
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STRAIGHT TO ZERO: WHY LINEARLY DECAYING THE
LEARNING RATE TO ZERO WORKS BEST FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

LLMs are commonly trained with a learning rate (LR) warmup, followed by co-
sine decay to 10% of the maximum (10× decay). In a large-scale empirical study,
we show that under an optimal max LR, a simple linear decay-to-zero (D2Z)
schedule consistently outperforms other schedules when training at compute-
optimal dataset sizes. Benefits increase further with more training tokens; e.g.,
a 617M-parameter model trained for 80 tokens-per-parameter (TPP) using D2Z
achieves lower loss than when trained for 200 TPP using 10× decay, correspond-
ing to an astonishing 60% FLOPs savings. This implies models like Llama2-7B,
trained for 286 TPP with 10× decay, were severely under-decayed. We demon-
strate the benefits of D2Z across a range of model sizes, batch sizes, and other
training configurations. We explain the success of linear D2Z via a novel inter-
pretation of AdamW as a convex combination of weight updates, with coefficients
governed by the LR schedule. This interpretation demonstrates how linear D2Z
balances the demands of early training (moving away quickly from initial condi-
tions) and late training (smoothing over more updates to mitigate gradient noise).

1 INTRODUCTION

Learning rate schedules play an important role in training large language models. The original
Transformers paper (Vaswani et al., 2017) proposed a brief LR warmup followed by decay propor-
tional to the inverse square root of the step number. This schedule has the advantage of not requiring
prior specification of the total training steps. However, cooling down to a specific minimum LR
is acknowledged to be “preferable when one knows the training duration in advance” (Zhai et al.,
2022) as it produces “slightly better results” (Raffel et al., 2020). In this paper, our primary focus is
finding LR schedules that achieve the minimum loss given a fixed number of training tokens.

The “predominant choice” (Hu et al., 2024) in such training — the “de-facto standard” (Hägele
et al., 2024) — is warmup followed by cosine decay to 10% of the max LR, an approach used
in GPT3 (Brown et al., 2020), Gopher (Rae et al., 2022), Chinchilla (Hoffmann et al., 2022),
BLOOM (Scao et al., 2023), Llama (Touvron et al., 2023a), Llama2 (Touvron et al., 2023b), Fal-
con (Almazrouei et al., 2023), Pythia (Biderman et al., 2023), etc. It is used “following Hoffmann
et al.” (Muennighoff et al., 2023), and is the default schedule in LLM codebases (Karpathy, 2024).

0 25000 50000 75000 100000

2.4

2.6

2.8

3.0

3.2

S
m

o
ot

h
ed

tr
ai

n
in

g
lo

ss
:

Step:

10x @ 80TPP

D2Z @ 80TPP

10x @ 200TPP

D2Z @ 200TPP

60% fewer FLOPs

1.8% ↓ Loss

Figure 1: A 617M model trained for
80 TPP with Linear-D2Z has better
train (and validation) loss than when
trained for 200 TPP with Linear-10×.

We present a large-scale, hypothesis-driven study to deter-
mine which schedules work best in which situations, and
why. We focus on compute-efficient models. According to
Chinchilla scaling laws (Hoffmann et al., 2022), the fewest
FLOPs to achieve a given loss is obtained when models
are trained for around 20 tokens-per-parameter (TPP). For
inference, we often train for more than 20 TPP because
smaller, over-trained models are cheaper to serve (Touvron
et al., 2023a). We hypothesized that the optimal LR sched-
ule may depend on the max LR, and validated this empir-
ically. However, our experiments in various settings re-
vealed a consistent outcome: when all schedules are at their
optimal max LR, simple linear decay-to-zero (D2Z) works
best at compute-optimal TPP. Moreover, the relative benefit
of D2Z over 10× (in terms of training, validation and even
downstream loss) increases with TPP (Figure 1). Models

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000

Step (t)

0

1.0e-03

2.0e-03

3.0e-03

4.0e-03

5.0e-03

L
R

S
ch

ed
u

le
(η
t
)

Linear-D2Z

Cosine-D2Z

StepTo0.1%

0 10000 20000 30000 40000 50000

Weight update (i)

1.0e-13

1.0e-11

1.0e-09

1.0e-07

1.0e-05

1.0e-03

W
ei

gh
t

u
p

d
at

e
co

eff
.

(c
t,
i)

Figure 2: Each LR schedule, ηt (left) and setting of weight decay, λ, implies a convex combination
of weight updates, with combination coefficients ct,i (right, log-scale) giving the contribution of
the ith update to model weights θt at step t. Coefficients here for the final training step (t=55680),
corresponding to settings for 111M-param µP models: η̃=1.6e-02, ρ=1/3, λ=0.1. The more sudden
the drop from the high-LR period to the low-LR period, the more earlier updates are emphasized;
this could explain the slight advantage of Linear over Cosine decay, and of Cosine over Step decay.

such as Llama2-7B, trained for 286 TPP at 10× decay, could likely have saved the majority of their
total compute by switching to D2Z. We also confirm the advantage of linear D2Z over cosine D2Z,
and various other approaches (Hu et al., 2024; Bi et al., 2024; Hägele et al., 2024).

To explain the success of Linear-D2Z, we build on recent work on the related topic of weight de-
cay (Andriushchenko et al., 2023; Wang & Aitchison, 2024). First, we find decaying the LR to
zero works because compute-efficient training includes a long phase in which gradient noise is the
predominant factor slowing loss reduction — with more training tokens or higher noise through
smaller batch sizes, the advantages of D2Z increase. Secondly, we demonstrate that approaching
zero linearly is beneficial via a novel interpretation of AdamW (Loshchilov & Hutter, 2017) —
the predominant optimizer in LLM training. With AdamW, the weights generated at each step are
implicitly a weighted average over all weight updates (including the initial, random weights). The
shape of the vector of combination coefficients depends on the learning rate schedule and weight
decay settings (Section 3.1). Analyzing this dual of the LR schedule, we see that linear decay pro-
duces a favorable combination of prior weight updates (Figure 2). When LR drops abruptly, e.g., via
step-decay or, to a lesser extent, cosine decay, weight updates after the drop receive less emphasis;
this results in worse model quality (Section 4). The dual view also reveals the implicit schedule-
awareness of recent “schedule-free” approaches (such as Warmup-Stable-Decay). However, it also
suggests a method for truly schedule-free training (Section 3.3).

Our findings also expose the LR decay ratio as a powerful confounder in prior work studying op-
timal hyperparameter transfer across dataset and batch size, in particular with the maximal update
parameterization (Yang & Hu, 2020; Yang et al., 2021); optimal max LRs are much more stable
when using D2Z than when using 10× or no decay. Moreover, we explain and demonstrate that the
benefits of weight decay are observed primarily when using LR D2Z, where raising weight decay
can fine-tune the dual coefficients without affecting initial training stability.

2 BACKGROUND AND RELATED WORK

2.1 LEARNING RATE SCHEDULES

LR schedules have a long history in stochastic optimization, and are motivated by convergence
bounds for stochastic gradient methods (Moulines & Bach, 2011; Bottou et al., 2018). For example,
following Andriushchenko et al. (2023), consider SGD for a convex loss parameterized by θ: with a
constant LR η, the gap between the optimum and current loss at step t can be bounded by:

E[L(θt)− L(θ∗)] ≤ (1− ηµ)t||θ0 − θ∗||2 + ησ2 (1)

where θ0 are initial parameters, θ∗ is the loss minimizer, σ2 is a bound on the variance of gradient
noise, and µ is a measure of curvature of the objective around its minimum (see also derivation of
Theorem 6 in Bottou et al. (2018)). A larger LR can decrease dependence on initial conditions (the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

bias term), but also increase the effect of gradient noise (the variance term). As training progresses,
bias decreases exponentially, and the relative importance of variance increases (noise has also been
found to increase in absolute terms over training (McCandlish et al., 2018)). This motivates a sched-
ule where the LR is high initially (to mitigate bias) and lowered later (to minimize variance).

In practice, when and how to reduce the LR is rarely informed by ML theory. Many LLMs simply
follow the 10x cosine schedule, which is noted to work slightly better than cosine D2Z in Hoff-
mann et al. (2022). It is also well established that using a portion of a longer (or extending a
shorter) schedule is suboptimal compared to using a schedule that reaches its minimum only at
the final training step (Hoffmann et al., 2022; Hu et al., 2024; Hägele et al., 2024). Linear de-
cay after warmup (Howard & Ruder, 2018) has been used in LLMs, typically also to 10% of the
max (Henighan et al., 2020; Dey et al., 2023; Sengupta et al., 2023). Beyond LLMs, dropping
LR at specific milestones (step decay) is popular in vision models (He et al., 2016; Zagoruyko &
Komodakis, 2016; Li et al., 2020), but has also been used in LLMs (Bi et al., 2024).

Kaplan et al. (2020) compared various decay functions and concluded the specific schedule was
unimportant given a high enough average LR, although decaying to zero “gives a fixed improvement
close to the end of training.” Few papers explicitly compare different LR schedules for large-scale
training, and when comparisons are made (Shallue et al., 2019; Kaplan et al., 2020; Schmidt et al.,
2021; Hoffmann et al., 2022; Yang et al., 2021), they are not the primary focus. So, while some
insights are gained, “comprehensive study” is usually regarded as “out of scope” (Aleph Alpha,
2024). One exception is Defazio et al. (2023), who found linear equals or outperforms other common
schedules, including cosine, across a range of problems, including LLM training. They develop
convergence bounds that theoretically motivate linear as the optimal schedule. Unlike our work,
they do not evaluate LLMs with different max LRs or decay ratios.

