels les utilisateurs n’ont généralement

pas accès
D. Elles échouent si la machine est calibrée

Answer: C

French Translation Example 2

Question: Pourquoi les algorithmes quantiques paramétriques sont-ils difficiles à vérifier
sémantiquement ?

A. Ils utilisent des paramètres fixes définis dans le matériel
B. Ils reposent uniquement sur un post-traitement classique
C. Leurs paramètres entraînés manquent d’interprétabilité inhérente
D. Leur structure est identique pour tous les ensembles de données

Answer: C

Spanish Translation Example 1

Question: ¿Cuál es la principal diferencia entre la privacidad diferencial clásica y la privaci-
dad diferencial cuántica?

A. La PD cuántica extiende las garantías de privacidad a estados cuánticos indistin-
guibles utilizando distancias de traza

B. La PD cuántica elimina la necesidad de análisis probabilístico
C. La PD cuántica se aplica solo a registros de qubits entrelazados
D. La PD cuántica se impone eliminando los resultados de medición de qubits

Answer: A

Spanish Translation Example 2

Question: ¿Qué algoritmo clásico se utiliza comúnmente después del paso cuántico del
Algoritmo de Shor?

A. Algoritmo de Dijkstra
B. Expansión de fracciones continuas
C. Integración de Monte Carlo
D. Búsqueda binaria

Answer: B

A.4 QUESTION FORMAT DIVERSIFICATION

To evaluate models’ performance across different cognitive tasks, we expanded our benchmark with
true/false and open-ended questions. For this expansion, we selected 40 additional research papers
to ensure diverse content and avoid repetition. Both LLMs and human experts generated questions
following similar protocols to the initial question creation phase.
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This process yielded 416 true/false questions and 421 open-ended questions. True/false questions
were created by converting factual statements into binary assessments:

True/False Question Examples

Question: The Bloch sphere is a geometrical representation of pure quantum states of a
two-level quantum mechanical system.
Answer: True

Question: Dirac notation can only represent pure states, not mixed states.
Answer: False

Question: The E91 protocol is based on entangled particles and provides a method for secure
quantum key distribution.
Answer: True

Question: Quantum error correction codes do not require any additional qubits beyond the
physical qubits used to represent the logical qubit.
Answer: False

Open-ended questions were designed to assess deeper understanding and explanatory capabilities:

Open-Ended Question Examples

Question: What is the no-cloning theorem and its implication for quantum information?

Question: How does the Heisenberg uncertainty principle affect the measurement of quantum
states?

Question: In the context of quantum states, what distinguishes a pure state from a mixed
state?

Question: Explain the significance of the CNOT gate in quantum entanglement.
Sample Answer: The CNOT gate, or controlled-NOT gate, is crucial for creating entangle-
ment between two qubits, as it flips the state of the target qubit only if the control qubit is in
the state |1⟩.

For each open-ended question, we developed sample answers to facilitate consistent evaluation across
different models. These questions were assessed manually to determine whether model responses
captured the essential concepts and technical accuracy required for each topic.

A.5 HUMAN PERFORMANCE BASELINE STUDY

Table 5 reports accuracies for 16 respondents and reveals clear background effects. Scores range
from 26.7% to 86.7%, with eight of sixteen participants at or above 70%, four of sixteen at or above
80%, and four of sixteen below 50%. Education aligns strongly with outcomes: every PhD-trained
participant scored ≥ 73.3%, MS holders concentrate in the mid band (56.7%–80.0%), and no BS-
level participant reached 60%. Experience shows a similar gradient: all respondents with 5+ years
achieved ≥ 80%; those with 2–5 years clustered between 63.3% and 76.7%; 1–2 years produced
mixed results (53.3%–73.3%); and <1 year remained below 50%. Age group did not exhibit a
consistent pattern once education and experience were considered. Together, these patterns provide a
concrete reference distribution for interpreting model–human comparisons in the main results.

REFERENCES FOR EACH TOPIC

Table 6 lists the literature sources and citation coverage for all seven benchmark topics. Rapidly
developing areas such as quantum cybersecurity and quantum machine learning rely heavily on the
most recent papers to capture ongoing advances, whereas foundational categories such as quantum
theory and quantum error correction draw on a broader historical record to reflect the principles that
remain central to the discipline. This distribution ensures that the benchmark balances up-to-date
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research with enduring theoretical foundations, giving a clear view of how source material supports
each topic area.

