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ABSTRACT

Training neural networks which are robust to adversarial attacks remains an im-
portant problem in deep learning, especially as heavily overparameterized models
are adopted in safety-critical settings. Drawing from recent work which refor-
mulates the training problems for two-layer ReLU and polynomial activation net-
works as convex programs, we devise a convex semidefinite program (SDP) for
adversarial training of two-layer polynomial activation networks and prove that
the convex SDP achieves the same globally optimal solution as its nonconvex
counterpart. The convex adversarial SDP is observed to improve robust test ac-
curacy against ℓ∞ attacks relative to the original convex training formulation on
multiple datasets. Additionally, we present scalable implementations of adver-
sarial training for two-layer polynomial and ReLU networks which are compat-
ible with standard machine learning libraries and GPU acceleration. Leveraging
these implementations, we retrain the final two fully connected layers of a Pre-
Activation ResNet-18 model on the CIFAR-10 dataset with both polynomial and
ReLU activations. The two ‘robustified’ models achieve significantly higher ro-
bust test accuracies against ℓ∞ attacks than a Pre-Activation ResNet-18 model
trained with sharpness-aware minimization, demonstrating the practical utility of
convex adversarial training on large-scale problems.

1 INTRODUCTION

While neural networks have demonstrated great success in many application areas, they are prone
to learning unstable outputs. In particular, adversarial attacks can easily deceive neural networks
(Goodfellow et al., 2014). The problem of adversarial robustness has motivated a number of ap-
proaches (Foret et al., 2020; Xu et al., 2023) which can incur significant computational overhead
and often require training a model from scratch for optimal results.

A related problem is the lack of interpretability and optimality guarantees in neural network training.
Towards understanding these issues, recent works have developed convex reformulations of certain
neural network architectures (Pilanci & Ergen, 2020; Bartan & Pilanci, 2023; 2021). These convex
programs offer insight into how neural networks learn (Mishkin & Pilanci, 2023; Lacotte & Pilanci,
2020), while also providing guarantees for both the global optimality of weights and computational
complexity of training.

We emphasize that convexity of the loss landscape is useful beyond guaranteeing local optima are
global. Indeed, a major pain-point of machine learning is that parameters extrinsic to the model (e.g.
the learning rate, momentum or batch size) significantly impact performance. Convex reformula-
tions are optimizer-agnostic, so off-the-shelf solvers (Diamond & Boyd, 2016; Agrawal et al., 2018)
will reliably converge to the global optimum without hyperparameter tuning. Given that convexly
trained neural networks enjoy greater interpretability and reproducibility, there is motivation to study
them in the context of adversarial robustness. For example, Bai et al. (2022) derives a convex ad-
versarial training problem for two-layer ReLU networks by modifying the original convex training
problem introduced by Pilanci & Ergen (2020). However, to the best of our knowledge, there is no
convex reformulation of adversarial training for polynomial activation networks.
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1.1 CONTRIBUTIONS

We contribute (1) a convex reformulation for adversarial training of polynomial activation networks
based on the main result of Bartan & Pilanci (2021), (2) a proof that our reformulation achieves the
same optimal value as the nonconvex adversarial training formulation, (3) an exact solver of the con-
vex SDP for small-scale problems using the open-source Python library CVXPY (Diamond & Boyd,
2016), and (4) PyTorch implementations of adversarial training for both polynomial and ReLU ac-
tivation networks. While we only present convex adversarial training programs for two-layer net-
works, we demonstrate that robust classification accuracy of deep image classification models (e.g.
a Pre-Activation ResNet model from He et al. (2016)), can be greatly improved by retraining the
final two layers with the developed convex adversarial training programs, even outperforming the
same architecture trained with sharpness-aware minimization.

1.2 PAPER ORGANIZATION & NOTATION

Section 2.1 discusses standard convex training programs for two-layer neural networks. Section 3.1
introduces our main theoretical result (Theorem 3.1) and treats convex adversarial training for two-
layer ReLU networks. Section 4 contains numerical results and a discussion thereof. We conclude
the paper and discuss future work in Sectin 5. Appendix A proves the main theoretical result.
Appendix B states and proves miscellaneous lemmas used in Appendix A. Appendix C derives a
convex SDP to exactly compute the distance to the decision boundary of a polynomial activation
network.

Notation: We use [n] to denote the set {1, 2, ..., n} (e.g. we write ∀i ∈ [n]). The set of n × n
real symmetric matrices is Sn. The set of positive semidefinite symmetric matrices is Sn

+. Given a
square matrix A, A ≻ 0 and A ⪰ 0 indicate positive definiteness and positive semidefiniteness of
A, respectively. Tr(A) is the trace of the matrix A. For square matrices A and B, we denote the
matrix inner product ⟨A,B⟩ = Tr(AB). The nonnegative orthant of Rn is denoted Rn

+. The convex
(Fenchel) conjugate of a function ℓ : Rn → R is denoted ℓ∗, where ℓ∗(y) = supx∈domℓ{yTx−ℓ(x)}.

2 STANDARD CONVEX TRAINING FOR TWO-LAYER NEURAL NETWORKS

We discuss standard convex training for polynomial and ReLU activation networks in 2.1 and 2.2,
respectively.

2.1 POLYNOMIAL ACTIVATION NETWORKS

Suppose we have a two-layer neural network f : Rd → R with first-layer weights {uj}mj=1, uj ∈ Rd,
second-layer weights {αj}mj=1, αj ∈ R, and polynomial activation functions σ(x) = ax2 + bx +
c. Here, a, b, c are fixed coefficients which are chosen so that σ(x) best approximates the ReLU
activation function ReLU(x) = max{x, 0} in the least-squares sense (a = 0.09, b = 0.5, c = 0.47).
We define this neural network as follows:

f(x) =

m∑
j=1

σ(xTuj)αj (1)

Let {xi, yi}ni=1, xi ∈ Rd, yi ∈ R be the problem data. Then, for a convex loss function ℓ :
Rn → R, the training problem for a polynomial activation network with regularization strength β
and optimization variables {uj , αj}mj=1 and {ŷj}nj=1 is

minimize
{uj ,αj}m

j=1

ℓ (ŷ, y) + β

m∑
j=1

|αj |

subject to ŷi =

m∑
j=1

σ(xT
i uj)αj ∀i ∈ [n]

||uj ||2 = 1 ∀j ∈ [m]

