
Faithful and Interpretable Explanations for Complex Ensemble
Time Series Forecasts using Surrogate Models and Forecastability

Analysis
Yikai Zhao

Amazon Web Services
Austin, Texas, USA
yikai@amazon.com

Jiekai Ma
Amazon Web Services

Seattle, Washington, USA
jiekal@amazon.com

ABSTRACT
Modern time series forecasting increasingly relies on complex en-
semble models generated by AutoML systems like AutoGluon, deliv-
ering superior accuracy but with significant costs to transparency
and interpretability. This paper introduces a comprehensive, dual-
approach framework that addresses both the explainability and
forecastability challenges in complex time series ensembles. First,
we develop a surrogate-based explanationmethodology that bridges
the accuracy-interpretability gap by training a LightGBM model
to faithfully mimic AutoGluon’s time series forecasts, enabling sta-
ble SHAP-based feature attributions. We rigorously validated this
approach through feature injection experiments, demonstrating
remarkably high faithfulness between extracted SHAP values and
known ground truth effects. Second, we integrated spectral pre-
dictability analysis to quantify each series’ inherent forecastability.
By comparing each time series’ spectral predictability to its pure
noise benchmarks, we established an objective mechanism to gauge
confidence in forecasts and their explanations. Our empirical eval-
uation on the M5 dataset found that higher spectral predictability
strongly correlates not only with improved forecast accuracy but
also with higher fidelity between the surrogate and the original
forecasting model. These forecastability metrics serve as effective
filtering mechanisms and confidence scores, enabling users to cali-
brate their trust in both the forecasts and their explanations. We
further demonstrated that per-item normalization is essential for
generating meaningful SHAP explanations across heterogeneous
time series with varying scales. The resulting framework delivers
interpretable, instance-level explanations for state-of-the-art en-
semble forecasts, while equipping users with forecastability metrics
that serve as reliability indicators for both predictions and their
explanations.
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1 INTRODUCTION
Time series forecasting is a cornerstone of decision-making across
numerous sectors, including demand planning, financial predic-
tion, resource management, and climate modeling. The pursuit
of higher predictive accuracy has driven the development of so-
phisticated machine learning (ML) models, particularly complex
ensemble models often generated by Automated Machine Learn-
ing (AutoML) frameworks. These ensembles, which combine the
strengths of diverse forecasting techniques, have demonstrated
significant improvements in predictive performance [6].

However, the very complexity that fuels this enhanced perfor-
mance often renders these powerful time series ensemble models
opaque "black boxes" [8]. In applications where forecasts inform
critical decisions, this lack of transparency can erode trust and hin-
der the adoption of these advanced models [8]. This paper addresses
the specific challenge of explaining forecasts generated by such
state-of-the-art time series ensemble models.

As a prominent example of such systems, we consider AutoGluon-
TimeSeries (AutoGluon-TS). AutoGluon-TS has demonstrated strong
empirical performance across 29 benchmark datasets, outperform-
ing a variety of traditional forecasting models in both point and
quantile prediction. In many cases, it even exceeds the performance
of the best-in-hindsight ensemble of previous methods [6]. The
high accuracy of AutoGluon-TS, and indeed many cutting-edge
time series ensemble systems, is achieved by creating complex com-
binations of diverse models. These can include statistical methods
(like ARIMA, ETS), deep learning models (like DeepAR), and foun-
dational models (like Chronos). This inherent heterogeneity and
multi-layered structure make it exceptionally difficult to apply stan-
dard Explainable Artificial Intelligence (XAI) techniques directly
and reliably across the entire ensemble [1].