Seeking to measure model quality at different training durations without having to re-train separate
models from scratch (Zhai et al., 2022; Hägele et al., 2024), researchers have adopted various infinite
schedules, such as constant, cyclic (Smith, 2017), etc. Following optimization theory (Moulines &
Bach, 2011; Defazio et al., 2024) weight averaging provides an alternative to decay (Sandler et al.,
2023; Sanyal et al., 2023; Busbridge et al., 2024), although it is typically not as effective (Hägele
et al., 2024), and moreover may have hyperparameters that implicitly depend on training dura-
tion (Defazio et al., 2024). Warmup-Stable-Decay (WSD) approaches have also been used in LLM
training (Hu et al., 2024; Shen et al., 2024a; Ibrahim et al., 2024; Hägele et al., 2024). These methods
train at a constant LR, but decay from a checkpoint in a separate process when an intermediate model
is needed. While the goal is to perform as well as fixed schedules, we show the optimal constant LR
implicitly depends on training duration, making these approaches not truly schedule-free.

2.2 MAXIMAL UPDATE PARAMETERIZATION (µP)

Conventionally, initial weights are scaled to ensure activations have unit variance (Glorot & Bengio,
2010; He et al., 2015), but such methods do not ensure stability after multiple steps of training, due
to imbalances in layer-wise LRs (Yang et al., 2021). In contrast, µP (Yang & Hu, 2020) prescribes a
re-parameterization of initial weight variances and LRs – essentially, rules for how to change these
values as model width (i.e., dmodel) changes – such that activations and updates remain on the same
scale. µP also stabilizes embeddings, layer norms, and self-attention in Transformers. µP is seeing
growing application in LLMs (Dey et al., 2023; Shen et al., 2024b; Hu et al., 2024), where it acts to
stabilize training and to enable transfer of optimal hyperparameters (HPs) across model scales.

With µP, base HPs can be tuned on a small proxy/base model and then transferred to larger models.
Given the width of the proxy model, dp, and width of the target, dt, µP prescribes scaling factors to
apply to HPs. The base LR η̃ is scaled down to η = ρη̃, where ρ = dp/dt. In terms of LR schedules,
the base LR η̃t is scaled at every step to provide ηt. µP is convenient in our study as we can sweep
the same base maximum LRs, η̃, at each model size, and observe trends that are scale-invariant.

2.3 ADAMW WEIGHTS AS EXPONENTIALLY-WEIGHTED MOVING AVERAGE (EMA)

An AdamW update at a single training step, t, can be expressed as:

θt = (1− ηλ)θt−1 − η
m̂t√
v̂t + ϵ

(2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where η is the learning rate, m̂t and v̂t are (bias-corrected) running averages of the gradient and
the squared gradient, respectively, and ϵ is a small constant added to prevent division by zero. The
weight decay value, λ, is typically set to 0.1 in LLM training (Brown et al., 2020; Hoffmann et al.,
2022; Almazrouei et al., 2023; Aleph Alpha, 2024).

While the running averages of m and v in Adam (Kingma & Ba, 2014) and AdamW are of course
exponentially-weighted moving averages (EMAs), Wang & Aitchison (2024) recently showed how
the weights generated by AdamW can also be understood as an EMA of the weight updates. A
generic EMA, yt, for a time-varying quantity, xt, can be written as:

yt = (1− α)yt−1 + αxt (3)

where α is the smoothing parameter. AdamW from Eq. 2 can be interpreted as an EMA by letting:

yt = θt, α = ηλ, and xt = − 1

λ

m̂t√
v̂t + ϵ

(4)

Wang & Aitchison note the quantity 1/α, i.e., 1/(ηλ), provides a rough timescale over which updates
are averaged. The weight decay λ can therefore be used to control the effective window over which
weight updates are combined (smaller values of λ increase the timescale, increasing the contribution
of earlier updates to the EMA). This view also motivates dynamic LR schedules. Initial timescales
should be small (high ηt), to ensure early contributions to the EMA are forgotten, “while the final
timescale is around the total number of epochs [low ηt], to ensure averaging over all datapoints.” In
fact, we will show that the contribution of weight updates, x0, x1, . . . xt, to the model θt at a particu-
lar training step, t, cannot be determined by the instantaneous value of ηtλ. Rather, the contribution
of any xi to the weights θt requires looking at the full LR schedule holistically (Section 3).

Wang & Aitchison also motivate scaling rules for the optimal λ as model and dataset size vary. If
the dataset size increases by a factor of M , the EMA view recommends scaling λ by 1/M in order
to expand the timescale proportional to the expansion of the dataset. Moreover, with µP, if model
size increases and the LR is scaled by ρ (Section 2.2), the EMA view motivates scaling λ by 1/ρ to
keep the timescale constant. Although not explored by Wang & Aitchison, analagous rules can be
derived for batch size changes. Of course, in practice we typically scale the batch size and dataset
size together with model size, so real application requires jointly accounting for multiple factors.

3 METHODS

3.1 ADAMW AS CONVEX COMBINATION OF WEIGHT UPDATES, DRIVEN BY LR SCHEDULE

To properly account for time-varying LRs, we now consider a moving average with time-varying
smoothing, αt. If we let α1 = 1 (so that y1 = x1), we can express yt in terms of all inputs xt:

y1 = α1x1,

y2 = (1− α2)α1x1 + α2x2,

y3 = (1− α3)(1− α2)α1x1 + (1− α3)α2x2 + α3x3, · · ·

yt =

t∑
i=1

 t∏
j=i+1

(1− αj)

αixi (5)

Let ct,i =
(∏t

j=i+1(1− αj)
)
αi be the contribution of input xi to output yt at time t, such that

yt =
∑t

i=1 ct,ixi. It can be shown ∀t,∑i ct,i = 1, and hence, as in a standard EMA, each yt
is a convex combination of the inputs x1 . . . xt (i.e., all coefficients are non-negative and sum to
1). However, with time-varying smoothing, we are not restricted to exponentially-decreasing co-
efficients as i decreases. Indeed, for any convex combination of inputs, there is a corresponding
smoothing schedule that generates that combination. In terms of LR schedules for AdamW training,
αt = ηtλ becomes the smoothing parameter at step t (cf. Eq. 3 and 4). Note, when using a µP LR
scaling factor, ρ (Section 2.2), the smoothing parameter is α = ηλ = ρη̃λ.

This formulation enables proactive analysis of existing LR schedules — by calculating coefficients
and judging how updates are integrated over training — without needing to actually train. For

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

example, Figure 2 (Section 1) compares the effect of Linear, Cosine, and Step decay on the output
at step t of a 111M-parameter model trained for 200 TPP (2D plots of ct,i over all t and i are in
appendix Figure 25; see also Figures 26 and 27). Moreover, we can also design novel LR schedules
to have desirable blends of weight updates (Section 3.3). Optimizing these coefficients thus provides
a dual to optimizing the LR decay function, and we therefore refer to these coefficients as the dual
coefficients of the LR schedule.

3.2 BIAS AND VARIANCE IN THE LR SCHEDULE DUAL

The dual view provides an interpretation of bias and variance that aligns with Eq. 1. The coefficient
on the initial random weights, ct,1 =

∏t
j=2(1 − αj), monotonically decreases with t. The higher

the max LR, the higher the αj values, and the more rapidly ct,1 diminishes. In other words, higher
LRs reduce bias more quickly, rapidly moving the solution away from initial weights. Only if the
bias is sufficiently low can we prioritize noise (variance) reduction by lowering the learning rate.

Note that weight updates have a coefficient of 1/λ in Eq. 4. So, while ηt and λ contribute equally to
αj , increasing λ to reduce bias is counterproductive as weight updates will be scaled down propor-
tionally, reducing movement from initial conditions. This observation will be crucial for interpreting
our experimental findings where we systematically vary LR and weight decay (e.g., Figure 6).

To what extent do the bias and variance terms play a role in modern LLM training? We hypothesize
that the answer to this question is scale-invariant given a fixed training tokens-per-parameter (TPP).
We know that, regardless of scale, models tend to reach the compute-efficient-training frontier at
around 20 TPP (Hoffmann et al., 2022). It seems unlikely that at some scales, models train efficiently
to 20 TPP by mostly minimizing bias, while at others they train efficiently to 20 TPP by mostly
grappling with variance. It is more likely that 20 TPP is consistently efficient across scales precisely
because it corresponds to a balanced combination of bias and variance.

3.3 TRULY SCHEDULE-FREE LR SCHEDULES

Constant schedules, or schedules with a long constant phase such as WSD, are not truly “schedule-
free” because their max LR setting affects the (1 − αj) terms in the dual. Different LRs will cor-
respond to different effective timescales over updates, and thus different LRs will be optimal for
different training durations (see appendix Figure 26a for Constant and Figure 27d for WSD).

In contrast, we now derive a schedule such that coefficients are always weighted equally, at every
training step. First, it can be shown that:

ct,i+1

ct,i
=

αi+1

(1− αi+1)αi
(6)

For the coefficients to be uniform at any step t, we require this ratio to be 1, which implies that
smoothing evolves αi+1 = αi

(1+αi)
. Assuming a fixed weight decay (so αi = ηiλ), coefficients will

be equal if the LR evolves:

ηi+1 =
ηi

(1 + ηiλ)
(7)

We can initialize η0 to some value and iterate Eq. 7 to generate the full LR schedule. We call this
the Rational schedule since it is both a rational expression of ηi and a very reasonable approach:
regardless of how long we train, all weight updates contribute equally. At each step we effectively
decrease all prior coefficients such that they now equal the coefficient of the current update, αt.

With λ = 1 and no warmup, this schedule evolves like 1/n. However, in order to distance our-
selves from the initial conditions, we can warmup the LR in the usual manner to the desired max
LR, then switch on rational decay, ensuring equal coefficients going forward (depicted in appendix
Figure 26d). However, such a schedule will almost surely not work as effectively as Linear D2Z
for fixed-duration training, since it lacks the cooldown phase where gradient noise is minimized.
Indeed, 1/n has performed relatively poorly in prior studies (Ge et al., 2019; Defazio et al., 2023).
However, we introduce it here as a promising schedule for continuous pretraining.1

1In fact, 1/n decay has long been regarded as optimal for strongly-convex loss (Robbins & Monro, 1951),
and optimal in other contexts when combined with averaging (Defazio et al., 2023). Since averaging is an
alternative to cooldown (Hägele et al., 2024), Rational plus averaging is a compelling schedule-free direction.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Comparison of decay schedules: validation loss for 617M µP models, 20 TPP. 1.6e-02 is
the µP proxy-tuned max LR. Linear-D2Z outperforms other schedules across most LRs.