(2)

This is not a convex optimization problem, because the equality constraints are not affine functions
of the variables, and so the feasible set is not convex. Here, the constraints ||uj ||2 = 1 and choice of
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ℓ1 norm regularization are crucial to the derivation of the convex training problem for polynomial
activation networks developed by Bartan & Pilanci (2021). Because this is not a convex optimiza-
tion problem, standard stochastic gradient descent methods may be trapped by local minima, and
the optimal values reached tend to depend on hyperparameters such as learning rate and optimizer
(e.g. stochastic gradient descent vs. Adam Kingma & Ba (2017)). The following convex reformula-
tion introduced by Bartan & Pilanci (2021) ameliorates these problems. Note that the optimization
variables are the symmetric matrices Z,Z ′ ∈ Sd+1.

minimize
Z,Z′∈Sd+1

ℓ(ŷ, y) + β(Z4 + Z ′
4)

subject to ŷi = axT
i Z̃1xi + bZ̃T

2 xi + cZ̃4 ∀i ∈ [n]

Z =

[
Z1 Z2

ZT
2 Z4

]
⪰ 0

Z ′ =

[
Z ′
1 Z ′

2

Z ′T
2 Z ′

4

]
⪰ 0

Z̃ = Z − Z ′

tr(Z1) = Z4

tr(Z ′
1) = Z ′

4

(3)

Theorem 2.1 (Bartan & Pilanci (2021)) The solution of the convex program (3) provides a glob-
ally optimal solution for the non-convex problem (2) when the number of neurons m satisfies
m ≥ m⋆, where m⋆ = rankZ⋆ + rankZ ′⋆ and Z⋆, Z ′⋆ are the solutions of (3).

We remark that the globally optimal neural network weights {u⋆
j , α

⋆
j}mj=1 for (2) can be obtained

from Z⋆, Z ′⋆ using the neural decomposition procedure, which is outlined in Section 4 of Bartan
& Pilanci (2021). The number of neurons recovered from Z⋆ and Z ′⋆ is equal to the sum of their
ranks, implying that the number of neurons required to minimize the loss in (2) is at most 2(d+ 1).
This bound is usually not tight—low rank optimal solutions can be encouraged by tuning β (Bartan
& Pilanci, 2021).

2.2 RELU ACTIVATION NETWORKS

Now suppose we have a two-layer neural network f : Rd → R with m neurons, first-layer
weights {uj}mj=1, uj ∈ Rd, second-layer weights {αj}mj=1, αj ∈ R, and ReLU activation func-
tions ReLU(x) = (x)+ = max{0, x}. For a single example xi ∈ Rd, the neural network output
is

f(x) =

m∑
j=1

(uT
j x)+αj . (4)

For convenience of notation moving forward, we will write the neural network output in a vectorized
form. Given a data matrix X ∈ Rn×d where each row xi ∈ Rd represents a single example, we
write the predictions of f on X as follows:

f(X) =

m∑
j=1

(Xuj)+αj (5)

Let y ∈ Rn be the training labels corresponding to the examples X , and consider the usual ℓ2-
regularized training problem with optimization variables {uj , αj}mj=1:

minimize
{uj ,aj}m

j=1

ℓ

 m∑
j=1

(Xuj)+αj , y

+
β

2

m∑
j=1

(||uj ||22 + α2
j ) (6)

As in the previous subsection 2.1, our training problem (6) is nonconvex as written. However,
globally optimal solutions {u⋆

j , α
⋆
j}mj=1 to (6) can be recovered from the optimal solutions to the
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following convex program with optimization variables {vi, wi}Pi=1:

minimize
{vi,wi}P

i=1

ℓ

(
P∑
i=1

DiX(vi − wi), y

)
+

β

2

m∑
j=1

(||vi||2 + ||wi||2)

subject to (2Di − In)Xvi ≥ 0, i ∈ [P ]

(2Di − In)Xwi ≥ 0, i ∈ [P ]

(7)

In (7), the Di’s are diagonal matrices which enumerate all possible ReLU activation patterns on X .
Mathematically, we have D = {D1, ..., DP } = {diag(1[Xu ≥ 0]) : u ∈ Rd}. We refer the reader
to Pilanci & Ergen (2020) for a more detailed discussion of these activation pattern matrices and an
asymptotic analysis of P with respect to number of examples n, network width m, input dimension
d, and rank of the data matrix rankX . The short story is that, while P grows exponentially with
rankX , convexly trained ReLU networks perform well even if a small subset of D is sampled. We
now state the theorem relating problems (6) and (7):

Theorem 2.2 (Pilanci & Ergen (2020)) The convex program (7) and the non-convex program (6)
have identical optimal values when m ≥ m⋆, where m⋆ is the number of nonzero variables in
{v⋆i , w⋆

i }Pi=1. Moreover, if the width requirement m ≥ m⋆ is met, an optimal solution to (6) can be
constructed from an optimal solution to (7) as follows:

(u⋆
ji , α

⋆
ji) =


(

v⋆
i√

||v⋆
i ||2

,
√
||v⋆i ||2

)
if v⋆i ̸= 0(

w⋆
i√

||w⋆
i ||2

,
√

||w⋆
i ||2
)

if w⋆
i ̸= 0

(8)

3 CONVEX ADVERSARIAL TRAINING FOR TWO-LAYER NEURAL
NETWORKS

In subsection 3.1, we present our main theoretical result: a convex SDP for adversarial training of
polynomial activation networks. In subsection 3.2, we state the analogous convex program for ReLU
activation networks developed by Bai et al. (2022).