A particular challenge with these complex time series ensembles,
as exemplified by AutoGluon-TS, is that their constituent models of-
ten require fundamentally different approaches to explanation. This
makes it impossible to apply a single explanation method, such
as Shapley Additive exPlanations (SHAP), uniformly and mean-
ingfully across all member models. For instance, our preliminary
investigations using permutation feature importance directly on an
AutoGluon ensemble yielded unstable and inconsistent results in
faithfulness tests. This observation aligns with documented limita-
tions of permutation-based methods, which can disrupt the learned
relationships between features and the target variable [10].
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To overcome these challenges, we propose a surrogate-based
explanation methodology. The core idea is to decouple the complex
prediction task from the explanation task. We first leverage the
power of AutoGluon-TS to train a high-performance forecasting
ensemble, treating it as a black box 𝑓𝐴𝐺 . We then train a simpler,
inherently more interpretable model – specifically, LightGBM – to
act as a surrogate, aiming to accurately mimic the point forecasts
generated by the AutoGluon-TS. Once this surrogate model, 𝑓𝐿𝐺𝐵𝑀 ,
achieves high fidelity in replicating 𝑓𝐴𝐺 ’s predictions, we can apply
well-established and efficient explanation techniques to it. Addition-
ally, our approach incorporates complementary techniques, such
as forecastability analysis, to provide a more robust framework for
interpreting complex forecasts and assessing their reliability.

A critical consideration often overlooked in forecast explainabil-
ity is the inherent forecastability of the time series being analyzed.
Explanations derived from models attempting to predict inherently
unpredictable or chaotic data may themselves be misleading or
unreliable, regardless of the sophistication of the explanation tech-
nique. This creates a fundamental challenge: without assessing
the intrinsic predictability of the underlying data, users may place
unwarranted confidence in explanations of forecasts that are es-
sentially unpredictable. Our framework addresses this challenge by
integrating forecastability analysis with model explanations, pro-
viding users with critical context about when to trust both forecasts
and their explanations. This integration is particularly valuable
in business environments where heterogeneous time series with
varying levels of predictability must be processed and interpreted
efficiently.

The main contributions of this paper are:

• Validation of a surrogatemodel approach (LightGBM+TreeSHAP)
for explaining complex AutoML time series forecasts (e.g.,
AutoGluon-TS).

• Quantitative evaluation of surrogate explanation faithful-
ness using feature injection, showing high correlation with
known ground truth effects.

• Integration of spectral predictability and a filter mechanism
by comparing it to its white noise benchmarks

• Highlighting the necessity and providing a method for per-
item normalization enabling comparable SHAP explanations
on heterogeneous series.

This work aims to offer a practical, validated approach for pre-
senting trustworthy insights into the forecasts of sophisticated
ensemble time series models.

2 RELATEDWORK
This section reviews existingwork relevant to explaining time series
forecasts, focusing on techniques applicable to surrogate modeling,
per-item normalization, and forecastability analysis.

2.1 Surrogate Models for XAI
Surrogate modeling is a practical technique for model-agnostic
explainability where an interpretable model (e.g., LightGBM) is
trained to mimic a complex black-box system’s input-output behav-
ior [4, 8]. This widely applicable technique continues to be adapted
for specific domains, including time series forecasting [20], offering

valuable simplified global insights into the black box and enhanc-
ing comprehension [4]. Harnessing these benefits critically hinges
on ensuring high fidelity: the surrogate must accurately replicate
the original model’s predictions, as explanations lack meaning oth-
erwise [21]. Fortunately, fidelity is a quantifiable and verifiable
metric, making trustworthy explanation via surrogates a manage-
able goal rather than an insurmountable barrier. While inherently
interpretable models remain ideal [21], surrogates provide an essen-
tial bridge when state-of-the-art accuracy necessitates a black-box
approach but practical deployment requires understanding its be-
havior. Consequently, when implemented with rigorous fidelity
validation, surrogate modeling offers a robust and highly valuable
methodology for practical XAI.

This study adopted LightGBM as the surrogate model, a decision
underpinned by two key factors: its consistently demonstrated high
performance in forecasting accuracy (e.g., [13]) and its inherent
tree-based architecture. This structural characteristic is particu-
larly advantageous as it integrates seamlessly with the efficient
TreeSHAP algorithm for the calculation of SHAP values [16].

2.2 Per-Item Normalization for Time Series
Explainability

Per-item normalization is crucial for meaningful time series explain-
ability, particularly with heterogeneous scales common in business
forecasting [18]. Real-world applications often involve series with
vastly different magnitudes, and without normalization, methods
like SHAP generate feature attributions biased by absolute scale
[17].

