

# QC-BENCH: WHAT DO LANGUAGE MODELS KNOW ABOUT QUANTUM COMPUTING?

005 **Anonymous authors**

006 Paper under double-blind review

## ABSTRACT

011 Language models have become practical tools for quantum computing education  
 012 and research, from summarizing technical papers to explaining theoretical concepts.  
 013 While existing benchmarks evaluate quantum code generation and circuit design,  
 014 their understanding of quantum computing concepts has not been systematically  
 015 measured. QC-Bench addresses this gap with over 6,000 expert-level questions  
 016 on quantum algorithms, error correction, and security protocols. Evaluating 31  
 017 models from OpenAI, Anthropic, Google, and Meta reveals strong performance on  
 018 established theory but systematic failures on advanced topics like quantum security  
 019 and recent attack vectors. Human participants scored between 23% and 86%,  
 020 with experts averaging 74% and all participants averaging 57%. Top-performing  
 021 models exceeded the expert average, with Claude Sonnet 4 and GPT-5 reaching  
 022 88% overall, yet dropping to 76% on security questions. Additional evaluation  
 023 across question formats and languages reveals variation in model performance,  
 024 demonstrating that QC-Bench provides a necessary framework for measuring  
 025 language model reliability in quantum computing contexts.

## 1 INTRODUCTION

029 Quantum computing has progressed significantly from theoretical research to experimental implemen-  
 030 tations with practical applications. Current quantum systems have rapidly evolved through successive  
 031 technological breakthroughs from operating with just a few qubits to recently surpassing the 1000-  
 032 qubit barrier AbuGhanem (2025), enabling exploration of quantum algorithms and protocols that were  
 033 previously confined to theoretical analysis. This technical advancement drives progress in quantum  
 034 simulation King et al. (2025); Halimeh et al. (2025); Puig et al. (2025), optimization problems Quinton  
 035 et al. (2025); Phillipson (2024), and cryptographic applications Sahu & Mazumdar (2024);  
 036 Ralegankar et al. (2021); Kalaivani et al. (2021). Beyond traditional quantum applications such as  
 037 quantum simulation and cryptography, recent research explores its potential in finance Innan et al.  
 038 (2024); Grossi et al. (2022), healthcare Ur Rasool et al. (2023); Flöther (2023), computer vision Li  
 039 et al. (2020); Afane et al. (2025); ALRikabi et al. (2022), and wireless communication Narottama &  
 040 Shin (2021); Narottama et al. (2023), among other promising real-world applications.

041 In parallel, Large Language Models (LLMs) have become sophisticated tools that address com-  
 042 plex challenges across many disciplines. These AI systems now approach or exceed human expert  
 043 performance in areas such as cybersecurity Tihanyi et al. (2024); Afane et al. (2024), medical diag-  
 044 nosis Subedi (2025), and legal reasoning Guha et al. (2023); Kant et al. (2025). As these two fields  
 045 continue to evolve, their intersection becomes increasingly important for scientific communication,  
 046 education, and research productivity. Despite significant advances in both domains, we face a critical  
 047 knowledge gap in evaluating LLMs' understanding of specialized quantum concepts. While extensive  
 048 benchmarking exists across numerous related domains, including mathematics Gao et al. (2024);  
 049 Fang et al. (2024), physics Chung et al. (2025), and computer science Song et al. (2024), no stan-  
 050 dardized frameworks comprehensively assess quantum computing knowledge in these models. This  
 051 absence is particularly concerning given the field's counterintuitive principles, and rapidly evolving  
 052 terminology that challenge even domain experts. The complexity of quantum computing concepts,  
 053 combined with their inherent mathematical abstraction, creates a particularly demanding test case for  
 evaluating the depth of LLMs' specialized knowledge. Without reliable evaluation metrics, LLMs risk  
 spreading plausible but incorrect quantum information to educational and research communities, as

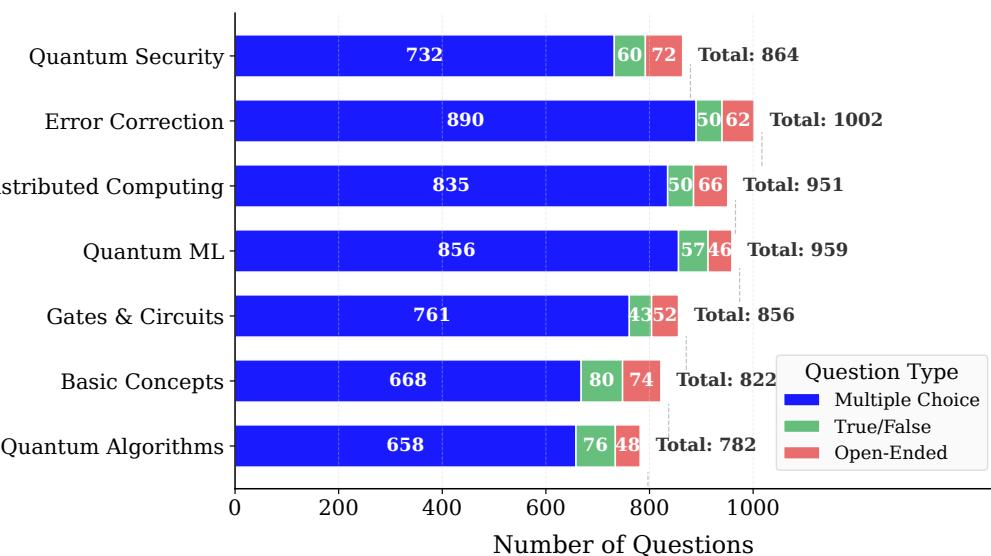
054 hallucinations, reasoning errors, and factual inaccuracies have been widely documented in similarly  
 055 complex and technically demanding specialized domains. Orgad et al. (2024); Perković et al. (2024).  
 056

057 This creates an urgent need for robust quantum computing benchmarks as researchers, students,  
 058 and industry professionals increasingly rely on these models for information and assistance with  
 059 quantum tasks. The growing adoption of LLMs across academic institutions and quantum technology  
 060 companies further amplifies the importance of ensuring these systems provide accurate information  
 061 on this emerging field. To address these challenges, we present the following key contributions:

- 062 • We assemble **6,237 questions**: 5,400 multiple-choice questions comprising QC1000 (1,000  
 063 entirely human-authored from peer-reviewed literature, with QC500 translated into Spanish  
 064 and French) and 4,400 human-validated questions filtered from 8,686 candidates, plus 837  
 065 format variants (416 true/false, 421 open-ended) for evaluating model performance across  
 066 question formats.
- 067 • We conduct extensive evaluation across **31 models** from leading AI research organizations  
 068 including OpenAI, Anthropic, Google, Meta, IBM, Microsoft, and DeepSeek, among others.  
 069 We compare their performance against 43 quantum computing experts and practitioners to  
 070 establish human baselines and assess how LLMs perform relative to human capabilities.
- 071 • We analyze model performance across different question formats and via Spanish and French  
 072 translations of QC500, revealing significant accuracy declines in the translated sets and  
 073 consistent sensitivity to question type, with larger drops in Spanish than in French.
- 074 • We explore the potential of our dataset for fine-tuning by using a subset of 4,000 questions  
 075 to enhance the quantum knowledge of five smaller models, demonstrating performance  
 076 improvements and establishing the benchmark’s value beyond evaluation.

## 078 2 RELATED WORK

080 Despite significant advancements in both quantum computing and LLMs, their intersection remains  
 081 surprisingly underexplored. Recent research has begun addressing this gap from different angles.  
 082 Kashani Kashani (2024) introduced QuantumLLMInstruct (QLMMI), a dataset of over 500,000  
 083 instruction-problem pairs covering quantum cryptography, spin chain models, and Trotter-Suzuki  
 084 decompositions. However, QLMMI’s primary purpose is to enable instruction fine-tuning rather than  
 085 comprehensive evaluation of quantum knowledge. While extensive in size, QLMMI relies entirely on  
 086 synthetically generated content through a four-stage LLM pipeline. In contrast, QC-Bench offers  
 087 1,200 human-authored evaluation questions extracted directly from research literature published  
 088 over four decades, prioritizing authentic scientific content over synthetic generation. Wang et al.  
 089 Wang et al. (2024) introduced GroverGPT, an approach to simulating quantum algorithms using  
 090 LLMs. Their 8-billion-parameter model is fine-tuned to approximate Grover’s quantum search  
 091 algorithm without explicitly representing quantum states. While GroverGPT demonstrates impressive  
 092 capabilities in predicting specific quantum circuit outputs, it focuses exclusively on a single quantum  
 093 algorithm rather than evaluating comprehensive knowledge across the quantum computing domain.


094 Complementary efforts have emerged focusing on quantum code generation and circuit implemen-  
 095 tation capabilities. Vishwakarma et al. Vishwakarma et al. (2024) developed Qiskit HumanEval, a  
 096 hand-curated benchmark of over 100 tasks designed to evaluate LLM performance in generating  
 097 executable quantum code using the Qiskit SDK, complete with canonical solutions and com-  
 098 prehensive test cases. Guo et al. Guo et al. (2025) introduced QuanBench, which evaluates quantum  
 099 code generation across 44 programming tasks using both functional correctness (Pass@K) and  
 100 quantum semantic equivalence (Process Fidelity) metrics, finding that current LLMs achieve below  
 101 40% overall accuracy with frequent semantic errors including outdated API usage and incorrect  
 102 algorithm logic. Yang et al. Yang et al. (2024) presented QCircuitNet, a large-scale hierarchical  
 103 dataset for quantum algorithm design containing 120,290 data points with automatic syntax and  
 104 semantic verification functions. At a lower abstraction level, Li et al. Li et al. (2023) developed  
 105 QASMBench, a benchmark suite of low-level OpenQASM programs for evaluating NISQ devices and  
 106 simulators. While these works provide valuable resources for assessing programming proficiency and  
 107 implementation capabilities at various levels of quantum software development, they primarily target  
 108 coding skills rather than evaluating deep conceptual understanding of quantum computing principles,  
 109 algorithmic theory, or the ability to reason about quantum phenomena. QC-Bench addresses this by

108 evaluating theoretical knowledge and conceptual understanding across quantum computing topics,  
 109 from foundational algorithmic principles to advanced security protocols and attack vectors.  
 110

### 111 3 QC-BENCH DATASET

112  
 113 We constructed the QC-Bench dataset to evaluate quantum computing knowledge in LLMs across  
 114 a wide range of topics and difficulty levels. To ensure comprehensive coverage and relevance,  
 115 our team reviewed over 200 peer-reviewed research papers, preprints, and academic resources.  
 116 From these sources, questions were directly selected to reflect both foundational knowledge and  
 117 current advancements in the field. The dataset comprises QC1000, containing 1000 questions  
 118 manually extracted from quantum computing literature, with QC500 as a 500-question subset  
 119 selected for multilingual evaluation. To address concerns about model memorization, none of these  
 120 questions are reproduced verbatim from source materials; instead, we extracted core concepts and  
 121 reformulated them into original questions. This approach ensures that performance reflects genuine  
 122 understanding rather than memorization of published text. After refining and validating this content,  
 123 the benchmarks were finalized. The QC500 subset was translated into Spanish and French to evaluate  
 124 LLM performance in languages other than English.

125 To expand our benchmark, Gemini 2.0 Flash, Gemini 1.5 Pro, GPT-4.0, and Claude 3.7 Sonnet  
 126 were employed to extract additional relevant questions from the selected papers. Different prompt  
 127 engineering techniques were tested to optimize question generation quality. While zero-shot prompting  
 128 produced acceptable results, few-shot prompting with five carefully selected examples from the  
 129 existing subsets significantly improved the relevance and technical accuracy of generated questions.  
 130 This approach generated 8,686 candidate questions, subsequently filtered to remove low-quality or  
 131 redundant items. The final selection included an additional 4,400 high-quality questions, bringing  
 132 the total benchmark size to 5,400 multiple-choice questions. To evaluate model performance across  
 133 different question formats, the benchmark was supplemented with 416 true/false questions and 421  
 134 open-ended questions. Figure 1 illustrates the distribution of these question types across different  
 135 topics. **Given the interconnected nature of quantum computing, some concepts naturally appear**  
 136 **across multiple categories; for example, noise characterization relates to both error correction and**  
 137 **hardware-level circuit design.** The multiple-choice format enables precise evaluation of factual  
 138 recall and conceptual understanding, while true/false questions assess binary comprehension, and  
 139 open-ended questions evaluate explanatory capabilities.



158 Figure 1: Breakdown of benchmark question topics and their internal composition by question type.  
 159 Each horizontal bar shows the total number of questions per topic. We intentionally included a larger  
 160 share of multiple choice items to enable standardized automated evaluation, whereas true/false items  
 161 offer limited challenge and open-ended questions require manual scoring.

## 162 4 EXPERIMENTS

164 We evaluated 31 LLMs using a consistent benchmarking pipeline. Closed-source models, including  
 165 GPT-5, GPT-4o (standard, mini), Claude (Sonnet 4, Sonnet 3.7, Haiku 3.5), and Gemini (1.5 Pro,  
 166 2.0 Flash), were accessed through their official APIs in Google Colab environments. Open-access  
 167 models such as LLaMA3 (1B, 8B, 70B), LLaMA2 (13B), Phi (2.7B, 3.8B, 14.7B), Mistral (7B,  
 168 24B), Qwen1.5 (2.7B, MoE-A2.7B), Zephyr, DeepSeek, Gemma, Granite, and GPT-J were deployed  
 169 using Hugging Face’s Transformers library on a cluster equipped with two Tesla V100 GPUs (32GB  
 170 each) using FP16 inference. For several larger models, including llama-3 (70b, 70b-versatile), and  
 171 Gemini-9B, we used Groq’s API instead of Hugging Face’s Transformers library for a faster and  
 172 more efficient evaluation. All models were configured with a temperature setting of 1 to balance  
 173 deterministic responses with reasonable diversity in answer generation.