3.1 POLYNOMIAL ACTIVATION NETWORKS

We now develop an analogous result to Theorem 2.1 for adversarial training of polynomial activation
networks. To simplify notation, we limit our focus to binary classification for the remainder of the
section. Hence we consider the case where all data points have yi ∈ {−1, 1} and let sign(f(xi)) ∈
{−1, 1} be the prediction of the neural network for xi. Consider the quantities wi, defined as follows
for all i ∈ [n].

wi = min
||∆||2≤r

yif(xi +∆)

= min
||∆||2≤r

yi

m∑
j=1

σ((xi +∆)Tuj)αj

(9)

Here, wi can be thought of as the worst-case score of the neural network in a closed ℓ2-ball of radius
r around xi, denoted Br(xi). Note: we will refer to r as the ‘robust radius parameter’ throughout
the paper. If wi is positive, the sign of the neural network output matches that of yi everywhere in
Br(xi). A negative wi implies that the sign of the neural network output differs from yi somewhere
in Br(xi). Assuming r is suitably chosen so that it makes sense for all points in Br(xi) to reside in
the same class, a positive wi indicates that the neural network is correct everywhere in Br(xi). In
other words, wi > 0 implies the predictor f is correct and robust to ℓ2-norm attacks of magnitude at
most r at xi.

A training problem which penalizes nonpositivity of the wi’s is precisely an adversarial training
problem for the predictor f . We write one such problem for polynomial activation networks below,
with robust radius parameter r, regularization strength β ∈ R, and optimization variables w ∈ Rn,
{uj , αj}mj=1. Here, ℓ(·) is a convex, nonincreasing loss function. The variables {uj , αj}mj=1 are the
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neural network weights, while w is a vector of the worst-case outputs for each training example.

minimize
{uj ,αj}m

j=1,w
ℓ(w) + β

m∑
j=1

|αj |

subject to wi = min
||∆||2≤r

yi

m∑
j=1

σ((xi +∆)Tuj)αj ∀i ∈ [n]

||uj ||2 = 1 ∀j ∈ [m]

(10)

We remark that the constraints ||uj ||2 = 1 and ℓ1 norm regularization on the αj’s are nec-
essary in proving Theorem 3.1. In practice, these design choices do not prevent our formu-
lation from outperforming state-of-the-art adversarial training methods. We use the hinge loss
ℓ(w) = 1

n

∑n
i=1(1 − wi)+ as the training objective for the remainder of the paper. Our reasons

are twofold. First, an optimization which minimizes hinge loss pushes wi’s to be positive, so the
predictor will learn to robustly classify the training examples. Second, hinge loss is convex, so it is a
valid training objective for the soon-to-be-introduced convex reformulation of adversarial training.

The current form of (10) is intractable. It contains two nonlinear equality constraints, spoiling the
convexity of the problem. As written, our only hope of approximating the solution to (10) would be
through a computationally expensive descent method like projected gradient (Madry et al., 2019).
Sadly, this approach offers no optimality guarantees and requires computing multiple descent steps
for each training batch to approximate wi. We propose a convex reformulation of (10), which is
solvable to global optimality in fully polynomial time. The optimization variables are Z,Z ′ ∈ Sd+1

+ ,
λ ∈ Rn

+, w ∈ Rn. As in (10), the variable w is a vector of the worst-case scores for each xi, while
the matrices Z and Z ′ are the new weights. The parameters r and β are again the robust radius
parameter and regularization strength.

minimize
Z,Z′,w,λ

ℓ(w) + β(Z4 + Z ′
4)

subject to Z =

[
Z1 Z2

ZT
2 Z4

]
⪰ 0

Z ′ =

[
Z ′
1 Z ′

2

Z ′T
2 Z ′

4

]
⪰ 0

Tr(Z1) = Z4

Tr(Z ′
1) = Z ′

4

Z̃ = Z − Z ′

yi

[
yiλiI + aZ̃1 axT

i Z̃1 +
1
2bZ̃2

aZ̃1xi +
1
2bZ̃2 axT

i Z̃1xi + bxT
i Z̃2 + cZ̃4 − yiλir

2 − yiwi

]
⪰ 0

λi ≥ 0 ∀i ∈ [n]

(11)

Theorem 3.1 (Our Result) Provided that the number of neurons m in problem (10) satisfies m ≥
m⋆ = rankZ⋆+rankZ ′⋆, the optimal values of (11) and (10) are the same. Moreover, the optimal
solutions w′⋆, {u⋆

j , α
⋆
j}m

⋆

j=1 of (10) can be recovered from the optimal solutions w⋆, Z⋆, Z ′⋆ of (11).

As stated above, as long as the neural network in problem (10) is sufficiently wide, we can recover
its globally optimal solution from (11), which is an efficiently solvable convex program. The proof
of Theorem 3.1 is deferred to Appendix A. As in problem (3) the regularization parameter controls
m⋆ = rankZ⋆ + rankZ ′⋆, so it’s possible to encourage low rank solutions by tuning β.

3.2 RELU ACTIVATION NETWORKS

Let f be a ReLU activation network as described in 2.2. With the same binary classification setup
as in the previous subsection, the worst-case output of f in an ℓp ball of radius r around a training

5
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example xk is

min
∆:||∆||p≤r

ykf(xk +∆) = min
∆:||∆||p≤r

yk

m∑
j=1

(xT
k uj)+αj

= min
∆:||∆||p≤r

yk

P∑
i=1

Di,{k,k}(xk +∆)T (vi − wi)

(12)

In the second equality, we use the lifted convex form of the ReLU network, where Di,{k,k} denotes
the k-th diagonal entry of Di (Note: to do this, we must assume that the width-requirement m ≥ m⋆

from 2.2 is met). Crucially, this reformulates the worst-case output of the neural network as the
minimum of an affine function of ∆ over an ℓp ball. It is well known that for an ℓp norm || · ||p, with
1 ≤ p ≤ ∞, we have

min
x:||x||p≤r

cTx+ b = −r||c||q + b (13)

where 1
p + 1

q = 1. Then, using (13) for fixed {vi, wi}Pi=1, we have an analytical expression for the
worst-case output of a two-layer ReLU network in the ℓp ball of radius r around xk:

min
x:||∆||p≤r

yk

P∑
i=1

Di,{k,k}(xk +∆)T (vi − wi)

= ykx
T
k

P∑
i=1

Di,{k,k}(vi − wi)− r

∥∥∥∥ P∑
i=1

Di,{k,k}(vi − wi)

∥∥∥∥
q

Following equation (13) and corollary 3.1 from Bai et al. (2022), we have

min
x:||∆||p≤r

(2Di,{k,k} − 1)(xk +∆)T vi ≥ 0

⇐⇒ (2Di,{k,k} − 1)xT
k vi ≥ r||vi||q (14)

