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Abstract

Above Ground Biomass is an important variable as forests play a crucial role in
mitigating climate change as they act as an efficient, natural and cost-effective
carbon sink. Traditional field and airborne LiDAR measurements have been proven
to provide reliable estimations of forest biomass. Nevertheless, the use of these
techniques at a large scale can be challenging and expensive. Satellite data have
been widely used as a valuable tool in estimating biomass on a global scale.
However, the full potential of dense multi-modal satellite time series data, in
combination with modern Deep Learning (DL) approaches, has yet to be fully
explored. The aim of the "BioMassters" data challenge and benchmark dataset is to
investigate the potential of multi-modal satellite data (Sentinel-1 SAR and Sentinel-
2 MSI) to estimate forest biomass at a large scale using the Finnish Forest Centre’s
open forest and nature airborne LiDAR data as a reference. The performance of
the top three baseline models shows the potential of DL to produce accurate and
higher-resolution biomass maps. The dataset and the code are available on the
project website: https://nascetti-a.github.io/BioMasster/|

1 Introduction

Forests contain a significant proportion of the world’s biomass and act as carbon sinks by removing
carbon dioxide from the air through photosynthesis. On the other hand, forest release carbon dioxide
through wildfires, respiration, and decomposition. Estimate of biomass change enables a direct
measurement of carbon sequestration or loss that can help validate carbon-cycle models and quantify
the human-induced impacts on global climate change. In order to understand how much carbon
a forest contains (its carbon stock) and how it changes (carbon flux), it is important to have an
accurate measure of Above Ground Biomass (AGB). Monitoring variation of forest biomass at the
global, national and regional scales is a crucial indicator for making informed decisions and assessing
the impact of new policies for preservation and improvements of carbon sequestration. Biomass
has a direct influence on local, regional and even global climate, particularly on air temperature
and humidity [8]. Forest biomass data can play a crucial role in understanding and predicting
climate, for example in climate model initialization and testing, carbon turnover estimation, and
data assimilation in carbon cycle models. Moreover, forest AGB is one of the sub-indicators of
Sustainable Development Goal 15, which tracks changes in carbon stocks and assesses the impact
of forest degradation, deforestation and management practices on the carbon cycle. While field
measurements and Airborne Laser Scanning (ALS) are effectively used to retrieve information about
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forest biomass, it’s challenging and expensive to use these techniques at a large scale. Satellite
remote sensing has been extensively used for AGB estimation due to its ability to provide spatially
comprehensive information at various spatial and temporal scales. The utilization of satellite data
to measure biomass can reduce the cost and resources required for forest monitoring and carbon
estimation. DrivenData, in partnership with the Geomatics units of the University of Liege and KU
Leuven, hosted a machine-learning competition to estimate AGB in the forests of Finland. The
competition aimed at developing open-source deep-learning models that can accurately estimate
the AGB using multiple satellites. Participants were challenged to use yearly Sentinel-1 Synthetic
Aperture Radar (SAR) and Sentinel-2 MultiSpectral Imagery (MSI) time series as inputs to estimate
AGB forest biomass. In this paper we present the benchmark dataset and we analyze the performance
of the top-score models.

Airborne LiDAR
yearly coverage
I ALS Areas 2017
[ ALS Areas 2018
[ ALS Areas 2019
[ ALS Areas 2020
[ ALS Areas 2021
Basemap OSM

Figure 1: Overview of airborne LiDAR yearly coverage (acquisitions during the summer period at
peak of biomass)

2 Background

SAR, MSI, and LiDAR (Light Detection and Ranging) satellite sensors are all used to measure
vegetation and estimate AGB, but they differ in their capabilities to sense the vegetation and forest
structures.

