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Abstract

Domain experts often possess valuable physical insights that are overlooked in fully auto-
mated decision-making processes such as Bayesian optimisation. In this article we apply
high-throughput (batch) Bayesian optimisation alongside anthropological decision theory to
enable domain experts to influence the selection of optimal experiments. Our methodology
exploits the hypothesis that humans are better at making discrete choices than continuous
ones and enables experts to influence critical early decisions. At each iteration we solve an
augmented multi-objective optimisation problem across a number of alternate solutions,
maximising both the sum of their utility function values and the determinant of their
covariance matrix, equivalent to their total variability. By taking the solution at the knee
point of the Pareto front, we return a set of alternate solutions at each iteration that have
both high utility values and are reasonably distinct, from which the expert selects one
for evaluation. We demonstrate that even in the case of an uninformed practitioner, our
algorithm recovers the regret of standard Bayesian optimisation.
Keywords: Bayesian Optimisation, Expert Guided, Human-In-The-Loop, Batch

1. Introduction

Bayesian optimisation has been successfully applied in a number of complex domains including
engineering systems where derivatives are often not available, such as those that involve
simulation or propriety software. By removing the human from decision-making processes in
favour of maximising statistical quantities such as expected improvement, complex functions
can be optimised in an efficient number of samples. However, these engineering systems are
often engaged with by domain experts such as engineers or chemists, and as such the behaviour
of the underlying function cannot be considered completely unknown a-priori. Therefore,
there exists significant scope to take advantage of the benefits of Bayesian optimisation in
optimising expensive derivative-free problems, whilst enabling domain experts to inform the
decision-making process, putting the human back into the loop. By providing an optimal
set of alternatives to an expert to select their desired evaluation, we ensure that any one
choice presents information gain about the optimal solution. Simultaneously, we ensure the
choices are distinct enough to avoid the human making an effective gradient calculation.
Alternative solution information such as utility function value, predictive output distribution
and visualisations are provided to the expert as a pseudo-likelihood. The decision-maker
then effectively performs discrete Bayesian reasoning, internally conditioning the provided
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information with their own prior expertise and knowledge of the solutions provided. In
addition to improved convergence (depending on the ability of the domain expert), our
methodology enables improved interpretability in higher dimensions, as the decision-maker
has the final say in what is evaluated. Our approach works with any utility function and
NSGA-II (Deb et al., 2002) is applied for multi-objective optimisation, efficiently handling
the non-convex utility-space. Figure 1 demonstrates our methodology1.

Figure 1: Overview of our methodology, where an augmented batch Bayesian optimisation
problem is solved using multi-objective optimisation, providing an expert with a set of
alternate solutions.

By allowing an expert to influence the experimental design through a discrete decision step,
we mitigate the expert needing to make continuous decisions throughout, and do not rely on
an expert ‘prior’ of the global optimum that necessarily must be defined before optimisation.
Approaches that rely on an expert-defined prior may need to redefine this at significant
human-cost throughout optimisation in light of new information. Similarly, the expert has
no influence over the actual solutions evaluated and the optimisation is merely weighted
towards broad regions in solution-space.

2. Previous Work

Kanarik et al. (2023) demonstrated that experts improve the initial convergence in Bayesian
optimisation for semiconductor processes. However, this can be counterproductive in later
stages. Algorithmic integration of expert knowledge has been explored (Liu, 2022; Hvarfner
et al., 2022). Hvarfner et al. (2022) and Ramachandran et al. (2020) use user-defined priors
to weight the acquisition function, while Liu (2022) diminishes this weight over time. These
methods are static and don’t allow real-time expert input. Gupta et al. (2023) allows
continuous expert involvement, using a linear Gaussian process to approximate human
intuition, achieving sub-linear regret bounds. Kumar et al. (2022) and Maus et al. (2022)
present similar frameworks, offering alternative solutions for evaluation, with the expert
making the final decision latterly in a molecular design setting.

