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Abstract

In this work, we improve semi-honest secure two-party computation (STPC) over
rings, specially for privacy-preserving machine learning, with a focus on the
efficiency of the online phase. We construct efficient protocols for several privacy-
preserving machine learning (PPML) primitives such as scalar product, matrix
multiplication, ReLU, and maxpool. The online communication of our scalar
product is two ring elements irrespective of the vector dimension, which is a
feature achieved for the first time in PPML literature. We implement and benchmark
training and inference of Logistic Regression and Neural Networks over LAN and
WAN networks. For training, we improve online runtime (both for LAN and WAN)
over SecureML (Mohassel et al., IEEE S&P’17) in the range 1.5×–6.1×, while
for inference, the improvements are in the range of 2.5×–754.3×.

1 Introduction

Secure Multi-Party Computation (SMPC) [2–4] allows n mutually distrusting parties to jointly
compute a function on their private inputs. The computation guarantees i) privacy– no set of t corrupt
parties can learn more information than the output, and ii) correctness– corrupt parties cannot force
others to accept a wrong output. Due to its immense potential, SMPC can be used for solving real-life
applications such as privacy-preserving auctions [5] and remote diagnostics [6], secure genome
analysis [7, 8], and recently in the domain of privacy-preserving machine learning (PPML) [9–19].

While SMPC has the potential to address the privacy issues that arise in PPML, it involves multiple
rounds of interaction between the parties. This work focuses on reducing round and communication
complexity of secure two-party computation (STPC) [20] with mixed protocols over rings.

Our Contributions. We propose, ABY2.0, an efficient mixed-protocol STPC framework for PPML
primitives. Our protocols are secure against a semi-honest adversary and use an input-independent
setup [21, 22, 14, 23, 16, 15, 18]. We build several PPML building blocks with the focus on online
efficiency. Our contributions can be summed up as follows:

STPC protocols and conversions: We propose an efficient STPC protocol over `-bit rings, requiring
a communication of just 2 ring elements per multiplication in the online phase. Moreover, our
protocol helps in realising efficient PPML primitives. For anN -input multiplication gate, our solution
has a constant cost of 2 ring elements and one round of interaction. This is a massive improvement
over [24], where they require communication of 2N ring elements. Round complexity wise, the
naive method of multiplying N elements by taking two at a time requires log2(N) online rounds
and overall communication of 4(N − 1) ring elements for [20] and 2(N − 1) for [22]. The mixed
world conversions, that enable easy transition between Arithmetic ( [3]), Boolean ( [3]) and Yao
( [2]) sharing, are now celebrated in the PPML literature [9, 11, 10] due to their potential in building
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practically-efficient protocols. We propose a new set of conversions that outperform the state-of-the-
art conversions of ABY[20] and SecureML [9] in the online phase. Our solution reduces the number
of online rounds from 2 to 1 for the conversions.

Building Blocks: We propose efficient constructions for widely-used PPML building blocks that
include Scalar Product, Depth-Optimized Circuits, Matrix Multiplication, Non-linear Activation
functions, and Maxpool. The highlights include:
– Scalar Product: Our new protocol incurs an online communication that is independent of the
vector dimension n. This feature is achieved for the first time in the PPML literature. We require
communication of just 2 ring elements as opposed to 4n elements of [20, 9].
– Matrix Multiplication: Matrix multiplication is the fundamental building block in most ML
algorithms. We extend the STPC multiplication protocol to support vector operations and provide an
efficient matrix multiplication protocol.
– Depth Optimized Circuits: The Parallel Prefix Adder (PPA) [25, 26] used in the recent PPML
literature [27] incurs a multiplicative depth of log2(`) since it uses two-input AND gates only. We
propose round efficient PPA constructions using a combination of two, three, and four input AND
gates. Our solution has 2× fewer rounds and less online communication compared to [27].
– Maximum of three elements: Our new protocol improves the online communication of [24] by
14× while reducing the online rounds from 5 to 4.