SAR sensors use microwave radiation to penetrate the canopy and measure the backscatter of the
radiation from different vegetation layers. SAR can provide information on vegetation structure,
biomass, and water content, and can penetrate clouds and operate day or night, making it suitable for
monitoring vegetation also in areas with frequent cloud cover. Several studies have been performed
using SAR data acquired from different sensors (e.g. TerraSAR-X, Sentinel-1, ALOS-2) operating in
X, Cor L bands [21], 24,331 34, 141}, [48]].

MSI sensors capture reflected sunlight at different wavelengths, which can be used to identify different
types of vegetation and estimate vegetation properties such as leaf area index and chlorophyll content.
MSI sensors are effective for monitoring vegetation dynamics and land use changes over large areas
but are limited by cloud cover and solar illumination. Various studies have effectively utilized time
series of reflectance data from Landsat to monitor the global extent and patterns of forest cover
disturbance and recovery [10} (18} 45]. To estimate AGB losses from carbon density maps, proposed
methods have been discussed [0, [11]]. Only a handful of studies have used time series of MSI
data to model AGB over time and derive AGB changes [45} 25} 126} 30, 32]]. Sentinel-2 provides
high-resolution multispectral data that can be used to estimate AGB by analyzing the forest canopy
structure and green vegetation cover.

LiDAR sensors emit pulses of laser light and measure the time it takes for the light to return after
bouncing off the vegetation, providing a detailed 3D representation of the vegetation structure. LiDAR
can estimate the height and volume of individual trees, as well as vegetation canopy height, density,



and biomass [44]. However, LiDAR is limited by its high cost and lower spatial coverage compared
to SAR and MSI sensors. The recently launched Ice, Cloud, and Land Elevation Satellite (ICESat-2)
and Global Ecosystem Dynamics Investigation (GEDI) have allowed for the study of forest height
and biomass on both local and global scales [13} 29, 12, [31]].

The combination of satellite data from different platforms, such as those listed above, with forest
plots (i.e. ground-based measurements of tree parameters such as diameter, and height), can improve
the accuracy of AGB estimation providing a comprehensive understanding of forest structure and
biomass. Several studies have shown that using data from multiple sensors is more effective in
predicting forest biomass than using data from a single sensor [24]. However, incorporating multi-
source data into an improved estimation of forest AGB requires the use of advanced techniques,
including modern machine learning approaches [20L [15} 22} 42]. In order to enhance the capacity of
the biomass model to accurately estimate nonlinear relationships, various machine learning techniques
have been employed for remote sensing-based estimation of forest AGB [28| [27]]. Decision tree,
K-nearest neighbor (KNN), Artificial Neural Network (ANN), and Support Vector Machine (SVM)
are among the methods utilized for this purpose. Notably, studies in the past have highlighted the
exceptional performance of decision tree-based algorithms, including random forest and gradient
boosting, in biomass estimation modeling [9, 7, [1]. However, the full potential of DL algorithms
for biomass estimation from satellite data has not been fully explored due to the lack of reliable
benchmark datasets and the underutilization of dense satellite time series, such as the ones acquired
from Sentinel-1 and Sentinel-2 satellites.

3 Benchmark Dataset

The data challenge, recently hosted by Driven Data in collaboration with the Geomatics Units of the
University of Liege and KU Leuven, presents a new deep-learning-ready benchmark dataset for es-
timating the AGB using multi-temporal Sentinel-1 and Sentinel-2 data. The benchmark dataset
is publically available at https://huggingface.co/datasets/nascetti-a/BioMassters
(doi:10.57967/hf/1009). For detailed information on data format and downloading instructions,
please refer to the supplementary material. Some technical details regarding the data collection are
reported in Table[l] In the following subsections, we present the characteristics of AGB reference
data, input satellite imagery and the pre-processing steps.

Table 1: Data Specifications.