The equivalence clearly also holds for wi. As in Theorem 4 from Bai et al. (2022), the convex adver-
sarial training problem for binary classification under hinge loss is written below. The optimization
variables are again {vi, wi}Pj=1. The equality constraint involving θk is added only for readability.

minimize
{vi,wi}P

i=1

1

n

n∑
k=1

(
1− ykx

T
k θk + r∥θk∥q

)
+
+

β

2

m∑
j=1

(||vi||2 + ||wi||2)

subject to (2Di − In)Xvi ≥ r||vi||q, i ∈ [P ]

(2Di − In)Xwi ≥ r||wi||q, i ∈ [P ]

θk =

P∑
i=1

Di,{k,k}(vi − wi), k ∈ [n]

(15)

The left sides of the inequality constraints in (7) and (15) are vector-valued, where each entry must
be at least the corresponding scalar value on the right. With further tolerance for unwieldy notation,
(7) and (15) can be generalized to the multi-class regime under multimargin loss. We omit the
derivation for brevity.

As noted earlier, P grows exponentialy with the rank of the data matrix X (Pilanci & Ergen,
2020; Ojha, 2000), so in practice it is necessary to randomly sample a subset of D. Even in high-
dimensional settings such as image classification, it is readily observed that sampling a few thousand
sign patterns and solving (7) leads to comparable or even better test accuracy than the nonconvex
training problem (6). Our numerical experiments in Section 4 corroborate this.

3.2.1 PRACTICAL IMPLEMENTATION OF CONVEX ADVERSARIAL RELU NETWORKS

Observing that vi = 0 = wi, i ∈ [P ] is in the feasible set, we can approximately solve (15) with
typical machine learning libraries (e.g. PyTorch) by replacing the constraints with added penalty
terms in the objective. For a tunable coefficient ρ ∈ R and P̂ sampled sign pattern matrices {D}P̂i=1,

6
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we can use descent methods such as Adam or stochastic gradient descent on the objective below.
Equality constraints on θk are for notational purposes only.

minimize
{vi,wi}P

i=1

1

n

n∑
k=1

(
1− ykx

T
k θk + r∥θk∥q

)
+
+

β

2

m∑
j=1

(||vi||2 + ||wi||2)

+ ρ

n∑
k=1

P̂∑
i=1

(
r(||vi||q + ||wi||q)− (2D̂i,{k,k} − 1)xT

k (vi + wi)
)
+

subject to θk =

P̂∑
i=1

D̂i,{k,k}(vi − wi), k ∈ [n]

(16)

By initializing the weights from zero, constraint violations remain negligible throughout training,
and, in practice, we achieve excellent robustness to adversarial attacks. In contrast to Bai et al.
(2022), this approach enables convex adversarial training on large-scale problems (see Table 2) and
outperforms other adversarial training methods with less computational overhead.

4 NUMERICAL RESULTS

4.1 EXACT SOLUTIONS ON SMALL-SCALE PROBLEMS

We train polynomial activation networks via the standard convex program in (3) and the adversar-
ial convex program (11) to perform binary classification on the Wisconsin Breast Cancer dataset
(Wolberg, 1992) and Ionosphere dataset (Sigillito et al., 1989). The datasets are shuffled and split
with 80%, 10%, and 10% training, validation, and test examples, respectively. A parameter search
was conducted to determine values of β and r for the adversarial training program and β for the
standard program. For the Wisconsin Breast Cancer dataset, we choose β = 0.01 for both models
and r = 1.5 in (11). For the ionosphere dataset, we choose β = 0.1 for both models and r = 1.45 in
(11). Table 1 compares clean and robust test accuracies for each model, where we use the fast gra-
dient sign method (FGSM) (Goodfellow et al., 2014) to compute ℓ∞ adversarial attacks of varying
magnitude. We obtain exact solutions to the convex training problems with the the splitting conic
solver (O’Donoghue et al., 2023) with a tolerance of 1e-5.

In Table 1, our robust model trained with the convex program (11) achieves higher robust test ac-
curacy for all attack sizes. In particular, on the Wisconsin Breast Cancer dataset, robust accuracy
degrades far more slowly for our robust polynomial activation network than the standard polyno-
mial activation network. Indeed, for attack size = 0.9, the accuracy of our model is 76%, while
the standard model is far worse than random at 15%. On the ionosphere dataset, our robust model
outperforms the standard model for all attack sizes. While clean accuracy of our model is slightly
worse, we remark that minor degradation of clean accuracy is commonly observed in other adver-
sarial training techniques (Foret et al., 2020; Madry et al., 2019).

In Figure 1, we hold β = 0.01 constant and visualize how clean test accuracy, robust test accu-
racy, and average distance to the decision boundary of correctly classified examples vary with the
robust radius parameter r. The distance to the decision boundary dD(xi) is exactly computable for
polynomial activation networks, as described in Appendix C.

With clean accuracy held constant, the distance to the decision boundary of correctly classified ex-
amples is perhaps the clearest indicator of a model’s robustness to adversarial attacks. From r = 0
to r ≈ 1.5 in 1, we observe an increase in robust accuracy and average distance to the decision
boundary of correctly classified examples (denoted dD(x)), while clean accuracy remains steady at
over 99%. It is evident that, up to a point, robustness increases with r. However, an over-smoothing
effect eventually sets in. When r becomes large enough that r-balls around training examples of dif-
ferent classes intersect, it is impossible for the model to robustly classify both examples. Too many
of these inter-class r-ball collisions will force the model to minimize the loss by only predicting the
majority class. This behavior is evident for r values above 2.3 in the right plot of Figure 1. Note
that we do not plot dD(x) for values of r greater than 2.3. This is because the optimization problem
(41) is unbounded when the predictor only outputs one class, i.e. there is no decision boundary to
compute a distance to.
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Wisconsin Breast Cancer Dataset

ℓ∞-norm of attack

Method Clean .50 .60 .70 .80 .90

Adversarial .993 .864 .829 .821 .786 .764
Standard .993 .864 .679 .443 .2786 .150

Ionosphere Dataset

ℓ∞-norm of attack

Method Clean .05 .10 .15 .20 .25

Adversarial .803 .761 .761 .732 .718 .648
Standard .831 .761 .718 .620 .578 .521

Table 1: Clean and ℓ∞-robust accuracies of polynomial activation networks.