174 For experiment preparation, all benchmark questions were structured in JSON format for efficient  
 175 processing and consistent evaluation across different model architectures. We developed standardized  
 176 prompting templates for each question type to ensure fair comparison between models. This data  
 177 preparation approach facilitated automated evaluation pipelines and ensured comparable results  
 178 despite the diversity of model implementations and access methods. The benchmark includes  
 179 multiple-choice, true/false, and open-ended formats, with multilingual versions available for a subset  
 180 of questions. Key findings from these experiments are presented in the following subsections, with  
 181 complete results and detailed analyses available in the appendix.

| 182 LLM Model                  | 183 Provider     | 184 Size  | 185 Access        | 186 Q500  | 187 Q1000 | 188 Q5400 |
|--------------------------------|------------------|-----------|-------------------|-----------|-----------|-----------|
| 184  Claude Sonnet 4           | 185 Anthropic    | 186 N/A   | 187 Anthropic API | 188 91.80 | 189 89.90 | 190 88.55 |
| 185  GPT-5                     | 186 OpenAI       | 187 N/A   | 188 OpenAI API    | 189 91.40 | 190 90.90 | 191 88.46 |
| 186  GPT-4o                    | 187 OpenAI       | 188 N/A   | 189 OpenAI API    | 190 88.20 | 191 86.30 | 192 88.07 |
| 187  Claude Sonnet 3.7         | 188 Anthropic    | 189 N/A   | 190 Anthropic API | 191 92.40 | 192 84.70 | 193 87.98 |
| 188  GPT-4.1 mini              | 189 OpenAI       | 190 N/A   | 191 OpenAI API    | 192 87.20 | 193 82.30 | 194 86.42 |
| 189  Gemini 2.0 Flash          | 190 Google       | 191 N/A   | 192 Google API    | 193 82.40 | 194 84.60 | 195 84.44 |
| 190  Gemini 1.5 Pro            | 191 Google       | 192 N/A   | 193 Google API    | 194 80.20 | 195 84.80 | 196 83.92 |
| 191  GPT-4o-mini               | 192 OpenAI       | 193 N/A   | 194 OpenAI API    | 195 80.00 | 196 81.90 | 197 83.85 |
| 192  llama-3.3-70b-versatile   | 193 Meta         | 194 70B   | 195 Groq API      | 196 81.40 | 197 82.00 | 198 82.07 |
| 193  Phi-4-reasoning-plus      | 194 Microsoft    | 195 14.7B | 196 HuggingFace   | 197 87.00 | 198 89.30 | 199 81.74 |
| 194  Claude Haiku 3.5          | 195 Anthropic    | 196 N/A   | 197 Anthropic API | 198 80.00 | 199 82.80 | 200 80.44 |
| 195  granite-3.3-8b-instruct   | 196 IBM          | 197 8.17B | 198 HuggingFace   | 199 84.20 | 200 81.10 | 201 76.07 |
| 196  Llama-3.1-8B-Instruct     | 197 Meta         | 198 8.03B | 199 HuggingFace   | 200 73.80 | 201 78.40 | 202 75.75 |
| 197  Phi-4-reasoning           | 198 Microsoft    | 199 14.7B | 200 HuggingFace   | 201 81.00 | 202 80.20 | 203 75.59 |
| 198  GPT-4.1 nano              | 200 OpenAI       | 201 N/A   | 202 OpenAI API    | 203 86.00 | 204 86.20 | 205 74.58 |
| 199  zephyr-7b-beta            | 202 Hugging Face | 203 7.24B | 204 HuggingFace   | 205 84.00 | 206 83.00 | 207 73.70 |
| 200  DeepSeek-R1-Dist-Llama-8B | 204 DeepSeek     | 205 8.03B | 206 HuggingFace   | 207 78.00 | 208 85.20 | 209 73.62 |
| 201  gemma2-9b-it              | 206 Google       | 207 9B    | 208 Groq API      | 209 84.60 | 210 86.40 | 211 73.55 |
| 202  DeepSeek-R1-Dist-Qwen-7B  | 208 DeepSeek     | 209 7.62B | 210 HuggingFace   | 211 78.20 | 212 86.90 | 213 72.51 |
| 203  Llama-3.1-8B              | 210 Meta         | 211 8B    | 212 HuggingFace   | 213 81.00 | 214 79.50 | 215 72.51 |
| 204  Mistral-7B-Instruct-v0.3  | 212 Mistral AI   | 213 7.25B | 214 HuggingFace   | 215 82.00 | 216 80.90 | 217 72.43 |
| 205  Phi-4-mini-reasoning      | 214 Microsoft    | 215 3.84B | 216 HuggingFace   | 217 72.00 | 218 69.10 | 219 72.40 |
| 206  llama3-70b                | 216 Meta         | 217 70B   | 218 Groq API      | 219 84.20 | 220 82.30 | 221 71.85 |
| 207  Llama-2-13b-chat-hf       | 218 Meta         | 219 13B   | 220 HuggingFace   | 221 86.40 | 222 89.10 | 223 71.79 |
| 208  Llama-3.2-1B-Instruct     | 220 Meta         | 221 1.24B | 222 HuggingFace   | 223 82.20 | 224 86.00 | 225 71.55 |
| 209  gemma-7b                  | 222 Google       | 223 7B    | 224 HuggingFace   | 225 72.80 | 226 74.30 | 227 69.70 |
| 210  phi-2                     | 224 Microsoft    | 225 2.7B  | 226 HuggingFace   | 227 81.20 | 228 78.50 | 229 67.85 |
| 211  gemma-2-2b-it             | 226 Google       | 227 2.61B | 228 HuggingFace   | 229 74.20 | 230 60.30 | 231 62.29 |
| 212  Qwen1.5-MoE-A2.7B         | 228 Qwen         | 229 14.3B | 230 HuggingFace   | 231 74.00 | 232 61.70 | 233 60.74 |
| 213  EleutherAI/gpt-j-6b       | 230 EleutherAI   | 231 6B    | 232 HuggingFace   | 233 72.00 | 234 60.90 | 235 50.14 |
| 214  dolly-v1-6b               | 232 Databricks   | 233 6B    | 234 HuggingFace   | 235 36.80 | 236 34.30 | 237 48.29 |

208 Table 1: Evaluated language models with provider, size, access method, and accuracy on QC500,  
 209 QC1000, and QC5400. Rows shaded in green mark the highest performing models overall, and rows  
 210 shaded in light blue mark the best performing open-source models.

### 212 4.1 COMPREHENSIVE MODEL EVALUATION ON CORE BENCHMARK AND ACROSS TOPICS

214 Table 1 details the characteristics of each evaluated model and summarizes performance across the  
 215 three benchmark subsets. Results from these experiments demonstrate that increasing dataset size  
 216 from 500 to 5,400 questions does not substantially impact relative model performance.

| Model                        | Error Correction | Quantum Algorithms | Quantum Security |
|------------------------------|------------------|--------------------|------------------|
| AI Claude Sonnet 4           | <b>92.81</b>     | 81.76              | <b>76.09</b>     |
| ◎ GPT-5                      | 92.13            | <b>82.30</b>       | 75.82            |
| ◎ GPT-4o                     | 92.02            | 79.18              | 75.68            |
| AI Claude Sonnet 3.7         | 91.12            | 79.03              | 75.00            |
| ◎ GPT-4.1 mini               | 90.67            | 77.51              | 74.73            |
| G Gemini 1.5 Pro             | 88.99            | 77.05              | 73.36            |
| G Gemini 2.0 Flash           | 89.66            | 76.14              | 73.09            |
| ◎ GPT-4o-mini                | 92.02            | 84.27              | 72.95            |
| AI Claude Haiku 3.5          | 83.71            | 74.16              | 71.17            |
| ∞ llama3-70b                 | 82.13            | 74.01              | 70.63            |
| Phi-4-reasoning-plus         | 81.01            | 82.08              | 69.95            |
| ∞ llama-3.3-70b-versatile    | 79.89            | 79.39              | 69.95            |
| ◎ GPT-4.1 nano               | 79.10            | 69.89              | 68.99            |
| IBM granite-3.3-8b-instruct  | 77.64            | 70.20              | 65.16            |
| ∞ Llama-3.1-8B-Instruct      | 77.19            | 67.92              | 64.62            |
| zephyr-7b-beta               | 75.39            | 68.28              | 64.07            |
| G gemma2-9b-it               | 73.15            | 79.75              | 61.61            |
| DeepSeek-R1-Distill-Llama-8B | 73.15            | 65.23              | 60.38            |
| DeepSeek-R1-Distill-Qwen-7B  | 72.25            | 73.66              | 58.33            |
| ∞ Llama-3.1-8B               | 68.88            | 60.75              | 55.87            |
| Phi-4-reasoning              | 67.30            | 75.63              | 56.46            |
| Mistral-7B-Instruct-v0.3     | 66.85            | 74.55              | 51.91            |
| ∞ Llama-2-13b-chat-hf        | 65.96            | 52.33              | 51.78            |
| ∞ Llama-3.2-1B-Instruct      | 64.38            | 41.58              | 51.09            |
| Phi-4-mini-reasoning         | 63.93            | 59.4               | 50.41            |
| G gemma-7b                   | 62.70            | 53.76              | 48.22            |
| Qwen1.5-MoE-A2.7B            | 47.30            | 38.53              | 46.45            |
| phi-2                        | 58.20            | 37.63              | 43.72            |
| G gemma-2-2b-it              | 53.93            | 27.24              | 40.16            |
| EleutherAI/gpt-j-6b          | 36.63            | 24.55              | 38.52            |
| dolly-v1-6b                  | 25.84            | 22.58              | 30.87            |

Table 2: Model accuracy on selected quantum topics. Accuracy above 90% are shaded green and those below 50% are shaded red.

Models performing well on QC500 and QC1000 maintained comparable performance levels on larger benchmarks, suggesting that a carefully selected sample of a few hundred questions provides sufficient evaluation of quantum computing knowledge. Among the evaluated models, Claude 4 Sonnet achieved the highest overall performance, closely followed by GPT-5, GPT-4o, and Claude Sonnet 3.7. Notably, among open-source models, Phi-4-reasoning-plus, IBM Granite-3.3-8b-instruct, and Llama-3.1-8B-Instruct demonstrated reasonable performance on quantum computing tasks despite their smaller parameter counts. While these models still trail behind the larger proprietary systems, their relative competence suggests they could serve as practical starting points for domain-specific fine-tuning where computational resources are limited.

Table 2 shows a clear pattern: models handle basic concepts but decline sharply on advanced material, with the largest drop on quantum algorithms and security. Security questions were especially difficult, including recent work on phase mismatch attacks, crosstalk exploitation, QubitHammer, and quantum backdoors. These gaps highlight the challenge of fast moving areas that demand specialized knowledge, and the examples that follow illustrate the kinds of questions where even top models failed.

- What specific attack technique can manipulate the error rates of specific quantum gates ?
- What specific vulnerability does a quantum reorder attack exploit?
- What makes dynamical decoupling ineffective against QubitHammer attacks ?

This performance gap between foundational and advanced topics is particularly revealing. The disparity suggests that models have absorbed well-documented principles from extensive training data but struggle with recent developments where literature is sparser and terminology less standardized. The consistency of this pattern across model families, regardless of size or provider, indicates that the

challenge lies in the nature of the material rather than individual model limitations. Notably, even the expanded evaluation with agentic and deep research modes (Section 4.5) showed only marginal improvements on these advanced topics, confirming that web access alone cannot compensate for gaps in specialized reasoning. This finding has practical implications: users relying on LLMs for quantum computing assistance should exercise particular caution in rapidly evolving subfields where model knowledge may lag behind current research.

## 4.2 HUMAN PERFORMANCE BASELINE STUDY

To establish a human baseline for comparison with language model performance, we conducted a survey study with quantum computing researchers and practitioners. We carefully selected 30 questions from QC-Bench spanning different topic areas and complexity levels to assess human expertise across the quantum computing domain. The survey included questions from all seven categories. Participants were recruited from academic institutions and quantum computing research groups. Each respondent provided background information including their highest education level, years of experience in quantum computing, and age group. Further details on each participant's background and individual score are provided in the appendix, offering context for the distribution shown here. The sample questions below illustrate the style and difficulty of the survey items used in this comparison.

### Sample Survey Questions

- Why is Shor’s algorithm considered a threat to modern cryptographic security?
- How does quantum transpilation optimize quantum circuits for real hardware?
- Which quantum algorithm is specifically designed to process structured graph data?

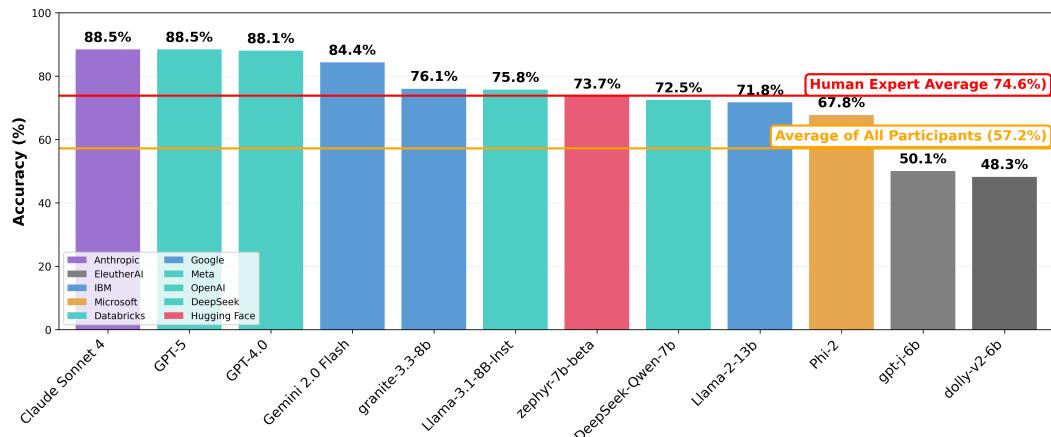



Figure 2: Performance comparison of selected LLMs across different capability tiers on the QC500 benchmark against human baselines. The visualization includes 12 representative models ranging from top performers to those scoring below novice human levels. Bars are colored by model provider.

Figure 2 presents a representative sample of LLM performance on the QC500 benchmark, showcasing models across the full performance spectrum. The majority of models shown exceed the all-participants average of 57.2%, while several surpass the expert average of 74.6%. The visualization highlights the dramatic performance range in quantum computing capabilities, from leading models like Claude 4 Sonnet (88.55%) and GPT-5 (88.07%) to models performing well below novice human levels, such as gpt-j-6b (50.14%) and dolly-v1-6b (48.29%). This selection demonstrates that quantum computing proficiency varies significantly across model families, sizes, and providers.

324 4.3 PERFORMANCE ACROSS DIFFERENT QUESTION FORMATS  
325326 Our evaluation extended beyond multiple-choice questions to assess model capabilities in diverse  
327 testing scenarios. For true/false questions, we modified the standard prompts to request binary  
328 verification of quantum computing statements. In open-ended questions we evaluated models' ability  
329 to generate explanations independently without options. Open-ended responses were graded based  
330 on factual correctness and conceptual completeness, with multiple-choice questions serving as the  
331 primary evaluation method while open-ended questions function as a supplementary diagnostic  
332 tool. Most models maintained strong performance on the true/false questions while showing clear  
333 degradation on open-ended assessments. Accuracy on the true/false set was tightly clustered, with  
334 smaller models often matching the large models once the task was reduced to a simple binary choice.335 The limited number of options in the true/false evaluation leaves less room to distinguish stronger  
336 reasoning ability, so the gap between the very top systems and the weakest models nearly disappears  
337 in this format. By contrast, multiple-choice questions with four options revealed a more visible  
338 separation among high-end models, highlighting that true/false items are not an effective way to  
339 validate deeper research questions. Open-ended questions told a different story. GPT-5 not only  
340 produced the highest scoring answers when evaluated for correctness but also consistently provided  
341 richer, more contextually grounded explanations than its peers, and those detailed responses were  
342 closely aligned with the correct conclusions in most cases. This pattern underscores that open-ended  
343 evaluation exposes real differences in reasoning quality that are obscured when models face only  
344 binary decisions. Table 3 presents the complete results.345  
346 4.4 FINE-TUNING POTENTIAL FOR QUANTUM KNOWLEDGE  
347348 We explored QC-Bench's utility for enhancing quantum computing capabilities through targeted  
349 fine-tuning. Using a subset of 4,400 questions for training and 1,000 questions as a test set, we  
350 fine-tuned five smaller language models using LoRA (Low-Rank Adaptation).351 Our fine-tuning implementation used PyTorch with the Transformers library, applying LoRA with  
352 rank=8 and alpha=16 targeting attention projection matrices. We used a learning rate of 1e-4 with  
353 AdamW optimizer, batch size of 4 with gradient accumulation over 4 steps, and trained for a single  
354 epoch with warmup steps to ensure stable adaptation without overfitting.355 Table 4 demonstrates the results across our selected models. Llama-3.1-8B-Instruct showed the  
356 strongest adaptation with a 5% improvement, while Gemma 2B achieved a modest 3.7% gain.  
357 Qwen1.5-MoE-A2.7B showed minimal improvement despite its Mixture-of-Experts architecture.  
358 Surprisingly, Phi-4-mini-reasoning experienced a slight performance decline, and EleutherAI/gpt-j-6b  
359 demonstrated a substantial 7% drop in accuracy. These mixed results highlight how model architecture  
360 significantly influences fine-tuning outcomes, with instruction-tuned models generally showing better  
361 adaptation to specialized quantum computing knowledge than their general-purpose counterparts.362  
363  
364 

| Model                   | T/F (%)      | O-E (%)      |
|-------------------------|--------------|--------------|
| GPT-5                   | 93.27        | <b>89.07</b> |
| Claude Sonnet 4         | <b>93.99</b> | 88.84        |
| GPT-4o                  | 93.75        | 86.22        |
| Gemini 2.0 Flash        | 92.31        | 84.09        |
| GPT-4.1 mini            | 93.03        | 79.81        |
| llama-3.3-70b-versatile | 91.35        | 74.58        |
| Claude Haiku 3.5        | 93.75        | 78.15        |