Reference Modality 1 Modality 2

Sensor ALS SAR MSI

Source NLS Finland Sentinel-1 (ESA) Sentinel-2 (ESA)
Resolution 16x16 grid, Sppm 20m 10m, 20m, 60m
Channels - VV, VH (ASC, DSC) Except 1,9, 10
Coverage 8.5 million hectares ‘

Time Frame Sep 2016 - Aug 2021 ‘

Data Size 310000 patches (= 13000 ref. x 12 months x 2 modalities) ‘

3.1 Reference Labels

The reference AGB data is based on Airborne LiDAR campaigns performed by the Finland Forest
Centre [2]] in cooperation with the National Land Survey (NLS) of Finland. Airborne LiDAR and
aerial imagery are acquired following a six-year cycle to cover the entire country. The aerial imagery
is acquired every three years: the first time in the same year as LiDAR and the second time in the
latter half of the six-year cycle. LiDAR acquisitions are performed from an altitude of 1.5-2 km
providing a point density of at least 5 observation points per square meter (ppm). The aerial imagery
has a GSD of 0.4m and is used to identify tree species. The Finnish Forest Centre conducts annual
surveys of approximately 22 remote sensing areas in different parts of the country, covering a total of
3.5-4 million hectares of forest (see highlighted areas in Figure[I). The LiDAR and aerial imagery are
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combined with field data to provide corresponding characteristics of laser point data and pixel values
of aerial imagery for each sample plot. Each inventory area is measured using 800 sample plots,
which allows tracking of forest variations and facilitates the interpretation process. The resulting data
is available as free and open forestry inventory data under a CC-BY-4.0 license. The data is organized
in a polygon layer with a 16 m x 16 m grid and includes tree attributes, such as tree species, number
of trees, relative percentage within the grid, trunk diameter, tree height, and more. The average Root
Mean Square Error (RMSE%) of the tree attributes (total stem volume, basal area, and diameter) is
around 8%. The cartographic reference system used is the ETRS-TM35FIN (EPSG:3067). AGB is
derived for each cell from the tree attributes using calibrated allometric equations for different types
of trees [36] [37]. The AGB values are expressed as tonnes (t) per cell (i.e. pixel).

3.2 Satellite Data

The satellite multi-modal time series considered as input data are respectively acquired by Sentinel-1
SAR and Sentinel-2 MSI sensors.
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Figure 2: Overview of the data and corresponding processing steps to assemble the benchmark dataset

The Sentinel-1 mission captures C-band SAR images at a 20 m resolution with dual polarization
(HH+HV and VV+VH) capability. The pre-processing of Sentinel-1 images involves the conversion
of backscatter coefficients (o) to decibels via log scaling (10 log(x)), and the removal of thermal
noise, radiometric calibration, and terrain correction. We considered all dual-band VV+VH scenes
acquired in interferometric wide swath mode during a given period, separated into ascending (ASC)
and descending (DSC) passes due to the incidence angle’s influence on the backscatter coefficient.
Backscatter coefficients lower than -25 dB were masked to remove no-signal noise. Monthly mean
images of VV and VH polarizations were computed separately for both ascending and descending
orbits using pixel-wise temporal averaging to reduce SAR speckle noise. The resulting four bands,
namely ASC VV, ASC VH, DSC VYV, and DSC VH, were saved in a single geotiff file, which was
reprojected and co-registered with respect to the reference AGB area.

The Sentinel-2 mission captures optical images with 13 spectral bands at different spatial resolutions
(Band 2, Band 3, Band 4, and Band 8 provided at 10 m resolution and the remaining bands at 20 m or
60 m resolution). Bands 1, 9, and 10 were excluded because they contain atmospheric information
not relevant to AGB estimation. Level-2A data representing Bottom of Atmosphere (BoA) reflectance



was chosen over Top of Atmosphere (ToA) Level-1C data for the analysis. The conversion from
ToA to BoA data is performed using the ESA software sen2cor[4]. Moreover, the pixel-wise cloud
probability mask is generated using the sentinel2-cloud-detector library [3]. Since the overall cloud
percentage reported in the metadata is not reliable for evaluating local cloud coverage, we utilize
the cloud probability mask generated by the sentinel2-cloud-detector library to calculate the local
percentage of clouds for each reference AGB chip. This approach aims to identify the image with the
least amount of clouds, given that the AGB chips only cover a small portion of the entire Sentinel-2
image footprint.