1. Code can be located at https://github.com/trsav/HITL-BO.
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3. Method

We first maximise a given utility function U for a given dataset Dt := {(xi, yi)}ti=1:

x∗ = argmax
x∈X⊆Rn

U(x), (1)

resulting in the optimal next evaluation, x∗, in a utility sense. Let p be the number
of alternate solutions provided to the expert and construct the decision variable matrix
X ∈ R(p−1)×n by concatenating p− 1 alternate solutions X := [x1, . . . ,xp−1]. We then define
the high-throughput (batch) utility function Û which is specified as the sum of the individual
utilities of alternate solutions within X

Û(X) =

p−1∑
i=0

U(Xi). (2)

Similarly, we introduce Ŝ as a measure for capturing the variability among both the optimal
and alternative solutions. Specifically, let Ŝ be the determinant of the covariance matrix
KXaug for the augmented set Xaug = X ∪ x∗:

Ŝ(X,x∗) = |KXaug |
KXaug = [k(Xaug,i,Xaug,j)]

p
i,j=1

Ŝ quantifies the ‘volume of information’ spanned by the alternative solutions X as well as
the optimal solution x∗. Maximising Û will result in all alternative solutions proposed being
the same as x∗, that is [x∗

1, . . . ,x
∗
p−1]. Contrary to this, maximising Ŝ will result in a set of

solutions that are maximally-spaced both with respect to other alternatives, but also x∗. At
iteration t, we then solve the following multi-objective optimisation problem:

[X∗
1, . . . ,X

∗
m] = max

X

(
Û(X;Dt), Ŝ(X,x∗)

)
, (3)

resulting in a set of m solutions along the Pareto front of both objectives. From this we
define X∗

k as the solution at knee-point of the Pareto front. The p− 1 solutions contained
within X∗

k optimally trade off the sum of their utility values, with their variability. This
ensures that when provided to an expert, alongside x∗, any individual solution will have high
expected information gain, and the solutions themselves will be distinct enough to ensure
the expert isn’t made to make an effective gradient calculation (i.e. solutions are very close
and practically indistinguishable). The practitioner is then made to choose a solution to
evaluate from this set of alternatives. To do so, they are provided with information such as
the utility value of each solution, expected output distributions (obtained from the Gaussian
process), and information regarding previous solutions that they may wish to draw upon.
In doing so, the practitioner effectively performs an internal discrete Bayesian reasoning,
conditioning previous prior information and expert opinion with the mathematical quantities
provided to make an informed decision. Our algorithm can be located within the Appendix.
Figure 2 demonstrates the intended behaviour of our approach. We present a one-dimensional
case study, optimising a function obtained through sampling a Gaussian process prior, specified
by a Matérn 5/2 kernel with lengthscale l = 0.5. In this case study we provide 3 alternatives
to an expert, who’s choice we select randomly. We provide details of optimisation methods
and hyper-parameters within the Appendix.
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(a) The objective function and utility function after 6 function evaluations. The 3 alternative solutions
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selected randomly from the 3 alternatives and the optimum.

0.0 0.2 0.4

p(f(x))

−3

−2

−1

0

1

2

3

f
(x

)

Choice 1

0.0 0.2 0.4

p(f(x))

−3

−2

−1

0

1

2

3
Choice 2

0.0 0.2 0.4

p(f(x))

−3

−2

−1

0

1

2

3
Choice 3

0.0 0.2 0.4

p(f(x))

−3

−2

−1

0

1

2

3
Choice 4

1 2 3 4
Choices

0.0

0.5

1.0

1.5

2.0

2.5

U(
x

)

(b) The information provided to the expert regarding the three alternative solutions. In this case
choice 1 and choice 3 have relatively similar utility values and predicted output distributions to
choice 4 (the optimal of the acquisition function). The expert is then allowed to distinguish between
these similar solutions in a way the computer cannot through their prior domain knowledge. By
conditioning their prior information on the given values, the expert is effectively performing internal
Bayesian reasoning.