370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
382  
383  
384  
385  
386  
387  
388  
389  
390  
391  
392  
393  
394  
395  
396  
397  
398  
399  
400  
401  
402  
403  
404  
405  
406  
407  
408  
409  
410  
411  
412  
413  
414  
415  
416  
417  
418  
419  
420  
421  
422  
423  
424  
425  
426  
427  
428  
429  
430  
431  
432  
433  
434  
435  
436  
437  
438  
439  
440  
441  
442  
443  
444  
445  
446  
447  
448  
449  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
461  
462  
463  
464  
465  
466  
467  
468  
469  
470  
471  
472  
473  
474  
475  
476  
477  
478  
479  
480  
481  
482  
483  
484  
485  
486  
487  
488  
489  
490  
491  
492  
493  
494  
495  
496  
497  
498  
499  
500  
501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539  
540  
541  
542  
543  
544  
545  
546  
547  
548  
549  
550  
551  
552  
553  
554  
555  
556  
557  
558  
559  
560  
561  
562  
563  
564  
565  
566  
567  
568  
569  
570  
571  
572  
573  
574  
575  
576  
577  
578  
579  
580  
581  
582  
583  
584  
585  
586  
587  
588  
589  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1098  
1099  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1196  
1197  
1198  
1199  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1296  
1297  
1298  
1299  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1339  
1340  
1341  
1342  
1343  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1396  
1397  
1398  
1399  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1458  
1459  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1469  
1470  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1489  
1489  
1490  
1491  
1492  
1493  
1494  
1495  
1496  
1497  
1498  
1499  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1519  
1520  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
1528  
1529  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1596  
1597  
1598  
1599  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1679  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1696  
1697  
1698  
1699  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1796  
1797  
1798  
1799  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1829  
1830  
1831  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1849  
1850  
1851  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859  
1859  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1869  
1870  
1871  
1872  
1873  
1874  
1875  
1876  
1877  
1878  
1879  
1879  
1880  
1881  
1882  
1883  
1884  
1885  
1886  
1887  
1888  
1889  
1889  
1890  
1891  
1892  
1893  
1894  
1895  
1896  
1897  
1898  
1899  
1899  
1900  
1901  
1902  
1903  
1904  
1905  
1906  
1907  
1908  
1909  
1909  
1910  
1911  
1912  
1913  
1914  
1915  
1916  
1917  
1918  
1919  
1919  
1920  
1921  
1922  
1923  
1924  
1925  
1926  
1927  
1928  
1929  
1929  
1930  
1931  
1932  
1933  
1934  
1935  
1936  
1937  
1938  
1939  
1939  
1940  
1941  
1942  
1943  
1944  
1945  
1946  
1947  
1948  
1949  
1949  
1950  
1951  
1952  
1953  
1954  
1955  
1956  
1957  
1958  
1959  
1959  
1960  
1961  
1962  
1963  
1964  
1965  
1966  
1967  
1968  
1969  
1969  
1970  
1971  
1972  
1973  
1974  
1975  
1976  
1977  
1978  
1979  
1979  
1980  
1981  
1982  
1983  
1984  
1985  
1986  
1987  
1988  
1989  
1989  
1990  
1991  
1992

378 4.5 PERFORMANCE WITH AGENTIC AND DEEP RESEARCH MODES  
379380 Given the limited improvements observed from fine-tuning and the practical constraints of adapting  
381 larger models, we explored an alternative approach through agentic reasoning capabilities and deep  
382 research modes. These capabilities enable models to perform multi-step reasoning, search external  
383 sources, and synthesize information across multiple queries without requiring model adaptation or  
384 training data. This paradigm augments models with tool use and extended reasoning processes rather  
385 than modifying model weights to encode domain-specific knowledge. We evaluated frontier models  
386 equipped with their respective advanced capabilities: Claude Sonnet 4.5 Research Mode, Claude  
387 Sonnet 4.5 Extended Thinking, GPT-5.1 Deep Research, GPT-5.1 Agent Mode, and Gemini 3 Deep  
388 Research. These modes allow models to break down complex questions, search for relevant informa-  
389 tion, and synthesize answers through multi-step reasoning processes. We tested these capabilities on  
390 the QC500 subset, which provides a balanced evaluation across all quantum computing topics in our  
391 benchmark.  
392

| 393 Model                                 | 394 Before (%) | 395 After (%) | 396 Improvement |
|-------------------------------------------|----------------|---------------|-----------------|
| 394 Claude Sonnet 4.5 (Research Mode)     | 395 91.80      | 396 92.20     | +0.40           |
| 394 Claude Sonnet 4.5 (Extended Thinking) | 395 91.80      | 396 92.60     | +0.80           |
| 394 GPT-5.1 (Deep Research)               | 395 91.40      | 396 92.80     | +1.40           |
| 394 GPT-5.1 (Agent Mode)                  | 395 91.40      | 396 91.20     | -0.20           |
| 394 Gemini 3 (Deep Research)              | 395 87.40      | 396 89.20     | +1.80           |

400 Table 5: Performance of frontier models with advanced reasoning capabilities on QC500. Average  
401 improvement is 0.84 percentage points.  
402403 Results in Table 5 show the performance of these advanced reasoning modes. GPT-5.1 with Deep  
404 Research achieved the highest score at 92.80%, while both Claude Sonnet 4.5 variants performed  
405 above 92%. Gemini 3 Deep Research showed the largest improvement, gaining 1.8 percentage points  
406 to reach 89.20%. Notably, GPT-5.1 Agent Mode showed a slight decline of 0.2 percentage points  
407 compared to the base model. The average improvement across all models was 0.84 percentage points,  
408 demonstrating modest gains from these advanced capabilities.  
409410 These results indicate that while agentic and deep research modes provide measurable benefits, the  
411 improvements remain relatively modest on our benchmark. This suggests that the fundamental  
412 challenge in quantum computing knowledge assessment lies in the breadth and depth of knowledge  
413 encoded during pretraining rather than in reasoning capabilities alone. Questions in QC-Bench are  
414 designed to test factual knowledge and conceptual understanding rather than multi-step reasoning,  
415 which may explain why reasoning-augmented modes show limited advantage. However, advanced  
416 reasoning modes offer key advantages: (1) they require no training data or computational resources for  
417 model adaptation, (2) they can access current information beyond the model’s knowledge cutoff, and  
418 (3) they can be applied to the largest and most capable models where fine-tuning is often impractical.  
419420 4.6 MULTILINGUAL BENCHMARK PERFORMANCE  
421422 To investigate how quantum computing knowledge transfers across languages, we evaluated all models  
423 on Spanish and French translations of QC500. This experiment provides quantitative insights into  
424 linguistic generalization of specialized technical knowledge. Figure 3 shows Spanish versus French  
425 accuracy for selected models. While most models fall along a diagonal cluster indicating correlated  
426 cross-lingual performance, the distribution reveals systematic language-dependent performance  
427 gaps. Across our full benchmark set, models lose on average 11.2 percentage points in French  
428 and 15.2 percentage points in Spanish relative to English baselines. This asymmetry is particularly  
429 notable, as Spanish exhibits approximately 55 percent greater performance degradation than French.  
430 Remarkably, only 34.5% of models maintain scores above 75% in Spanish, compared to 44.8% in  
431 French and 69.0% in English. The most linguistically consistent models (Claude 4 Sonnet, GPT-5,  
432 and Gemini 2.0 Flash) show standard deviations below 0.6 across languages, while the least consistent  
433 (Phi-4-reasoning) exhibits a standard deviation of 31.2.  
434

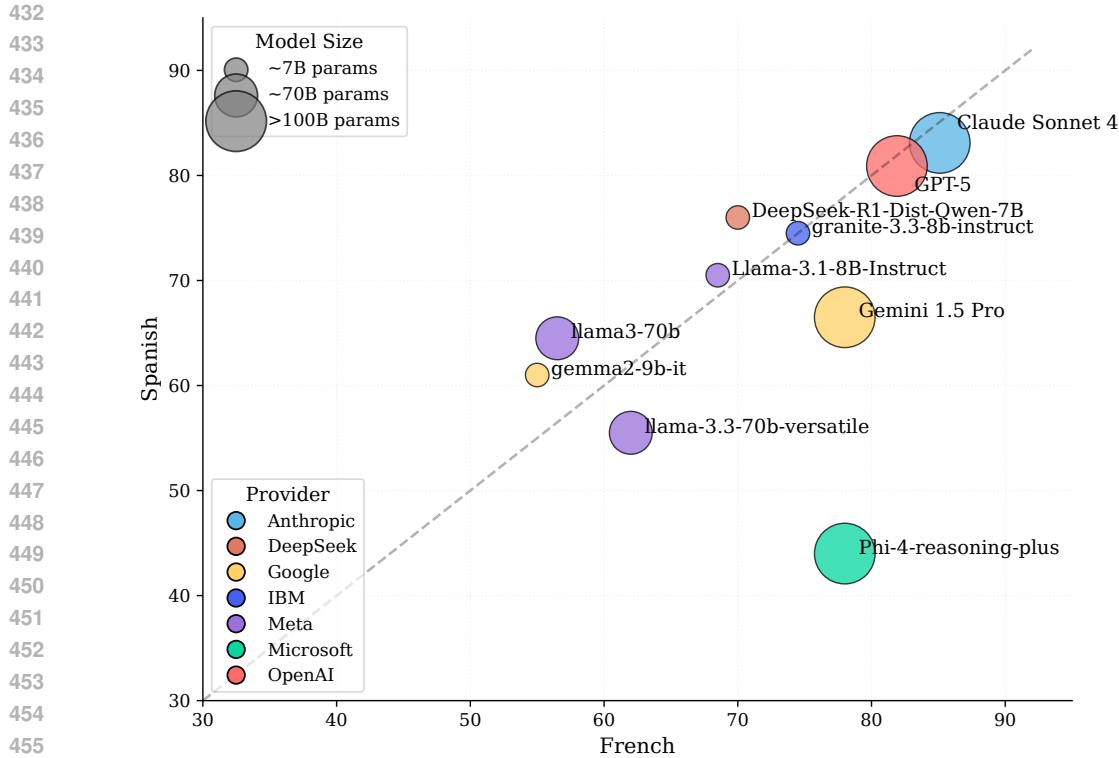



Figure 3: Bubble chart of Spanish (vertical) versus French (horizontal) accuracy on the QC500 benchmark. Each bubble’s area is proportional to the model’s parameter count; colors indicate providers. The diagonal dashed line marks equal performance across the two languages. Bubbles below the line signal larger accuracy loss in Spanish.

## 5 DISCUSSION

Our evaluation reveals a clear performance pattern across all tested models: strong results on foundational topics with significant decline on advanced domains. Top models achieve over 92% accuracy on basic quantum concepts but drop below 77% for quantum security questions. This performance drop is particularly evident in questions about emerging attack vectors like phase mismatch attacks and QubitHammer, where even the most advanced models failed to provide accurate responses consistently. Notably, leading LLMs outperform many practitioners and experts in our human survey, where performance ranged from 26.6% to 86% depending on education level and experience (detailed results in the appendix). In addition, the results highlight a widening gap between recent state-of-the-art LLMs and smaller models, a trend that persists even after fine-tuning. These high-capacity systems show clear advantages not only on complex multiple-choice tasks but especially on open-ended questions, where they deliver more accurate and detailed explanations. Smaller models, by contrast, plateau despite fine-tuning, indicating that model scale and training pipelines remain critical for strong performance on demanding quantum computing assessments.

Question format comparison shows GPT-5 maintaining 89.07% accuracy on open-ended quantum explanations while most competitors show degradation without multiple-choice options. This suggests many models rely on recognizing answer patterns rather than constructing explanations from fundamental understanding. Our multilingual testing reveals concerning disparities, with average performance dropping 11.2 percentage points in French and 15.2 points in Spanish. Fine-tuning results demonstrate significant variation in how models adapt to quantum knowledge. Llama-3.1-8B-Instruct improved by 5.3% through fine-tuning, while EleutherAI/gpt-j-6b declined by 7%, suggesting that instruction-tuned models more readily incorporate specialized quantum knowledge.

486 As quantum computing advances toward practical implementation, retrieval-augmented generation  
 487 can complement fine-tuning, particularly since practical fine-tuning is mainly feasible for smaller  
 488 models. While targeted fine-tuning can modestly improve accuracy for compact systems, it remains  
 489 costly and inflexible for the larger architectures that already set the performance frontier. Retrieval-  
 490 augmented generation, by contrast, allows those high-capacity LLMs to access curated domain  
 491 sources and continuously updated technical literature, avoiding the need for repeated full retraining.  
 492  
 493

## 494 6 LIMITATIONS AND FUTURE WORK

495  
 496 QC-Bench offers a comprehensive evaluation of quantum computing knowledge, with English as the primary language and a large QC500 subset already available in Spanish and French. A next step is to expand coverage beyond QC500 by translating a larger portion of the benchmark into Spanish and French, and by adding more languages to better reflect global practice. Additional work includes increasing the diversity of non-English source materials and assessing cross-lingual consistency to provide a more complete view of multilingual performance.  
 500  
 501  
 502

503 Our evaluation relies primarily on accuracy as the central performance metric, which effectively captures models' factual knowledge but may not fully represent their conceptual understanding or reasoning capabilities. We chose accuracy for its interpretability, directness, and alignment with our goal of measuring factual correctness in quantum computing knowledge. Future research could explore alternative metrics such as calibration scores for confidence assessment, partial credit scoring for near-correct responses, or semantic similarity measures for evaluating open-ended explanations beyond binary correctness judgments.  
 504  
 505  
 506  
 507  
 508

509 **510 Additionally, incorporating statistical frameworks such as error bars and confidence intervals would 511 enhance the interpretability of results, as discussed by Miller (2024). Given the extensive nature of 512 our evaluation across 31 models, multiple question formats, three languages, fine-tuning experiments, 513 and agentic evaluation modes, incorporating this level of statistical rigor was beyond the current 514 scope. We leave this as a direction for future work.**  
 515  
 516

## 517 7 CONCLUSION

518  
 519 As Large Language Models (LLMs) are increasingly tasked with reading, explaining, and answering  
 520 questions about quantum computing literature, rigorous domain evaluation is essential. QC-Bench  
 521 provides a comprehensive assessment with 5,400 multiple-choice items plus 416 true/false and 421  
 522 open-ended questions across seven core domains. Across 31 systems, we find a consistent pattern:  
 523 strong results on foundational material but marked drops on advanced topics. Top systems clear 92%  
 524 on basic concepts yet fall below 77% on security questions, including items on recent developments  
 525 in quantum security. Format matters: many models score well on multiple choice but degrade on  
 526 open-ended responses; GPT-5 maintains the strongest open-ended performance among evaluated  
 527 systems (89.07%) and produces more detailed, context-grounded explanations. Relative to human  
 528 baselines (23.3%–86.7%), eight models exceed the all-participants average of 74.6% and surpass the  
 529 expert average of 80.0%. Multilingual testing shows asymmetry, with average accuracy declines of  
 530 11.2 points in French and 16.2 in Spanish relative to English, indicating that quantum knowledge  
 531 does not transfer uniformly across languages.