All satellite data were pre-processed using Google Earth Engine (GEE), a cloud-based platform known
for its capabilities in analyzing large amounts of geospatial data in a timely manner [16]. Several
studies have highlighted the potential of GEE for geospatial big data analysis 35,49} 123|147, 17, 46].
GEE provides direct access to analysis-ready data cubes for Sentinel-1 SAR and Sentinel-2 optical
data, making pre-processing steps for both data modalities readily available.

3.2.1 Sampling Strategy and Data Assembly

An overview of the benchmark data preparation workflow for generating the training and test sets using
Sentinel-1 SAR, Sentinel-2 MSI, and AGB reference data derived by airborne LiDAR measurements
is presented in Figure 2| The dataset was generated by sampling the available LiDAR survey areas
(see Figure [I) using a stratified strategy. Approximately 2.5k non-overlapping patches (or image
chips) were obtained each year, for a total of nearly 13000 patches covering the entire Finland. Each
reference patch covers a different (2560 x 2560) square meter area of forest and represents the yearly
peak of AGB (the LiDAR surveys are measured during the summer: July - August). Note that 0
values in this dataset represent areas with zero biomass (no forest). Low vegetation land covers,
such as grasslands and shrublands are not included. The bounding boxes corresponding to reference
patches are imported in GEE as reference polygons to collect the satellite imagery. For each reference
AGB chip, a full year’s worth of monthly Sentinel-1 and Sentinel-2 images for that area are collected,
from the previous September to the most recent August. For example, for a chip from 2020, monthly
satellite data is provided from September 2019 to August 2020. The leading idea of using the previous
year’s time series is to have several images to measure the vegetation phenology.

Each chip contains a total of 24 input images, with 12 from each satellite source. However, due to
satellite data outages (e.g., in December 2019), not all chips have coverage for every month. The
satellite image patches are provided as TIFF files and any associated geolocation data has been
removed to ensure that the tested models are comparable and to prevent participants from collecting
additional geospatial data. The dataset includes around 310,000 satellite input patches (13,000
reference areas x 12 months x 2 modalities) generating a dataset of size approximately 300GB. The
dataset is released as free and open-access under a CC-BY-4.0 license. To create a holdout test set, 30
% of the available patches from each year of 2018, 2020, and 2021, and 20 % of the available patches
from 2019, were randomly selected. All patches from 2017 were placed in the training set due to the
sparse Sentinel-2 time series from September 2016 to August 2017 (when the second Sentinel-2B
satellite had not yet launched) and consequently, the monthly images are potentially more cloudy.

4 Data Challenge Outcomes

The aim of the ’BioMassters’ competition is to test different DL methods on the benchmark dataset.
The participants were asked to develop innovative DL methods for yearly AGB estimation. The
competition lasted for three months (from 27/10/2023 to 27/01/2023); with 976 registrations around
the globe and more than 1000 model submissions from the 90 active participants/teams. The final
leaderboard highlighted that the top-10 models converge to an RMSE value (< 29 t/px), proving the
high quality of the developed models. We choose and analyzed the top three models as baselines
for the benchmark dataset. In the following subsection, we present the models and analyze their
performance.

4.1 Baseline Models

The selected three baseline models are an adaption of U-TAE (U-Net Temporal Attention
Encoder)[[14]], Swin U-Net TRansformer (Swin UNETR) [19] and U-Net++ [S0]. The top



three winning model implementations are available at https://github.com/drivendataorg/
the-biomassters.