η̃ InvSqrt Constant Cosine-10× Linear-10× Cosine-D2Z Linear-D2Z

6.5e-02 2.789 3.035 NaN 2.667 2.611 2.605
3.2e-02 2.710 2.850 2.604 2.606 2.574 2.571
1.6e-02* 2.671 2.768 2.590 2.591 2.578 2.573
8.1e-03 2.665 2.722 2.598 2.600 2.595 2.590
4.0e-03 2.691 2.711 2.634 2.635 2.637 2.633
2.0e-03 2.762 2.739 2.707 2.710 2.717 2.714

10−2

Max LR, η̃

4.0

4.5

V
al

id
at

io
n

lo
ss

2 TPP

10−2

Max LR, η̃

3.0

3.2

3.4

3.6

20 TPP

10−2

Max LR, η̃

2.8

3.0

3.2

200 TPP

Constant

10x

D2Z

Figure 3: Validation loss for 111M models. As TPP increases, Linear-D2Z outperforms 10×, espe-
cially at the proxy-tuned max LR (red lines). 617M results are similar (appendix Figure 12).

4 EMPIRICAL ANALYSIS OF DECAY-TO-ZERO

4.1 EXPERIMENTAL SETUP

Experiments use a GPT-like LLM (Radford et al., 2019), with ALiBi embeddings (Press et al.,
2022) and SwiGLU (Shazeer, 2020). Models are trained on SlimPajama (Soboleva et al., 2023)
and evaluated over 1.1B tokens (regardless of training TPP). Unless otherwise indicated, standard
weight decay of λ = 0.1 is used. Training runs use the same random seed, so all decay functions
(Linear, Cosine, etc.) and ratios (Constant, 10×, D2Z) have identical warmup phases, but note
validation is very consistent across seeds at this scale (appendix Figure 22). By default we use µP
(standard parameterization results are in appendix Section B.2). µP hyperparameters are derived
from a smaller proxy model tuned using a Linear-10× schedule. Since we hypothesize the max
LR, η̃, is a confounder when comparing LR schedules, we sweep η̃ by factors of 2× around the µP
proxy-tuned η̃ = 1.6e-02. Appendix A has full experimental details.

4.2 RESULTS

Finding 1: Linear-D2Z is the optimal LR schedule across virtually all maximum learning rates.

For 617M-parameter µP models trained to compute-optimal 20 TPP, the optimal Linear-D2Z setting
achieves 0.77% lower loss than the optimal Linear-10× setting (Table 1). At smaller, suboptimal
max LRs, 10× can be better than D2Z. In appendix Figure 10, we demonstrate very similar re-
sults using the standard parameterization. Regarding the decay function, gains from Linear-D2Z
over Cosine-D2Z are small, but perfectly consistent across max LRs, exactly in line with recent
work (Defazio et al., 2023; Lingle, 2024). Interestingly, Cosine-10× is consistently slightly better
than Linear-10×, showing that Linear itself is not always best, rather Linear plus D2Z is needed.
Lacking a cooldown phase, inverse square root (InvSqrt) and Constant do not perform as well.

For the remaining experiments, we use a Linear schedule unless otherwise indicated.

Finding 2: As TPP increases, the relative improvement of D2Z over 10× also increases.

For 111M models at only 2 TPP, D2Z performs worse than 10× across all max LRs (Figure 3; 617M
plot is similar, see appendix Figure 12). However, as TPP increase, D2Z begins to outperform 10×,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 50 100 150 200

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

V
al

id
at

io
n

lo
ss

TPP:

111M-10x

111M-D2Z

617M-10x

617M-D2Z

1.7B-10x

1.7B-D2Z

Figure 4: As TPP increases, the valida-
tion loss gap between Linear-D2Z vs.
Linear-10× grows, across model sizes.

10−2

Max LR, η̃

2.6

2.7

2.8

V
al

id
at

io
n

lo
ss

10x

B=63

B=126

B=252

B=504

10−2

Max LR, η̃

D2Z

B=63

B=126

B=252

B=504

Figure 5: Validation loss for 617M models as batch size
varies, comparing 10× (left) to D2Z (right). All models
trained to 20 TPP (smaller batches have more steps). As
batch size (B) decreases, the optimal LR (η̃) drifts signif-
icantly lower for 10× decay, less so for D2Z.

10−5 10−3 10−1

α = ηλ

2.55

2.60

2.65

2.70

2.75

V
al

id
at

io
n

lo
ss

Constant

10−5 10−3 10−1

α = ηλ

10x

10−5 10−3 10−1

α = ηλ

D2Z

η̃=2.0e-3

η̃=4.0e-3

η̃=8.1e-3

η̃=1.6e-2

η̃=3.2e-2

η̃=6.5e-2

Figure 6: Validation loss for 617M models (20 TPP) as α=ηλ
varies. Optimal loss corresponds to high (but not too high) η̃ (indi-
cated by color). Only D2Z models further improve as λ increases.

10−2

Max LR, η̃

2.44

2.46

2.48

2.50

2.52

V
al

id
at

io
n

lo
ss

Cyclic

10x

D2Z

WSD

Figure 7: Validation loss for
617M models (80 TPP): D2Z
surpasses Cyclic and WSD
schedules.

exceeding the best setting of 10× by 1.6% at 200 TPP, and performing 2.8% better at the proxy-
tuned η̃ = 1.6e-02 (marked in plots with a red vertical line). Figure 4 plots the validation loss of
10× and D2Z at different TPP settings for different model sizes; in this plot, all models are trained
using the proxy-tuned max LR. For the 617M model, D2Z is also initially worse than 10×, but
begins to surpass it around 4 TPP, and by 200 TPP is 2.6% better. As with training loss (Figure 1),
an 80 TPP D2Z model can surpass a 200 TPP 10× model in validation loss.

Importantly, these trends also hold for downstream evaluation of the models (appendix Table 5).

Finding 3: Compared to Constant and 10×, optimal max LRs are much more stable with D2Z.

In Figure 3 we see different levels of hyperparameter sensitivity when increasing TPP: the optimal
LR shifts substantially lower for Constant, somewhat lower for 10×, and hardly at all for D2Z. The
same trend holds at 617M scale (appendix Figure 12). Moreover, with D2Z, loss is less sensitive
to a sub-optimal LR (bowls are flatter). Similar trends can be observed when we vary the batch
size (Figure 5). Note D2Z is superior to 10× across all batch sizes (this is observed more clearly in
appendix Figure 13). In terms of LR stability, 10× models already see significant shift at a batch
size B=126; D2Z models begin to shift at B=63. For models with varying batch sizes, but where we
fix the number of steps, rather than TPP, results are broadly similar (appendix Figure 14). D2Z is
also superior, and loss is more stable, as we vary weight decay (appendix Figure 15 and 17).

Finding 4: Benefits of weight decay are observed primarily when using LR D2Z.

We explore the interaction between weight decay (WD) and LR in Figure 6 (for 617M models) and
appendix Figure 16 (for 111M). Here we plot with the x-axis set to the (max) smoothing parameter,
α = ηλ; note for a given decay ratio and α, dual coefficients (Section 3) are identical. Thus it
supports the EMA/dual view to note that regardless of max LR, η̃, models tend to reach their lowest
loss at around the same α. However, to reach optimal loss, models require η̃ to be high, but not too

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

high (at η̃ = 6.5e-02 and above, we consistently encounter instabilities in training). When increasing
λ with a given maximum LR (moving left-to-right along curves), note the behavior differs depending
on LR schedule: Constant models perform worse, Linear-10× models see marginal gains, and
Linear-D2Z models benefit significantly. Results are similar for 111M models (appendix Figure 16).

These results align with Andriushchenko et al. (2023) who also observed no benefit from WD when
using constant LRs. We also confirm WD does not act like a traditional regularizer here; beneficial
settings of WD always improve both validation and training loss. Aleph Alpha (2024) also recently
showed WD=0.1 improves over WD=0.0 in LLM training; notably, they also train with D2Z.

Finding 5: Linear-D2Z works better than WSD and Cyclic (continuous) LR schedules.

In Figure 7, we compare D2Z to 10×, and to two approaches designed for continuous pretraining:
Cyclic, which cycles LR up and down, and WSD (Section 2.1). For WSD, we simulate a model
being retrieved after 80 TPP, and cool the LR for the final 22.5% of steps (around the proportion
recommended by Hägele et al. (2024), and equal to the cooldown duration in our 20 TPP models).
Appendix Figure 27 provides full LR curves and dual coefficients for all models in Figure 7.

At its optimal LR, WSD works better than 10×, confirming results in Hägele et al. (2024). However,
note the optimal max LR shifts lower for both 10× and WSD at this TPP. Linear-D2Z remains
best here, around 0.84% better than the optimal WSD. Given the diminishing returns of high-TPP
training (Figure 4), WSD would require significantly more training FLOPs to reach the level of D2Z.

Finding 6: Constant and 10×, but not D2Z, strongly overfit to the end of the training data.

0 10000 20000 30000 40000

2.30

2.35

2.40

2.45

2.50

2.55

2.60

2.65

2.70

L
os

s

Batch:

Constant, η̃=1.6e-2

Constant, η̃=1.0e-3

10×, η̃=1.6e-2

D2Z, η̃=4.0e-2

D2Z, η̃=1.6e-2

Figure 8: Loss on training set after models
have been trained: 617M models, 80 TPP.

We also performed an experiment where we eval-
uated trained models on the same data, in the same
order, as used during training (Figure 8). As pre-
dicted by the dual view (Section 3), the higher the
LR, the more the models fit to later training data.
It is striking both Constant and 10×, but not D2Z,
overfit to the very final portion. Extra adaptation
of generative models to recent training sequences
has long been observed (Graves, 2013), but to our
knowledge this is the first evidence that D2Z may
help mitigate these effects. Since D2Z performs
best on data slightly before the final training phase,
placing the highest-quality and most-recent data
in the very final phase, while using D2Z (e.g., as
in Dubey et al. (2024)), may be suboptimal.