Application: We implement the training and inference of Logistic Regression and Neural Networks
in a LAN and a WAN setting and benchmarked over datasets with various feature sizes. For training,
we obtain online runtime improvements over SecureML [9] in the range 2.7×–6.1× for LAN and
1.5×–2.8× for WAN. Our improvement for inference ranges from 7.9×–754.3× for LAN, while it
ranges from 2.5×–753.2× for WAN.

Beaver’s technique [28] on gate inputs (cf. left of Fig. 1). In STPC and PPML literature, there
has been a lot of works [9–11] that use Beaver’s[28] circuit randomization technique to compute
the product a · b. In this technique (cf. left side of Fig. 1), the inputs of the multiplication gate are
randomized first and the corresponding correlated randomness is generated independently (preferably
in a setup phase). In detail, parties interactively generate an additive sharing of the multiplication
triple (δa, δb, δab) with δab = δaδb during the setup phase before the actual inputs are known. Now,
we can write: a ·b = ((a+δa)−δa)((b+δb)−δb) = (a+δa)(b+δb)−(a+δa)δb−(b+δb)δa+δab.

Let ∆a = (a + δa) and ∆b = (b + δb) be the randomized versions of the input values of a
multiplication gate. Then, during the online phase, parties locally compute an additive sharing of ∆a

using additive shares of a and δa. Similarly, an additive sharing of ∆b is computed. This is followed
by the parties mutually exchanging the shares of ∆a and ∆b to enable public reconstruction of ∆a

and ∆b. Then using the above equation, parties can locally compute a sharing of a · b. Note that this
method requires communicating 4 elements per multiplication (2 elements per reconstruction).

ci = i ·∆a∆b − ∆a[δb]i − ∆b[δa]i − [δaδb]i ; i ∈ {0, 1}

Pi : (ai, [δa]i), (bi, [δb]i), [δaδb]i

[∆c]i : ci + [δc]i

Beaver’s[28]: On Gate Inputs ABY2.0 : On Gate Output
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c

MULT

P0 P1

[∆a]0, [∆b]0

[∆a]1, [∆b]1

[∆a]i : ai + [δa]i

[∆b]i : bi + [δb]i

Pi : (∆a, [δa]i), (∆b, [δb]i), [δaδb]i

[∆c]1

[∆c]0
P1P0

Figure 1: High level overview of Beaver’s[28] and ABY2.0

Our technique on gate outputs (cf. right of Fig. 1). With this insight, we modify the sharing
semantics so that the parties are ensured to have the ∆ value as a part of their share, corresponding
to every wire value (including the inputs of a multiplication gate). As a result, the reconstructions
of ∆a and ∆b are no longer required. Our technique, in summary, shifts the need of reconstruction
(which alone causes communication for a multiplication gate) from per input wire to the output
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wire alone for a multiplication gate. For a traditional 2-input multiplication gate, we reduce the
number of reconstructions (each involves sending 2 elements) from 2 to 1. As a result, we improve
communication by a factor of 2×. The impact is much higher for an N -input multiplication gate and
a scalar product of two N -dimensional vectors. For scalar product, Beaver’s circuit re-randomization
required 2N reconstructions, whereas our techniques need a single one, offering a gain of 2N×.

2 Protocols

[·]-sharing. A value v ∈ Z2` is said to be [·]-shared among P , if party Pi for i ∈ {0, 1} holds [v]i
such that v = [v]0 + [v]1.

〈·〉-sharing. A value v ∈ Z2` is said to be 〈·〉-shared among P , if there exist values δv,∆v ∈ Z2`

such that i) δv is [·]-shared among P0, P1, ii) ∆v = v + δv, and iii) ∆v is known to both P0, P1 in
clear. We denote the shares of individual parties as 〈v〉i = ([δv]i ,∆v) for i ∈ {0, 1}.
Linear Operations. Our sharing scheme is linear in the sense that given 〈a〉, 〈b〉 and public constants
c1, c2, parties can locally compute 〈y〉 = c1 · 〈a〉+ c2 · 〈b〉.
Multiplication Protocol. Given the 〈·〉-sharing of a, b, the goal of protocol MULT (cf. [1, Fig. 2]) is
to generate 〈y〉 where y = ab. To summarize, during the setup phase, parties first locally sample the
[·]-shares for δy. In parallel, parties execute the setup phase, using Oblivious Transfer (OT) [20, 29]
or Homomorphic Encryption (HE) [30, 21, 31], on [δa] and [δb] to obtain [δab]. During the online
phase, the parties locally compute [∆y] and subsequently reconstruct ∆y.