Figure 1: We solve the optimizaton problem (11) on the Wisconsin Breast Cancer dataset for a range
of r values while holding β = 0.01 constant. On the left, we plot average distance to the decision
boundary of test examples against r. On the right, we plot robust accuracy against FGSM attacks of
ℓ∞ magnitude 0.8 for the adversarial and standard models. We additionally plot clean accuracy for
the adversarial model.

4.2 ROBUST IMAGE CLASSIFICATION

We replace the final two fully connected layers of a pre-trained Pre-Activation ResNet-18 model (He
et al., 2016) with a two-layer polynomial activation network. A uniform random sample of 1% of the
training images in the CIFAR-10 dataset (Krizhevsky et al.) is collected and used to train the convex
polynomial and ReLU activation networks. As a baseline adversarial training method, we train a
Pre-Activation ResNet-18 model with sharpness-aware minimization (SAM) on the full training set.
Table 2 presents clean and robust accuracies for the standard Pre-Activation ResNet-18, the same
architecture trained with sharpness-aware minimization, and our adversarial polynomial and ReLU
activation models trained on a 1% subset of the data. We choose β = 0.01, r = 0.5 for the robust
polynomial network. For the robust ReLU network, β = 0.01, r = 40, p = 1, q = ∞, and the
number of sampled sign patterns is P = 500. We additionally train the adversarial ReLU activation
model (with the same β, r, p, q, P ) on the full CIFAR-10 training set. We train the robust two-layer
ReLU and polynomial activation networks with the Adam optimizer (Kingma & Ba, 2017).
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1% Subset of CIFAR-10 Dataset

ℓ∞-norm of attack

Method Clean 1/255 2/255 4/255 6/255 8/255

Adversarial Polynomial .934 .704 .558 .417 .351 .308
Adversarial ReLU .935 .585 .389 .244 .193 .168

Full CIFAR-10 Dataset

Adversarial ReLU .920 .813 0.676 0.522 0.449 0.4005
Sharpness-Aware .928 .732 .520 .276 .172 .169
Standard .940 .588 .386 .246 .196 0.170

Table 2: Clean and ℓ∞-robust test accuracies of Pre-Activation ResNet18 models with various train-
ing methods.

Figure 2: Visualization of the results in Table 2. Dashed lines indicate that the final convex layers
were trained on a random 1% subset of training data.

With just 1% of the training set, our robust polynomial activation network significantly outperforms
sharpness-aware minimization (which was trained on the full dataset) for all attack sizes except
1/255, where it still provides a large performance boost relative to standard training. On the full
dataset, the adversarial ReLU network is by far the best model. Though it suffers from a mild
degradation of clean accuracy, it performs much better than sharpness-aware minimization for all
attack sizes. However, on the subsampled CIFAR-10 dataset, the adversarial ReLU network doesn’t
provide a boost in robust accuracy over standard training.

These results corroborate the observations in Bartan & Pilanci (2021); Rodrigues & Givigi (2022);
Bartan & Pilanci (2023) that polynomial activation networks excel when data is scarce. While
the optimization problem in (11) is costly to solve, it is both computationally feasible and highly
performant in data-constrained applications. For applications where data is more abundant, the
ReLU formulation of (15) is cheaper and likely to provide better results. This is due to the difference
in expressive power between polynomial and ReLU activation networks. Specifically, the high bias
of polynomial activation networks prevents overfitting when little data is available. On the other
hand, ReLU activation networks exhibit low bias and high variance, making it difficult to train a
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model in the data-constrained setting without overfitting the random trends inherent to small sample
sizes.

5 CONCLUSION

Our results demonstrate that the convex adversarial training program for two-layer polynomial acti-
vation networks is performant on small-scale classification datasets. Further, when the input dimen-
sion is large (on the order of 102 or 103), the robust polynomial activation network still improves
robust test accuracy over sharpness-aware minimization when trained on a small random sample of
the data. Convex adversarial training of two-layer ReLU networks is feasible with large amounts
of data, yielding significant improvements in robustness to adversarial attacks over sharpness-aware
minimization. However, we find that when training data is constrained, ReLU networks are less
effective.

Adversarial training methods such as projected gradient descent (Madry et al., 2019) involve com-
puting multiple descent steps for each training batch, which drastically increases the computational
overhead of training (Schwinn et al., 2020). The convex programs (11) and (15) analytically pe-
nalize the worst-case value such descent methods approximate. While convex adversarial programs
are currently limited by neural network depth, they can still offer significant performance increases
with less computational overhead than iterative descent methods.

Future research directions could include layer-wise convex adversarial training for deep neural net-
works, derivations of convex adversarial programs for deeper architectures, or extensions of these
techniques for regression tasks.
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A PROOF OF THE MAIN THEOREM

In Subsection A.1, we make a duality argument to prove that the convex program (11) gives a
lower bound for (10). Subsection A.2 leverages the neural decomposition procedure (Bartan &
Pilanci, 2021) to prove the upper bound. Before that, we state two versions of the S-procedure,
which is a useful theorem of alternatives concerning pairs of quadratic constraints. It allows us to
convert implications involving two quadratics to more tractable semidefinite constraints (Boyd &
Vandenberghe, 2004; Uhlig, 1979; Pólik & Terlaky, 2007).

Theorem A.1 (S-procedure with inequality) Let g : Rd → R, f : Rd → R be quadratic functions
such that g(x) = xTA1x+ 2bT1 x+ c1 and f(x) = xTA2x+ 2bT2 x+ c2. We make no assumptions
about the convexity of g or f . Provided g(x) ≤ 0 is strictly feasible, the implication g(x) ≤ 0 =⇒
f(x) ≤ 0 holds if and only if there exists some λ ≥ 0 such that

λ

[
A1 b1
bT1 c1

]
−
[
A2 b2
bT2 c2

]
⪰ 0.

Proof: We refer the reader to pp. 657-658 of Boyd & Vandenberghe (2004).