5 DISCUSSION

5.1 INTERPRETATION OF OUR RESULTS

Importance of
high early LR

Importance of
LR decay,
weight decay

TPP

Figure 9: LR and weight decay
settings increase in importance
with training duration.

LR decay mitigates gradient variance, which grows with TPP
Recall Eq. 1: learning can benefit from a high LR early (to es-
cape initial conditions: bias), and a low LR later (to minimize
increasing gradient noise: variance). Of course, there is no hard
transition between these phases. Moreover, as TPP increases,
the balance between these two criteria shifts (Figure 9). With
Constant, the shifting emphasis as TPP increases can only be sat-
isfied by lowering the fixed LR (explaining the shift in optimal
LR, Figures 3 and 12). At 2 TPP, some LR decay is beneficial,
but too much hampers bias reduction; here, D2Z underperforms
10×. However, a major finding of our work is that, when train-
ing LLMs at compute-efficient TPP (20+ TPP), decaying to zero
is optimal. At these TPP, optimal LRs for 10× also shift lower
as noise reduction gains importance. But lower LRs move pa-
rameters less from initial conditions, and 10× loss lags D2Z.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Our results clarify that reducing α = ηλ is primarily beneficial as a noise-reduction mechanism.
Recall that in the view of Wang & Aitchison (2024), the benefit of α is to optimize the timescale
of data; if we double the amount of data, we should double the steps that we smooth over, e.g.,
decrease η or λ by a factor of 2. But consider appendix Figure 14: as we double the amount of
data (via doubling of the batch size and keeping the same number of steps), the optimal LR actually
increases rather than decreases. This is because increasing batch size reduces gradient noise; with
less noise, we can afford a larger LR throughout training. Indeed, since raising α decreases the
number of AdamW weight updates that we combine, it has a similar effect to decreasing the batch
size; optimal batch sizes of course also deeply depend on gradient noise (McCandlish et al., 2018).

η plays a role early, ηλ plays a role later Section 3.2 makes the observation that while LR η and
weight decay λ can both equally change the dual coefficients, only η is effective in moving the model
away from initial conditions. This is confirmed by Figure 6 and 16: only when η is sufficiently high
do models achieve optimal loss. Given such an η, the benefit of weight decay is evidently to adjust
α = ηλ to a setting that synergizes best with the decay schedule (for 617M models, around 4e-
04). Weight decay is beneficial because training instabilities prevent reaching this optimal α purely
through increasing η. We can further confirm that the α setting primarily plays a role later in training
as follows: First, note again that Constant does not benefit from weight decay. Constant must make
a training trade-off: it uses a LR that is sub-optimally low early and sub-optimally high later on.
Increasing λ raises the already-too-high (late) α even higher, hurting the model. In contrast, if α
primarily played its role early (e.g., via wider exploration of the loss surface), increasing λ would
improve Constant loss, but this is not the case. In this way, α = ηλ can be viewed as the effective or
instrinic LR (Li et al., 2020; Wang & Aitchison, 2024), but only later in training.

The special benefit of D2Z A low α later in training can expand the timescale over which we
combine weight updates, reducing noise in a manner similar to increasing batch size. However,
there is apparently a separate, independent benefit from decaying LR to a very small value. Indeed,
looking at appendix Figure 27 for the 80 TPP comparison to the continuous schedules, we see 10×
coefficients are quite similar to the D2Z curve, apart from missing the final drop. Moreover, they are
flatter than the WSD dual for the same max LR, suggesting better integration of prior updates. Yet
WSD performs better than 10× at all LR settings (Figure 7). In contrast, at 2 TPP (Figure 3), 10×
performs better than D2Z at every LR setting. Prior work has shown large LRs allow exploration of
the loss surface at a height “above the valley floor” (Xing et al., 2018), while LR cooldown phases
descend into a local minimum (Hu et al., 2024; Hägele et al., 2024). It appears that descending into
these minima is beneficial only after sufficient exploration of the loss surface.

5.2 INTERPRETATION OF PRIOR RESULTS

The confounding role of training duration LR schedules have been an unappreciated confounder
of studies varying batch size and TPP. Analagously, TPP has been a confounder in studies evaluating
LR schedules. Recall Kaplan et al. (2020) saw a benefit from D2Z. In contrast to Chinchilla scaling
laws (Hoffmann et al., 2022), in the Kaplan et al. perspective, small models should be trained to
very high TPP, while larger models should be trained less. It is therefore not surprising Kaplan et al.
saw benefits testing D2Z with small models; as we have shown, D2Z is especially effective at high
TPP. Similarly, in Figure 4 of Yang et al. (2021), Linear is worst of all schedules, and the gap
between it and Constant and InvSqrt grows with model width. But here, since training data is fixed,
TPP decreases as width increases. Thus training is in a phase where bias reduction is paramount. In
contrast, in their LLM training experiments, Yang et al. do report linear D2Z to work best.

With this context, we can further speculate on why D2Z is not more widely used. First, it is com-
mon to evaluate hyperparameters on smaller training runs; unfortunately, with limited training, D2Z
misleadingly underperforms. Secondly, coupling between LR schedule and the optimal max LR
is problematic. That is, with 10× decay, we may find a lower max LR is optimal; if we then test
D2Z with the same max LR, we may not see a benefit. Finally, poorly controlled training dynamics
may prevent networks from being trained with LRs high enough to achieve optimal quality. Indeed,
when we initially compared D2Z and 10× with NanoGPT (appendix Section B.9), 10× performed
better at the default LR. Raising the LR resulted in training divergence. Only after switching from
float16 to float32 could D2Z succeed — and the model reach optimal loss.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

The confounding role of LR schedule Sensitivity of the optimal max LR to the LR schedule can
explain a number of findings in prior work. For example, Shen et al. (2024b) were puzzled by their
observation that “although the WSD scheduler could, in theory, continue in the stable phase forever
. . . the optimal LRs are different for different amounts of training tokens.” As noted in Section 3.3,
LR schedules with long periods of constant LR only appear “schedule-free” in the primal; from the
dual perspective, the higher the LR, the more emphasis is placed on recent updates (see appendix
Figure 26a, for Constant, and Figure 27d, for WSD). Figure 8 provides empirical evidence for this
perspective; the highest max LRs achieve lowest loss on the final (re-visited) training batches. Yang
et al. (2021, Figure 19) also observed significant decreases in optimal max LR when TPP increases;
this can also be explained by noting these tests were done with a constant LR.

Recent work has also explored the extent to which optimal HPs under µP transfer as we vary batch
size. Some prior work (Yang et al., 2021; Noci et al., 2024; Shen et al., 2024b) has observed linear
scaling of optimal LR with batch size, i.e., the so-called linear scaling rule (Krizhevsky, 2014; Chen
et al., 2016; Smith et al., 2018). Others (Lingle, 2024) have observed square-root scaling, resonating
with other prior studies (Hoffer et al., 2017; You et al., 2019; Malladi et al., 2022). This discrepancy
can be explained by noting the linear scaling results were all found with a Constant or WSD LR
decay, while square-root was observed with Linear D2Z, again underscoring the greater stability of
D2Z. Other proposed scaling rules, e.g., square-root scaling for weight decay (Loshchilov & Hutter,
2017), should also be re-evaluated to account for the LR schedule.

5.3 LIMITATIONS AND FURTHER EXPERIMENTS

While our findings provide strong evidence for linear D2Z being optimal in our specific context,
there are several limitations to keep in mind. First, our focus in this paper was specifically LLM
training at compute-optimal dataset sizes. For ML problems with limited access to training data,
D2Z is likely not the best strategy. Second, our work focuses on AdamW (the preferred optimizer
for LLM training). While the dual view of LR schedules will likely apply to other optimizers that
use decoupled weight decay (as similarly noted by Wang & Aitchison (2024)), it may not apply
to approximate second order methods, such as Shampoo (Gupta et al., 2018). Finally, for LLMs
with unstable training dynamics that cannot tolerate high LRs, D2Z may not be beneficial. We
experienced this first-hand when we initially trained NanoGPT (appendix Section B.9).

With these caveats in mind, we also highlight here the remarkable consistency of D2Z’s success.
Beyond the experiments in the main paper, we refer the reader to the appendices for further re-
sults with downstream evaluations (Section B.1), as well results with different parameterizations
(Sections B.2, B.9), model scales (Section B.3, B.10), training durations (Section B.4), batch sizes
(Section B.5), weight decay settings (Section B.6), datasets (Section B.9, B.10), model architectures
(Section B.10), weight sparsity settings (Section B.7), and training frameworks (Section B.9).

6 CONCLUSION

The main takeaway from our work is that linear decay-to-zero is the optimal decay strategy for LLM
training using AdamW. To be clear, less decay is beneficial at low tokens-per-parameter training,
but there is no practical reason to perform such training with LLMs, since the same FLOPs could
be used to train a smaller model, over more tokens, to a lower loss – using D2Z. The superiority
of D2Z in this compute-optimal context was validated across a range of experimental conditions.
Results suggest its relative benefit will increase as models increase in scale. Moreover, when using
D2Z and µP, the optimal max LR is less sensitive to changes in weight decay, dataset size, and batch
size, i.e., there is better hyperparameter transfer.

Varying the decay schedule has proven to be a useful tool for stress-testing LLMs and developing
insights into training. Here, our analysis was aided by our interpretation of AdamW’s output as a
convex combination of prior weight updates. D2Z overfits less the final training sequences, and is
especially beneficial when gradient noise dominates training. As we enter a phase of applied ML
where inference efficiency becomes the primary concern, there is strong motivation to study high-
TPP training, where gradient noise is the bottleneck. While our results indicate that D2Z is a key
component of the solution here, further investigation is required, including into how and when to
adjust hyperparameters such as weight decay, batch size, and learning rate, in the high-TPP context.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Aleph Alpha. Introducing Pharia-1-LLM: transparent and compliant. https://aleph-
alpha.com/introducing-pharia-1-llm-transparent-and-compliant/, 2024. Ac-
cessed: 2024-09-07.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
jocaru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic,
et al. The Falcon series of open language models. arXiv preprint arXiv:2311.16867, 2023.