Multi-Input Multiplication gate. We show how to compute a 3-input multiplication gate (MULT3 )
with three inputs a, b, c with each input being 〈·〉-shared (cf. [1, Fig. 5]). Here we need to generate
the [·]-sharing of four terms, namely δab, δbc, δac and δabc during the setup phase.

3 Primitives for PPML and Evaluation

Scalar Product. Given the arithmetic sharing of n-element vectors ~a, ~b, the goal is to generate 〈y〉A
where y = ~a� ~b =

∑n
j=1 aibi. The parties first execute the preprocessing corresponding to each of

the n multiplications in parallel. During the online phase, parties first locally compute the [·]-sharing
of value ∆yj where yj denotes ajbj . Pi for i ∈ {0, 1} now locally computes [∆y]i =

∑n
j=1

[
∆yj

]
i
.

This is followed by the parties mutually exchanging [∆y]-shares to reconstruct ∆y. Compared with
the state-of-the-art 2PC solutions in ABY [20] and SecureML [9] which require communication of 4n
elements in the online phase, our protocol requires an online communication of just 2 ring elements.

Depth-optimized Adder. We design a depth optimized adder and bit extraction circuit using two,
three, and four input AND gates combined. Concretely, for a 64-bit ring, we achieve a 2× im-
provement in depth over existing designs along with a reduction in online communication. Matrix
Multiplication. We construct efficient protocol for matrix multiplication. Given two matrices
Ap×q,Bq×r, our protocol improved the online communication from O (pqr) to O (pr) ring elements,
eliminating the dependency on dimension q.

ReLU. To compute ReLU(v) = max(0, v), parties first execute the LT protocol on v to obtain 〈u〉B,
where u = 1 if v < 0 and 0 otherwise. Parties can then locally compute 〈u〉B, followed by executing
an special conversion (〈a〉B〈b〉A → 〈ab〉A) on 〈u〉B and 〈v〉A to obtain the desired result.

Maxpool. We construct maxpool building block using our new protocols. Here we provide an

Ref. Type
n = 1,024 n = 65,536

Comm [KB] Rounds Comm [KB] Rounds

[9] GC 2,056 4 131,584 4
ABY2.0 GC 1,024 2 65,536 2

[24] MAX2 258 50 16,512 80
ABY2.0 MAX2 53 40 3,408 64

[24] MAX3 492 35 31,679 55
ABY2.0 MAX3 63 28 4,080 44

Table 1: Online communication and rounds of Maxpool protocols. n is the number of input elements.
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empirical analysis of our Maxpool protocol and compare it with its competitors. We consider vectors
with dimensions n ∈ {1024, 65536}. We have evaluated both round-optimized and communication-
optimized variants of the Maxpool protocol. In the round-optimized variant proposed by SecureML[9],
a garbled circuit is used to evaluate the maximum among n elements. This method requires converting
Arithmetic shares to Yao shares and back, which can be tackled using A2Y and Y2A conversions. In
the communication-optimized variant, we use the tree-based approach where either two (MAX2) or
three elements (MAX3) are compared at a time. Table 1 summarizes the cost for the online phase
of the Maxpool protocol. It is evident from the table that our protocols outperform [9, 24] in both
communication and rounds for the online phase in all three cases.