Theorem A.2 (S-procedure with equality) Let g : Rd → R, f : Rd → R be quadratic functions
such that g(x) = xTA1x + 2bT1 x + c1 and f(x) = xTA2x + 2bT2 x + c2. Suppose that g is
strictly convex (i.e. A1 ≻ 0) and takes on both positive and negative values. The implication
g(x) = 0 =⇒ f(x) ≤ 0 holds if and only if there exists some λ ∈ R such that

λ

[
A1 b1
bT1 c1

]
−
[
A2 b2
bT2 c2

]
⪰ 0. (17)

Proof: See Appendix B.1.

A.1 LOWER BOUND: CONVEX DUALITY AND S-PROCEDURE

Expanding the right sides of the worst-case constraints in (10), we obtain

wi = min
||∆||2≤r

∆TQi∆+∆T gi + hi ∀i ∈ [n] (18)

where Qi, gi, hi are defined as follows for all i ∈ [n]:

Qi = yi

m∑
j=1

auju
T
j αj , gi = yi

m∑
j=1

(buj + 2auju
T
j xi)αj

hi = yi

m∑
j=1

(axT
i uju

T
j xi + bxT

i uj + c)αi

(19)

Lemma B.2, allows us to relax the equality constraints on the wi’s without changing the optimal
value of (10). Observe the following equivalence:

wi ≤ min
||∆||2≤r

yi

m∑
j=1

σ((xi +∆)Tuj)αj

⇐⇒
[∆T∆− r2 ≤ 0 =⇒ wi ≤ yi(∆

TQi∆+∆T gi + hi)]

(20)

The inequality ∆T∆− r2 ≤ 0 is strictly feasible, so we may apply the S-procedure with inequality
(Theorem A.1). We additionally split up the minimization in (10) to obtain (21), a new optimization
problem with the same optimal value as (10). Note that the optimization variables {Qi, gi, hi}ni=1
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are defined only to make (21) more readable.

minimize
{uj}m

j=1,||uj ||2=1
minimize
{αj}m

j=1

ℓ(w) + β

m∑
j=1

|αj |

subject to

[
λiI +Qi

1
2gi

1
2g

T
i hi − λir

2 + wi

]
⪰ 0

λi ≥ 0 ∀i ∈ [n]

Qi = yi

m∑
j=1

auju
T
j αj , gi = yi

m∑
j=1

(bui + 2auju
T
j xi)αj

hi = yi

m∑
j=1

(axT
i uju

T
j xi + bxT

i uj + c)αi

(21)

Define the Lagrange multipliers {Mi}ni=1, {γi}ni=1, where Mi ∈ Sd+1
+ and γ ∈ Rn

+. We will shortly
need to reference the block constituents of Mi, defined as follows: Mi,1 ∈ Sd,Mi,2 ∈ Rd,Mi,4 ∈

R, where Mi =

[
Mi,1 Mi,2

MT
i,2 Mi,4

]
. Then the Lagrangian of the inner minimization problem in (21),

excluding the notational equality constraints, is

L(w,α, γ,M) = ℓ(w) + β

m∑
j=1

|αj |+
n∑

i=1

[〈
Mi,

[
λiI +Qi

1
2gi

1
2g

T
i hi − λir

2 + wi

]〉
+ γiλi

]
(22)

For ease of notation, define M4 ∈ Rn, where the i-th entry of M4 is Mi,4. Then, maximizing the
Lagrangian over w and α, we obtain (23), which is the dual to the inner problem of (21). The
optimization variables {Zj}mj=1 are defined only to make (23) more readable.

maximize
{Mi,}n

i=1,{Zj}m
j=1

− ℓ∗(−M4)

subject to Mi ⪰ 0

r2Mi,4 − Tr(Mi,1) ≥ 0 ∀i ∈ [n]

|Zj | ≤ β

Zj = auT
j

(
n∑

i=1

yiMi,1

)
uj +

n∑
i=1

yiM
T
i,2(bui + 2auju

T
j xi)

+

n∑
i=1

yiMi,4(axiuju
T
j xi + bxT

i uj + c)

(23)

Observe that the optimal value of (23) is a function of the uj’s. Let d⋆ be the minimum of this
function over the uj’s, subject to ||uj ||2 = 1 for all j ∈ [m]. Following Lemma B.1, we swap the
order of the minimization and maximization operations, obtaining a lower bound on d∗, which is in
turn a lower bound on the optimal value of (10):

d∗ ≥ maximize
{uj ,Zj}m

j=1,{Mi}n
i=1

− ℓ∗(−M4)

subject to ||uj ||2 = 1 ∀j ∈ [m]

Mi ⪰ 0

r2Mi,4 − Tr(Mi,1) ≥ 0 ∀i ∈ [n]

|Zj | ≤ β

Zj = auT
j

(
n∑

i=1

yiMi,1

)
uj +

n∑
i=1

yiM
T
i,2(bui + 2auju

T
j xi)

+

n∑
i=1

yiMi,4(axiuju
T
j xi + bxiuj + c)

(24)
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Note first that Zj is quadratic in uj and second that |Zj | ≤ β if and only if Zj ≤ β and Zj ≥ −β.
Our constraints enforce the implications ||uj ||2 = 1 =⇒ Zj ≤ β and ||uj ||2 = 1 =⇒ Zj ≥
−β, so we apply the S-procedure with equality (Theorem A.2) twice. In doing so, we obtain two
semidefinite constraints and two new optimization variables ρ1, ρ2 ∈ R. We the define optimization
variables Q′ ∈ Sd, g′ ∈ Rd, h′ ∈ R for readability.

maximize
{Mi}n

i=1,Q
′,g′,h′,ρ1,ρ2

− ℓ∗(−M4)

subject to Mi ⪰ 0, r2Mi,4 − Tr(Mi,1) ≥ 0 ∀i ∈ [n][
ρ1I −Q′ − 1

2g
′

− 1
2g

′T β − h′ − ρ1

]
⪰ 0[

ρ2I +Q′ 1
2g

′
1
2g

′T β + h′ − ρ2

]
⪰ 0

Q′ =

n∑
i=1

ayi
(
Mi,1 + 2Mi,2x

T
i +Mi,4xix

T
i

)
g′ =

n∑
i=1

byi(Mi,2 +Mi,4xi), h′ =

n∑
i=1

cyiMi,4

(25)