Model 1: the model U-TAE [14] is a U-Net with temporal attention encoder. It takes a sequence of
images and processes them using a shared convolutional encoder. An attention module is applied
at the lowest resolution feature maps that generate a set of temporal attention masks for each pixel,
which are then spatially interpolated at all resolutions. These masks are used to collapse the temporal
dimension of the feature map sequences into a single map per resolution. Similar to U-Net, a
convolutional decoder is used that computes features at all resolution levels. All convolutions operate
purely on the spatial and channel dimensions, and use strided convolutions for both spatial up and
down-sampling. Unlike the approach used in [[14], where the temporal attention masks are calculated
at the lowest resolution and interpolated to mask higher resolution feature maps, the baseline model
calculates and applies the attention mask separately at each resolution. The encoder used here is
efficientnetv2 [40], a state-of-the-art backbone that is well-known for its strong performance on image
classification tasks. The model takes in 15-band images from joint Sentinel-1 SAR and Sentinel-2
MSI data as input, and the encoder is shared for all 12 months input data. For training, the reference
labels are clipped between 0 and 400. The model uses data augmentation techniques such as vertical
flips, rotations and random drops. In random drop, a random monthly image is dropped from the
input sequence to avoid overfitting the sequence. The model is trained to optimize RMSE loss.

Model 2: Swin UNETR [19] is a 3D semantic segmentation model and for AGB estimation, the 3D
dimension is used to incorporate time information. The model combines the U-Net architecture with
Swin Transformer blocks. The encoder of the U-Net is replaced by Swin Transformer blocks, which
have been shown to be effective in capturing long-range dependencies and multi-scale features in
images. The adapted Swin UNETR contains a four stage encoder to learn multi-scale features from
input, and then a five stage decoder upsamples feature maps to the same spatial-temporal size as input.
Feature maps are averaged on the time channel and fed into the output head to generate segmentation
prediction. The model input, reference labels and augmentation strategies are consistent with the
U-TAE baseline model except random drop augmentations are not used here. Swin UNETR model is
optimized using a weighted combination of mean absolute error and structure similarity loss[43].

Model 3: The U-Net++ [50] architecture is an extension of the original U-Net model that was
introduced for image segmentation tasks. Like the original U-Net, U-Net++ consists of an encoder
and decoder that are connected through a series of skip connections. However, instead of using
simple skip connections, U-Net++ uses a series of nested dense convolutional blocks to bridge the
semantic gap between the feature maps of the encoder and decoder prior to fusion. The third baseline
employs an exhaustive ensemble of fifteen U-Net++ networks, each of which is implemented using
U-Net++ with different backbone encoders, and each model is trained to optimize the Huber loss[51].
The ensemble model is further trained with RMSE, and the final segmentation output is generated by
taking the weighted average of the fifteen models. Unlike the previous models, this baseline explores
preprocessing the training data. The Sentinel-1 and Sentinel-2 data are preprocessed to produce six
cloud-free median composites to reduce data dimensionality while preserving the maximum amount
of information. Different seasonal median composites are prepared for Sentinel-1 data and stacked.
For Sentinel-2, first, a cloud mask is applied with a 50% threshold of the cloud probability, and then
the data is reduced to seasonal median composites and stacked. This baseline also explores different
indices as input, such as NDVI for Sentinel-2 and VV/VH ratio for Sentinel-1. The data augmentation
techniques used in this baseline are the same as those used in the other two baselines.

4.2 Results

All models are evaluated using RMSE evaluation metric between estimated and observed values
which is calculated per-pixel for each image and then averaged over all images. Few outliers (max
1-2 pixels in some chips) were observed in the reference AGB; they are not removed during the
evaluation considering that are not statistically significant. Pixels with a nonzero value are included
in the assessment.