Evaluation: We implemented our protocols using the ENCRYPTO library[32] in C++17 over a
64-bit ring. In the domain of PPML [9, 27, 14, 15], we show that Logistic Regression and Neural
Networks can be substantially improved with our building blocks. For the training phase, we follow
[27, 15] and benchmark the number of iterations per minute (#it/min) over both LAN and WAN. The
values are reported over batch sizes of {128, 256, 512} and with feature sizes n ∈ {100, 900}. For
the inference, we report the online runtime as well as the throughput (TP) for the aforementioned
feature sizes.

Logistic Regression. Tab. 2 gives our benchmarks for Logistic Regression training. Over
SecureML[9], we have improvements in the range 4.4×-6.1× for LAN and in the range 1.5×-
2.0× for WAN. Note that over WAN, the throughput of our protocol remains unchanged across
feature sizes as well as batch sizes. This discrepancy is due to the effect of communication on the rtt.
Tab. 3 gives our benchmarks for Logistic Regression inference. We improve the online runtime over
SecureML [9] by 5.5× for LAN and 1.6× for WAN, and the online throughput by 7.9×-35.5× in
LAN and 2.5×-11.1× in WAN.

Neural Networks (NN). In our work, we follow previous works [9, 27, 14] and consider a Neural
Network with two hidden layers, each having 128 nodes followed by an output layer of 10 nodes. We
use ReLU as the activation function over the nodes. Moreover, for training we use the MPC-friendly
variant of the softmax function[9] which is defined as f(vi) = ReLU(vi)/

∑m
j=1 ReLU(vj). Tab.2

gives our benchmarks for NN Training. Over SecureML[9], we have improvements in the range
2.7×-3.46× for LAN and 2.4×-2.8× for WAN.

Batch
Size Ref.

Logistic Regression Training NN Training
LAN (#it/min) WAN (#it/min) LAN (#it/min) WAN (#it/min)

n = 100 n = 900 n = 100 n = 900 n = 100 n = 900 n = 100 n = 900

128 [9]
ABY2.0

29,112
176,471

27,273
149,626

108
162

104
162

3,593
12,448

3,559
12,343

17
42

17
42

256 [9]
ABY2.0

25,829
163,043

24,058
117,188

107
162

97
162

3,578
9,259

3,521
9,156

17
42

17
42

512 [9]
ABY2.0

23,292
110,906

22,247
98,847

104
162

83
162

3,330
9,177

3,323
9,146

15
42

15
42

Table 2: Comparison of the online throughput of ABY2.0 and SecureML [9] for Logistic Regression Training
and NN Training. Best results in bold and larger is better. n is the number of features.

Parameter Ref.
Logistic Regression Inference NN Inference
LAN WAN LAN WAN

n = 100 n = 900 n = 100 n = 900 n = 100 n = 900 n = 100 n = 900

Runtime (ms) [9]
ABY2.0

1.60
0.29

1.69
0.29

496.08
308.16

504.96
308.16

8.68
2.66

8.77
2.66

1,759.92
744.12

1,759.95
744.12

TP (queries/min) [9]
ABY2.0

5,342.61
42,372.41

1,193.01
42,371.11

16.08
39.88

3.58
39.88

62.02
30,796.99

40.89
30,795.17

0.19
92.39

0.12
91.57

Table 3: Comparison of the online runtime and throughput of ABY2.0 and SecureML[9] for Logistic Regression
Inference and NN Inference. Best results in bold. n is the number of features.

Tab. 3 gives our benchmarks for NN Inference. Here we improve the online runtime of SecureML [9]
by a factor of 3.3× in LAN and 2.4× in WAN. Regarding the online throughput, we observe huge
improvements in the range 496×–754× for both LAN and WAN. This improvement is primarily due
to our efficient dot product protocol which has a dimension-independent online communication.

Setup Costs for PPML. We incur a minimal overhead of just 1.6% over SecureML [9] in terms of
communication in the setup phase for Logistic Regression, while the overhead is 0.7% for the case of
Neural Networks. The overhead results from the expensive communication required by our activation
functions (Sigmoid and ReLU) over the garbled circuit based solutions of SecureML [9].
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