This scale-dependency fundamentally distorts local explanations
across items when applied to unnormalized heterogeneous series.
The core issue stems from the SHAP base value (𝜙0), which typically
represents the average model prediction across the mixed-scale
background data. This global 𝜙0 thus becomes unrepresentative for
any specific itemwhose scale deviates significantly from this overall
average. Consequently, the SHAP additivity property (𝑦 ≈ 𝜙0+

∑
𝜙 𝑗 )

forces the feature contributions (
∑
𝜙 𝑗 ) to absorb this baseline mis-

match. In both low- and high-volume cases, individual SHAP values
(𝜙 𝑗 ) are disproportionately scaled primarily to compensate for the
inappropriate global baseline, rather than accurately reflecting the
true, context-specific marginal impact of features relative to that
item’s own scale. This significantly obscures genuine local insights.

Applying per-item normalization (e.g., 𝑍 -scoring) addresses this
by reframing the task to explain relative deviations from an item-
specific baseline. This yields equitable, comparable explanations
aligned with business focus on relative impacts [9], aiding work-
flows like exception handling. Conversely, ignoring normalization
risks misleading interpretations and suboptimal decisions, under-
mining trust [18], making per-item normalization a fundamental
step for reliable explanations supporting business processes.

2.3 Time Series Forecastability Analysis
Real-world business datasets contain heterogeneous time series;
some exhibit clear patterns, while others are erratic and resist reli-
able prediction regardless of model sophistication [19]. Attempting
advanced modeling on inherently unpredictable series sets unreal-
istic expectations for stakeholders and risks misguided decisions
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based on a false sense of precision. Identifying those time series
with a low forecastability score before modeling is crucial in large-
scale environments like supply chains with numerous item-location
combinations, including sporadic “long-tail” items, enabling tiered
forecasting strategies [11].

Explanations derived from models attempting to predict inher-
ently chaotic or noisy data may themselves be unreliable [18]. Com-
bining forecastability analysis with model explanations yields a
more complete picture: understanding not only feature contribu-
tions but also whether the underlying data supports reliable predic-
tion. Recent work has focused on quantitative measures to assess
time series forecastability prior to modeling:

Spectral Predictability: The spectral predictability score [7] is
computed as the entropy of the power spectral density after trend
removal. This metric provides a model-agnostic assessment of a
time series’ intrinsic forecastability.

Benchmarking approaches: Comparing a time series’ fore-
castability metrics against benchmarks derived from noise patterns
with equivalent characteristics (length, sparsity) provides a ref-
erence point for assessing whether a series contains meaningful
signal or is predominantly noise [12]. Time series that score below
these benchmarks are likely to be inherently unpredictable.

Our work builds on these approaches by integrating spectral
predictability analysis with surrogate-based model explanations,
creating a comprehensive framework that considers both model
behavior and data characteristics when assessing forecast explain-
ability.

3 METHODOLOGY
The end-to-end process involves training the complex AutoGluon
TS model, engineering relevant and explainable features, training a
LightGBM surrogate to mimic the normalized AutoGluon predic-
tions, applying TreeSHAP to the surrogate, evaluate faithfulness
of the SHAP values derived from the surrogate model, optionally
caliberate the SHAP values to be additive to the AutoGluon’s raw
forecasts1 and finally provide explanation based on SHAP values.
This process could be augmented by forecastability as a filter or
confidence score mechanism for the forecasts and explanations.

3.1 Feature Engineering for Explainability
We engineered a distinct feature set (𝑋𝑒𝑛𝑔) as interpretable input for
the LightGBM surrogate model. This set differs from features typi-
cally used by complex forecasters like AutoGluon by deliberately
limiting extensive lag features (to avoid diluting SHAP explana-
tions) while augmenting with other signals. This comprehensive
set comprised: time-based features (week, month, day of week, etc.),
key target lags, rolling/expanding window statistics (mean, std dev,
skewness, etc.), percentage changes, signal decomposition features
(trend, seasonality), and history/age features. These features were
chosen to provide interpretable drivers for the explanation model.

3.2 Per-Item Normalization Strategy
Given the wide variation in demand scales in the M5 dataset, ap-
plying a consistent normalization scheme per-item is crucial before
training the surrogate and calculating SHAP values.
1Details on the calibration method are provided in Appendix.

