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Abstract

Deep Learning (DL) has demonstrated significant promise in digital pathological appli-
cations both histopathology and cytopathology. However, the majority of these works
primarily concentrate on evaluating the general performance of the models and overlook
the crucial requirement for uncertainty quantification which is necessary for real-world
clinical application. In this study, we examine the change in predictive performance and
the identification of mispredictions through the incorporation of uncertainty estimates for
DL-based Cervical cancer classification. Specifically, we evaluate the efficacy of three meth-
ods—Monte Carlo(MC) Dropout, Ensemble Method, and Test Time Augmentation(TTA)
using three metrics: variance, entropy, and sample mean uncertainty. The results demon-
strate that integrating uncertainty estimates improves the model’s predictive capacity in
high-confidence regions, while also serving as an indicator for the model’s mispredictions
in low-confidence regions.
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1. Introduction

Cervical cancer poses a substantial risk to women’s health while ranking fourth in both
diagnosis frequency and cancer-related mortality with over 600,000 newly reported cases and
more than 340,000 fatalities globally in 2020 (Sung et al., 2021). With the advancement
of DL techniques, a growing number of DL-assisted cervical cytology screening methods
have emerged for tasks such as cell-level classification (Manna et al., 2021), detection (Jia
et al., 2022), segmentation (Zhou et al., 2020), and whole-slide image (WSI) level diagnosis
(Zhang et al., 2022). While these models excel in performance metrics, they overlook the
need to incorporate methods for uncertainty estimation. Integrating these methodologies
is vital for reliable clinical applications and has significant potential to improve interaction
between pathologists and DL systems. For example, if a DL model provides a prediction
with low confidence, it could abstain from decision-making thus enabling the pathologist to
intervene in such instances. In this paper, we aim to investigate the correlation between a
model’s predictive capability and its uncertainty estimates for cervical cytology classification
through two research questions :

1. How effective is uncertainty quantification for enhancing the model’s predictive ca-
pacity in high-confidence intervals?
We conduct a comparative analysis of a model’s predictive performance with and
without uncertainty quantification in high-confidence intervals.
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2. Are low confidence intervals an indicator of incorrect predictions?
Specifically, we analyse the model’s predictive performance and quantify the number
of samples associated with incorrect predictions in regions of low confidence.

2. Methodology

The dataset utilized in this study is derived from the cervical cell classification collection
found within the CRIC Searchable Image Database curated by the Center for Recognition
and Inspection of Cells (CRIC) (Rezende et al., 2021).In this study, we utilized a cell crop
size of 100 x 100 centred on the nucleus demarcations provided in the dataset. Using this
dataset, our objective is to develop a model for classifying cervical cells into Normal and
Abnormal categories while also estimating associated uncertainty values.

Cell Category Normal Abnormal Total

Count 6779 4755 11534

Table 1: Dataset Distribution for Binary Classification

3. Experiments and Results1

This paper presents an analysis of three methods: MC Dropout, Ensemble Method, and
Test Time Augmentation(TTA), utilizing three uncertainty metrics: Entropy, Variance,
and Sample Mean Uncertainty (Pocevičiūtė et al., 2022). These methods and metrics were
assessed across three confidence intervals with thresholds = 0.3, 0.6 and 0.9 to address our
research questions.

MC Drop. Ensbl. TTA

Var.

thr. 0.3 97.2±0.60 93.74±0.54 98.26±0.93

thr. 0.6 93.34±1.75 90.17±0.89 95.62±1.85

thr. 0.9 86.93±1.29 88.68±0.41 90.21±2.74

Entr.

thr. 0.3 93.98±1.17 95.27±0.97 95.48±0.49

thr. 0.6 87.41±1.23 92.31±0.67 90.98±1.85

thr. 0.9 86.58±1.30 88.97±0.23 89.54±2.46

S.Mean

thr. 0.3 97.78±0.42 95.98±0.96 98.75±0.70

thr. 0.6 95.5±1.18 93.89±0.56 97.76±1.27

thr. 0.9 91.33±1.29 90.94±0.34 94.76±1.63

Table 2: Comparison of AUC across High
confidence intervals: (0 - 0.3), (0 - 0.6) &
(0 - 0.9)

MC Drop. Ensbl. TTA

Var.

thr. 0.3 26.9±0.82 38.59±3.32 18.86±5.09

thr. 0.6 34.7±2.57 41.34±7.28 27.66±5.97

thr. 0.9 42.35±7.43 25.71±23.28 36.88±6.04

Entr.

thr. 0.3 33.71±1.77 35.5±3.33 23.01±5.28

thr. 0.6 47.66±7.28 44.1±2.35 35.76±7.01

thr. 0.9 40.00±20.00 39.99±9.94 13.33±14.14

S.Mean

thr. 0.3 25.01±1.04 34.16±2.96 17.07±4.67

thr. 0.6 31.72±1.28 40.09±2.17 23.94±4.88

thr. 0.9 43.24±3.51 44.26±3.32 36.14±5.68

Table 3: Comparison of Mispred. rates across
Low confidence intervals: (0.3 - 1), (0.6 - 1) &
(0.9 - 1)

3.1. Implementation

We employed ResNet50 as the feature extractor for our baseline model without uncertainty
quantification and for the model with uncertainty quantification across all 3 methods. In

1. Link to Code : https://github.com/shubhamOjha1000/UQ-in-DL-Models-for-Cervical-Cytology
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the case of MC dropout, we ran 50 stochastic passes for each input. For TTA, each input
was randomly augmented 50 times before passing through the trained model. In Ensemble
Method (Linmans et al., 2020), 50 MLP heads were added to the feature extractor and
meta loss (Rupprecht et al., 2017) was used for better diversity during training. Further,
we used min-max normalization to standardize the range of all three uncertainty metrics.
Additionally, all experiments underwent 5-fold cross-validation. We then assessed perfor-
mance using AUC and Misprediction rate (100 - Accuracy)% for our two research questions,
respectively.

3.2. Results

Firstly, Table 2 indicates a 7-12 % improvement in AUC performance across all three meth-
ods in high confidence intervals compared to our baseline model, which achieved an AUC
of 86.3±2.24%. Additionally, Figure 1 indicates a high number of correct predictions com-
pared to incorrect ones in low uncertainty ranges. This implies that incorporating uncer-
tainty estimates significantly improves predictive performance in high-confidence intervals
or low-uncertainty ranges. Secondly, Table 3 demonstrates that increasing thresholds for
low-confidence intervals leads to an increase of 10.1-19.07 % in misprediction rates for most
methods across metrics. Moreover, Figure 1 demonstrates that an increase in uncertainty
range corresponds to an increased misprediction count across all metrics for MC Dropout
except in Entropy. This indicates that low confidence intervals or high uncertainty ranges
are indicators of incorrect predictions. However, Table 3 displays deviations from observed
trends for certain methods and metrics. Moreover, Figure 1 exhibits a minimal difference
between the numbers of correct and incorrect predictions, diverging from the anticipated
trend of higher counts of incorrect predictions than correct ones in high uncertainty ranges.
These variations question the reliability of low confidence intervals as indicators for incorrect
predictions.

Figure 1: Distribution of Sample Predictions across Uncertainty Ranges for MC Dropout

4. Conclusion

In conclusion, this study demonstrates that incorporating uncertainty estimates associated
with a model prediction significantly boosts the overall model performance and serves as
an indicator for identifying mispredictions. Future works should focus on enhancing the
robustness of the models by uncertainty integration and expanding this analysis to different
datasets for the development of real-world clinical applications.
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