The test dataset is categorized into three classes low (0 to 68.56 t/px), medium (68.56 to 112.92
t/px) and high (>112.92 t/px) biomass density using 25 and 75 percentile values. The evaluation
results on the three density categories and overall test dataset are shown in Table 2| The RMSE
scores of the three baseline models are comparable, and they exhibit good performance in regions
with lower biomass density. However, as the biomass density increases, the accuracy of biomass
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estimation decreases, indicated by the increase in average RMSE. Out of the three models, U-TAE
achieved the lowest RMSE score in all four categories, making it the least biased model compared
to others. The average bias (average per-pixel difference) values suggest that the U-TAE and swin
UNETR models tend to overestimate biomass, while the U-Net++ model slightly underestimated
it. Additionally, the U-TAE model produced the least biased estimates in low and mid-density
areas, while the U-Net++ model was least biased in high-density areas. In Figure 3] we reported the

Table 2: Biomass estimation results from the three baseline models on the test set.

Method | Low Density | Medium Density | High Density | Overall
Average RMSE =+ Std.

U-TAE [14] 15.24 +4.29 28.554+9.89 37.59+11.02 | 27.49+ 12.14

Swin UNETR [19] 15.25 +4.41 28.61+9.85 37.64+11.09 | 27.53+ 12.16
U-Net++ [50] Ensembled | 15.60 +4.35 29.014+9.80 38.04+10.93 | 27.92+ 12.11

Average Bias + Std.

U-TAE [14] 0.054 £15.84 0.374+30.22 1.76+39.14 | 0.64+ 30.04

Swin UNETR [19] 0.43 £15.88 0.924+30.25 2.37+39.17 1.16+ 30.08
U-Net++ [50] Ensembled | -0.37 £16.19 -0.62+30.62 0.49+39.58 | -0.28+ 30.43

scatterplots for the three models computed on the test set, which shows the good correlation between
reference label values and predictions and the trend of decreasing accuracy for higher densities. In
future studies, it would be beneficial to identify the best-performing models for different density areas
and to ensemble them to improve the overall prediction accuracy. Figure ] displays a few sample
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Figure 3: Scatter plots of reference labels and predictions, (a), (b), (c) are pixel-wise prediction
comparisons and (d), (e), (f) are mean (per chip) prediction comparisons of U-TAE, Swin UNETR
and U-Net++ ensemble. Scatter plots are prepared on the complete test dataset. The dotted line
represents the y=x axis and the solid line represents the line fitting the scatter plot. The verticle color
labels represent the number of samples for each plot.

results from the three models. Similar to the average RMSE scores, the visualized results from the
three models are comparable. However, a few distinguishing features are worth noting (highlighted
in Figure ). For example, in the first sample (see highlighted area in the first row), swin UNETR
and U-Net++ produced better outcomes. Upon closer inspection, we observed that the U-TAE and
U-Net++ models generated somewhat blurred/smooth results, whereas the segmentation results from



swin UNETR were fine-grained (see highlighted area in rows 2, 3 and 4), resembling the reference
label high-frequency details.

(a) Reference Label (b) U-TAE (c) Swin UNETR (d) UNet++

Figure 4: Result samples from the three baseline models. The predictions from the three models are
quite similar. Some of the visual differences are highlighted in white boxes.

5 Discussion

Over the past decade, several global maps of AGB have been produced such as Baccini 2000,
GeoCarbon, GlobBiomass and CCI Biomass. The AGB estimates are usually based on traditional
remote sensing modeling approaches [38, [39]]. These approaches used for AGB estimation are
typically based on the physical interaction between SAR backscatter and canopy density. Although
these models are widely excepted and have been extensively used for AGB estimation, they have
some limitations: (1) it’s more challenging to integrate multi-modal data (e.g. multispectral and SAR
fusion) (2) they were developed for lower spatial and temporal resolution SAR images and are not
exploiting the more recent satellite constellation capabilities. Furthermore, notable disparities exist in
the worldwide biomass products, which limit their usefulness in climate and carbon cycle modeling,
as well as in national assessments of forest carbon stocks and fluctuations [3]].