Maksym Andriushchenko, Francesco D’Angelo, Aditya Varre, and Nicolas Flammarion. Why do
we need weight decay in modern deep learning? arXiv preprint arXiv:2310.04415, 2023.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. DeepSeek LLM: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya
Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A Suite for Analyzing Large Lan-
guage Models Across Training and Scaling, 2023.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Dan Busbridge, Jason Ramapuram, Pierre Ablin, Tatiana Likhomanenko, Eeshan Gunesh Dhekane,
Xavier Suau Cuadros, and Russell Webb. How to scale your EMA. Advances in Neural Informa-
tion Processing Systems, 36, 2024.

Jianmin Chen, Xinghao Pan, Rajat Monga, Samy Bengio, and Rafal Jozefowicz. Revisiting dis-
tributed synchronous sgd. arXiv preprint arXiv:1604.00981, 2016.

Aaron Defazio, Ashok Cutkosky, Harsh Mehta, and Konstantin Mishchenko. When, why and how
much? adaptive learning rate scheduling by refinement. arXiv preprint arXiv:2310.07831, 2023.

Aaron Defazio, Harsh Mehta, Konstantin Mishchenko, Ahmed Khaled, Ashok Cutkosky, et al. The
road less scheduled. arXiv preprint arXiv:2405.15682, 2024.

Nolan Dey, Gurpreet Gosal, Hemant Khachane, William Marshall, Ribhu Pathria, Marvin Tom, and
Joel Hestness. Cerebras-GPT: Open compute-optimal language models trained on the Cerebras
wafer-scale cluster. arXiv preprint arXiv:2304.03208, 2023.

Nolan Dey, Shane Bergsma, and Joel Hestness. Sparse maximal update parameterization: A holistic
approach to sparse training dynamics. arXiv preprint arXiv:2405.15743, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile:
An 800GB Dataset of Diverse Text for Language Modeling, 2020.

Rong Ge, Sham M Kakade, Rahul Kidambi, and Praneeth Netrapalli. The step decay schedule:
A near optimal, geometrically decaying learning rate procedure for least squares. Advances in
neural information processing systems, 32, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the Difficulty of Training Deep Feedforward Neu-
ral Networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics (PMLR), 2010.

11

https://aleph-alpha.com/introducing-pharia-1-llm-transparent-and-compliant/
https://aleph-alpha.com/introducing-pharia-1-llm-transparent-and-compliant/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus, 2019.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, An-
drew Tulloch, Yangqing Jia, and Kaiming He. Accurate, Large Minibatch SGD: Training Ima-
geNet in 1 Hour, 2018.

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor opti-
mization. In International Conference on Machine Learning, pp. 1842–1850. PMLR, 2018.

Alexander Hägele, Elie Bakouch, Atli Kosson, Loubna Ben Allal, Leandro Von Werra, and Martin
Jaggi. Scaling laws and compute-optimal training beyond fixed training durations. arXiv preprint
arXiv:2405.18392, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22(241):1–124, 2021.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the generaliza-
tion gap in large batch training of neural networks. Advances in Neural Information Processing
Systems, 30, 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. An
empirical analysis of compute-optimal large language model training. Advances in Neural Infor-
mation Processing Systems, 35, 2022.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146, 2018.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. MiniCPM: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Adam Ibrahim, Benjamin Thérien, Kshitij Gupta, Mats L Richter, Quentin Anthony, Timothée
Lesort, Eugene Belilovsky, and Irina Rish. Simple and scalable strategies to continually pre-train
large language models. arXiv preprint arXiv:2403.08763, 2024.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws for Neural Language
Models, 2020.

Andrej Karpathy. nanoGPT, 2024. URL https://github.com/karpathy/nanoGPT. GitHub
repository.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

12

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://github.com/karpathy/nanoGPT

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Atli Kosson, Bettina Messmer, and Martin Jaggi. Analyzing & eliminating learning rate warmup in
GPT pre-training. In High-dimensional Learning Dynamics 2024: The Emergence of Structure
and Reasoning, 2014.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

Zhiyuan Li, Kaifeng Lyu, and Sanjeev Arora. Reconciling modern deep learning with traditional
optimization analyses: The intrinsic learning rate. Advances in Neural Information Processing
Systems, 33:14544–14555, 2020.

Lucas Lingle. A large-scale exploration of µ-transfer. arXiv preprint arXiv:2404.05728, 2024.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. arXiv preprint arXiv:1908.03265,
2019.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In International Con-
ference on Learning Representations, 2017.

Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the SDEs and scaling
rules for adaptive gradient algorithms. Advances in Neural Information Processing Systems, 35:
7697–7711, 2022.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An Empirical Model of
Large-Batch Training, 2018.

Eric Moulines and Francis Bach. Non-asymptotic analysis of stochastic approximation algorithms
for machine learning. Advances in Neural Information Processing Systems, 24, 2011.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36, 2023.

Lorenzo Noci, Alexandru Meterez, Thomas Hofmann, and Antonio Orvieto. Why do Learning
Rates Transfer? Reconciling Optimization and Scaling Limits for Deep Learning. arXiv preprint
arXiv:2402.17457, 2024.

Ofir Press, Noah Smith, and Mike Lewis. Train Short, Test Long: Attention with Linear Biases
Enables Input Length Extrapolation. In International Conference on Learning Representations,
2022.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
Models are Unsupervised Multitask Learners, 2019.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling Language Models:
Methods, Analysis & Insights from Training Gopher, 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the Limits of Transfer Learning with a Unified Text-to-
Text Transformer. Journal of Machine Learning Research, 2020.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The Annals of Mathemat-
ical Statistics, pp. 400–407, 1951.

Mark Sandler, Andrey Zhmoginov, Max Vladymyrov, and Nolan Miller. Training trajectories, mini-
batch losses and the curious role of the learning rate. arXiv preprint arXiv:2301.02312, 2023.

Sunny Sanyal, Atula Neerkaje, Jean Kaddour, Abhishek Kumar, and Sujay Sanghavi. Early weight
averaging meets high learning rates for LLM pre-training. arXiv preprint arXiv:2306.03241,
2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, et al. BLOOM: A 176B-
Parameter Open-Access Multilingual Language Model, 2023.

Robin M Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley-
benchmarking deep learning optimizers. In International Conference on Machine Learning, pp.
9367–9376. PMLR, 2021.

Neha Sengupta, Sunil Kumar Sahu, Bokang Jia, Satheesh Katipomu, Haonan Li, Fajri Koto, William
Marshall, Gurpreet Gosal, Cynthia Liu, Zhiming Chen, et al. Jais and Jais-chat: Arabic-
centric foundation and instruction-tuned open generative large language models. arXiv preprint
arXiv:2308.16149, 2023.

Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E Dahl. Measuring the effects of data parallelism on neural network training. Journal of
Machine Learning Research, 20(112):1–49, 2019.

Noam Shazeer. GLU Variants Improve Transformer, 2020.

Yikang Shen, Zhen Guo, Tianle Cai, and Zengyi Qin. JetMoE: Reaching Llama2 performance with
0.1M dollars. arXiv preprint arXiv:2404.07413, 2024a.

Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad, Adri-
ana Meza Soria, David D Cox, and Rameswar Panda. Power scheduler: A batch size and token
number agnostic learning rate scheduler. arXiv preprint arXiv:2408.13359, 2024b.

Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV), pp. 464–472. IEEE, 2017.

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning rate, increase
the batch size. In International Conference on Learning Representations, 2018.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and
Nolan Dey. SlimPajama: A 627B token cleaned and deduplicated version of RedPa-
jama. https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-
deduplicated-version-of-redpajama, 2023.

Howe Tissue, Venus Wang, and Lu Wang. Scaling law with learning rate annealing. arXiv preprint
arXiv:2408.11029, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation
Language Models, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention Is All You Need. In Advances in Neural In-
formation Processing Systems, 2017.

Xi Wang and Laurence Aitchison. How to set AdamW’s weight decay as you scale model and
dataset size. arXiv preprint arXiv:2405.13698, 2024.

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D Co-
Reyes, Izzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies for large-scale
transformer training instabilities. arXiv preprint arXiv:2309.14322, 2023.

Chen Xing, Devansh Arpit, Christos Tsirigotis, and Yoshua Bengio. A walk with SGD. arXiv
preprint arXiv:1802.08770, 2018.

14

https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 2: Model architecture and batch sizes for main experiments

Model dmodel nlayers dhead batch size

111M 768 10 64 192
617M 2048 10 64 504
1.7B 2048 32 64 504

Table 3: Training steps for main experiments

Model TPP Warmup Steps Tokens

111M 2 56 557 219M
111M 20 556 5568 2.19B
111M 200 5560 55680 21.9B
617M 2 118 1176 1.21B
617M 20 1175 11752 12.1B
617M 200 11750 117520 121B
1.7B 20 3322 33220 34.3B

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pp. 10524–10533. PMLR, 2020.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

Greg Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ryder,
Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning Large Neural Networks via Zero-Shot
Hyperparameter Transfer. In Advances in Neural Information Processing Systems, 2021.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training BERT in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
12104–12113, 2022.

A EXPERIMENTAL DETAILS

Table 2 provides details on model architecture and hyperparameters for the main experiments (i.e.,
results presented in the main paper). Table 3 provides information on the training steps. All the
models in our main experiments were trained on the SlimPajama dataset (Soboleva et al., 2023),
a cleaned and deduplicated version of the RedPajama dataset. We use the GPT-2 (Radford et al.,
2019) vocabulary of size 50257, and a context length of 2048 tokens. Following standard practice,
we do not apply weight decay or bias to LayerNorm layers. Validation loss is always computed over
1.1B tokens, regardless of training TPP. By default we parameterize with µP.