We employ per-item standardization (z-score normalization). For
each item 𝑖 , we calculate the mean 𝜇𝑖 and standard deviation 𝜎𝑖 of
its historical demand𝑦𝑖 . The target variable for the surrogate model
becomes the normalized AutoGluon forecast: 𝑧𝐴𝐺,𝑘 = (𝑦𝐴𝐺,𝑘 −
𝜇𝑖 )/𝜎𝑖 . The LightGBM model 𝑓𝐿𝐺𝐵𝑀 is trained to predict 𝑧𝐴𝐺,𝑘 .
SHAP values 𝜙𝑘 are then computed to explain 𝑓𝐿𝐺𝐵𝑀 (𝑥𝑒𝑛𝑔,𝑘 ) ≈
𝑧𝐴𝐺,𝑘 . For final interpretation in the original demand units, the
SHAP values can be denormalized by multiplying by 𝜎𝑖 .

3.3 Faithfulness Evaluation
Faithfulness ensures explanations accurately reflect a model’s rea-
soning or true feature influence, a critical check beyond predictive
fidelity [18, 21, 22]. Evaluating faithfulness rigorously is challeng-
ing due to the typical absence of ground truth explanations for
real-world models [5]. A key strategy to overcome this, recognized
in recent evaluation benchmarks [15], is the use of synthetic or
known ground truths; this principle has been practically applied,
for instance, to evaluate anomaly explanations against generated
ground truths [3]. Our work employs a specific form of this strat-
egy: a feature injection experiment, conceptually illustrated in the
Appendix (Table 3). This approach also serves as a practical de-
bugging test and sanity check for explanation reliability [2, 14].
The method involves introducing a synthetic feature with a known,
predefined impact on the target variable, retraining the surrogate
model on this modified data, and extracting the explanation (e.g.,
SHAP values, 𝜙injected) for the synthetic feature. Faithfulness is
then quantified by comparing the extracted explanation 𝜙injected
against the known ground truth effect; high correlation indicates
the method accurately captures the injected influence [18].

This technique provides a valuable quantitative faithfulness mea-
sure for at least one feature’s effect and serves as a crucial debug-
ging tool [5, 14]. However, its primary limitation is that it mainly
validates the explanation for the injected feature’s main effect, po-
tentially not fully capturing faithfulness regarding complex interac-
tions among the original features [14, 18, 22]. Despite this, positive
results build confidence and provide an important sanity check,
aligning with established principles for evaluating XAI against
known or synthetic truths [3, 15].

3.4 Forecastability Analysis Implementation
To provide context for forecast and explanation reliability, we quan-
tified the intrinsic predictability of each time series using the Spec-
tral Predictability (SP) approach, assessing both its average level
and its stability over time.

1. Preprocessing: Each series was preprocessed by removing
leading zeros, yielding processed series 𝑦′

𝑖
with effective length 𝐿𝑖 .

The effective length 𝐿𝑖 will be at least 4 times of prediction length
based for the forecasting purpose.

2. Average SP & Benchmark Comparison: The overall SP
score, 𝑆𝑃𝑖 , was computed for each processed series𝑦′

𝑖
. To account for

SP’s length dependency, this score was compared against a length-
specific pure noise benchmark, 𝑆𝑃𝑛𝑜𝑖𝑠𝑒 (𝐿𝑖 ). Series with 𝑆𝑃𝑖 near or
below this benchmark were flagged, suggesting predictability close
to random noise.
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4 RESULTS
This section presents and discusses the results from our experiments
to evaluate the proposed framework. The experiments were devel-
oped using the M5 Forecasting Competition dataset2, a real-world
hierarchical collection featuring daily sales data from Walmart
stores. This dataset spans 1,941 days and encompasses multiple
organizational levels, including 10 stores, 7 departments, and 3 cate-
gories, tracking a total of 3,049 unique items. To determine the most
appropriate forecasting level for our experiments, we conducted
the spectral predictability analysis across different hierarchical lev-
els, summarized in the Appendix (Table 1). This analysis indicated
that the store-department level (70 time series) provided a strong
balance of aggregation and inherent forecastability (approximately
94% of series deemed forecastable), leading us to select this gran-
ularity. Our study focuses on this subset of 70 store-department
daily demand time series. An initial exploration revealed significant
heterogeneity in demand scales across different store-department
combinations, with mean daily demand varying considerably. This
observation strongly motivated the need for a per-item (per-series)
normalization strategy before modeling and explanation. For our
experimental setup, we utilized the first 1,913 days of data as the
training set and performed forecasting for the subsequent 28-day
horizon. The actual data from days 1,914 to 1,941 (inclusive) served
as the test set for forecast accuracy validation and explanation
analysis.