Figure 2: A standard iteration of our approach on a one-dimensional case-study.
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4. Computational Results & Discussion

To assess our approach, we benchmark it against standard Bayesian optimisation. In order
to incorporate and assess human interaction in an automated manner, we hypothesise a
number of different human behaviours. The ‘Expert’ practitioner represents an ideal, where
the best solution (that is the one with the highest true objective value) is always selected.
Equivalently, to test the performance of our approach under the influence of a practitioner
with misaligned knowledge, we present an ‘Adversarial’ practitioner who consistently selects
the solution with the lowest true objective value. In addition, we present a probabilistic
practitioner, who selects the solution with the best true objective value with some probability.
Finally, we present the behaviour of a ‘Trusting’ practitioner who selects the solution with the
largest utility (as these values are presented), equivalent to standard Bayesian optimisation
as this solution is obtained through standard single objective optimisation (Eq. 1). In
practice, the expert will condition the information provided with their prior beliefs. In our
approach this includes information regarding the expected distribution of the objective of
each solution, as well as the utility value of each solution. Whilst we cannot benchmark real
human behaviour due to the random nature of the objective functions, and practical issues,
the behaviours described summarise key aspects in order to generate useful insights into our
approach, we leave this for future work. The human behaviours applied are summarised
within Table 1.

Table 1: Human Behaviours Applied for Benchmarking

Behaviour Type Description

Expert Selects the solution with the best true function value.

Adversarial Selects the solution with the worst true function value.

Trusting Selects the solution with the maximum utility value.

p(Best)
Selects the solution with the best true function value with

probability p(Best), otherwise selects a random solution.

We perform optimisation over 50 functions, each representing a sample from a Gaussian
process prior with lengthscale 0.04 within unit bounds using the upper-confidence bound
(UCB) utility function. Figure 6 demonstrates the average and standard deviation of simple
regret, and average regret (both defined within Garnett (2023)) for each human behaviour
across 1D and 2D objective functions. Results for 5D, and specific functions can be located
within the Appendix as well as examples of sampled objective functions.
The expectation of average regret tends towards zero for all behaviours, indicating empirical
convergence. Focusing on results from the set of 1D functions, an ‘Expert’ provides improved
convergence than standard Bayesian optimisation (‘Trusting’) throughout all iterations, with
benefits diminishing throughout the later stages, where the standard automated approach
recovers the ‘Expert’ average simple regret, confirming previous observations regarding
the importance of human input throughout earlier iterations, and conversely diminishing
importance of expert opinion during ‘fine-tuning’ (Kanarik et al., 2023). Improved convergence
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(a) Average regret quantities over 1D objective functions.

10 20 30 40 50 60

Iterations, τ

10−3

10−2

10−1

S
im

pl
e

R
eg

re
t,
r τ

10 20 30 40 50 60

Iterations, τ

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

R
eg

re
t,
R
τ
/τ

Expert Adversarial Trusting p(Best) =0.75 p(Best) =0.5 p(Best) =0.25

(b) Average regret quantities over 2D objective functions.

Figure 3: Regret expectation over 50 functions, f ∼ GP(µ ≡ 0,KM (d, ν = 0.04)) where KM

is the Matérn 5/2 kernel function. 4 alternate choices are presented to the practitioner, and
the utility function U(x) used is the upper-confidence bound.

of simple regret occurs in cases where the practitioner selects the ‘best’ solution from a
set 75%, 50%, and to a lesser extent 25% of the time out of 4 available choices, similarly
reflected in trends across average regret. The results demonstrated in Figure 6 indicate the
potential for our approach to improve the convergence of Bayesian optimisation even in cases
where the practitioner is correct about a decision only partially. When the expert makes a
random selection (p(Best) = 0.25, for 4 alternate solutions), standard Bayesian optimisation
convergence is recovered, indicating the effectiveness of the choices presented by asking a
practitioner to select between distinct solutions, each of which individually has a high utility
value. This is reflected throughout 1D, 2D and to a lesser extent 5D functions. Only in the
case where the practitioner actively selects the worst solution (i.e. they are misaligned), is
performance worse. In higher-dimensions an adversarial practitioner performs worse, as they
are performing inefficient space-filling in an increasingly larger volume before good solutions
are found.
The methodology we present may also be interpreted as an approach for high-throughput/batch
Bayesian optimisation, with an additional preference for solutions that are well-distributed
throughout the search space. Our intention for future work is to benchmark it against
other existing batch Bayesian optimisation methodologies (González et al., 2015), including
those with similar multi-objective formulations (Bischl et al., 2014; Habib et al., 2016; Maus
et al., 2022). We will also investigate to what extent large-language models can perform the
selection step.
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Appendix A. (Algorithm)

Algorithm 1 demonstrates our approach. Our approach allows for an expert to include a
number of continuous solutions within the initial dataset D, which design of experiments can
be performed around. Additionally the algorithm may be used alongside other approaches
which allow for an expert to specify a distinct solution to be evaluated at every iteration.