For a given TPP, all models have the exact same warmup phase: a linear warmup of the LR from 0
to the maximum value. In all our runs, warmup was 10% of the total steps. LR warmup is standard
practice in LLM training.2

2While prior work has suggested LR warmup is less valuable in modern Pre-LN Transformers (Xiong et al.,
2020), various other studies have shown warmup leads to lower loss (Goyal et al., 2018; Liu et al., 2019; Tissue
et al., 2024; Kosson et al., 2014), and may reduce sensitivity to the maximum LR (Wortsman et al., 2023). In

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: Tuned hyperparameters for µP proxy model

σW,base 8.67e-02
η̃ 1.6e-02

αinput 9.17
αoutput 1.095

Table 5: Downstream evaluations for 617M-parameter models corresponding to Figure 1. A model
trained for 80 tokens-per-parameter with linear D2Z has equivalent downstream loss to the same
model trained for 200 TPP with 10× decay.

MMLU
(Avg.) Commonsense Reasoning Reading

Comp.
Truthfulness

& Bias

Down-
stream
(Avg.)

Wino-
grande

Hella-
swag

Open-
Book
QA

Lamb-
ada

OpenAI

Lamb-
ada

Stand.
SIQA PIQA Arc-e RACE

Truth-
ful
QA

CrowS-
Pairs

10×@80TPP 23.6% 52.2% 43.9% 31.4% 46.7% 36.7% 32.8% 68.7% 47.6% 32.3% 39.8% 60.7% 43.05%
D2Z@80TPP 23.5% 53.4% 44.6% 31.6% 46.9% 37.3% 33.2% 68.8% 48.8% 33.4% 40.2% 60.8% 43.54%
10×@200TPP 23.3% 53.4% 46.6% 31.2% 46.2% 38.8% 32.2% 68.8% 47.9% 34.4% 38.4% 60.4% 43.46%
D2Z@200TPP 24.7% 54.5% 48.2% 32.4% 50.0% 42.6% 32.9% 70.1% 50.4% 32.6% 38.9% 62.5% 45.00%

All models in the main experiments were trained on a Cerebras CS-3 system. 617M-parameter
models take roughly 6 hours each to train on a single CS-3. If a training run did not complete due to
numerical instabilities, the values are left off our plots or marked as NaN in our tables.

Proxy model hyperparameter tuning To find the optimal µP hyperparameters (HPs), we trained
a 39M-parameter proxy model using a width dmodel = dp of 256, with 24 layers and a head size of
64. We trained this proxy model on 800M tokens with a batch size of 256 and context length 2048,
using 10× decay. We randomly sampled 350 configurations of base learning rates, base initialization
standard deviation, and embedding and output logits scaling factors, and used the top-performing
values as our tuned HPs (Table 4).

B ADDITIONAL EXPERIMENTAL RESULTS

In this section, we include some additional results to support the findings in the main paper. All
validation losses reported in this section are from models trained with Linear decay.

B.1 DOWNSTREAM EVALS

Table 5 presents a variety of downstream evaluations of the four models presented in Figure 1.
Differences between the models here are largely consistent with the differences in training and val-
idation loss, showing that D2Z is meaningful not just for the autoregressive training objective, but
for real-world applications.

B.2 STANDARD PARAMETERIZATION

Figure 10 presents results for a 617M-parameter model trained with the standard parameterization.
Here η̃ is therefore not a µP-corrected base LR, but rather a LR that we swept directly for this model
scale. Results are obviously quite similar to results using µP, suggesting the benefits of D2Z are not
µP-specific. Further results using the standard parameterization, but for NanoGPT models, are in
Section B.9 below.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

10−4 10−3 10−2

Max LR, η̃

2.6

2.7

2.8

2.9

3.0

V
al

id
at

io
n

lo
ss

Constant

10x

D2Z

Figure 10: Validation loss for different LR and decay combinations, for a 617M-parameter model
trained with the standard parameterization.

10−2

Max LR, η̃

3.0

3.2

3.4

3.6

V
al

id
at

io
n

lo
ss

111M

10−2

Max LR, η̃

2.6

2.8

3.0

617M

10−2

Max LR, η̃

2.3

2.4

2.5

2.6

1.7B

Constant

10x

D2Z

Figure 11: Validation loss at 20 TPP for different model sizes. Across all model sizes, Linear-D2Z
outperforms Linear-10×. Note: Missing high-LR values in all plots correspond to failed training
runs due to NaN instabilities).

B.3 MODEL SIZES

Figure 11 presents results across 111M, 617M, and 1.7B model sizes, all trained to 20 TPP. Note
the absence of results for the highest LR setting at the 1.7B-scale; at the very highest LR, numerical
instabilities led to failed training runs. Otherwise, results are fairly similar across model sizes. At
the proxy-tuned max LR, the gap between D2Z and 10× is 0.81%, 0.67%, and 1.56%, at the 111M,
617M, and 1.7B scales, respectively. We further investigate the issue of whether the gap between
D2Z and 10× varies with model size as part of our scaling law experiments below (Section B.10).

B.4 TPP

As we vary TPP, we consistenly see increasing gains with D2Z. Here we plot the results for the
617M-scale models in Figure 12, as a counterpart to main Figure 3.

B.5 BATCH SIZES

Additional batch size experiments are plotted in Figure 13 and Figure 14. In fact, Figure 13 is the
same data as in Figure 5, but with each batch separated into a separate subplot in order to better see
how the differences between D2Z and 10× evolve as batch size changes. Both of these plots train
for the same number of total tokens (20 TPP). In contrast, in Figure 14, we keep the number of steps
constant (11752), so each model will see the same total number of batches; the batches will just be
of varying size. Note, for the purposes of scale, the results at B=504 are the same in Figure 13 and
Figure 14; the latter just has a larger range on the y-axis.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

10−2

Max LR, η̃

3.0

3.1

3.2

3.3

3.4
V

al
id

at
io

n
lo

ss
2 TPP

10−2

Max LR, η̃

2.6

2.8

3.0

20 TPP

10−2

Max LR, η̃

2.5

2.6

2.7

2.8
80 TPP

Constant

10x

D2Z

Figure 12: Validation loss for 617M models at different TPP. As TPP increases, Linear-D2Z begins
to outperform Linear-10×, especially at the proxy-tuned max LR (red lines). The optimal LR also
shifts significantly lower for Constant, somewhat lower for 10×, and hardly at all for D2Z. Compare
to Figure 3 for 111M models.

10−2

Max LR, η̃

2.6

2.7

2.8

V
al

id
at

io
n

lo
ss

B=63

10−2

Max LR, η̃

B=126

10−2

Max LR, η̃

B=252

10−2

Max LR, η̃

B=504

10−2

Max LR, η̃

B=1008

10x

D2Z

Figure 13: Validation loss for 617M models trained for different batch sizes but all at 20 TPP. As
batch size decreases, the relative gain of D2Z over 10× increases. Same data as in Figure 5.

10−2

Max LR, η̃

2.6

2.8

3.0

V
al

id
at

io
n

lo
ss

B=63

10−2

Max LR, η̃

B=126

10−2

Max LR, η̃

B=252

10−2

Max LR, η̃

B=504

10−2

Max LR, η̃

B=1008

10x

D2Z

Figure 14: Validation loss for 617M models trained for different batch sizes, but all trained for
11752 steps (not iso-FLOP, smaller batches see fewer TPP). Companion to Figure 5 and appendix
Figure 13 which instead keep TPP constant. D2Z remains superior in the iso-Step context.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

10−5 10−3 10−1

α = ηλ

2.55

2.60

2.65

2.70

2.75

V
al

id
at

io
n

lo
ss

Constant

10−5 10−3 10−1

α = ηλ

10x

10−5 10−3 10−1

α = ηλ

D2Z

λ =1.0e-3

λ =1.0e-2

λ =1.0e-1

λ =1.0e0

Figure 15: Validation loss for 617M models (20 TPP) as α=ηλ varies. Subset of the data in Figure 6,
but now curves trace points with same weight decay λ (in color) and LR η varies across each curve.
Only D2Z models significantly improve as we increase weight decay. D2Z models are also less
sensitive to choice of λ.

10−5 10−3 10−1

α = ηλ

3.00

3.05

3.10

3.15

3.20

3.25

V
al

id
at

io
n

lo
ss

Constant

10−5 10−3 10−1

α = ηλ

10x

10−5 10−3 10−1

α = ηλ

D2Z

η̃=2.0e-3

η̃=4.0e-3

η̃=8.1e-3

η̃=1.6e-2

η̃=3.2e-2

η̃=6.5e-2

Figure 16: Validation loss for 111M-parameter models trained to 20 TPP, for different settings of
decay, learning rate, η̃ (marked by color), and weight decay, λ (corresponding to points on the LR
curves). The optimal loss is obtained when η̃ is high, but not too high, typically around 1.6e-02 to
3.2e-02. As the smoothing α increases, Constant models suffer, 10× models see marginal gains,
while D2Z models benefit significantly. See Figure 6 for 617M-model results.

B.6 WEIGHT DECAY

We also provide additional weight decay results. Figure 15 is the same data as in main paper Fig-
ure 6, except we now group the points by weight decay λ rather than max LR η̃ (Figure 6 also
includes some additional λ settings specifically for η̃ = 1.6e-02, and we leave those off Figure 15
to reduce clutter).

Figure 16 and 17 provide the 111M counterparts to the 617M-scale weight decay plots. Results are
broadly similar.

Note that while Constant and 10× are much worse at higher λ values, D2Z performs reasonably
well even at λ = 1.0 (particularly at the 617M scale). Recall that increasing λ effectively decreases
the timescale over which weight updates are integrated (Section 3). Since D2Z has lower η later in
training, it somewhat counterbalances the increase in λ. Another view of this is that as fewer updates
are combined, noise increases; D2Z is evidently better at mitigating such noise.