Participant Education Experience Age Group Score Accuracy

P1 MS 2–5 yrs 25–35 19/30 63.3%
P2 BS <1 yr 18–25 14/30 46.7%
P3 PhD 5+ yrs 35–45 25/30 83.3%
P4 MS 1–2 yrs 25–35 21/30 70.0%
P5 PhD 2–5 yrs 35–45 23/30 76.7%
P6 BS <1 yr 18–25 12/30 40.0%
P7 MS 1–2 yrs 25–35 17/30 56.7%
P8 MS 5+ yrs 35–45 24/30 80.0%
P9 PhD 2–5 yrs 25–35 22/30 73.3%
P10 BS 1–2 yrs 18–25 16/30 53.3%
P11 PhD 5+ yrs 45–55 26/30 86.7%
P12 BS <1 yr 18–25 11/30 36.7%
P13 MS 2–5 yrs 25–35 20/30 66.7%
P14 PhD 1–2 yrs 25–35 22/30 73.3%
P15 BS <1 yr 18–25 8/30 26.7%
P16 PhD 5+ yrs 35–45 25/30 83.3%

Expert Average (5+ years experience): 83.3%
All Participants Average: 64.6%

Table 5: Human participant survey results on 30-question quantum computing assessment

A.6 FINE-TUNING METHODOLOGY

Our fine-tuning experiments employed Low-Rank Adaptation (LoRA) to efficiently adapt smaller
language models to quantum computing knowledge while maintaining computational feasibility.
The implementation utilized a carefully selected subset of 4,167 question-answer pairs from the
QC-Bench dataset for training, with an additional 1,000 questions reserved for evaluation. The
training data was formatted as concatenated prompt-completion pairs to maximize learning efficiency
within context length constraints. We applied LoRA with rank 8 and alpha 16, specifically targeting
the attention projection matrices (q_proj, k_proj, v_proj, o_proj) which are critical for knowledge
representation. The training configuration employed a batch size of 4 with gradient accumulation
over 4 steps, resulting in an effective batch size of 16, paired with a conservative learning rate of
1e-4 using the AdamW optimizer. To ensure stable convergence, we implemented 50 warmup steps
followed by training for a single epoch, which empirical testing showed was sufficient to achieve
knowledge transfer without overfitting. The models were loaded in FP16 precision to reduce memory
requirements while maintaining numerical stability, with automatic device mapping to optimize GPU
utilization. Early stopping was monitored through validation accuracy computed every 200 steps,
though most models converged within the single epoch. This approach resulted in training only
approximately 0.5-2% of total model parameters, demonstrating that quantum computing knowledge
can be effectively incorporated through targeted parameter updates rather than full model retraining.

REFERENCES FOR EACH TOPIC

Table 6 lists the sources and citation coverage for all topics. For rapidly evolving areas such
as quantum cybersecurity and quantum machine learning, recent papers were prioritized, while
foundational topics like quantum theory include a broader range of years.
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Topic References Years #

Basic Concepts Aharonov et al. (1998); Terashima & Ueda (2005); Arrazola et al. (2022);
Williams & Gray (1998); Hayward (2008); Xu et al. (2023); Peterer et al.
(2015); Schuld & Killoran (2019); Gudder (1983); Biard et al. (2021);
Kowalski & Bauman (2023); Del Santo & Gisin (2025); Younis & Iancu
(2022); Hua et al. (2023); Sikorski (2023); Nielsen & Chuang (2010);
Preskill (2018); Deutsch (1985); Feynman (1982); Kjaergaard et al. (2020);
Bharti et al. (2022); Zurek (2003); Deutsch & Ekert (1998); Bennett et al.
(1993); Quinton et al. (2025); Phillipson (2024); Cirac & Zoller (1995);
Benioff (1980); Giovannetti et al. (2008); AbuGhanem (2025); Farhi et al.
(2000); DiVincenzo (2000); Lloyd (1996); Knill et al. (2001); King et al.
(2025); Halimeh et al. (2025); Puig et al. (2025); Munro et al. (2005);
Harrow & Leung (2004); Steane (1996)

1980–2025 39

Gates & Circuit Design Zhang et al. (2022b); Ren et al. (2024); Peham et al. (2022); Kusyk et al.
(2021); Ostaszewski et al. (2021); Rosa et al. (2025); DiVincenzo (1998);
Kalloor et al. (2024); Senapati et al. (2024); Cao et al. (2012); Venturelli
et al. (2018); Barenco et al. (1995); Vandersypen et al. (2001); Steane
(1999); Laflamme et al. (2002); Cory et al. (2000); Cross et al. (2019);
Linke et al. (2017); Smith et al. (2019); Maslov et al. (2008); McKay et al.
(2018); Chong et al. (2017); Hashim et al. (2021); Zulehner et al. (2018);
Wille et al. (2019); Murali et al. (2019)