532 Methodologically, the results indicate a widening gap between state-of-the-art, high-capacity systems  
 533 and smaller models, a difference that persists even after fine-tuning. Gains from fine-tuning are  
 534 modest, typically only a few percentage points, and can sometimes reduce accuracy, making the  
 535 computational cost difficult to justify for larger architectures. Evaluation of frontier models with  
 536 agentic and deep research capabilities showed an average improvement of only 0.84 percentage  
 537 points even with full internet access, suggesting that web search alone cannot compensate for gaps in  
 538 specialized technical reasoning. Alternative approaches for enhancing performance on demanding  
 539 technical domains remain an open research question. Quantum computing remains one of the most  
 demanding areas for language models, and continued evaluation of LLM capabilities in this domain  
 is essential for tracking progress and ensuring reliable performance as the field evolves.

540 REFERENCES  
541

542 Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. *Proceedings of  
543 the 43rd Annual ACM Symposium on Theory of Computing*, pp. 333–342, 2011.

544 Amira Abbas, David Sutter, Christa Zoufal, Aurelien Lucchi, Alessio Figalli, and Stefan Woerner.  
545 The power of quantum neural networks. *Nature Computational Science*, 1(6):403–409, 2021.

546 Muhammad AbuGhanem. Ibm quantum computers: Evolution, performance, and future directions.  
547 *The Journal of Supercomputing*, 81(5):687, 2025.

548 Rajeev Acharya, Dmitry A Abanin, Laleh Aghababaie-Beni, Igor Aleiner, Trond I Andersen, Markus  
549 Ansmann, Frank Arute, Kunal Arya, Abraham Asfaw, Nikita Astrakhantsev, et al. Quantum error  
550 correction below the surface code threshold. *Nature*, 2024.

551 Khalifa Afane, Wenqi Wei, Ying Mao, Junaid Farooq, and Juntao Chen. Next-generation phishing:  
552 How llm agents empower cyber attackers. In *2024 IEEE International Conference on Big Data  
(BigData)*, pp. 2558–2567. IEEE, 2024.

553 Mohamed Afane, Gabrielle Ebbrecht, Ying Wang, Juntao Chen, and Junaid Farooq. Atp: Adaptive  
554 threshold pruning for efficient data encoding in quantum neural networks. *arXiv preprint  
555 arXiv:2503.21815*, 2025.

556 Dorit Aharonov and Michael Ben-Or. Fault-tolerant quantum computation with constant error rate.  
557 *SIAM Journal on Computing*, 38(4):1207–1282, 2008.

558 Dorit Aharonov, Alexei Kitaev, and Noam Nisan. Quantum circuits with mixed states. In *Proceedings  
559 of the thirtieth annual ACM symposium on Theory of computing*, pp. 20–30, 1998.

560 Dorit Aharonov, Wim Van Dam, Julia Kempe, Zeph Landau, Seth Lloyd, and Oded Regev. Adiabatic  
561 quantum computation is equivalent to standard quantum computation. *SIAM Review*, 50(4):  
562 755–787, 2008.

563 Victor V Albert, Kyungjoo Noh, Kasper Duivenvoorden, Dylan J Young, R T Brierley, Philip  
564 Reinhold, Christophe Vuillot, Linshu Li, Chao Shen, S M Girvin, et al. Performance and structure  
565 of single-mode bosonic codes. *Physical Review A*, 97(3):032346, 2018.

566 Panos Aliferis, Daniel Gottesman, and John Preskill. Quantum accuracy threshold for concatenated  
567 distance-3 codes. *Quantum Information & Computation*, 6(2):97–165, 2006.

568 HTS ALRikabi, Ibtisam A Aljazaery, Jaafar Sadiq Qateef, Abdul Hadi M Alaidi, and M Roa'a. Face  
569 patterns analysis and recognition system based on quantum neural network qnn. *iJIM*, 16(08):35,  
570 2022.

571 Andris Ambainis. Quantum walk algorithm for element distinctness. *SIAM Journal on Computing*,  
572 37(1):210–239, 2007.

573 Mohammad H Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchytskyy, and Roger Melko.  
574 Quantum boltzmann machine. *Physical Review X*, 8(2):021050, 2018.

575 Juan Miguel Arrazola, Alain Delgado, Bhaskar Roy Bardhan, and Seth Lloyd. Quantum-inspired  
576 algorithms in practice. *Quantum*, 4:307, 2020.

577 Juan Miguel Arrazola, Olivia Di Matteo, Nicolás Quesada, Soran Jahangiri, Alain Delgado, and  
578 Nathan Killoran. Universal quantum circuits for quantum chemistry. *Quantum*, 6:742, 2022.

579 Panagiotis Askaridis, Thomas Peijs, and Frank C Langbein. Quantum information processing in  
580 optical lattices and magnetic microtraps. *Journal of Physics B: Atomic, Molecular and Optical  
581 Physics*, 54(10):104002, 2021.

582 David Avis, Charles Jordan, Jun Imoto, Yuki Sasaki, Sven Thomassen, Taiga Tsuda, and Seiya  
583 Yamanaka. Comparing small-and large-scale quantum computers using circuit simulation. *arXiv  
584 preprint arXiv:1904.11502*, 2019.

594 Koji Azuma, Kiyoshi Tamaki, and Hoi-Kwong Lo. Quantum repeaters for quantum key distribution:  
 595 Progress and challenges. *NPJ Quantum Information*, 8(1):41, 2022.  
 596

597 Dave Bacon. Operator quantum error-correcting subsystems for self-correcting quantum memories.  
 598 *Physical Review A*, 73(1):012340, 2006.

599 Adriano Barenco, Charles H Bennett, Richard Cleve, David P DiVincenzo, Norman Margolus, Peter  
 600 Shor, Tycho Sleator, John A Smolin, and Harald Weinfurter. Elementary gates for quantum  
 601 computation. *Physical Review A*, 52(5):3457, 1995.

602 Rami Barends, Julian Kelly, Anthony Megrant, Andrzej Veitia, Daniel Sank, Evan Jeffrey, Ted C  
 603 White, Josh Mutus, Austin G Fowler, Brooks Campbell, et al. Superconducting quantum circuits  
 604 at the surface code threshold for fault tolerance. *Nature*, 508(7497):500–503, 2014.

605

606 Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J Osborne, Robert Salzmann, Daniel  
 607 Scheiermann, and Ramona Wolf. Training deep quantum neural networks. *Nature Communications*,  
 608 11(1):808, 2020.

609 Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Parameterized quantum circuits  
 610 as machine learning models. *Quantum Science and Technology*, 4(4):043001, 2019.

611

612 Marcello Benedetti, Mattia Fiorentini, and Michael Lubasch. Hardware-efficient variational quantum  
 613 algorithms for time evolution. *Physical Review Research*, 3(3):033083, 2021.

614 Paul Benioff. The computer as a physical system: A microscopic quantum mechanical Hamiltonian  
 615 model of computers as represented by Turing machines. *Journal of Statistical Physics*, 22(5):  
 616 563–591, 1980.

617

618 Charles H Bennett. Quantum cryptography without Bell’s theorem. *Physical Review Letters*, 68(21):  
 619 3121, 1992.

620

621 Charles H Bennett and Gilles Brassard. Quantum cryptography: Public key distribution and coin  
 622 tossing. *Theoretical Computer Science*, 560:7–11, 2014.

623

624 Charles H Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K  
 625 Wootters. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen  
 626 channels. *Physical Review Letters*, 70(13):1895, 1993.

627

628 Charles H Bennett, David P DiVincenzo, John A Smolin, and William K Wootters. Mixed-state  
 629 entanglement and quantum error correction. *Physical Review A*, 54(5):3824, 1996.

630

631 Charles H Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazirani. Strengths and weaknesses  
 632 of quantum computing. *SIAM Journal on Computing*, 26(5):1510–1523, 1997.

633

634 Daniel J Bernstein and Tanja Lange. Post-quantum cryptography. *Nature*, 549(7671):188–194, 2017.

635

636 Kishor Bharti, Alba Cervera-Lierta, Ting Hui Kyaw, Tobias Haug, Sierra Alperin-Lea, Abhinav  
 637 Anand, Matthias Degroote, Hermanni Heimonen, Jakob S Kottmann, Tim Menke, et al. Noisy  
 638 intermediate-scale quantum algorithms. *Reviews of Modern Physics*, 94(1):015004, 2022.

639

640 Mihir K Bhaskar, Ralf Riedinger, Bartholomeus Machielse, David S Levonian, Christian T Nguyen,  
 641 Erik N Knall, Hongkun Park, Dirk Englund, Marko Loönchen, Denis D Sukachev, et al. Experimental  
 642 demonstration of memory-enhanced quantum communication. *Nature*, 580(7801):60–64,  
 643 2020.

644

645 Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd.  
 646 Quantum machine learning. *Nature*, 549(7671):195–202, 2017.

647

648 Hugo Biard, Eufemio Moreno-Pineda, Mario Ruben, Edgar Bonet, Wolfgang Wernsdorfer, and  
 649 Franck Balestro. Increasing the hilbert space dimension using a single coupled molecular spin.  
 650 *Nature communications*, 12(1):4443, 2021.

651

652 Lukas Bischof, Stefan Teodoropol, Rudolf M Füchslin, and Kurt Stockinger. Hybrid quantum neural  
 653 networks show strongly reduced need for free parameters in entity matching. *Scientific Reports*, 15  
 654 (1):4318, 2025.

648 Hillol Biswas. Data encoding for vqc in qiskit, a comparison with novel hybrid encoding. *arXiv*  
 649 *preprint arXiv:2503.14062*, 2025.  
 650

651 Héctor Bombín and Miguel A Martin-Delgado. Topological quantum distillation. *Physical Review*  
 652 *Letters*, 97(18):180501, 2006.

653 Joseph Bowles, Shahnawaz Ahmed, and Maria Schuld. Better than classical? the subtle art of  
 654 benchmarking quantum machine learning models. *arXiv preprint arXiv:2403.07059*, 2024.  
 655

656 Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of hash and claw-free functions.  
 657 *ACM SIGACT News*, 28(2):14–19, 1997.

658 Sergey Bravyi and Alexei Kitaev. Universal quantum computation with ideal clifford gates and noisy  
 659 ancillas. *Physical Review A*, 71(2):022316, 2005.  
 660

661 Angela Sara Cacciapuoti, Marcello Caleffi, Rodney Van Meter, and Lajos Hanzo. Quantum internet:  
 662 Networking challenges in distributed quantum computing. *IEEE Network*, 34(1):137–143, 2020.  
 663

664 A Robert Calderbank and Peter W Shor. Good quantum error-correcting codes exist. *Physical Review*  
 665 *A*, 54(2):1098, 1996.

666 Marcello Caleffi and Angela Sara Cacciapuoti. Quantum switch for the quantum internet: Noiseless  
 667 communications through noisy channels. *IEEE Journal on Selected Areas in Communications*, 38  
 668 (3):575–588, 2020.

669 Yudong Cao, Anmer Daskin, Steven Frankel, and Sabre Kais. Quantum circuit design for solving  
 670 linear systems of equations. *Molecular Physics*, 110(15-16):1675–1680, 2012.  
 671

672 Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin, Suguru Endo, Keisuke  
 673 Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al. Variational quantum  
 674 algorithms. *Nature Reviews Physics*, 3(9):625–644, 2021.  
 675

676 Harry Chi, Zohreh Davoudi, John Debes, Michael Geller, James Glick, Jacob Hauser, Jeremy Laroco,  
 677 Norbert M Linke, Marco Pistoia, Takashi Shinohashi, et al. Programmable quantum processor with  
 678 scalable connectivity and native multi-qubit gates. *Nature Communications*, 13(1):4449, 2022.  
 679

680 John Chiaverini, Dietrich Leibfried, Tobias Schaetz, MD Barrett, RB Blakestad, JW Britton, Wayne M  
 681 Itano, John D Jost, Emanuel Knill, C Langer, et al. Realization of quantum error correction. *Nature*,  
 682 432(7017):602–605, 2004.

683 Andrew M Childs and Wim Van Dam. Quantum algorithms for algebraic problems. *Reviews of*  
 684 *Modern Physics*, 82(1):1–52, 2010.  
 685

686 Andrew M Childs, Richard Cleve, Enrico Deotto, Edward Farhi, Sam Gutmann, and Daniel A  
 687 Spielman. Exponential algorithmic speedup by a quantum walk. *Proceedings of the Thirty-Fifth*  
 688 *Annual ACM Symposium on Theory of Computing*, pp. 59–68, 2003.  
 689

690 Koki Chinzei, Quoc Hoan Tran, Yasuhiro Endo, and Hirotaka Oshima. Resource-efficient equivariant  
 691 quantum convolutional neural networks. *arXiv preprint arXiv:2410.01252*, 2024.  
 692

693 Frederic T Chong, Diana Franklin, and Margaret Martonosi. Programming quantum computers using  
 694 design automation. *Design Automation Conference (DAC)*, pp. 1–6, 2017.  
 695

696 Cheng Chu, Fan Chen, Philip Richerme, and Lei Jiang. Qdoor: Exploiting approximate synthesis  
 697 for backdoor attacks in quantum neural networks. In *2023 IEEE International Conference on*  
 698 *Quantum Computing and Engineering (QCE)*, volume 1, pp. 1098–1106. IEEE, 2023.  
 699

700 Daniel JH Chung, Zhiqi Gao, Yurii Kvasiuk, Tianyi Li, Moritz Münchmeyer, Maja Rudolph, Frederic  
 701 Sala, and Sai Chaitanya Tadepalli. Theoretical physics benchmark (tpbench)—a dataset and study  
 702 of ai reasoning capabilities in theoretical physics. *arXiv preprint arXiv:2502.15815*, 2025.  
 703

704 J Ignacio Cirac and Peter Zoller. Quantum computations with cold trapped ions. *Physical Review*  
 705 *Letters*, 74(20):4091, 1995.

702 J Ignacio Cirac, Peter Zoller, H Jeff Kimble, and Hideo Mabuchi. Quantum state transfer and  
 703 entanglement distribution among distant nodes in a quantum network. *Physical Review Letters*, 78  
 704 (16):3221, 1997.

705 Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. Quantum algorithms revisited.  
 706 *Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering  
 707 Sciences*, 454(1969):339–354, 1998.

708 Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolutional neural networks. *Nature  
 709 Physics*, 15(12):1273–1278, 2019.

710 David G Cory, Mark D Price, Wojciech Maas, Emanuel Knill, Raymond Laflamme, Wojciech H  
 711 Zurek, Timothy F Havel, and S S Somaroo. Experimental quantum error correction. *Physical  
 712 Review Letters*, 81(10):2152, 1998.

713 David G Cory, Raymond Laflamme, Emanuel Knill, Lorenza Viola, Timothy F Havel, Nicolas  
 714 Boulant, Gregory Boutis, Evan Fortunato, Seth Lloyd, Rudy Martinez, et al. NMR based quantum  
 715 information processing: Achievements and prospects. *Fortschritte der Physik: Progress of Physics*,  
 716 48(9-11):875–907, 2000.

717 Andrew W Cross, Lev S Bishop, Sarah Sheldon, Paul D Nation, and Jay M Gambetta. Validating  
 718 quantum computers using randomized model circuits. *Physical Review A*, 100(3):032328, 2019.

719 Davide Cuomo, Marcello Caleffi, and Angela Sara Cacciapuoti. Towards a distributed quantum  
 720 computing ecosystem. *IET Quantum Communication*, 1(1):3–8, 2020.