Step decay In Figure 18, we present results investigating the impact of Step decay on model
training. Here, for 111M-parameter models, Step decay can improve the loss versus keeping the LR
constant, but the resulting losses are still much worse than those obtained with D2Z or 10× decay.

light of the similar benefits of D2Z, it would be interesting to investigate the value of warmup for models that
are specifically trained using D2Z.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

10−5 10−3 10−1

α = ηλ

3.00

3.05

3.10

3.15

3.20

3.25

V
al

id
at

io
n

lo
ss

Constant

10−5 10−3 10−1

α = ηλ

10x

10−5 10−3 10−1

α = ηλ

D2Z

λ =1.0e-3

λ =1.0e-2

λ =1.0e-1

λ =1.0e0

Figure 17: Validation loss for 111M models (20 TPP) as α=ηλ varies. Same data as in Figure 16,
but now curves trace points with same weight decay λ (in color) and LR η varies across each curve.
Only D2Z models significantly improve as we increase weight decay. D2Z models are also less
sensitive to choice of λ. See Figure 15 for 617M-model results.

10−2

Max LR, η̃

3.0

3.2

3.4

3.6

V
al

id
at

io
n

lo
ss

Constant

With Step

No Step

10−2

Max LR, η̃

10x

With Step

No Step

10−2

Max LR, η̃

D2Z

With Step

No Step

Figure 18: Validation loss for different LR and decay combinations, for a 111M-parameter model,
with and without Step decay. Step decay is applied after 90% of training, stepping to a value equal
to 0.1% of the maximum LR. Dropping the LR in this manner helps Constant, although it is still
below the level of 10× and D2Z. Adding stepping to a 10× or D2Z schedule is not beneficial.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

10−3 10−2

Max LR, η̃

3.0

3.2

3.4

3.6

V
al

id
at

io
n

lo
ss

Constant

3x

10x

D2Z

Figure 19: Validation loss for different LR and decay combinations, for a 617M-parameter model
trained with SµPar, with 93.75% unstructured weight sparsity. As the decay rate increases, loss
improves, while the optimal max LR is much more stable.

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016

Minimum learning rate, η̃min

3.02

3.04

3.06

3.08

V
al

id
at

io
n

lo
ss

Figure 20: Validation loss for 617M-parameter models trained with SµPar, with 93.75% unstruc-
tured weight sparsity, as we vary the LR decay ratio. The x-axis plots the minimum LR, that is, the
LR at the final training step. As the ratio increases from 10× (right-most point), where the minimum
LR is 10% of the proxy-tuned rate, to 0% (D2Z, left-most point), validation loss decreases roughly
linearly.

We also tried applying a Step decay to a LR that had been following a 10× or D2Z trajectory; this
approach always led to inferior results.

While it is likely possible to improve the quality of Step decay by tuning the positioning of the drop,
we hypothesize that these efforts will not surpass D2Z, since dropping the LR will fundamentally
always result in higher emphasis being placed on earlier updates, as shown in Figure 2 and Figure 25.
Moreover, introducing additional tunable hyperparameters (i.e., when and how much to decay) is a
further drawback of the Step schedule.

B.7 WEIGHT SPARSITY

In this section, we investigate the role of Linear-D2Z in the context of models trained with un-
structured weight sparsity, a promising direction for improving the efficiency of large neural net-
works (Hoefler et al., 2021). We parameterize with µP’s sparse extension, SµPar (Dey et al., 2024).
SµPar allows us to use the same µP hyperparameters as with dense models, except we must now
apply corrections due to both model scaling (i.e., ρ, Section 2.2) and layer sparsity. For these exper-
iments, we sparsified all non-embedding layers of our 617M-parameter dense models by randomly
fixing certain weights to zero for the duration of training. We trained all models for 11752 total
steps using a batch size of 504, i.e., the same amount of training data as we used for training the
corresponding 617M-parameter dense models to 20 TPP (Tables 2 and 3).

At 93.75% sparsity (1/16 density), the optimal D2Z model improves by 1.64% over the optimal 10×
model, with a clear trend of optimal LRs shifting lower and loss becoming worse as we go from
10× to 3× to Constant decay (Figure 19).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

1 1/2 1/4 1/8 1/16 1/32 1/64 1/128

Weight density

2.6

2.8

3.0

3.2

3.4

V
al

id
at

io
n

lo
ss

10x

D2Z

Figure 21: Validation loss for 617M-parameter models trained with SµPar, as unstructured weight
sparsity increases (density decreases). All models trained with the same number of training tokens
(11752 steps, equivalent to 20 TPP for the fully-dense models). As sparsity increases, the number
of trainable parameters decreases, and thus tokens-per-(dense)-parameter increases.

10−2

Max LR, η̃

3.0

3.2

3.4

3.6

3.8

V
al

id
at

io
n

lo
ss

Constant

10x

D2Z

Figure 22: Validation loss variance for different maximum LRs for 111M-parameter µP models
trained for 20 TPP, at different decay ratios. Each point corresponds to the mean validation loss
over 5 separate training runs with different random seeds; the error bars give the standard deviation.
Beyond the instabilities at high learning rates, run-to-run variance is remarkably low at this scale.

At the proxy-tuned max LR of 1.6e-02, D2Z is 2.15% better than 10×. We also trained 93.75%
sparse models with a variety of other decay ratios between 10× and D2Z, and present these results
in Figure 20. Here we see a largely linear decrease in loss with a linear increase in the decay ratio
(i.e., a linear decrease in the minimum LR). These are encouraging findings in the sense that D2Z
can seemingly be used directly on a range of problems, without having to worry about tuning a
problem-specific LR decay ratio (e.g., 50× or 100×).

In Figure 21, we investigate the gap between D2Z and 10× at the proxy-tuned max LR across
different spasity levels. Note that increasing sparsity effectively leads to a corresponding decrease
in the number of trainable parameters. Since we use a fixed number of training tokens in each case,
as the number of parameters decreases, the number of tokens-per-parameter (TPP) increases. In
this sense, we note the relative differences between D2Z and 10× are consistent with our results in
Figure 4 — as TPP (and gradient noise) increases, D2Z performs relatively better.

B.8 ERROR BARS

Taken as a whole, our results are remarkably stable: empirical results for different model scales,
training durations, batch sizes, weight decays, and weight sparsity settings largely behave as pre-
dicted by theory. Since all validation runs are performed on 1.1B tokens, any significant run-to-run
variance must arise during training. To quantify this variance, we repeated 111M-model 20 TPP
training four additional times, resulting in 5 total validation loss results for each original training
run. Figure 22 confirms that run-to-run variance is remarkably low. The only significant variance
arises in Constant results at the highest learning rate. Here, the training loss sometimes spikes at
various points during training, and the final validation loss can be significantly higher for models
that cannot recover sufficiently following the spike.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

10−3 10−2

Max LR, η̃

3.150

3.175

3.200

3.225

3.250

3.275

V
al

id
at

io
n

lo
ss

10x

D2Z

Figure 23: Validation loss for different LR and decay combinations, for a 111M-parameter
NanoGPT model. With float16 precision, we were not able to train above 6e-04 without in-
stabilities (first point in curves). Moveover, at η̃ = 6e-04, 10× performed better than D2Z. After
switching to float32, we were able to train at higher η̃ values, where D2Z demonstrates its famil-
iar superiority over 10×.

B.9 NANOGPT EXPERIMENTS

We also compared 10× versus D2Z by training NanoGPT models using the NanoGPT code-
base (Karpathy, 2024). NanoGPT uses the standard parameterization. We configured these models
to be largely similar to our 111M-parameter models, also using a weight decay of 0.1, a context
length of 2048, and the GPT-2 vocab size of 50257. Key differences here are that we do not include
bias weights, and we trained on the OpenWebText dataset (Gokaslan & Cohen, 2019). Experiments
are run on Nvidia A10 GPUs.

As mentioned in Section 5.2, we initially tested NanoGPT in float16 precision. Here, at the
default NanoGPT learning rate of 6e-4, 10× performed slightly better than D2Z. As we pushed the
LR 50% higher (to 9e-4), both 10× and D2Z had higher loss, and by 1.2e-3, the loss from 10×
doubled.

We suspected that numerical issues may be causing the instabilities, and repeated our experiments
in float32. At this precision, we were able to successfully increase the LR by factors of two up
to 32 times the default. At these levels, we do see the familiar gains of D2Z over 10× (Figure 23).
We note there is nothing fundamentally limiting about float16 precision itself - indeed all our
main experiments were done using this precision. Rather, for whatever reason, float16 is simply
problematic in the NanoGPT codebase.

These experiments demonstrate that a comparison between D2Z and 10× may serve as a kind of
diagnostic of whether a model is being trained at optimal max LRs: if a 100M+ model trained to
20 TPP does not see roughly 1% gains from using D2Z, it is likely the LR is not high enough.
In order to raise the LR further, efforts to stabilize the model, perhaps including µP or other tech-
niques (Wortsman et al., 2023), may be warranted.

B.10 SCALING LAW EXPERIMENTS

Encouraged by the results of D2Z at smaller scales, we began testing D2Z in some of our frontier
model efforts. Frontier models do not provide scope for hyperparameter tuning at scale. Thus it
becomes important to derive scaling laws to forecast loss at larger scales, based on the loss with a
sequence of smaller models.

For this set of experiments, we tested Llama-style (Touvron et al., 2023a) architectures, except using
LayerNorm instead of RMSNorm, and multi-head attention instead of group-query attention. We
use µP here as well, and a batch size scaling law to determine an optimal batch size for each model
scale. These models also use ALiBi embeddings (Press et al., 2022) and SwiGLU (Shazeer, 2020).
Here, the context length is 8192 tokens, and we use tied embeddings.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 6: Model architecture and batch sizes for scaling law experiments.

Model dmodel nlayers dhead

272M 1024 14 64
653M 1536 18 128
1.39B 2048 24 128
2.75B 2560 32 128

1020 1021

FLOPS

2× 100

2.1× 100

2.2× 100

2.3× 100

2.4× 100

2.5× 100
V

al
id

at
io

n
L

os
s

256M

590M

1.3B

2.7B

10x

D2Z

Figure 24: Loss-to-FLOPS scaling law fit for models trained to 20 TPP (8K context lengths, Llama
architecture, Pile validation data). The power law fit for D2Z models has a steeper slope than the
scaling law for 10× models.

We used a bilingual data mix of English, Arabic and source code samples mixed in a 2:1:0.4 mix
ratio. English data is from the Pile (Gao et al., 2020), Arabic uses a proprietary dataset, and the
source code comes from the GitHub portion of the Pile.