1995–2025 26

Quantum Machine Learning Wittek (2014); Bowles et al. (2024); Vishwakarma et al. (2024); Ranga et al.
(2024); Rath & Date (2024); Biswas (2025); Bischof et al. (2025); Kreplin
& Roth (2024); Chinzei et al. (2024); Afane et al. (2025); Yu et al. (2024);
Schuld et al. (2015); Havlíček et al. (2019); Cerezo et al. (2021); Biamonte
et al. (2017); Schuld & Petruccione (2018); Farhi & Neven (2018); Dunjko
& Briegel (2018); Benedetti et al. (2019); Lloyd & Weedbrook (2018); Beer
et al. (2020); Huang et al. (2021); Mitarai et al. (2018); Rebentrost et al.
(2014); Grant et al. (2018); Cong et al. (2019); Schuld et al. (2020); Amin
et al. (2018); Perdomo-Ortiz et al. (2018); Moll et al. (2018); Arrazola et al.
(2020); Romero et al. (2017); Tacchino et al. (2019); Li et al. (2018); Abbas
et al. (2021)

2014–2025 35

Distributed Computing Cuomo et al. (2020); Cacciapuoti et al. (2020); Wehner et al. (2018); Kimble
(2008); Simon (2017); D’Adamo et al. (2022); Dahlberg et al. (2019); Caleffi
& Cacciapuoti (2020); Pompili et al. (2021); Simon (2017); Van Meter
(2016); Munro et al. (2015); Meter et al. (2013); Van Meter et al. (2009);
Lloyd (1993); Cirac et al. (1997); Perseguers (2013); Pant et al. (2019);
Ishizaka & Hiroshima (2008); Simon (2015); Laurat et al. (2005); Avis et al.
(2019); Van Meter et al. (2020); Joshi et al. (2020); Lemos et al. (2014);
Pirandola et al. (2018); Azuma et al. (2022); Takeda & Furusawa (2023);
Joshi et al. (2024); Khatri & Wilde (2021); Bhaskar et al. (2020); Askaridis
et al. (2021); Chi et al. (2022); Kozlowski et al. (2020); Muralidharan et al.
(2016)

1993–2024 35

Quantum Security Dhar et al. (2024); Mehic et al. (2023); Chu et al. (2023); Zhao et al. (2024);
Xu et al. (2023); Krawec et al. (2024); Zhang et al. (2022a); Xu & Szefer
(2024); Tan et al. (2025); Sahu & Mazumdar (2024); Ralegankar et al.
(2021); Kalaivani et al. (2021); Pirandola et al. (2020); Bernstein & Lange
(2017); Lo et al. (2014); Bennett & Brassard (2014); Xu et al. (2020); Ekert
(1991); Bennett (1992); Scarani et al. (2009); Lo & Chau (1999); Shor &
Preskill (2000); Mayers (2001); Renner (2008); Wootters & Zurek (1982);
Diamanti et al. (2016)

1982–2025 26

Error Correction Fowler et al. (2012); Shor (1995); Lidar & Brun (2013); Terhal (2015);
Aharonov & Ben-Or (2008); Chiaverini et al. (2004); Reed et al. (2012);
Bombín & Martin-Delgado (2006); Gottesman (1997); Nielsen & Flensberg
(2021); Steane (1996); Kitaev (1997); Preskill (1998); Bacon (2006); Alif-
eris et al. (2006); Calderbank & Shor (1996); Steane (1999); Dennis et al.
(2002); Acharya et al. (2024); Barends et al. (2014); Kelly et al. (2015);
Cory et al. (1998); DiVincenzo & Shor (1996); Bravyi & Kitaev (2005);
Albert et al. (2018); Bennett et al. (1996); Gambetta et al. (2017); McEwen
et al. (2023); Takita et al. (2017)

1995–2024 29

Quantum Algorithms Montanaro (2016); Mosca (2008); Childs & Van Dam (2010); Hastings et al.
(2014); Gheorghiu & Mosca (2025); Krovi (2023); Jin et al. (2023); Qiang
et al. (2021); Benedetti et al. (2021); Du et al. (2022); Motta et al. (2020);
Grover (1996); Shor (1999); Harrow et al. (2009); Ambainis (2007); Kitaev
(1995); Nayak & Wu (1999); Childs et al. (2003); Cleve et al. (1998);
Farhi et al. (2000); Nielsen & Chuang (1997); Aharonov et al. (2008);
Bennett et al. (1997); Deutsch & Jozsa (1992); Nielsen & Chuang (2002);
Brassard et al. (1997); Jordan (2005); Reichardt (2009); Wiebe et al. (2012);
Aaronson & Arkhipov (2011)

1995–2025 30

Table 6: Topic Coverage and Source Papers
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