Algorithm 1 Expert-Guided Bayesian Optimization
1: Initialize: Objective function f , Initial data D, Domain X
2: Alternative choices p, Utility function Û , Variability function Ŝ, Termination Criteria

3: while Termination Criteria is False do
4: x∗ ← argmaxx∈X U(x) // Standard Bayesian Optimization Step

5: // Multi-Objective High-Throughput Optimization
6: [X∗

1, . . . ,X
∗
m]← maxX(Û(X;D), Ŝ(X,x∗))

7: X∗
k ← knee([X∗

1, . . . ,X
∗
m]) // Select Knee-solution

8: // Expert selects from alternatives and standard optimal
9: xeval ← expert

x∈X∗
k∪x∗

x

10: D ← {(xeval, f(xeval))} ∪ D // Update dataset
11: end while

Appendix B. (Optimisation Details)

Throughout this paper we apply 4 alternative solutions at each iteration (one of which
will be the optimum of the utility function). Throughout all optimisation problems we
generate an initial sample of 4 experiments, distributed via a static Latin hypercube design-
of-experiments. When training the Gaussian process that models the objective-space we
perform a multi-start of 8 gradient-based optimisation runs using Adam with a learning rate
of 1e-3 for 750 iterations to determine GP hyperparameters. To solve the multi-objective
augmented optimisation problem, resulting in a Pareto set of sets of alternative solutions
we run NSGA-II (Deb et al., 2002) for 150 iterations, with a population size of 100, 30
offspring at each iteration, a 0.9 probability of crossover, and 20 mutations per iteration.
To generate the single optimum of the acquisition function, we perform a multi-start of 36
gradient-based optimisation runs using L-BFGS-B (Zhu et al., 1997) with a tolerance of
1e-12 and a maximum iterations of 500. For the 1D, 2D, and 5D expectations over functions
stemming from samples of a Gaussian process prior (with lengthscale 0.3), the lower and
upper bounds used are 0 and 10 respectively for each dimension. All other bounds for
functions can be located at http://www.sfu.ca/~ssurjano/optimization.html.
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Appendix C. (Example Sampled Objective Functions)
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Figure 4: Functions sampled from a Gaussian process prior used for 1D benchmarking
f ∼ GP(µ ≡ 0,KM (d, ν = 0.04)) where KM is the Matérn 5/2 kernel function.
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Figure 5: Functions sampled from a Gaussian process prior used for 2D benchmarking
f ∼ GP(µ ≡ 0,KM (d, ν = 0.04)) where KM is the Matérn 5/2 kernel function.
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Appendix D. (Regret Plots)
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Figure 6: Regret expectation over 50 5D functions (d = 5), f ∼ GP(µ ≡ 0,KM (d, ν = 0.3))
where KM is the Matérn 5/2 kernel function. 4 alternate choices are presented to the
practitioner, and the utility function U(x) used is the upper-confidence bound.

We subsequently present the expectation of regret for a number of functions across all human
behaviours. We present 4 alternate choices are presented to the hypothetical practitioner,
and the utility function U(x) used is the upper-confidence bound. Each function is optimised
16 times, across a number of random initialisations, and average regret quantities are plotted.
Optimisation details are presented in the previous Appendix section.
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Figure 7: 2D Ackley function.
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Figure 8: 5D Ackley function.
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Figure 9: 10D Ackley function.
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Figure 10: 2D Griewank function.
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Figure 11: 5D Griewank function.
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Figure 12: 10D Griewank function.
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Figure 13: 2D Rastrigin function.
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Figure 14: 5D Rastrigin function.
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Figure 15: 2D Rosenbrock function.
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Figure 16: 5D Rosenbrock function.
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Figure 17: 5D Powell function.
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