We introduce the Lagrange multipliers Z,Z ′ ∈ Sd+1
+ , {Ri}ni=1, Ri ∈ Sd+1

+ , λ ∈ Rn
+. Then,

excluding notational equality constraints on Q′, g′, h′, the Lagrangian of (25) is

L(M,ρ1, ρ2, Z, Z
′, Ri, λ) =− ℓ∗(−M4) +

n∑
i=1

[
λi(r

2Mi,4 − Tr(Mi,1)) + ⟨Ri,Mi⟩
]

+

〈
Z,

[
ρ1I −Q′ − 1

2g
′

− 1
2g

′T β − h′ − ρ1

]〉
+

〈
Z ′,

[
ρ2I +Q′ 1

2g
′

1
2g

′T β + h′ − ρ2

]〉
(26)

Let Z̃ = Z −Z ′. With some algebraic manipulations (e.g. expanding Q′, g′, h′), we obtain the final
form of the Lagrangian by adding 0 =

∑n
i=1(Mi,4wi −Mi,4wi) to (26), where w ∈ Rn:

L(M,ρ1, ρ2, Z, Z
′, Ri, λ)

= −ℓ∗(−M4)−
n∑

i=1

Mi,4wi + ρ1(Tr(Z1)− Z4) + β(Z4 + Z ′
4) + ρ2(Tr(Z

′
1)− Z ′

4)

+

n∑
i=1

〈
Mi, Ri + yi

[
−yiλiI − aZ̃1 −axT

i Z̃1 − 1
2bZ̃2

−aZ̃1xi − 1
2bZ̃

T
2 −axT

i Z̃1xi − bxT
i Z̃2 − cZ̃4 + yiλir

2 + wiyi

]〉 (27)

Lastly, to arrive at the dual problem, we must maximize (27) over {Mi}ni=1, ρ1, ρ2. Note that (27)
is only bounded when the following conditions are met:

Tr(Z1) = Z4, Tr(Z ′
1) = Z ′

4, Ri ⪰ 0

Ri = yi

[
yiλiI + aZ̃1 axT

i Z̃1 +
1
2bZ̃2

aZ̃1xi +
1
2bZ̃2 axT

i Z̃1xi + bxT
i Z̃2 + cZ̃4 − yiλir

2 − wiyi

]
∀i ∈ [n]

(28)

We say that the lagrange multipliers {Ri}ni=1, Z, Z
′ are dual feasible if they satisfy all constraints in

(28). Then we have

max
{Mi}n

i=1,ρ1,ρ2

L(M,ρ1, ρ2, Z, Z
′, Ri, λi) =

{
ℓ(w) + β(Z4 + Z ′

4) if {Ri}ni=1, Z, Z
′ are dual feasible

∞ otherwise
(29)

In writing out the dual problem, we recover the proposed convex adversarial training problem (11).
This proves the optimal value of (11) is a lower bound on that of the nonconvex formulation (10).

A.2 UPPER BOUND: NEURAL DECOMPOSITION

Let Z⋆, Z ′⋆, λ⋆, w⋆ be optimal solutions to (11). Using the neural decomposition procedure devised
in Section 4 of Bartan & Pilanci (2021), we obtain {uj , dj}kj=1 and {u′

j , d
′
j}k

′

j=1 where uj , u
′
j ∈ Rd,

14
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dj , d
′
j ∈ R, ||uj ||2 = ||u′

j ||2 = 1, rankZ⋆ = k, rankZ ′⋆ = k′ and

Z⋆
1 =

k∑
j=1

uju
T
j d

2
j , Z⋆

2 =

k∑
j=1

ujd
2
j , Z⋆

4 =

k∑
j=1

d2j

Z ′⋆
1 =

k′∑
j=1

u′
ju

′
j
T
d′j

2
, Z ′⋆

2 =

k′∑
j=1

u′
jd

′
j
2
, Z ′⋆

4 =

k′∑
j=1

d′j
2

(30)

Since Z⋆, Z ′⋆, λ⋆, w⋆ are feasible in problem (11), the S-procedure (Theorem A.1) guarantees that,
for i ∈ [n],

w⋆
i ≤ min

||∆||2≤r
a(xi +∆)T (Z⋆

1 − Z ′⋆
1 )(xi +∆) + b(Z⋆

2 − Z ′⋆
2 )T (xi +∆) + c(Z⋆

4 − Z ′⋆
4 ) (31)

Let m⋆ = k + k′ and rename the neural network weights as follows: uk+j = u′
j , αj = d2j ,

αk+j = −d′2j . Plugging in the decompositions for Z⋆ and Z ′⋆, a bit of algebra shows that w⋆ and
{uj , αj}m

⋆

j=1 are feasible in the relaxed nonconvex training problem (36) for a neural network with
m⋆ neurons:

w⋆
i ≤ min

||∆||2≤r

k∑
j=1

σ(uT
j (xi +∆))d2j −

k′∑
j=1

σ(u′T
j (xi +∆))d′2j = min

||∆||2≤r

m⋆∑
j=1

σ(uT
j (xi +∆))αj

(32)
Importantly, the objectives of problem (11) and problem (36) are identical after plugging in the
decomposition:

ℓ(w⋆) + β(Z⋆
4 + Z ′⋆

4 ) = ℓ(w⋆) + β

 k∑
j=1

d2j +

k′∑
j=1

d′j
2

 = ℓ(w⋆) + β

m⋆∑
j=1

|αj | (33)

Let p⋆convex, p⋆relaxed, and p⋆original be the optimal values of the convex formulation (11), relaxed noncon-
vex formulation (36), and original nonconvex formulation (10), respectively. Since w⋆, {uj , αj}m

⋆

j=1
are feasible in (36) and the objectives of (36) and (11) have the same form, we conclude
p⋆convex ≥ p⋆relaxed = p⋆original (the equality is due to Lemma B.2). From Section A.1, p⋆convex is also a
lower bound and therefore p⋆convex = p⋆relaxed = poriginal. Hence w⋆, {uj , αj}m