721 Giuseppe D’Adamo, Matteo Schiavon, and Thomas Haner. Distributed quantum computing and  
 722 network control for accelerated vqe. *IEEE Transactions on Quantum Engineering*, 3:1–12, 2022.

723 Axel Dahlberg, Matthew Skrzypczyk, Tim Coopmans, Leon Wubben, Filip Rozpedek, Matteo  
 724 Pompili, Arian Stolk, Przemyslaw Pawelczak, Rob Knegjens, Julio de Oliveira Filho, et al. A link  
 725 layer protocol for quantum networks. *Proceedings of the ACM Special Interest Group on Data  
 726 Communication*, pp. 159–173, 2019.

727 Flavio Del Santo and Nicolas Gisin. Which features of quantum physics are not fundamentally  
 728 quantum but are due to indeterminism? *Quantum*, 9:1686, 2025.

729 Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topological quantum memory.  
 730 *Journal of Mathematical Physics*, 43(9):4452–4505, 2002.

731 David Deutsch. Quantum theory, the Church-Turing principle and the universal quantum computer.  
 732 *Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences*, 400  
 733 (1818):97–117, 1985.

734 David Deutsch and Artur Ekert. Quantum computation. *Physics World*, 11(3):47, 1998.

735 David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation. *Proceedings  
 736 of the Royal Society of London. Series A: Mathematical and Physical Sciences*, 439(1907):553–558,  
 737 1992.

738 Shalini Dhar, Ashish Khare, Ashutosh Dhar Dwivedi, and Rajani Singh. Securing iot devices: A  
 739 novel approach using blockchain and quantum cryptography. *Internet of things*, 25:101019, 2024.

740 Eleni Diamanti, Hoi-Kwong Lo, Bing Qi, and Zhiliang Yuan. Practical challenges in quantum key  
 741 distribution. *npj Quantum Information*, 2(1):1–12, 2016.

742 David P DiVincenzo. Quantum gates and circuits. *Proceedings of the Royal Society of London. Series  
 743 A: Mathematical, Physical and Engineering Sciences*, 454(1969):261–276, 1998.

744 David P DiVincenzo. The physical implementation of quantum computation. *Fortschritte der Physik:  
 745 Progress of Physics*, 48(9-11):771–783, 2000.

746 David P DiVincenzo and Peter W Shor. Fault-tolerant quantum computation. *Physical Review Letters*,  
 747 77(15):3260, 1996.

756 Yuxuan Du, Tao Huang, Shan You, Min-Hsiu Hsieh, and Dacheng Tao. Quantum circuit architecture  
 757 search for variational quantum algorithms. *npj Quantum Information*, 8(1):62, 2022.  
 758

759 Vedran Dunjko and Hans J Briegel. Machine learning & artificial intelligence in the quantum domain:  
 760 a review of recent progress. *Reports on Progress in Physics*, 81(7):074001, 2018.  
 761

762 Artur K Ekert. Quantum cryptography based on Bell’s theorem. *Physical Review Letters*, 67(6):661,  
 763 1991.  
 764

765 Meng Fang, Xiangpeng Wan, Fei Lu, Fei Xing, and Kai Zou. Mathodyssey: Benchmarking mathe-  
 766 matical problem-solving skills in large language models using odyssey math data. *arXiv preprint*  
 767 *arXiv:2406.18321*, 2024.  
 768

769 Edward Farhi and Hartmut Neven. Classification with quantum neural networks on near term  
 770 processors. *arXiv preprint arXiv:1802.06002*, 2018.  
 771

770 Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum computation by  
 771 adiabatic evolution. *arXiv preprint quant-ph/0001106*, 2000.  
 772

773 Richard P Feynman. Simulating physics with computers. *International Journal of Theoretical  
 774 Physics*, 21(6):467–488, 1982.  
 775

776 Frederik F Flöther. The state of quantum computing applications in health and medicine. *Research  
 777 Directions: Quantum Technologies*, 1:e10, 2023.  
 778

779 Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland. Surface codes:  
 780 Towards practical large-scale quantum computation. *Physical Review A*, 86(3):032324, 2012.  
 781

780 Jay M Gambetta, Jerry M Chow, and Matthias Steffen. Building logical qubits in a superconducting  
 781 quantum computing system. *npj Quantum Information*, 3(1):1–7, 2017.  
 782

783 Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,  
 784 Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark for  
 785 large language models. *arXiv preprint arXiv:2410.07985*, 2024.  
 786

787 Vlad Gheorghiu and Michele Mosca. Quantum resource estimation for large scale quantum algorithms.  
 788 *Future Generation Computer Systems*, 162:107480, 2025.  
 789

789 Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random access memory. *Physical  
 790 Review Letters*, 100(16):160501, 2008.  
 791

792 Daniel Gottesman. Stabilizer codes and quantum error correction. *California Institute of Technology*,  
 793 1997.  
 794

795 Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vladimir  
 796 Stojevic, Andrew G Green, and Simone Severini. Hierarchical quantum classifiers. *npj Quantum  
 797 Information*, 4(1):65, 2018.  
 798

798 Michele Grossi, Noelle Ibrahim, Voica Radescu, Robert Loredo, Kirsten Voigt, Constantin Von Al-  
 799 trock, and Andreas Rudnik. Mixed quantum–classical method for fraud detection with quantum  
 800 feature selection. *IEEE Transactions on Quantum Engineering*, 3:1–12, 2022.  
 801

802 Lov K Grover. A fast quantum mechanical algorithm for database search. *Proceedings of the  
 803 Twenty-Eighth Annual ACM Symposium on Theory of Computing*, pp. 212–219, 1996.  
 804

804 Stanley P Gudder. The hilbert space axiom in quantum mechanics. In *Old and New Questions in  
 805 Physics, Cosmology, Philosophy, and Theoretical Biology: Essays in Honor of Wolfgang Yourgrau*,  
 806 pp. 109–127. Springer, 1983.  
 807

808 Neel Guha, Julian Nyarko, Daniel Ho, Christopher Ré, Adam Chilton, Alex Chohlas-Wood, Austin  
 809 Peters, Brandon Waldon, Daniel Rockmore, Diego Zambrano, et al. Legalbench: A collaboratively  
 810 built benchmark for measuring legal reasoning in large language models. *Advances in Neural  
 811 Information Processing Systems*, 36:44123–44279, 2023.

810 Xiaoyu Guo, Minggu Wang, and Jianjun Zhao. Quanbench: Benchmarking quantum code generation  
 811 with large language models. *arXiv preprint arXiv:2510.16779*, 2025.

812

813 Jad C Halimeh, Monika Aidelsburger, Fabian Grusdt, Philipp Hauke, and Bing Yang. Cold-atom  
 814 quantum simulators of gauge theories. *Nature Physics*, pp. 1–12, 2025.

815 Aram W Harrow and Debbie W Leung. Coherent communication of classical messages. *Physical*  
 816 *Review Letters*, 92(9):097902, 2004.

817

818 Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of  
 819 equations. *Physical Review Letters*, 103(15):150502, 2009.

820 Akel Hashim, Andras Gyenis, Jie Zhang, Youngsun Nam, Tanay Mundada, Deanna M Lee, Melissa  
 821 Niedzielski, Antonio Mezzacapo, Stefan Istvan, Matthew D Reed, et al. Randomized compiling  
 822 for scalable quantum computing on a noisy superconducting quantum processor. *Physical Review*  
 823 *X*, 11(4):041039, 2021.

824 Matthew B Hastings, Dave Wecker, Bela Bauer, and Matthias Troyer. Improving quantum algorithms  
 825 for quantum chemistry. *arXiv preprint arXiv:1403.1539*, 2014.

826

827 Vojtěch Havlíček, Antonio D Cároles, Kristan Temme, Aram W Harrow, Abhinav Kandala, Jerry M  
 828 Chow, and Jay M Gambetta. Supervised learning with quantum-enhanced feature spaces. *Nature*,  
 829 567(7747):209–212, 2019.

830 Matthew Hayward. Quantum computing and shor’s algorithm. *Sydney: Macquarie University*  
 831 *Mathematics Department*, 1, 2008.

832

833 Fei Hua, Meng Wang, Gushu Li, Bo Peng, Chenxu Liu, Muqing Zheng, Samuel Stein, Yufei Ding,  
 834 Eddy Z Zhang, Travis Humble, et al. Qasmtrans: A qasm quantum transpiler framework for  
 835 nisq devices. In *Proceedings of the SC’23 Workshops of the International Conference on High*  
 836 *Performance Computing, Network, Storage, and Analysis*, pp. 1468–1477, 2023.

837 Hsin-Yuan Huang, Richard Kueng, and John Preskill. Power of data in quantum machine learning.  
 838 *Nature Communications*, 12(1):2631, 2021.

839

840 Nouhaila Innan, Abhishek Sawaika, Ashim Dhor, Siddhant Dutta, Sairupa Thota, Husayn Gokal,  
 841 Nandan Patel, Muhammad Al-Zafar Khan, Ioannis Theodonis, and Mohamed Bennai. Financial  
 842 fraud detection using quantum graph neural networks. *Quantum Machine Intelligence*, 6(1):7,  
 2024.

843

844 Satoshi Ishizaka and Tohya Hiroshima. Asymmetric quantum teleportation with complete bell-state  
 845 measurement. *Physical Review Letters*, 101(24):240501, 2008.

846

847 Shi Jin, Nana Liu, and Yue Yu. Time complexity analysis of quantum algorithms via linear represen-  
 848 tations for nonlinear ordinary and partial differential equations. *Journal of Computational Physics*,  
 487:112149, 2023.

849

850 Stephen P Jordan. Fast quantum algorithm for numerical gradient estimation. *Physical Review*  
 851 *Letters*, 95(5):050501, 2005.

852

853 Siddarth K Joshi, Björn Hessmo, Alex Ciurana, Javier A. Martín-Sánchez, Mohsen Razavi, and  
 854 Remigiusz Augusiak. Trusted node quantum repeaters: A modular approach to the quantum  
 855 internet. *New Journal of Physics*, 22(10):103005, 2020.

856

857 Siddarth K Joshi, Vittorio Giovannetti, Seth Lloyd, and Stefano Pirandola. Distributed quantum  
 858 sensing networks: Challenges and opportunities. *Nature Communications*, 15(1):201, 2024.

859

860 V Kalaivani et al. Enhanced bb84 quantum cryptography protocol for secure communication in  
 861 wireless body sensor networks for medical applications. *Personal and ubiquitous computing*, 27  
 862 (3):875, 2021.

863

Justin Kalloor, Mathias Weiden, Ed Younis, John Kubiatowicz, Bert De Jong, and Costin Iancu.  
 864 Quantum hardware roofline: Evaluating the impact of gate expressivity on quantum processor  
 865 design. In *2024 IEEE International Conference on Quantum Computing and Engineering (QCE)*,  
 866 volume 1, pp. 805–816. IEEE, 2024.

864 Manuj Kant, Sareh Nabi, Manav Kant, Roland Scharrer, Megan Ma, and Marzieh Nabi. Towards  
 865 robust legal reasoning: Harnessing logical llms in law. *arXiv preprint arXiv:2502.17638*, 2025.  
 866

867 Shlomo Kashani. Quantumllminstruct: A 500k llm instruction-tuning dataset with problem-solution  
 868 pairs for quantum computing. *arXiv preprint arXiv:2412.20956*, 2024.

869 Julian Kelly, Rami Barends, Austin G Fowler, Anthony Megrant, Evan Jeffrey, Theodore C White,  
 870 Daniel Sank, Josh Y Mutus, Brooks Campbell, Yu Chen, et al. State preservation by repetitive  
 871 error detection in a superconducting quantum circuit. *Nature*, 519(7541):66–69, 2015.  
 872

873 Sumeet Khatri and Mark M Wilde. Principles of quantum communication theory: A modern approach.  
 874 *Communications of the ACM*, 64(1):76–85, 2021.

875 H Jeff Kimble. The quantum internet. *Nature*, 453(7198):1023–1030, 2008.  
 876

877 Andrew D King, Alberto Nocera, Marek M Rams, Jacek Dziarmaga, Roeland Wiersema, William  
 878 Bernoudy, Jack Raymond, Nitin Kaushal, Niclas Heinsdorf, Richard Harris, et al. Beyond-classical  
 879 computation in quantum simulation. *Science*, 388(6743):199–204, 2025.

880 Alexei Yu Kitaev. Quantum measurements and the abelian stabilizer problem. *Electronic Colloquium  
 881 on Computational Complexity*, 3(3), 1995.  
 882

883 Alexei Yu Kitaev. Quantum computations: algorithms and error correction. *Russian Mathematical  
 884 Surveys*, 52(6):1191, 1997.

885 Morten Kjaergaard, Mollie E Schwartz, Johannes Braumüller, Philip Krantz, Joel I-Jan Wang, Simon  
 886 Gustavsson, and William D Oliver. Superconducting qubits: Current state of play. *Annual Review  
 887 of Condensed Matter Physics*, 11:369–395, 2020.  
 888

889 Emanuel Knill, Raymond Laflamme, and Gerard J Milburn. A scheme for efficient quantum  
 890 computation with linear optics. *Nature*, 409(6816):46–52, 2001.  
 891

892 Karol Kowalski and Nicholas P Bauman. Quantum flow algorithms for simulating many-body  
 893 systems on quantum computers. *Physical Review Letters*, 131(20):200601, 2023.  
 894

895 Wojciech Kozlowski, Axel Dahlberg, and Stephanie Wehner. Designing a quantum network protocol.  
 896 *Proceedings of the 16th International Conference on emerging Networking EXperiments and  
 897 Technologies*, pp. 1–16, 2020.  
 898

899 Walter O Krawec, Bing Wang, and Ryan Brown. Finite key security of simplified trusted node  
 900 networks. In *2024 IEEE International Conference on Quantum Computing and Engineering  
 901 (QCE)*, volume 1, pp. 1777–1787. IEEE, 2024.  
 902

903 David A Kreplin and Marco Roth. Reduction of finite sampling noise in quantum neural networks.  
 904 *Quantum*, 8:1385, 2024.  
 905

906 Hari Krovi. Improved quantum algorithms for linear and nonlinear differential equations. *Quantum*,  
 907 7:913, 2023.  
 908

909 Janusz Kusyk, Samah M Saeed, and Muharrem Umit Uyar. Survey on quantum circuit compilation  
 910 for noisy intermediate-scale quantum computers: Artificial intelligence to heuristics. *IEEE  
 911 Transactions on Quantum Engineering*, 2:1–16, 2021.  
 912

913 Raymond Laflamme, Emanuel Knill, Cécile Negrevergne, David G Cory, Timothy F Havel, Rudy  
 914 Martinez, and Lorenza Viola. NMR quantum information processing and entanglement. *Progress  
 915 of Physics*, 50:703–713, 2002.  
 916

917 Julien Laurat, Gaelle Keller, JoséAugusto Oliveira-Huguenin, Claude Fabre, Thomas Coudreau,  
 918 Alessio Serafini, Gerardo Adesso, and Fabrizio Illuminati. Entanglement of two-mode gaussian  
 919 states: characterization and experimental production and manipulation. *Journal of Optics B:  
 920 Quantum and Semiclassical Optics*, 7(12):S577, 2005.  
 921

922 Gabriela Barreto Lemos, Victoria Borish, Garrett D Cole, Sven Ramelow, Radek Lapkiewicz, and  
 923 Anton Zeilinger. Quantum imaging with undetected photons. *Nature*, 512(7515):409–412, 2014.  
 924

918 Ang Li, Samuel Stein, Sriram Krishnamoorthy, and James Ang. Qasmbench: A low-level quantum  
 919 benchmark suite for nisq evaluation and simulation. *ACM Transactions on Quantum Computing*, 4  
 920 (2):1–26, 2023.