To derive scaling laws to compare D2Z and 10× models, we used the power law functional form
y = cxm, where x is the pre-training FLOPs, y is the loss on the Pile validation set, and c and m
are parameters to be fit. We trained models at four sizes to compute-optimal 20 TPP (Table 6), and
computed total FLOPs spent as well as validation loss on the Pile. We then fit the power law free
parameters to obtain our scaling laws.

Encouragingly, here we find the scaling law slope of D2Z is roughly 2.5% better than 10× decay
(Figure 24). This translates to an improvement of roughly 1% at 1.3B and 2.7B scales, broadly
similar to our earlier results at 1.7B scale. Projecting our scaling law to a 70B model trained to a
compute optimal 20 TPP, D2Z would achieve a roughly 2% loss improvement over 10× decay.

B.11 LR CURVES AND DUAL COEFFICIENTS

In this section, we provide some extra figures that were referenced in the main paper. Figure 25
shows the dual coefficients at every step of training, using color to indicate the coefficient value
(log-scale). Every horizontal row/step of Figure 25 reflects the coefficients at that step, essentially
providing a version of Figure 2 but at each step. Figure 26 provides the LR schedules and dual
coefficients for some of the schedules discussed in the main paper, including our proposed Rational
schedule, which combines all the prior weight updates equally at every step. Finally, Figure 27 gives
the LR schedules and dual coefficients for the comparison to WSD and Cyclic in Figure 7.

It is worth re-iterating that the dual coefficients can be computed separately from any actual training.
They are mathematically equivalent to the LR schedule itself and simply provide a perspective on
how the weight updates combine to form parameters using the AdamW optimizer. Furthermore, it is
also worth noting the vertical bar at step 0 in the dual coefficient plots; this bar reflects the coefficient
on the initial, random weights. To some extent, this c0,t value can serve as an indicator of how far

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 10000 20000 30000 40000 50000
Weight update (i)

0

10000

20000

30000

40000

50000

Ou
tp

ut
 st

ep
 (t

)

10 12

10 10

10 8

10 6

10 4

c
t,i (log scale)

(a) Linear

0 10000 20000 30000 40000 50000
Weight update (i)

0

10000

20000

30000

40000

50000
Ou

tp
ut

 st
ep

 (t
)

10 12

10 10

10 8

10 6

10 4

c
t,i (log scale)

(b) Cosine

0 10000 20000 30000 40000 50000
Weight update (i)

0

10000

20000

30000

40000

50000

Ou
tp

ut
 st

ep
 (t

)

10 13

10 11

10 9

10 7

10 5

c
t,i (log scale)

(c) Step

0 10000 20000 30000 40000 50000
Weight update (i)

0

10000

20000

30000

40000

50000

Ou
tp

ut
 st

ep
 (t

)

10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

c
t,i (log scale)

(d) Constant

Figure 25: Convex combination of weight updates, with color indicating value of combination co-
efficients ct,i: each ct,i gives the contribution of the ith update (across x-axis) to model weights
θt across steps t (y-axis). Note that LR schedules and coefficients corresponding to the final step
only were presented earlier in Figure 2 (except for Constant). Coefficients correspond to settings for
111M-param models trained to 200 TPP: t=55680, η̃=1.6e-02, ρ=1/3, λ=0.1.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000 12000

Step (t)

0

2.0e-03

4.0e-03

6.0e-03

8.0e-03

L
R

S
ch

ed
u

le
(η
t
)

η̃ =2.0e-03

η̃ =4.0e-03

η̃ =8.1e-03

η̃ =1.6e-02

η̃ =3.2e-02

η̃ =6.5e-02

0 2000 4000 6000 8000 10000 12000

Weight update (i)

1.0e-08

1.0e-06

1.0e-04

1.0e-02

1.0e+00

W
ei

gh
t

u
p

d
at

e
co

eff
.

(c
t,
i)

(a) Constant

0 2000 4000 6000 8000 10000 12000

Step (t)

0

2.0e-03

4.0e-03

6.0e-03

8.0e-03

L
R

S
ch

ed
u

le
(η
t
)

η̃ =2.0e-03

η̃ =4.0e-03

η̃ =8.1e-03

η̃ =1.6e-02

η̃ =3.2e-02

η̃ =6.5e-02

0 2000 4000 6000 8000 10000 12000

Weight update (i)

1.0e-08

1.0e-06

1.0e-04

1.0e-02

1.0e+00

W
ei

gh
t

u
p

d
at

e
co

eff
.

(c
t,
i)

(b) Linear D2Z

0 2000 4000 6000 8000 10000 12000

Step (t)

0

5.0e-04

1.0e-03

1.5e-03

2.0e-03

L
R

S
ch

ed
u

le
(η
t
)

Warmup=100

Warmup=300

Warmup=1000

Warmup=3000

0 2000 4000 6000 8000 10000 12000

Weight update (i)

1.0e-08

1.0e-06

1.0e-04

1.0e-02

1.0e+00

W
ei

gh
t

u
p

d
at

e
co

eff
.

(c
t,
i)

(c) InvSqrt

0 2000 4000 6000 8000 10000 12000

Step (t)

0

2.0e-03

4.0e-03

6.0e-03

8.0e-03

L
R

S
ch

ed
u

le
(η
t
)

η̃ =2.0e-03

η̃ =4.0e-03

η̃ =8.1e-03

η̃ =1.6e-02

η̃ =3.2e-02

η̃ =6.5e-02

0 2000 4000 6000 8000 10000 12000

Weight update (i)

1.0e-08

1.0e-06

1.0e-04

1.0e-02

1.0e+00

W
ei

gh
t

u
p

d
at

e
co

eff
.

(c
t,
i)

(d) Rational

Figure 26: LR curves and dual coefficients for various common LR schedules, as well as the pro-
posed Rational approach (Section 3.3). Dual coefficients shown at final training step for 617M-
parameter, 20 TPP training (t=11752, ρ=1/8, λ=0.1). For InvSqrt, we vary the warmup and fix
η̃=1.6e-02 for all curves.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 10000 20000 30000 40000

Step (t)

0

1.0e-03

2.0e-03

3.0e-03

4.0e-03

L
R

S
ch

ed
u

le
(η
t
)

η̃ =4.0e-03

η̃ =8.1e-03

η̃ =1.6e-02

η̃ =3.2e-02

0 10000 20000 30000 40000

Weight update (i)

1.0e-11

1.0e-09

1.0e-07

1.0e-05

1.0e-03

1.0e-01

W
ei

gh
t

u
p

d
at

e
co

eff
.

(c
t,
i)

(a) Linear D2Z

0 10000 20000 30000 40000

Step (t)

0

1.0e-03

2.0e-03

3.0e-03

4.0e-03

L
R

S
ch

ed
u

le
(η
t
)

η̃ =4.0e-03

η̃ =8.1e-03

η̃ =1.6e-02

η̃ =3.2e-02

0 10000 20000 30000 40000

Weight update (i)

1.0e-11

1.0e-09

1.0e-07

1.0e-05

1.0e-03

1.0e-01

W
ei

gh
t

u
p

d
at

e
co

eff
.

(c
t,
i)

(b) Linear 10×

0 10000 20000 30000 40000

Step (t)

0

1.0e-03

2.0e-03

3.0e-03

4.0e-03

L
R

S
ch

ed
u

le
(η
t
)

η̃ =4.0e-03

η̃ =8.1e-03

η̃ =1.6e-02

η̃ =3.2e-02

0 10000 20000 30000 40000

Weight update (i)

1.0e-11

1.0e-09

1.0e-07

1.0e-05

1.0e-03

1.0e-01

W
ei

gh
t

u
p

d
at

e
co

eff
.

(c
t,
i)

(c) Cyclic

0 10000 20000 30000 40000

Step (t)

0

1.0e-03

2.0e-03

3.0e-03

4.0e-03

L
R

S
ch

ed
u

le
(η
t
)

η̃ =4.0e-03

η̃ =8.1e-03

η̃ =1.6e-02

η̃ =3.2e-02

0 10000 20000 30000 40000

Weight update (i)

1.0e-11

1.0e-09

1.0e-07

1.0e-05

1.0e-03

1.0e-01

W
ei

gh
t

u
p

d
at

e
co

eff
.

(c
t,
i)

(d) WSD

Figure 27: LR curves and dual coefficients comparing standard Linear schedules versus Cyclic and
WSD schedules. On the left are the exact LR schedules used in Figure 7 evaluations, i.e., 617M-
parameter, 80 TPP training (ρ=1/8, λ=0.1). Dual coefficients shown at at final training step t=47008.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

the model has moved from initial conditions (Section 3.2). In general, if c0,t is too high (e.g., when
it outweighs the sum of the other coefficients), then bias is likely significantly hindering learning.
Two effective ways to reduce c0,t (and also reduce bias) are to (1) raise the max LR, and (2) train
for more TPP. Raising λ can also decrease c0,t, but is counterproductive for reducing bias because
it also reduces the scale of weight updates, as noted in Section 3.2. Likewise, using smaller batches
also reduces c0,t, but is likewise counterproductive if the batches become too small, to the extent
that gradient noise increases excessively. However, D2Z is more robust to such noise than 10× or
Constant decay. Further investigating the interplay of λ, batch size, and maximum learning rate is
important future work.

28

	Introduction
	Background and Related Work
	Learning rate schedules
	Maximal update parameterization (P)
	AdamW weights as exponentially-weighted moving average (EMA)

	Methods
	AdamW as convex combination of weight updates, driven by LR schedule
	Bias and variance in the LR schedule dual
	Truly schedule-free LR schedules

	Empirical Analysis of Decay-to-Zero
	Experimental setup
	Results

	Discussion
	Interpretation of our results
	Interpretation of prior results
	Limitations and Further Experiments

	Conclusion
	Experimental Details
	Additional experimental results
	Downstream evals
	Standard parameterization
	Model sizes
	TPP
	Batch sizes
	Weight Decay
	Weight sparsity
	Error bars
	NanoGPT experiments
	Scaling law experiments
	LR curves and dual coefficients