⋆

j=1 provide an optimal
solution to the relaxed nonconvex problem (36). Finally, from Corollary B.1, there exists some w′⋆

such that w′⋆, {uj , αj}m
⋆

j=1 are also optimal in the original nonconvex program (10).
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B PROOFS OF USEFUL LEMMAS

B.1 PROOF OF THE S-PROCEDURE WITH EQUALITY

Applying proposition 3.1 from Pólik & Terlaky (2007), we have that g(x) = 0 =⇒ f(x) ≤ 0 if
and only if there exists some λ ∈ R such that λg(x) − f(x) ≥ 0 for all x ∈ Rd. Rewriting the
inequality, we have

0 ≤ λg(x)− f(x) =

[
x
1

]T (
λ

[
A1 b1
bT1 c1

]
−
[
A2 b2
b2 c2

])[
x
1

]
(34)

Note that (34) implies (17) because, for any vector v ∈ Rd+1,

vT
(
λ

[
A1 b1
bT1 c1

]
−
[
A2 b2
b2 c2

])
v

=
1

v2d+1

[
v1:d/vd+1

1

]T (
λ

[
A1 b1
bT1 c1

]
−
[
A2 b2
b2 c2

])[
v1:d/vd+1

1

]
≥ 0.

(35)

Here, v1:d denotes the d-vector containing the first d entries of v, and vd+1 is the d + 1-th entry of
v. If (17) holds, it immediately follows that λg(x)− f(x) ≥ 0 for all x ∈ Rd.

B.2 OTHER LEMMAS

Lemma B.1 (Max-min inequality) For any f : X × Y → R,

sup
x∈X

inf
y∈Y

f(x, y) ≤ inf
y∈Y

sup
x∈X

f(x, y)

Proof: Let g(y) = supx∈X f(x, y). Note that f(x, y) ≤ g(y) for all y ∈ Y, x ∈ X . Hence
infy∈Y f(x, y) ≤ infy∈Y g(y) for all x ∈ X . Taking the supremum over x on the left of the
inequality completes the proof.

Lemma B.2 The relaxed problem (36) has the same optimal value as the original problem (10)
when ℓ : Rn → R is nonincreasing in its inputs:

minimize
{uj ,αj}m

j=1,w
ℓ(w) + β

m∑
j=1

|αj |

subject to wi ≤ min
||∆||2≤r

yi

m∑
j=1

σ((xi +∆)Tuj)αj ∀i ∈ [n]

||uj ||2 = 1 ∀j ∈ [m]

(36)

Proof: The optimal value of (36) is clearly a lower bound on that of (10). We now prove that it is
an upper bound. Let w⋆, {u⋆

j , α
⋆
j}mj=1 be the optimal solutions for (36). Define w′⋆ as follows:

w′⋆
i = min

||∆||2≤r
yi

m∑
j=1

σ((xi +∆)Tu⋆
j )α

⋆
j

Then ℓ(w′⋆) = ℓ(w⋆) since ℓ(·) is nonincreasing and w⋆
i ≤ w′⋆

i for all i ∈ [n]. Hence
w′⋆, {u⋆

j , α
⋆
j}mj=1 are also an optimal solution for (36). Observe that w′⋆, {u⋆

j , α
⋆
j}mj=1 are feasible

in (10), so ℓ(w′⋆) + β
∑m

j=1 |α⋆
j | is an upper bound on the optimal value of (10). Note that since

ℓ(w′⋆) + β
∑m

j=1 |α⋆
j | is also a lower bound, it gives the optimal value for the original adversarial

training problem (10).

Corollary B.1 Suppose w⋆, {u⋆
j , α

⋆
j}mj=1 are optimal in the relaxed problem (36). Then there exists

w′⋆ such that w′⋆, {u⋆
j , α

⋆
j}mj=1 are optimal in the original adversarial training problem (10).

Proof: This result follows by taking w′⋆ as defined in the proof of Lemma B.2 above.
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C DISTANCE TO THE DECISION BOUNDARY OF A POLYNOMIAL ACTIVATION
NETWORK

In the binary classification setting, the decision boundary of a two-layer polynomial activation net-
work f is the set D = {x : f(x) = 0}. We define the ℓ2-distance from an example x to D:

dD(x) = min
γ∈D

||x− γ||2 (37)

For typical neural network architectures, nonconvexity of D and f prevent efficient computation of
dD(x). In this section, we show (37) can be formulated as a convex SDP for two-layer polynomial
activation networks and hence dD(x) is computable in fully polynomial time.

For an example x with label y, suppose that f correctly classifies x (i.e. sign f(x) = y). Since
γ ∈ D =⇒ f(γ) = 0, (37) becomes

dD(x) = min
γ:f(γ)=0

||x− γ||2 = min
γ:yf(γ)≤0

||x− γ||2 (38)

We claim that relaxing the constraint f(γ) = 0 to yf(γ) ≤ 0 does not change the optimal value of
(37): any γ for which yf(γ) < 0 is strictly on the opposite side of the decision boundary relative to
x, but, by continuity of f , there lies γ′ in D which is between x and γ. Hence ||x−γ′||2 ≤ ||x−γ||2.

Recognizing that γ∗ = argminγ:yf(γ)≤0 ||x− γ||2 = argminγ:yf(γ)≤0 ||x− γ||22, we again use the
S-procedure with inequality (Theorem A.1). Consider the implication

yf(γ) ≤ 0 =⇒ (x− γ)T (x− γ) ≥ s (39)

Then the optimization problem (with variables s and γ)

maximize s

subject to [yf(γ) ≤ 0 =⇒ (x− γ)T (x− γ) ≥ s] (40)

has the same optimal value as minγ:yf(γ)≤0 ||x − γ||22. If our classifier takes on both positive and
negative values (a very reasonable assumption), the first inequality in (39) is strictly feasible. So
(40) is equivalent to

maximize s

subject to λ ≥ 0

λy

[
aZ̃1

1
2bZ̃2

1
2bZ̃

T
2 cZ̃4

]
−
[
−I x
xT −||x||22 + s

]
⪰ 0

(41)

The weights Z̃1, Z̃2, Z̃4 of the classifier f are fixed, so the only optimization variables in (41) are s
and λ.
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