4.1 Surrogate Model Fidelity
Wefirst assessed the fidelity of a LightGBM surrogate in approximat-
ing the normalized point forecasts produced by the high-performing
AutoGluon ensemble. Fidelity was quantified by comparing predic-
tions from both models on the test set using per-series metrics, in-
cluding mean absolute error (MAE), mean absolute percentage error
(MAPE), and root mean squared error (RMSE). Figure 1 illustrates
a good alignment, with predicted values tightly clustered around
the identity line. This high fidelity enables the use of the complex
AutoGluon model for accurate forecasting, while facilitating post
hoc interpretability via TreeSHAP applied to the computationally
efficient LightGBM surrogate. This fidelity check is a first sanity
check for such XAI system.

4.2 Surrogate Model Faithfulness
To further validate the reliability of the generated explanations,
we evaluated explanation faithfulness through a feature injection
experiment. This evaluation compared the denormalized SHAP
values derived from the surrogate model for an injected feature
(𝜙𝑝𝑟𝑖𝑐𝑒 ) against its known ground truth effect. The results demon-
strated high faithfulness, with a Pearson correlation coefficient of
0.961 between the extracted SHAP values and the ground truth
impacts. Figure 2 visually reinforces this result, showing a strong
positive linear relationship. This high correlation validates faith-
fulness by confirming that the SHAP values correctly track the
direction and relative magnitude of the known influence, even if
the absolute scales on the plot differ due to the specific ground
truth construction artifact. This evidence substantiates that the
2Dataset available at: https://www.kaggle.com/competitions/m5-forecasting-accuracy/
data

Figure 1: Prediction Alignment between AutoGluon Model
and Surrogate Model

surrogate + SHAP framework can accurately recover the influence
of individual features when the true effects are known, thereby re-
inforcing the trustworthiness of the explanations regarding feature
effects. Nonetheless, as noted in prior discussions on the limitations
of faithfulness evaluation, the reliable attribution of interaction
effects remains an unresolved challenge. As such, generalizing the
observed faithfulness from the injected feature’s main effect to all
original features warrants caution.

Figure 2: SHAP Faithfullness Validation by Price Effects

4.3 Necessity of Per-item Normalization
Our experiments empirically validated the critical necessity of per-
item normalization discussed previously. For example, consider the
items whose average demand varies by orders of magnitude, as

https://www.kaggle.com/competitions/m5-forecasting-accuracy/data
https://www.kaggle.com/competitions/m5-forecasting-accuracy/data
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shown by example items in the Appendix (Table 2). As visually
demonstrated for a low-volume item in the Appendix (Figure 4),
applying SHAP without normalization results in distorted expla-
nations. The large global base value forces compensatory SHAP
values that obscure the true local feature impacts relative to the
item’s specific scale. In contrast, the results confirmed that per-
item normalization yields explanations reflecting relative feature
importance against an appropriate item-specific baseline, enabling
meaningful interpretation and comparison across series with dif-
fering scales.

4.4 Forecastability Analysis
Beyond evaluating fidelity and faithfulness, we further analyzed
relationship between forecastability and forecast accuracy and sur-
rogate model fidelity. These results underscore the critical role of
data properties in both generating reliable forecasts and interpret-
ing model explanations.

Our analysis revealed strong positive correlations between aver-
age spectral predictability and bothAutoGluon-TS forecast accuracy
(Figure 3) and surrogate model fidelity (Figure 5 in the Appendix).
This demonstrates that time series with more regular, predictable
patterns not only yield more accurate forecasts but also enable more
faithful mimicry by the surrogate model. The relationship becomes
particularly evident at the lower end of the spectrum—both accu-
racy and fidelity deteriorate significantly for series with spectral
predictability approaching or below the pure noise baseline. These
findings highlight the practical value of spectral predictability as a
diagnostic metric, offering a reliable mechanism to filter potentially
problematic series or flag when explanations are generated for fore-
casts that may be inherently compromised by the unpredictable
nature of the underlying data.