921

922 Chun-Lin Li, He-Liang Chen, and Man-Hong Wang. Quantum reinforcement learning. *arXiv preprint*  
 923 *arXiv:1810.00481*, 2018.

924

925 YaoChong Li, Ri-Gui Zhou, RuQing Xu, Jia Luo, and WenWen Hu. A quantum deep convolutional  
 926 neural network for image recognition. *Quantum Science and Technology*, 5(4):044003, 2020.

927

928 Daniel A Lidar and Todd A Brun. Quantum error correction. *Cambridge University Press*, 27:1–10,  
 929 2013.

930

931 Norbert M Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt, Kevin A  
 932 Landsman, Kenneth Wright, and Christopher Monroe. Experimental comparison of two quantum  
 933 computing architectures. *Proceedings of the National Academy of Sciences*, 114(13):3305–3310,  
 934 2017.

935

936 Seth Lloyd. Hybrid quantum computing. *arXiv preprint quant-ph/9304003*, 1993.

937

938 Seth Lloyd. Universal quantum simulators. *Science*, 273(5278):1073–1078, 1996.

939

940 Seth Lloyd and Christian Weedbrook. Quantum generative adversarial learning. *Physical Review*  
 941 *Letters*, 121(4):040502, 2018.

942

943 Hoi-Kwong Lo and Hoi Fung Chau. Unconditional security of quantum key distribution over  
 944 arbitrarily long distances. *Science*, 283(5410):2050–2056, 1999.

945

946 Hoi-Kwong Lo, Marcos Curty, and Kiyoshi Tamaki. Secure quantum key distribution. *Nature*  
 947 *Photonics*, 8(8):595–604, 2014.

948

949 Dmitri Maslov, Gerhard W Dueck, D Michael Miller, and Cecile Negrevergne. Quantum circuit  
 950 simplification and level compaction. *IEEE Transactions on Computer-Aided Design of Integrated*  
 951 *Circuits and Systems*, 27(3):436–444, 2008.

952

953 Dominic Mayers. Unconditional security in quantum cryptography. *Journal of the ACM (JACM)*, 48  
 954 (3):351–406, 2001.

955

956 Matt McEwen, Lara Faoro, Kaveh Arya, Andrew Dunsworth, Trent Huang, Shirin Kim, Bruno  
 957 Morvan, Simon Nigg, Naoki Kanazawa, Kevin Satzinger, et al. Removing leakage-induced  
 958 correlated errors in superconducting quantum error correction. *Nature Communications*, 14(1):  
 959 3408, 2023.

960

961 David C McKay, Thomas Alexander, Luciano Bello, Michael J Biercuk, Lev Bishop, Jungsang  
 962 Chen, Jerry M Chow, Antonio D Córcoles, Daniel Egger, Stefan Filipp, et al. Qiskit backend  
 963 specifications for OpenQASM and OpenPulse experiments. *arXiv preprint arXiv:1809.03452*,  
 964 2018.

965

966 Miralem Mehic, Libor Michalek, Emir Dervisevic, Patrik Burdiak, Matej Plakalovic, Jan Rozhon,  
 967 Nerman Mahovac, Filip Richter, Enio Kaljic, Filip Lauterbach, et al. Quantum cryptography in 5g  
 968 networks: A comprehensive overview. *IEEE Communications Surveys & Tutorials*, 26(1):302–346,  
 969 2023.

970

971 Rodney Van Meter, Takahiko Satoh, Thaddeus D Ladd, William J Munro, and Kae Nemoto. Path  
 972 selection for quantum repeater networks. *Networking Science*, 3(1):82–95, 2013.

973

974 Evan Miller. Adding error bars to evals: A statistical approach to language model evaluations. *arXiv*  
 975 *preprint arXiv:2411.00640*, 2024.

976

977 Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. Quantum circuit learning.  
 978 *Physical Review A*, 98(3):032309, 2018.

972 Nikolaj Moll, Panagiotis Barkoutsos, Lev S Bishop, Jerry M Chow, Andrew Cross, Daniel J Egger,  
 973 Stefan Filipp, Andreas Fuhrer, Jay M Gambetta, Marc Ganzhorn, et al. Quantum optimization  
 974 using variational algorithms on near-term quantum devices. *Quantum Science and Technology*, 3  
 975 (3):030503, 2018.

976 Ashley Montanaro. Quantum algorithms: an overview. *npj Quantum Information*, 2(1):1–8, 2016.

977 Michele Mosca. Quantum algorithms. *arXiv preprint arXiv:0808.0369*, 2008.

978 Mario Motta, Chong Sun, Adrian TK Tan, Matthew J O’Rourke, Erika Ye, Austin J Minnich,  
 979 Fernando GSL Brandao, and Garnet Kin-Lic Chan. Determining eigenstates and thermal states on  
 980 a quantum computer using quantum imaginary time evolution. *Nature Physics*, 16(2):205–210,  
 981 2020.

982 William J Munro, Kae Nemoto, Rebecca G Beausoleil, and Timothy P Spiller. High-efficiency  
 983 quantum-nondemolition single-photon-number-resolving detector. *Physical Review A*, 71(3):  
 984 033819, 2005.

985 William J Munro, Koji Azuma, Kiyoshi Tamaki, and Kae Nemoto. Inside quantum repeaters. *IEEE*  
 986 *Journal of Selected Topics in Quantum Electronics*, 21(3):78–90, 2015.

987 Prakash Murali, Jonathan M Baker, Ali Javadi Abhari, Frederic T Chong, and Margaret Martonosi.  
 988 Noise-adaptive compiler mappings for noisy intermediate-scale quantum computers. *Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming*  
 989 *Languages and Operating Systems*, pp. 1015–1029, 2019.

990 Sreraman Muralidharan, Linshu Li, Jungsang Kim, Norbert Lütkenhaus, Mikhail D Lukin, and Liang  
 991 Jiang. Optimal architectures for long distance quantum communication. *Scientific Reports*, 6(1):  
 992 20463, 2016.

993 Bhaskara Narottama and Soo Young Shin. Quantum neural networks for resource allocation in  
 994 wireless communications. *IEEE transactions on wireless communications*, 21(2):1103–1116,  
 995 2021.

996 Bhaskara Narottama, Triwidayastuti Jamaluddin, and Soo Young Shin. Quantum neural network with  
 997 parallel training for wireless resource optimization. *IEEE Transactions on Mobile Computing*, 23  
 998 (5):5835–5847, 2023.

999 Ashwin Nayak and Felix Wu. Quantum lower bounds for the collision and the element distinctness  
 1000 problems. *Journal of the ACM (JACM)*, 53(5):659–663, 1999.

1001 Michael A Nielsen and Isaac L Chuang. Quantum computation by measurement and quantum  
 1002 memory. *Physical Review Letters*, 79(2):321, 1997.

1003 Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. *Physics*  
 1004 *Today*, 55(2):60, 2002.

1005 Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information: 10th  
 1006 anniversary edition. *Cambridge University Press*, 2010.

1007 Morten IP Nielsen and Karsten Flensberg. Fault-tolerant quantum computation with majorana  
 1008 fermions. *Physical Review Letters*, 126(7):076401, 2021.

1009 Hadas Orgad, Michael Toker, Zorik Gekhman, Roi Reichart, Idan Szpektor, Hadas Kotek, and Yonatan  
 1010 Belinkov. Llms know more than they show: On the intrinsic representation of llm hallucinations.  
 1011 *arXiv preprint arXiv:2410.02707*, 2024.

1012 Mateusz Ostaszewski, Lea M Trenkwalder, Wojciech Masarczyk, Eleanor Scerri, and Vedran Dunjko.  
 1013 Reinforcement learning for optimization of variational quantum circuit architectures. *Advances in*  
 1014 *Neural Information Processing Systems*, 34:18182–18194, 2021.

1015 Mihir Pant, Hari Krovi, Don Towsley, Leandros Tassiulas, Liang Jiang, Prithwish Basu, Dirk Englund,  
 1016 and Saikat Guha. Routing entanglement in the quantum internet. *npj Quantum Information*, 5(1):  
 1017 25, 2019.

1026 Tom Peham, Lukas Burgholzer, and Robert Wille. Equivalence checking of quantum circuits with  
 1027 the zx-calculus. *IEEE Journal on Emerging and Selected Topics in Circuits and Systems*, 12(3):  
 1028 662–675, 2022.

1029

1030 Alejandro Perdomo-Ortiz, Marcello Benedetti, John Realpe-Gómez, and Rupak Biswas. Opportu-  
 1031 nities and challenges for quantum-assisted machine learning in near-term quantum computers.  
 1032 *Quantum Science and Technology*, 3(3):030502, 2018.

1033 Gabrijela Perković, Antun Drobniak, and Ivica Botički. Hallucinations in llms: Understanding  
 1034 and addressing challenges. In *2024 47th MIPRO ICT and electronics convention (MIPRO)*, pp.  
 1035 2084–2088. IEEE, 2024.

1036

1037 Sébastien Perseguers. Quantum networks: from a physics experiment to a quantum device. *Reports  
 1038 on Progress in Physics*, 76(9):096001, 2013.

1039

1040 Michael J Peterer, Samuel J Bader, Xiaoyue Jin, Fei Yan, Archana Kamal, Theodore J Gudmundsen,  
 1041 Peter J Leek, Terry P Orlando, William D Oliver, and Simon Gustavsson. Coherence and decay of  
 1042 higher energy levels of a superconducting transmon qubit. *Physical review letters*, 114(1):010501,  
 1043 2015.

1044 Frank Phillipson. Quantum computing in logistics and supply chain management an overview. *arXiv  
 1045 preprint arXiv:2402.17520*, 2024.

1046 Stefano Pirandola, Bhaskar Roy Bardhan, Tobias Gehring, Christian Weedbrook, and Seth Lloyd.  
 1047 Advances in photonic quantum sensing. *Nature Photonics*, 12(12):724–733, 2018.

1048

1049 Stefano Pirandola, Ulrik L Andersen, Leonardo Banchi, Mario Berta, Darius Bunandar, Roger  
 1050 Colbeck, Dirk Englund, Tobias Gehring, Cosmo Lupo, Carlo Ottaviani, et al. Advances in quantum  
 1051 cryptography. *Advances in Optics and Photonics*, 12(4):1012–1236, 2020.

1052

1053 Matteo Pompili, Sophie LE Hermans, Simon Baier, Hans KC Beukers, Peter C Humphreys, Ray-  
 1054 mond N Schouten, Raymond FL Vermeulen, Marijn J Tiggelman, Laura dos Santos Martins, Bas  
 1055 Dirkse, et al. Realization of a multinode quantum network of remote solid-state qubits. *Science*,  
 1056 372(6539):259–264, 2021.

1057

1058 John Preskill. Reliable quantum computers. *Proceedings of the Royal Society of London. Series A:  
 Mathematical, Physical and Engineering Sciences*, 454(1969):385–410, 1998.

1059

1060 John Preskill. Quantum computing in the NISQ era and beyond. *Quantum*, 2:79, 2018.

1061

1062 Ricard Puig, Marc Drudis, Supanut Thanasilp, and Zoë Holmes. Variational quantum simulation: a  
 1063 case study for understanding warm starts. *PRX Quantum*, 6(1):010317, 2025.

1064

1065 Xiaogang Qiang, Yizhi Wang, Shichuan Xue, Renyou Ge, Lifeng Chen, Yingwen Liu, Anqi Huang,  
 1066 Xiang Fu, Ping Xu, Teng Yi, et al. Implementing graph-theoretic quantum algorithms on a silicon  
 photonic quantum walk processor. *Science Advances*, 7(9):eabb8375, 2021.

1067

1068 Finley Alexander Quinton, Per Arne Sevle Myhr, Mostafa Barani, Pedro Crespo del Granado, and  
 1069 Hongyu Zhang. Quantum annealing applications, challenges and limitations for optimisation  
 1070 problems compared to classical solvers. *Scientific Reports*, 15(1):12733, 2025.

1071

1072 Vishakha K Ralegankar, Jagruti Bagul, Bhaumikkumar Thakkar, Rajesh Gupta, Sudeep Tanwar,  
 1073 Gulshan Sharma, and Innocent E Davidson. Quantum cryptography-as-a-service for secure uav  
 communication: applications, challenges, and case study. *Ieee Access*, 10:1475–1492, 2021.

1074

1075 Deepak Ranga, Aryan Rana, Sunil Prajapat, Pankaj Kumar, Kranti Kumar, and Athanasios V  
 1076 Vasilakos. Quantum machine learning: Exploring the role of data encoding techniques, challenges,  
 1077 and future directions. *Mathematics*, 12(21):3318, 2024.

1078

1079 Minati Rath and Hema Date. Quantum data encoding: A comparative analysis of classical-to-quantum  
 mapping techniques and their impact on machine learning accuracy. *EPJ Quantum Technology*, 11  
 (1):72, 2024.

1080 Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector machine for big data  
 1081 classification. *Physical Review Letters*, 113(13):130503, 2014.

1082

1083 Matthew D Reed, Leonardo DiCarlo, Simon E Nigg, Luyan Sun, Luigi Frunzio, Steven M Girvin, and  
 1084 Robert J Schoelkopf. Realization of three-qubit quantum error correction with superconducting  
 1085 circuits. *Nature*, 482(7385):382–385, 2012.

1086

1087 Ben W Reichardt. Span programs and quantum query complexity: The general adversary bound  
 1088 is nearly tight for every boolean function. *Proceedings of the 50th Annual IEEE Symposium on  
 1089 Foundations of Computer Science*, pp. 544–551, 2009.

1090

1091 Xiangyu Ren, Mengyu Zhang, and Antonio Barbalace. A hardware-aware gate cutting framework for  
 1092 practical quantum circuit knitting. In *Proceedings of the 43rd IEEE/ACM International Conference  
 1093 on Computer-Aided Design*, pp. 1–9, 2024.

1094

1095 Renato Renner. Security of quantum key distribution. *International Journal of Quantum Information*,  
 1096 6(01):1–127, 2008.

1097

1098 Jonathan Romero, Jonathan P Olson, and Alan Aspuru-Guzik. Quantum autoencoders for efficient  
 1099 compression of quantum data. *Quantum Science and Technology*, 2(4):045001, 2017.

1100

1101 Evandro CR Rosa, Eduardo I Duzzioni, and Rafael De Santiago. Optimizing gate decomposition for  
 1102 high-level quantum programming. *Quantum*, 9:1659, 2025.

1103

1104 Swastik Kumar Sahu and Kaushik Mazumdar. State-of-the-art analysis of quantum cryptography:  
 1105 applications and future prospects. *Frontiers in Physics*, 12:1456491, 2024.

1106

1107 Valerio Scarani, Helle Bechmann-Pasquinucci, Nicolas J Cerf, Miloslav Dušek, Norbert Lütkenhaus,  
 1108 and Momtchil Peev. The security of practical quantum key distribution. *Reviews of Modern  
 1109 Physics*, 81(3):1301, 2009.

1110

1111 Maria Schuld and Nathan Killoran. Quantum machine learning in feature hilbert spaces. *Physical  
 1112 review letters*, 122(4):040504, 2019.

1112

1113 Maria Schuld and Francesco Petruccione. *Supervised learning with quantum computers*. Springer,  
 1114 2018.

1115

1116 Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. *An introduction to quantum machine  
 1117 learning*, volume 56. Taylor & Francis, 2015.

1118

1119 Priyabrata Senapati, Samuel Yen-Chi Chen, Bo Fang, Tushar M Athawale, Ang Li, Weiwen Jiang,  
 1120 Cheng Chang Lu, and Qiang Guan. Pqml: Enabling the predictive reproducibility on nisq machines  
 1121 for quantum ml applications. In *2024 IEEE International Conference on Quantum Computing and  
 1122 Engineering (QCE)*, volume 1, pp. 1413–1424. IEEE, 2024.