Figure 5: Visual comparison between (a) Google Earth high-resolution base map (b) Reference ALS
AGB (c) Best Model Prediction (U-TAE) (d) ESA CCI Biomass 2018

Azara et al. [5] conducted a comprehensive assessment of available biomass products. They reported
average RMSE values ranging from 30 t/px for areas with low biomass density (< 50 t/ha) to 50 t/px
for regions with higher biomass density (between 50 and 250 t/ha). Compared to average RMSE
values obtained in their study, presented DL models gain a significant improvement in both low and
high-density areas, with average RMSE values of 15 t/px and 37 t/px, respectively. Moreover, they
reported that all global maps tend to overestimate lower biomass and underestimate higher biomass.
This phenomenon is a common issue, also observed in the globally available biomass products (such
as ESA CCI Biomass, and GeoCarbon). This is due to saturation issues of MSI reflectance and SAR
backscatter in densely forested areas. Our reported results also show a decrease in AGB estimation
accuracy with an increase in forest density (see Table [Z). However, the use of multi-modal data
helped in reducing the effect and showing a more balanced behavior.

Another fundamental aspect to consider when comparing the performance of the top models with
respect to available biomass products is spatial resolution (pixel size in m). The existing products
are generated at a coarse spatial resolution (e.g., 100m for ESA CCI Biomass), which is ten times
lower than the resolution achieved using our proposed BioMassters dataset. Figure 3 presents a
visual comparison between the reference LIDAR AGB (subfigure [5]b), the prediction of the best
model (subfigure5c) and the corresponding ESA CCI Biomass map (subfigure [5]d). The ESA CCI
Biomass product is generated using a combination of Sentinel-1 and ALOS satellite imagery. From
the visual comparison, it is clear that improvement in terms of spatial resolution is achievable using
cutting-edge DL models.

However, the ESA CCI biomass is globally available and more studies should be conducted in the
future to test the scalability of the presented models. In particular, the dataset is now limited only to
boreal forests and it is not easy to transfer the model to other forest types, such as tropical forests.
In the future, it could be possible: (1) to extend the dataset to other regions where it’s possible to
obtain reliable airborne LiDAR data as reference; (2) to use the dataset for pre-trained models and
fine-tuned them to other regions or tasks We believe that a fundamental aspect to improve biomass
maps at the global scale is the release of more freely and open-access deep-learning-ready datasets
such as BioMassters.

6 Conclusion

In this study, we presented a benchmark dataset *BioMasster’ for forest AGB estimation. The idea
is to investigate the potential of dense time series multi-modal (Sentinel-1 SAR and Sentinel-2
MSI) satellite data. The dataset consists of 310,000 patches from a 5-year timespan that covers 8
million hectares of forested areas in Finland. The AGB references are derived from airborne LiDAR
measurements conducted by the Finnish Forest Center and the National Land Survey (NLS) of Finland.
The dataset has experimented with various DL models by participants from the "BioMasster" data
challenge hosted by Driven Data. The top three baseline models achieved an RMSE of ~ 27 tonnes
per 2,560 x 2,560 square meters area on an unseen holdout set. The results highlighted a decrease
in accuracy with the increase in forest density. The accuracy drop is mainly caused by a rise in the
dispersion of the predicted biomass values; the systematic error component remains low showing a
good balance (no over or underestimation) of the predictions for higher-density areas. We conducted



a visual comparison Figure [5]between predicted biomass maps and existing global AGB products
to illustrate the potential of DL methods to enhance spatial resolution. However, more studies are
needed to verify the applicability of the investigated models in different forest types (e.g. tropical
regions) and the scalability from national to global scales. In summary, we have shown that the
combination of multi-modal time series satellite data, specifically Sentinel-1 and Sentinel-2, with DL
algorithms can provide a highly accurate estimation of AGB over vast areas, while also achieving
impressive spatial resolution. Our findings suggest that this approach holds significant potential
and the release of more freely accessible deep-learning-ready datasets and models would accelerate
global-scale biomass mapping.
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