Figure 3: AutoGluon Forecast Accuracy vs. Average Spectral
Predictability. Left: using 𝑅2 metric. Right: using MAPE met-
ric.
Note: The vertical line indicates the average spectral predictability score for
pure noise, serving as a benchmark for randomness.

4.4.1 Case Examples: High vs. Low Forecastability. To illustrate the
practical implications of forecastability, we examine two contrast-
ing case studies, comparing the alignment of AutoGluon forecasts,
surrogate model forecasts, and actual demand.

Illustrative case studies, detailed in the Appendix (Section D),
contrast a high-forecastability series (HOUSEHOLD_1 at CA_3, Ap-
pendix Figure 7) with a low-forecastability one (HOBBIES_2 at TX_1,
Appendix Figure 9). The high-forecastability example demonstrates

close tracking between actual demand, AutoGluon-TS predictions,
and surrogate forecasts, indicating high forecast accuracy and sur-
rogate fidelity. In contrast, the low-forecastability example exhibits
poorer accuracy for bothmodels and noticeable divergence between
the AutoGluon-TS and surrogate predictions, signifying lower fi-
delity. These cases visually confirm that higher intrinsic data pre-
dictability (context in Appendix Figures 6 and 8) supports both
better forecast performance and more faithful surrogate model
replication.

These examples visually reinforce the link between a time series’
intrinsic forecastability and the performance achievable by both
complex forecasting models and the surrogate models intended to
explain them. High forecastability correlates positively with both
forecast accuracy and surrogate fidelity, whereas low forecastability
often leads to reduced performance on both fronts, highlighting the
importance of considering data characteristics when interpreting
model outputs and their explanations.

These empirical findings strongly advocate for integrating fore-
castability analysis directly into the explainability workflow. Quan-
titative forecastability metrics offer significant practical value by
serving as an essential filter or confidence score when interpreting
explanation results [12, 19]. By assessing metrics against prede-
fined benchmarks (e.g., derived from noise), we can identify series
where inherent data characteristics likely undermine model relia-
bility. Low forecastability signals potential issues: the underlying
forecast being explained may be inaccurate, the surrogate model
might struggle to achieve high fidelity, and the feature relationships
captured by the explanation could be unstable or noise-driven. Con-
sequently, explanations associated with low-forecastability scores
warrant lower confidence and can be appropriately flagged or fil-
tered in practical applications. Explicitly acknowledging inherent
data limitations via forecastability analysis thus provides a crucial
layer of understanding. This helps manage user expectations re-
garding prediction certainty and prevents over-reliance on model
outputs or their explanations when the underlying data simply does
not support high confidence [18]. Ultimately, this combined frame-
work of explainability and forecastability enables a more nuanced,
trustworthy, and responsible interpretation of advanced forecasting
systems.

5 CONCLUSION
This paper addressed the critical challenge of explaining complex
ensemble time series forecasting models, specifically those gen-
erated by AutoML systems like AutoGluon, where direct expla-
nation methods often prove unstable or infeasible. We proposed
and validated a surrogate-based methodology, training a LightGBM
model to mimic AutoGluon’s point forecasts with high fidelity. We
generated stable local feature attributions, whose faithfulness was
confirmed via a rigorous feature injection experiment. We also
demonstrated the crucial role of per-item normalization in enabling
meaningful interpretations across heterogeneous time series. This
work highlighted the significant benefit achieved by integrating
these surrogate-based explanations with forecastability analysis
(e.g., using spectral predictability). This combination allows users
to calibrate their trust in an explanation based on the inherent
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predictability, which we found directly correlates with both im-
proved forecast accuracy and higher surrogate model fidelity, or
lack thereof, in the underlying time series. This synergy bridges
the gap between understanding model behavior and acknowledg-
ing data limitations, preventing over-reliance on potentially mis-
leading explanations when data characteristics inherently limit
predictive certainty. Such integrated approaches, balancing model
interpretability with an understanding of data forecastability, are
vital for the transparent and responsible deployment of advanced
forecasting systems.