1123

1124 Peter W Shor. Scheme for reducing decoherence in quantum computer memory. *Physical Review A*,  
 1125 52(4):R2493, 1995.

1126

1127 Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a  
 1128 quantum computer. *SIAM Review*, 41(2):303–332, 1999.

1129

1130 Peter W Shor and John Preskill. Simple proof of security of the BB84 quantum key distribution  
 1131 protocol. *Physical Review Letters*, 85(2):441, 2000.

1132

1133 Scott Sikorski. Gpu-based quantum circuit simulation transpilation optimizations. *IEEE Transactions  
 1134 on Quantum Engineering*, 4:1–12, 2023.

1135

1136 Christoph Simon. Towards quantum repeater networks using multiplexed atomic memories. *Physical  
 1137 Review A*, 95(1):012308, 2017.

1138

1139 Jérémie Simon. Theoretical investigation of solid-state quantum memories in rare-earth doped oxides.  
 1140 *Quantum Science and Technology*, 1(1):012002, 2015.

1134 Thomas R Smith, Mark R Drummond, and Michael D Reid. Quantum computational advantage  
 1135 using photons. *Physical Review A*, 99(5):052335, 2019.

1136

1137 Xiaoshuai Song, Muxi Diao, Guanting Dong, Zhengyang Wang, Yujia Fu, Runqi Qiao, Zhexu Wang,  
 1138 Dayuan Fu, Huangxuan Wu, Bin Liang, et al. Cs-bench: A comprehensive benchmark for large  
 1139 language models towards computer science mastery. *arXiv preprint arXiv:2406.08587*, 2024.

1140 Andrew Steane. Error correcting codes in quantum theory. *Physical Review Letters*, 77(5):793, 1996.

1141

1142 Andrew M Steane. Efficient fault-tolerant quantum computing. *Nature*, 399(6732):124–126, 1999.

1143

1144 Krishna Subedi. The reliability of llms for medical diagnosis: An examination of consistency,  
 1145 manipulation, and contextual awareness. *arXiv preprint arXiv:2503.10647*, 2025.

1146 Francesco Tacchino, Chiara Macchiavello, Dario Gerace, and Daniele Bajoni. An artificial neuron  
 1147 implemented on an actual quantum processor. *npj Quantum Information*, 5(1):26, 2019.

1148

1149 Shuntaro Takeda and Akira Furusawa. Wavelength-multiplexed quantum networks with ultrafast  
 1150 frequency combs. *Nature Photonics*, 17(1):6–15, 2023.

1151

1152 Maika Takita, Andrew W Cross, Antonio D Córcoles, Jerry M Chow, and Jay M Gambetta. Experi-  
 1153 mental demonstration of fault-tolerant state preparation with superconducting qubits. *Physical  
 1154 Review Letters*, 119(18):180501, 2017.

1155

1156 Yizhuo Tan, Navnil Choudhury, Kanad Basu, and Jakub Szefer. Qubit hammer attacks: Qubit flipping  
 1157 attacks in multi-tenant superconducting quantum computers. *arXiv preprint arXiv:2504.07875*,  
 2025.

1158

1159 Hiroaki Terashima and Masahito Ueda. Nonunitary quantum circuit. *International Journal of  
 1160 Quantum Information*, 3(04):633–647, 2005.

1161

1162 Barbara M Terhal. Quantum error correction for quantum memories. *Reviews of Modern Physics*, 87  
 (2):307, 2015.

1163

1164 Norbert Tihanyi, Mohamed Amine Ferrag, Ridhi Jain, Tamas Bisztray, and Merouane Debbah.  
 1165 Cybermetric: a benchmark dataset based on retrieval-augmented generation for evaluating llms  
 1166 in cybersecurity knowledge. In *2024 IEEE International Conference on Cyber Security and  
 1167 Resilience (CSR)*, pp. 296–302. IEEE, 2024.

1168

1169 Raihan Ur Rasool, Hafiz Farooq Ahmad, Wajid Rafique, Adnan Qayyum, Junaid Qadir, and Zahid  
 1170 Anwar. Quantum computing for healthcare: A review. *Future Internet*, 15(3):94, 2023.

1171

1172 Rodney Van Meter. Path to quantum repeaters. *IEEE Security & Privacy*, 14(4):58–66, 2016.

1173

1174 Rodney Van Meter, Joe Touch, and Clare Horsman. Quantum networking and internetworking. *IEEE  
 1175 Network*, 23(4):6–13, 2009.

1176

1177 Rodney Van Meter, Marcello Caleffi, and Lajos Hanzo. Quantum internetworking. *IEEE Journal on  
 1178 Selected Areas in Communications*, 38(3):421–424, 2020.

1179

1180 Lieven MK Vandersypen, Matthias Steffen, Gregory Breyta, Costantino S Yannoni, Mark H Sherwood,  
 1181 and Isaac L Chuang. Experimental realization of Shor’s quantum factoring algorithm using nuclear  
 1182 magnetic resonance. *Nature*, 414(6866):883–887, 2001.

1183

1184 Davide Venturelli, Minh Do, Eleanor Rieffel, and Jeremy Frank. Compiling quantum circuits to  
 1185 realistic hardware architectures using temporal planners. *Quantum Science and Technology*, 3(2):  
 1186 025004, 2018.

1187

1188 Sanjay Vishwakarma, Francis Harkins, Siddharth Golecha, Vishal Sharathchandra Bajpe, Nicolas  
 1189 Dupuis, Luca Buratti, David Kremer, Ismael Faro, Ruchir Puri, and Juan Cruz-Benito. Qiskit  
 1190 humaneval: An evaluation benchmark for quantum code generative models. In *2024 IEEE  
 1191 International Conference on Quantum Computing and Engineering (QCE)*, volume 1, pp. 1169–  
 1192 1176. IEEE, 2024.

1188 Haoran Wang, Pingzhi Li, Min Chen, Jinglei Cheng, Junyu Liu, and Tianlong Chen. Grovergpt:  
 1189 A large language model with 8 billion parameters for quantum searching. *arXiv preprint*  
 1190 *arXiv:2501.00135*, 2024.

1191 Stephanie Wehner, David Elkouss, and Ronald Hanson. Quantum internet: A vision for the road  
 1192 ahead. *Science*, 362(6412):eaam9288, 2018.

1193 Nathan Wiebe, Daniel Braun, and Seth Lloyd. Quantum algorithm for data fitting. *Physical Review*  
 1194 *Letters*, 109(5):050505, 2012.

1195 Robert Wille, Lukas Burgholzer, and Alwin Zulehner. Mapping quantum circuits to IBM QX  
 1196 architectures using the minimal number of SWAP and H operations. *Design Automation Conference*  
 1197 (*DAC*), pp. 1–6, 2019.

1198 Colin P Williams and Alexander G Gray. Automated design of quantum circuits. In *NASA Interna-*  
 1199 *tional Conference on Quantum Computing and Quantum Communications*, pp. 113–125. Springer,  
 1200 1998.

1201 Peter Wittek. *Quantum machine learning: what quantum computing means to data mining*. Academic  
 1202 Press, 2014.

1203 William K Wootters and Wojciech H Zurek. A single quantum cannot be cloned. *Nature*, 299(5886):  
 1204 802–803, 1982.

1205 Chuanqi Xu and Jakub Szefer. Security attacks abusing pulse-level quantum circuits. *arXiv preprint*  
 1206 *arXiv:2406.05941*, 2024.

1207 Chuanqi Xu, Jessie Chen, Allen Mi, and Jakub Szefer. Securing nisq quantum computer reset  
 1208 operations against higher energy state attacks. In *Proceedings of the 2023 ACM SIGSAC Conference*  
 1209 *on Computer and Communications Security*, pp. 594–607, 2023.

1210 Xiaoqing Xu, Quntao Li, Xilin Su, Xiaoqian Guo, Minghua Liu, and Myung-Joong Kim. Secure  
 1211 quantum machine learning over the cloud. *Physical Review A*, 101(5):052343, 2020.

1212 Rui Yang, Yuntian Gu, Ziruo Wang, Yitao Liang, and Tongyang Li. Qcircuitnet: A large-scale  
 1213 hierarchical dataset for quantum algorithm design. *arXiv preprint arXiv:2410.07961*, 2024.

1214 Ed Younis and Costin Iancu. Quantum circuit optimization and transpilation via parameterized circuit  
 1215 instantiation. In *2022 IEEE International Conference on Quantum Computing and Engineering*  
 1216 (*QCE*), pp. 465–475. IEEE, 2022.

1217 Kai Yu, Song Lin, and Bin-Bin Cai. Quantum convolutional neural network with flexible stride.  
 1218 *arXiv preprint arXiv:2412.00645*, 2024.

1219 Chi Zhang, Xiao-Long Hu, Cong Jiang, Jiu-Peng Chen, Yang Liu, Weijun Zhang, Zong-Wen Yu, Hao  
 1220 Li, Lixing You, Zhen Wang, et al. Experimental side-channel-secure quantum key distribution.  
 1221 *Physical Review Letters*, 128(19):190503, 2022a.

1222 Kaining Zhang, Liu Liu, Min-Hsiu Hsieh, and Dacheng Tao. Escaping from the barren plateau via  
 1223 gaussian initializations in deep variational quantum circuits. *Advances in Neural Information*  
 1224 *Processing Systems*, 35:18612–18627, 2022b.

1225 Yusheng Zhao, Hui Zhong, Xinyue Zhang, Yuqing Li, Chi Zhang, and Miao Pan. Bridging quantum  
 1226 computing and differential privacy: Insights into quantum computing privacy. In *2024 IEEE*  
 1227 *International Conference on Quantum Computing and Engineering (QCE)*, volume 1, pp. 13–24.  
 1228 IEEE, 2024.

1229 Alwin Zulehner, Alexandru Paler, and Robert Wille. An efficient methodology for mapping quantum  
 1230 circuits to the IBM QX architectures. *IEEE Transactions on Computer-Aided Design of Integrated*  
 1231 *Circuits and Systems*, 38(7):1226–1236, 2018.

1232 Wojciech Hubert Zurek. Decoherence, einselection, and the quantum origins of the classical. *Reviews*  
 1233 *of Modern Physics*, 75(3):715, 2003.

1242 **A APPENDIX**  
12431244  
1245 **A.1 QUESTION EXTRACTION AND GENERATION**  
12461247 For the QC500 and QC1000 subsets, researchers systematically reviewed the selected quantum  
1248 computing papers and identified key concepts, algorithms, and principles that capture both foun-  
1249 dational and advanced material. Rather than copying sentences directly, each question was crafted  
1250 by rephrasing important findings and definitions from the literature to create original items while  
1251 preserving scientific accuracy. Draft questions underwent multiple rounds of verification for technical  
1252 correctness and clarity to ensure they tested understanding rather than memorization of phrasing. In  
1253 parallel, we leveraged language models in a controlled setting to suggest candidate questions from  
1254 the same source papers, but every suggestion was filtered and rewritten by researchers to maintain  
1255 consistency with the human-validated style and difficulty. This combined process produced a balanced  
1256 set of high-quality questions that reflect authentic quantum computing research while supporting  
1257 rigorous evaluation across diverse topics and difficulty levels. The question creation process involved  
1258 developing multiple answer options for each extracted concept. Below we illustrate this process with  
1259 an example:  
12601261 **Example: Question Development Process**  
12621263 **Initial concept from paper:** Quantum circuit synthesis involves decomposing unitary  
1264 operations into implementable gate sequences.  
12651266 **Generated question:** What is the primary purpose of quantum circuit synthesis?  
12671268 **Initial answer options (6 generated):**1269 A. To convert a quantum circuit into a classical circuit by removing superposition  
1270 properties  
1271 B. To merge multiple unitary matrices into a single high-dimensional operator without  
1272 gate decomposition  
1273 C. To decompose a unitary matrix representing the circuit into a sequence of gates from  
1274 the native gate set  
1275 D. To encode classical information into qubit states without performing any gate-level  
1276 modifications  
1277 E. To simulate quantum circuits on classical computers using tensor networks  
1278 F. To optimize quantum algorithms for specific hardware architectures  
12791280 **Final selection (4 options):** Options E and F were eliminated as they describe related but  
1281 distinct processes. The final question includes the correct answer (C) and three plausible  
1282 distractors that test understanding of quantum circuit concepts.  
12831284 **Quantum Circuit Synthesis**  
12851286 **Question:** What is the primary purpose of quantum circuit synthesis?  
12871288 A. To convert a quantum circuit into a classical circuit by removing superposition  
1289 properties  
1290 B. To merge multiple unitary matrices into a single high-dimensional operator without  
1291 gate decomposition  
1292 C. To decompose a unitary matrix representing the circuit into a sequence of gates from  
1293 the native gate set  
1294 D. To encode classical information into qubit states without performing any gate-level  
1295 modifications1296 **Answer:** C

1296  
1297

## A.2 AUTOMATED QUESTION MINING FROM RESEARCH PAPERS

1298  
1299  
1300  
1301  
1302

To expand our benchmark beyond human-authored questions, we employed Large Language Models (LLMs), specifically Gemini 2.0 Flash, Gemini 1.5 Pro, GPT-4.0, and Claude 3.7 Sonnet, to extract additional questions from 212 carefully selected quantum computing papers. This automated extraction process generated an initial pool of over 8,000 candidate questions, each with six potential answer options.

1303  
1304  
1305

The filtering process involved multiple stages. First, we identified and removed questions that strayed from quantum computing into adjacent domains. Examples of filtered questions include:

1306  
1307  
1308  
1309

## Example: Filtered Question - General Cybersecurity

**Question:** Which encryption protocol is most commonly used for securing HTTP connections?

1310  
1311  
1312  
1313  
1314

- A. TLS/SSL
- B. SSH
- C. IPSec
- D. WPA2

1315  
1316

*Reason for filtering:* While encryption is relevant to quantum cryptography, this question addresses classical network security without quantum computing connection.

1317

1318  
1319

## Example: Filtered Question – Mathematical Modeling

1320  
1321

**Question:** In the analysis of an ordinary differential equation system, what does a non-positive log-norm of the coefficient matrix imply?

1322  
1323  
1324  
1325  
1326

- A. The system is unstable for all inputs
- B. The matrix has only imaginary eigenvalues
- C. The solution decays or remains bounded over time
- D. The matrix is diagonalizable over the complex field

1327  
1328  
1329  
1330

*Reason for filtering:* While this concept appears in resource analyses for quantum-inspired algorithms, it tests classical stability theory in differential equations and does not assess quantum computing knowledge.

1331  
1332  
1333  
1334

After removing duplicate questions, filtering irrelevant content, and conducting manual quality review, we retained 4,400 high-quality questions. For each retained question, we selected the four most relevant answer options from the initial six, ensuring each question had one correct answer and three well-crafted distractors that effectively test quantum computing knowledge.

1335

## A.3 QUESTION TRANSLATION AND MULTILINGUAL VALIDATION

1336  
1337  
1338  
1339  
1340

For the QC500 subset, we created Spanish and French translations using a multi-stage process. We employed the same four LLMs (Gemini 2.0 Flash, Gemini 1.5 Pro, GPT-4.0, and Claude 3.7 Sonnet) to generate initial translations. A typical translation prompt was structured as follows:

1341  
1342  
1343  
1344

"Translate the following quantum computing question from English to French, maintaining technical accuracy and appropriate scientific terminology:  
[Question and answer options]"

1345  
1346  
1347  
1348  
1349

For each question, we collected translations from all four models and selected the most accurate version. This selection was then reviewed by individuals proficient in both languages who verified technical terminology and ensured conceptual accuracy. The translation process preserved the semantic content while adapting to language-specific conventions for scientific terminology.