A PREDICTABILITY ANALYSIS RESULTS

Table 1: M5 Dataset Predictability Analysis by Hierarchical
Level

Level # Time Series # Forecastable Series Forecastable (%)

Store 10 10 100.0%
Department 7 7 100.0%
Store-Department 70 66 94.3%
Product 3049 496 16.3%
Note: A time series was deemed ‘forecastable’ if its mean spectral pre-
dictability score was higher than its baseline score. The implementation of
the spectral predictability analysis is detailed in the main text.

B PER-ITEM NORMALIZATION
ILLUSTRATION

Table 2: Example Items with Different Demand Scales

Item ID Mean Weekly Demand Std Dev Weekly Demand

Item 0 (High Vol) 1179.86 315.96
Item 1 (Med Vol) 116.80 26.83
Item 2 (Low Vol) 11.66 2.84

Figure 4: Conceptual Illustration of SHAP Values With
and Without Per-Item Normalization for Items of Differ-
ent Scales.

C CORRELATION BETWEEN SPECTRAL
PREDICTABILITY AND FIDELITY

This section places the correlation plot regarding Spectral Pre-
dictability and fidelity. The plot has been referenced in the main
body of the paper.

D EXAMPLE OF HIGH VS LOW
FORECASTABILITY

This section provides the SHAP Explanations of two department-
stores’ forecasting as the illustrution. The HOUSEHOLD_1 of CA_3
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Figure 5: Surrogate Model Fidelity vs. Average Spectral Pre-
dictability. Left: using 𝑅2 metric. Right: using MAPE metric.

store is highly forecastable (high spectral predictibility), while HOB-
BIES_2 at TX_1 store has low spectral predictibility.

First, consider HOUSEHOLD_1 at CA_3, identified as a series with
relatively high forecastability, as shown in Figure 6 in the Appen-
dix. Figure 7 in the Appendix displays the forecast results. The
plot clearly shows strong, regular patterns in the actual demand
(green line). This plot indicates high forecast accuracy for both the
AutoGluon-TS ensemble in this high-forecastability scenario. Fur-
thermore, the surrogate’s predictions align tightly with AutoGluon-
TS’s predictions, demonstrating high fidelity.

In contrast, Figure 9 in theAppendix presents results for HOBBIES_2
at TX_1, a series characterized by a relatively low forecastability,
as shown in Figure 8 in the Appendix. The actual demand here is
much more erratic and lacks the clear seasonality seen previously.
Consequently, both the AutoGluon and surrogate forecasts exhibit
lower accuracy, struggling to capture the sharp peaks and troughs
in the actual demand, although they follow the general level. Crit-
ically, there are noticeable divergences between the AutoGluon
and surrogate model forecasts at several points across the horizon.
This visual gap signifies reduced surrogate fidelity compared to the
high-forecastability example, confirming that it is more challenging
for the surrogate to mimic the AutoGluon-TS’s behavior when the
underlying series is inherently less predictable.

Figure 6: spectral Predictibility vs. Benchmark (random
noise) for HOUSEHOLD_1 at CA_3 Store

E EXAMPLE OF FEATURE INJECTION
FAITHFULNESS TEST

This section provides a conceptual illustration of the feature in-
jection experiment used to evaluate explanation faithfulness, as
discussed in Section 3.3. This method allows for quantitative as-
sessment by creating a known ground truth effect for at least one
feature, helping to validate if explanation techniques accurately
capture feature influence.

Figure 7: Comparison of Surrogate and AutoGluon Forecasts
for HOUSEHOLD_1 at CA_3 Store

Figure 8: spectral Predictibility vs. Benchmark (random
noise) for HOBBIES_2 at TX_1 Store

Figure 9: Surrogate vs. Auto Gluon Forecasting for HOB-
BIES_2 at TX_1 Store forecasting

Table 3: Conceptual Example of Feature Injection: Simulating
Price Effect on Demand

ID Date Price
($)

Price Effect
(On Demand)

Old
Demand

New
Demand

ITEM_A 2025-05-01 10.00 0 100 100
ITEM_A 2025-05-02 11.00 -10 102 92

ITEM_B 2025-05-01 20.00 0 50 50
ITEM_B 2025-05-02 21.00 -5 51 46
ITEM_B 2025-05-03 19.00 +5 49 54
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F CALIBRATION
To potentially improve alignment between the explanation and the
original model’s prediction 𝑦𝐴𝐺 , especially where the surrogate
𝑓𝐿𝐺𝐵𝑀 deviates significantly, a post-processing calibration step can
be considered. Note this is an optional step and lacks any theoretical
support. It is meant as a patch for a system requirements that
must bridge the gap between the surrogate model’s forecast and
that of the AutoGluon TS. Acknowledging the SHAP additivity
property (𝑓𝐿𝐺𝐵𝑀 (𝑥) = 𝜙0 +

∑
𝑗 𝜙 𝑗 , where 𝜙0 is the base value from

the surrogate explanation and 𝜙 𝑗 are the surrogate’s SHAP values
[17]), a more appropriate calibration aims to rescale the feature
contributions (𝜙 𝑗 ) so their summatches the deviation of the original
prediction from the base value (𝑦𝐴𝐺 − 𝜙0).

This can be achieved heuristically by calculating a scaling factor
𝑠:

𝑠 =
𝑦𝐴𝐺 − 𝜙0

𝑓𝐿𝐺𝐵𝑀 (𝑥) − 𝜙0
=
𝑦𝐴𝐺 − 𝜙0∑

𝑗 𝜙 𝑗

assuming the denominator (
∑

𝑗 𝜙 𝑗 ) is non-zero. The calibrated
SHAP values are then 𝜙 𝑗,𝑐𝑎𝑙𝑖𝑏 = 𝑠 × 𝜙 𝑗 . This factor 𝑠 naturally
handles potential sign inversions when 𝜙0 lies between 𝑓𝐿𝐺𝐵𝑀 (𝑥)
and 𝑦𝐴𝐺 .

Handling edge cases, such as 𝑦𝐴𝐺 = 0 while 𝑓𝐿𝐺𝐵𝑀 (𝑥) ≠ 0,
requires careful consideration:

• If surrogate predicts base value (𝒇𝑳𝑮𝑩𝑴 (𝒙) = 𝝓0):
– If the target model also predicts the base value (𝒚̂𝑨𝑮 = 𝝓0),
both models agree on zero deviation from the baseline. No
calibration is needed; the original (zero-sum) surrogate
SHAP values 𝜙 𝑗 can be used.

– If the target model predicts differently (𝒚̂𝑨𝑮 ≠ 𝝓0), cal-
ibration is mathematically impossible (division by zero:∑

𝑗 𝜙 𝑗 = 0). This indicates a significant local mismatch
where the surrogate fails to capture the target’s deviation.
Action: Issue a warning about the fidelity failure and ei-
ther skip displaying calibrated values or show the original
𝜙 𝑗 with a strong caveat.

• If target model predicts zero (𝒚̂𝑨𝑮 = 0):
– Calibration can generally proceed using the formula 𝑠 =
−𝜙0/(𝑓𝐿𝐺𝐵𝑀 (𝑥) −𝜙0), as long as the surrogate prediction
is not exactly the base value (i.e., 𝑓𝐿𝐺𝐵𝑀 (𝑥) ≠ 𝜙0).

– However, consider the practical context: for zero forecasts
often driven by specific business rules (e.g., stock-outs,
discontinued items), providing a rule-based explanation
might be more insightful than displaying potentially com-
plex calibrated SHAP values that sum to −𝜙0.

We acknowledge that any such calibration remains a heuristic
adjustment applied post-hoc [18]. It lacks strong theoretical ground-
ing within the SHAP framework, as it modifies explanation values
based on outcomes rather than directly reflecting the (surrogate)
model’s internal logic that generated the original𝜙 𝑗 . It should be ap-
plied cautiously, primarily serving as a pragmatic way to reconcile
explanation additivity with the target prediction when fidelity is
imperfect [21, 22]. Hence it is optional depends on the XAI system
requirements.
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