1350 Examples of translated questions include:  
 1351

1352 French Translation Example 1

1353  
 1354 **Question:** Pourquoi les attaques par impulsion à grande échelle sont-elles difficiles à réaliser  
 1355 dans les systèmes partagés ?

1356 A. Elles dépendent d'un accès chiffré aux qubits  
 1357 B. Elles nécessitent un accès à la machine au niveau administrateur  
 1358 C. Elles requièrent de nombreux qubits, auxquels les utilisateurs n'ont généralement  
 1359 pas accès  
 1360 D. Elles échouent si la machine est calibrée

1361 **Answer:** C

1362 French Translation Example 2

1363  
 1364 **Question:** Pourquoi les algorithmes quantiques paramétriques sont-ils difficiles à vérifier  
 1365 sémantiquement ?

1366 A. Ils utilisent des paramètres fixes définis dans le matériel  
 1367 B. Ils reposent uniquement sur un post-traitement classique  
 1368 C. Leurs paramètres entraînés manquent d'interprétabilité inhérente  
 1369 D. Leur structure est identique pour tous les ensembles de données

1370 **Answer:** C

1371 Spanish Translation Example 1

1372  
 1373 **Question:** ¿Cuál es la principal diferencia entre la privacidad diferencial clásica y la privaci-  
 1374 dad diferencial cuántica?

1375 A. La PD cuántica extiende las garantías de privacidad a estados cuánticos indistin-  
 1376 guibles utilizando distancias de traza  
 1377 B. La PD cuántica elimina la necesidad de análisis probabilístico  
 1378 C. La PD cuántica se aplica solo a registros de qubits entrelazados  
 1379 D. La PD cuántica se impone eliminando los resultados de medición de qubits

1380 **Answer:** A

1381 Spanish Translation Example 2

1382  
 1383 **Question:** ¿Qué algoritmo clásico se utiliza comúnmente después del paso cuántico del  
 1384 Algoritmo de Shor?

1385 A. Algoritmo de Dijkstra  
 1386 B. Expansión de fracciones continuas  
 1387 C. Integración de Monte Carlo  
 1388 D. Búsqueda binaria

1389 **Answer:** B

1390 A.4 QUESTION FORMAT DIVERSIFICATION

1391 To evaluate models' performance across different cognitive tasks, we expanded our benchmark with  
 1392 true/false and open-ended questions. For this expansion, we selected 40 additional research papers  
 1393 to ensure diverse content and avoid repetition. Both LLMs and human experts generated questions  
 1394 following similar protocols to the initial question creation phase.

1404  
1405  
1406  
1407  
1408  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1404 This process yielded 416 true/false questions and 421 open-ended questions. True/false questions were created by converting factual statements into binary assessments:

#### True/False Question Examples

**Question:** The Bloch sphere is a geometrical representation of pure quantum states of a two-level quantum mechanical system.

**Answer:** True

**Question:** Dirac notation can only represent pure states, not mixed states.

**Answer:** False

**Question:** The E91 protocol is based on entangled particles and provides a method for secure quantum key distribution.

**Answer:** True

**Question:** Quantum error correction codes do not require any additional qubits beyond the physical qubits used to represent the logical qubit.

**Answer:** False

Open-ended questions were designed to assess deeper understanding and explanatory capabilities:

#### Open-Ended Question Examples

**Question:** What is the no-cloning theorem and its implication for quantum information?

**Question:** How does the Heisenberg uncertainty principle affect the measurement of quantum states?

**Question:** In the context of quantum states, what distinguishes a pure state from a mixed state?

**Question:** Explain the significance of the CNOT gate in quantum entanglement.

**Sample Answer:** The CNOT gate, or controlled-NOT gate, is crucial for creating entanglement between two qubits, as it flips the state of the target qubit only if the control qubit is in the state  $|1\rangle$ .

For each open-ended question, we developed sample answers to facilitate consistent evaluation across different models. These questions were assessed manually to determine whether model responses captured the essential concepts and technical accuracy required for each topic.

#### A.5 HUMAN PERFORMANCE BASELINE STUDY

Table 6 reports accuracies for the first 20 respondents. Scores range from 23.3% to 86.7%, with an overall average of 57.2%. Participants with 5+ years of experience achieved an average of 79.4%, providing a reference point for expert-level performance. Education level shows a clear pattern: all PhD-trained participants scored at or above 73.3%, while no BS-level participant reached 60%. These results provide a concrete reference distribution for interpreting model-human comparisons in the main results.

#### REFERENCES FOR EACH TOPIC

Table 7 lists the literature sources and citation coverage for all seven benchmark topics. Rapidly developing areas such as quantum cybersecurity and quantum machine learning rely heavily on the most recent papers to capture ongoing advances, whereas foundational categories such as quantum theory and quantum error correction draw on a broader historical record to reflect the principles that remain central to the discipline. This distribution ensures that the benchmark balances up-to-date research with enduring theoretical foundations, giving a clear view of how source material supports each topic area.

| 1458 | Participant                                  | Education | Experience | Age Group | Score | Accuracy     |
|------|----------------------------------------------|-----------|------------|-----------|-------|--------------|
| 1459 | P1                                           | MS        | 2–5 yrs    | 25–35     | 19/30 | 63.3%        |
| 1460 | P2                                           | BS        | <1 yr      | 18–25     | 14/30 | 46.7%        |
| 1461 | P3                                           | PhD       | 5+ yrs     | 35–45     | 25/30 | 83.3%        |
| 1462 | P4                                           | MS        | 1–2 yrs    | 25–35     | 21/30 | 70.0%        |
| 1463 | P5                                           | PhD       | 2–5 yrs    | 35–45     | 23/30 | 76.7%        |
| 1464 | P6                                           | BS        | <1 yr      | 18–25     | 12/30 | 40.0%        |
| 1465 | P7                                           | MS        | 1–2 yrs    | 25–35     | 17/30 | 56.7%        |
| 1466 | P8                                           | MS        | 5+ yrs     | 35–45     | 24/30 | 80.0%        |
| 1467 | P9                                           | PhD       | 2–5 yrs    | 25–35     | 22/30 | 73.3%        |
| 1468 | P10                                          | BS        | 1–2 yrs    | 18–25     | 16/30 | 53.3%        |
| 1469 | P11                                          | PhD       | 5+ yrs     | 45–55     | 26/30 | 86.7%        |
| 1470 | P12                                          | BS        | <1 yr      | 18–25     | 11/30 | 36.7%        |
| 1471 | P13                                          | MS        | 2–5 yrs    | 25–35     | 20/30 | 66.7%        |
| 1472 | P14                                          | PhD       | 1–2 yrs    | 25–35     | 22/30 | 73.3%        |
| 1473 | P15                                          | BS        | <1 yr      | 18–25     | 8/30  | 26.7%        |
| 1474 | P16                                          | PhD       | 5+ yrs     | 35–45     | 25/30 | 83.3%        |
| 1475 | P17                                          | MS        | 2–5 yrs    | 25–35     | 23/30 | 76.7%        |
| 1476 | P18                                          | PhD       | 5+ yrs     | 45–55     | 24/30 | 80.0%        |
| 1477 | P19                                          | BS        | <1 yr      | 18–25     | 7/30  | 23.3%        |
| 1478 | P20                                          | MS        | 1–2 yrs    | 25–35     | 18/30 | 60.0%        |
| 1479 | <b>Expert Average (5+ years experience):</b> |           |            |           |       | <b>79.4%</b> |
| 1480 | <b>All Participants Average:</b>             |           |            |           |       | <b>57.2%</b> |

Table 6: Human participant survey results on 30-question quantum computing assessment

## A.6 FINE-TUNING METHODOLOGY

Our fine-tuning experiments employed Low-Rank Adaptation (LoRA) to efficiently adapt smaller language models to quantum computing knowledge while maintaining computational feasibility. The implementation utilized a carefully selected subset of 4,167 question-answer pairs from the QC-Bench dataset for training, with an additional 1,000 questions reserved for evaluation. The training data was formatted as concatenated prompt-completion pairs to maximize learning efficiency within context length constraints. We applied LoRA with rank 8 and alpha 16, specifically targeting the attention projection matrices (q\_proj, k\_proj, v\_proj, o\_proj) which are critical for knowledge representation. The training configuration employed a batch size of 4 with gradient accumulation over 4 steps, resulting in an effective batch size of 16, paired with a conservative learning rate of 1e-4 using the AdamW optimizer. To ensure stable convergence, we implemented 50 warmup steps followed by training for a single epoch, which empirical testing showed was sufficient to achieve knowledge transfer without overfitting. The models were loaded in FP16 precision to reduce memory requirements while maintaining numerical stability, with automatic device mapping to optimize GPU utilization. Early stopping was monitored through validation accuracy computed every 200 steps, though most models converged within the single epoch. This approach resulted in training only approximately 0.5-2% of total model parameters, demonstrating that quantum computing knowledge can be effectively incorporated through targeted parameter updates rather than full model retraining.

1498  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1510  
1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

| Topic                    | References                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Years     | #  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|
| Basic Concepts           | Aharanov et al. (1998); Terashima & Ueda (2005); Arrazola et al. (2022); Williams & Gray (1998); Hayward (2008); Xu et al. (2023); Peterer et al. (2015); Schuld & Killoran (2019); Gudder (1983); Biard et al. (2021); Kowalski & Bauman (2023); Del Santo & Gisin (2025); Younis & Iancu (2022); Hua et al. (2023); Sikorski (2023); Nielsen & Chuang (2010); Preskill (2018); Deutsch (1985); Feynman (1982); Kjaergaard et al. (2020); Bharti et al. (2022); Zurek (2003); Deutsch & Ekert (1998); Bennett et al. (1993); Quinton et al. (2025); Phillipson (2024); Cirac & Zoller (1995); Benioff (1980); Giovannetti et al. (2008); AbuGhanem (2025); Farhi et al. (2000); DiVincenzo (2000); Lloyd (1996); Knill et al. (2001); King et al. (2025); Halimeh et al. (2025); Puig et al. (2025); Munro et al. (2005); Harrow & Leung (2004); Steane (1996) | 1980–2025 | 39 |
| Gates & Circuit Design   | Zhang et al. (2022b); Ren et al. (2024); Peham et al. (2022); Kusyk et al. (2021); Ostaszewski et al. (2021); Rosa et al. (2025); DiVincenzo (1998); Kalloor et al. (2024); Senapati et al. (2024); Cao et al. (2012); Venturelli et al. (2018); Barenco et al. (1995); Vandersypen et al. (2001); Steane (1999); Laflamme et al. (2002); Cory et al. (2000); Cross et al. (2019); Linke et al. (2017); Smith et al. (2019); Maslov et al. (2008); McKay et al. (2018); Chong et al. (2017); Hashim et al. (2021); Zulehner et al. (2018); Wille et al. (2019); Murali et al. (2019)                                                                                                                                                                                                                                                                            | 1995–2025 | 26 |
| Quantum Machine Learning | Wiecki (2014); Bowles et al. (2024); Vishwakarma et al. (2024); Ranga et al. (2024); Rath & Date (2024); Biswas (2025); Bischof et al. (2025); Kreplin & Roth (2024); Chinzei et al. (2024); Afane et al. (2025); Yu et al. (2024); Schuld et al. (2015); Haylýcek et al. (2019); Cerezo et al. (2021); Biamonte et al. (2017); Schuld & Petruccione (2018); Farhi & Neven (2018); Dunjko & Briegel (2018); Benedetti et al. (2019); Lloyd & Weedbrook (2018); Beer et al. (2020); Huang et al. (2021); Mitarai et al. (2018); Rebentrost et al. (2014); Grant et al. (2018); Cong et al. (2019); Schuld et al. (2020); Amin et al. (2018); Perdomo-Ortiz et al. (2018); Moll et al. (2018); Arrazola et al. (2020); Romero et al. (2017); Tacchino et al. (2019); Li et al. (2018); Abbas et al. (2021)                                                        | 2014–2025 | 35 |
| Distributed Computing    | Cuomo et al. (2020); Cacciapuoti et al. (2020); Wehner et al. (2018); Kimble (2008); Simon (2017); D’Adamo et al. (2022); Dahlberg et al. (2019); Caleffi & Cacciapuoti (2020); Pompili et al. (2021); Simon (2017); Van Meter (2016); Munro et al. (2015); Meter et al. (2013); Van Meter et al. (2009); Lloyd (1993); Cirac et al. (1997); Perseguers (2013); Pant et al. (2019); Ishizaka & Hiroshima (2008); Simon (2015); Laurat et al. (2005); Avis et al. (2019); Van Meter et al. (2020); Joshi et al. (2020); Lemos et al. (2014); Pirandola et al. (2018); Azuma et al. (2022); Takeda & Furusawa (2023); Joshi et al. (2024); Khatri & Wilde (2021); Bhaskar et al. (2020); Askaridis et al. (2021); Chi et al. (2022); Kozlowski et al. (2020); Muralidharan et al. (2016)                                                                          | 1993–2024 | 35 |
| Quantum Security         | Dhar et al. (2024); Mehic et al. (2023); Chu et al. (2023); Zhao et al. (2024); Xu et al. (2023); Krawec et al. (2024); Zhang et al. (2022a); Xu & Szefer (2024); Tan et al. (2025); Sahu & Mazumdar (2024); Ralegankar et al. (2021); Kalaivani et al. (2021); Pirandola et al. (2020); Bernstein & Lange (2017); Lo et al. (2014); Bennett & Brassard (2014); Xu et al. (2020); Ekert (1991); Bennett (1992); Scarani et al. (2009); Lo & Chau (1999); Shor & Preskill (2000); Mayers (2001); Renner (2008); Wootters & Zurek (1982); Diamanti et al. (2016)                                                                                                                                                                                                                                                                                                  | 1982–2025 | 26 |
| Error Correction         | Fowler et al. (2012); Shor (1995); Lidar & Brun (2013); Terhal (2015); Aharanov & Ben-Or (2008); Chiaverini et al. (2004); Reed et al. (2012); Bombín & Martín-Delgado (2006); Gottesman (1997); Nielsen & Flensberg (2021); Steane (1996); Kitaev (1997); Preskill (1998); Bacon (2006); Aliferis et al. (2006); Calderbank & Shor (1996); Steane (1999); Dennis et al. (2002); Acharya et al. (2024); Barends et al. (2014); Kelly et al. (2015); Cory et al. (1998); DiVincenzo & Shor (1996); Bravyi & Kitaev (2005); Albert et al. (2018); Bennett et al. (1996); Gambetta et al. (2017); McEwen et al. (2023); Takita et al. (2017)                                                                                                                                                                                                                       | 1995–2024 | 29 |
| Quantum Algorithms       | Montanaro (2016); Mosca (2008); Childs & Van Dam (2010); Hastings et al. (2014); Gheorghiu & Mosca (2025); Krovi (2023); Jin et al. (2023); Qiang et al. (2021); Benedetti et al. (2021); Du et al. (2022); Motta et al. (2020); Grover (1996); Shor (1999); Harrow et al. (2009); Ambainis (2007); Kitaev (1995); Nayak & Wu (1999); Childs et al. (2003); Cleve et al. (1998); Farhi et al. (2000); Nielsen & Chuang (1997); Aharanov et al. (2008); Bennett et al. (1997); Deutsch & Jozsa (1992); Nielsen & Chuang (2002); Brassard et al. (1997); Jordan (2005); Reichardt (2009); Wiebe et al. (2012); Aaronson & Arkhipov (2011)                                                                                                                                                                                                                         | 1995–2025 | 30 |

Table 7: Topic Coverage and Source Papers